JP4346852B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP4346852B2
JP4346852B2 JP2002019634A JP2002019634A JP4346852B2 JP 4346852 B2 JP4346852 B2 JP 4346852B2 JP 2002019634 A JP2002019634 A JP 2002019634A JP 2002019634 A JP2002019634 A JP 2002019634A JP 4346852 B2 JP4346852 B2 JP 4346852B2
Authority
JP
Japan
Prior art keywords
semiconductor film
film
semiconductor
mask
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002019634A
Other languages
English (en)
Other versions
JP2002313722A5 (ja
JP2002313722A (ja
Inventor
理 中村
誠之 梶原
純一 肥塚
舜平 山崎
浩二 大力
智史 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002019634A priority Critical patent/JP4346852B2/ja
Publication of JP2002313722A publication Critical patent/JP2002313722A/ja
Publication of JP2002313722A5 publication Critical patent/JP2002313722A5/ja
Application granted granted Critical
Publication of JP4346852B2 publication Critical patent/JP4346852B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はゲッタリング技術を用いた半導体装置の作製方法及び、当該作製方法により得られる半導体装置に関する。特に本発明は、半導体膜の結晶化において触媒作用のある金属元素を添加して作製される結晶質半導体膜を用いた半導体装置の作製方法並びに半導体装置に関する。
【0002】
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
【0003】
【従来の技術】
結晶構造を有する半導体膜(以下、結晶質半導体膜という)を用いた代表的な半導体素子として薄膜トランジスタ(以下、TFTと記す)が知られている。TFTはガラスなどの絶縁基板上に集積回路を形成する技術として注目され、駆動回路一体型液晶表示装置などが実用化されつつある。従来からの技術において、結晶質半導体膜は、プラズマCVD法や減圧CVD法で堆積した非晶質半導体膜を、加熱処理やレーザーアニール法(レーザー光の照射により半導体膜を結晶化させる技術)により作製されている。
【0004】
こうして作製される結晶質半導体膜は多数の結晶粒の集合体であり、その結晶方位は任意な方向に配向して制御不能であるため、TFTの特性を制限する要因となっている。このような問題点に対し、特開平7−183540号公報で開示される技術は、ニッケルなど半導体膜の結晶化に対し触媒作用のある金属元素を添加して結晶質半導体膜を作製するものであり、結晶化に必要とする加熱温度を低下させる効果ばかりでなく、結晶方位の配向性を単一方向に高めることが可能である。このような結晶質半導体膜でTFTを形成すると、電界効果移動度の向上のみでなく、サブスレッショルド係数(S値)が小さくなり、飛躍的に電気的特性を向上させることが可能となっている。
【0005】
しかし、触媒作用のある金属元素を添加する故に、結晶質半導体膜の膜中或いは膜表面には、当該金属元素が残存し、得られる素子の特性をばらつかせるなどの問題がある。その一例は、TFTにおいてオフ電流が増加し、個々の素子間でばらつくなどの問題がある。即ち、結晶化に対し触媒作用のある金属元素は、一旦、結晶質半導体膜が形成されてしまえば、かえって不要な存在となってしまう。
【0006】
リンを用いたゲッタリングは、このような金属元素を結晶質半導体膜の特定の領域から除去するための手法として有効に活用されている。例えば、TFTのソース・ドレイン領域にリンを添加して450〜700℃の熱処理を行うことで、チャネル形成領域から当該金属元素を容易に除去することが可能である。
【0007】
リンはイオンドープ法(PH3などをプラズマで解離して、イオンを電界で加速して半導体中に注入する方法であり、基本的にイオンの質量分離を行わない方法を指す)で結晶質半導体膜に注入するが、ゲッタリングのために必要なリン濃度は1×1020/cm3以上である。イオンドープ法によるリンの添加は、結晶質半導体膜の非晶質化をもたらすが、リン濃度の増加はその後のアニールによる再結晶化の妨げとなり問題となっている。また、高濃度のリンの添加は、ドーピングに必要な処理時間の増大をもたらし、ドーピング工程におけるスループットを低下させるので問題となっている。
【0008】
【発明が解決しようとする課題】
本発明は、高温(600℃以上)の加熱処理回数を低減し、さらなる低温プロセス(600℃以下)を実現するとともに、工程簡略化及びスループットの向上を実現することを課題とする。
【0009】
【課題を解決するための手段】
ゲッタリング技術は単結晶シリコンウエハーを用いる集積回路の製造技術において主要な技術として位置付けられている。ゲッタリングは半導体中に取り込まれた金属不純物が、何らかのエネルギーでゲッタリングサイトに偏析して、素子の能動領域の不純物濃度を低減させる技術として知られている。それは、エクストリンシックゲッタリング(Extrinsic Gettering)とイントリンシックゲッタリング(Intrinsic Gettering)の二つに大別されている。エクストリンシックゲッタリングは外部から歪場や化学作用を与えてゲッタリング効果をもたらすものである。高濃度のリンを単結晶シリコンウエハーの裏面から拡散させるリンゲッタはこれに当たり、前述の結晶質半導体膜に対するリンを用いたゲッタリングもエクストリンシックゲッタリングの一種と見なすことができる。
【0010】
一方、イントリンシックゲッタリングは単結晶シリコンウエハーの内部に生成された酸素が関与する格子欠陥の歪場を利用したものとして知られている。本発明は、このような格子欠陥、或いは格子歪みを利用したイントリンシックゲッタリングに着目したものであり、厚さ10〜100nm程度の結晶質半導体膜に適用するために以下の手段を採用するものである。
【0011】
本発明は、金属元素を用いて結晶構造を有する半導体膜を形成する手段と、選択的に希ガス元素を添加してゲッタリングサイトを形成する手段と、ゲッタリングサイトに金属元素をゲッタリングさせる手段とを有している。
【0012】
また、希ガス元素を添加する方法としてはイオンドープ法またはイオン注入法を用いればよい。
【0013】
また、希ガス元素に加え、H、H2、O、O2、Pから選ばれた一種または複数種を添加してもよい。なお、希ガス元素に加え、H、H2、O、O2から選ばれた一種または複数種を添加する場合、例えば希ガス元素に加え、水蒸気を含む雰囲気で行えばよい。雰囲気に水蒸気を加え、イオンドープ法を用いて希ガス元素(アルゴン)を添加した時、電磁場直交型質量分析器(E×(cross)B mass analyzer)を用いて測定した結果を図24に示す。なお、電磁場直交型質量分析器は、磁界と電界を垂直にし、かつそれぞれがイオンビーム軸と垂直になるように配置した質量分析器である。電場によりビームを偏向し、検出対象イオンが磁場により中心軸上に戻るようにして質量分析を行う。
【0014】
また、希ガス元素に加え、H、H2、O、O2、Pから選ばれた一種または複数種を添加する場合、例えば希ガス元素に加え、水蒸気とフォスフィンを含む雰囲気で行えばよい。このように複数の元素を添加することにより相乗的にゲッタリング効果が得られる。
【0015】
特に、酸素(O、O2)を添加することは有効であり、ゲッタリング工程において、結晶化を助長する金属元素は、ゲッタリングサイトの酸素濃度の多い領域に移動する傾向がある。
【0016】
また、本発明において、結晶構造を有する半導体膜は、非晶質構造を有する半導体膜に金属元素を添加した後、加熱処理または強光の照射によって結晶化を行えばよい。結晶化の後、フッ酸を含むエッチャント、例えば希フッ酸やFPM(フッ酸、過酸化水素水、純水との混合液)で偏析した金属元素を除去または低減してもよい。また、フッ酸を含むエッチャントで表面をエッチング処理した場合には、強光を照射して表面を平坦化することが望ましい。
【0017】
また、上記結晶化の後、さらに結晶化を改善するためのレーザー光または強光の照射を行ってもよい。この結晶化を改善するためのレーザー光または強光の照射の後にフッ酸を含むエッチャントで偏析した金属元素を除去または低減してもよく、さらに強光を照射して表面を平坦化してもよい。
【0018】
次いで、結晶構造を有する半導体膜上に珪素を主成分とする絶縁膜を形成する。なお、この絶縁膜は極薄いものでよく、炭素、即ち有機物の除去のために行われるヒドロ洗浄と呼ばれる表面処理に使用するオゾンを含む溶液で酸化させることによって形成してもよい。この絶縁膜は、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングするためのものである。この絶縁膜を形成して、チャネルドープを行った後で活性化させるため強光を照射してもよい。
【0019】
また、本発明の特徴の一つは、結晶質半導体薄膜に希ガス元素を添加してゲッタリングサイトを形成するプロセスと、加熱処理(強光の照射による加熱処理を含む)するプロセスとを有しており、該加熱処理により結晶質半導体薄膜に含まれる金属が移動してゲッタリングサイト(希ガス元素のイオンが添加された領域)に捕獲され、ゲッタリングサイト以外の結晶質半導体薄膜から金属を除去または低減することである。なお、加熱処理に代えて強光を照射してもよいし、加熱処理と同時に強光を照射してもよい。また、このゲッタリングの際、チャネルドープにより添加された不純物元素を活性化させてもよい。
【0020】
また、本発明は結晶構造を有する半導体膜へマスクを用いて希ガス元素(希ガスとも呼ばれる)を添加した不純物領域を形成し、加熱処理により前記不純物領域に半導体膜に含まれる金属元素を偏析させるゲッタリングを行った後、前記マスクを用いて半導体膜のパターニングを行うことも特徴としている。マスク数の低減または工程を簡略化する上では、希ガス元素を選択的に添加するマスクと半導体膜のパターニングで使用するマスクとを同一とすることが望ましいが、ゲッタリングを行うと、金属元素が希ガスを添加した領域の境界に偏析しやすい傾向があることから、図13に示したように別々のマスクとしてもよい。
【0021】
また、希ガス元素の添加方法としては、イオンドーピング法やイオン注入法を用いることができ、希ガス元素としては、He、Ne、Ar、Kr、Xeから選ばれた一種または複数種を用いることができる。中でも安価なガスであるArを用いることが望ましい。イオンドーピング法を用いる場合、ドーピングガスに含まれる希ガス元素の1種類が占める濃度が30%以上、好ましくは100%とする。例えば、Krガス30%、Arガス70%の濃度としたドーピングガスを用いてもよい。
【0022】
また、本発明は、半導体膜のパターニングを行う際、希ガスを添加した領域、即ち、金属元素が高濃度に偏析した領域は除去され、マスクで覆われ、且つ金属元素が低減された領域が所望の形状を有する半導体層として形成される。なお、半導体層を形成する際にオーバーエッチすれば、半導体層の端部に存在する金属が偏析している部分を除去することができる。また、パターニングを行った後、上記マスクは除去する。
【0023】
次いで、半導体層の表面をフッ酸を含むエッチャントで洗浄した後、ゲート絶縁膜となる珪素を主成分とする絶縁膜を形成する。この表面洗浄とゲート絶縁膜の形成は、大気にふれさせずに連続的に行うことが望ましい。また、この表面洗浄の前または後に活性化工程を加え、チャネルドープにより添加された不純物元素を活性化させてもよい。
【0024】
次いで、ゲート絶縁膜表面を洗浄した後、ゲート電極を形成し、p型またはn型を付与する不純物元素を適宜添加して、ソース領域及びドレイン領域を形成する。また、必要であればLDD領域も形成してもよい。添加した後、不純物元素を活性化するために加熱処理、強光の照射、またはレーザー光の照射を行えばよい。また、活性化と同時にゲート絶縁膜へのプラズマダメージやゲート絶縁膜と半導体層との界面へのプラズマダメージを回復することができる。特に、室温〜300℃の雰囲気中において、表面または裏面からYAGレーザーの第2高調波を照射して不純物元素を活性化させることは非常に有効である。YAGレーザーはメンテナンスが少ないため好ましい。
【0025】
以降の工程は、層間絶縁膜を形成し、水素化を行って、ソース領域、ドレイン領域に達するコンタクトホールを形成し、ソース電極、ドレイン電極を形成してTFTを完成させる。
【0026】
本発明により、熱処理を用いて結晶化を行い、活性化を熱処理以外の方法で行う場合は、高温熱処理2回(結晶化、ゲッタリング)に抑えることができ、強光により結晶化を行い、活性化を熱処理以外の方法で行う場合には、高温熱処理1回(ゲッタリング)に抑えることができる。
【0027】
また、希ガスを添加する処理時間は、1分または2分程度の短時間で高濃度の希ガス元素を半導体膜に添加することができるため、リンを用いたゲッタリングと比較してスループットが格段に向上する。
【0028】
希ガス元素によるゲッタリングの能力について実験を行った。半導体膜は50nmの非晶質シリコン膜に10ppmの酢酸ニッケル含有水溶液を塗布した後、500℃にて1時間の脱水素処理と、550℃にて4時間の加熱処理により結晶化させた結晶質半導体膜を用いた。この結晶化半導体膜をパターニングした後、90nmの酸化珪素膜を形成した。そして、ゲッタリングされる領域を幅50μmとし、該領域を挟むようにマスクを用いてアルゴンをイオンドープ法(80keVの加速電圧で、5×1015/cm2のドーズ量)で注入してゲッタリングサイト(幅5μm)を設けた試料を作製した。アルゴンは99.9999%以上のものを用い、注入に要する時間は1〜2分でよかった。そして、窒素雰囲気中、加熱温度を350℃、400℃、450℃、500℃、550℃とし、加熱時間を4時間、6時間、8時間としてそれぞれゲッタリングを行った。ゲッタリング後、酸化珪素膜を除去した後、FPMで処理した。ゲッタリングの効果は、結晶質半導体膜の被ゲッタリング領域におけるエッチピットの数により確認した。即ち、添加したニッケルの大部分はニッケルシリサイドとして結晶質半導体膜に残存するが、これはFPM(フッ酸、過酸化水素水、純水の混合液)によりエッチングされることが知られている。従って、被ゲッタリング領域をFPMで処理してエッチピットの有無を確認することにより、ゲッタリングの効果を確認することができる。この場合、エッチピットの数(密度)が少ない程、ゲッタリングの効果が高いことを意味する。図26にその結果を示す。図26からは、加熱時間を長くすれば長くするほどエッチピットの密度は少なくなっており、500℃、好ましくは550℃の熱処理によりエッチピットの密度が十分少なくなっていることが読み取れる。
【0029】
また、ゲッタリングされる領域の幅を30μmとして同様の実験を行った結果を図27に示す。図27と図26を比較すれば、ゲッタリングされる領域が30μmであれば500℃でも十分にエッチピットの密度が少なくなっている。
【0030】
なお、図29にエッチピットが形成された試料の簡略図を示す。なお、図29中、希ガス元素添加領域10401とはアルゴンが添加された領域を示している。ゲッタリングされた領域(被ゲッタリング領域)10402に存在するエッチピット10403の数を光学顕微鏡で見ながらカウントしてエッチピット密度を得た。
【0031】
また、リンのゲッタリング能力と比較するため、さらに実験を行った。ドーピング条件と加熱条件とを変えて、上記実験と同様にエッチピットの密度を得た。ここでは、ゲッタリングサイト(幅5μm)にリンをイオンドープ法(水素で希釈された5%のPH3を用い、加速電圧80keV、ドーズ量1.3×1015/cm2)で注入した試料、アルゴンをイオンドープ法(80keVの加速電圧で、1×1015、5×1015/cm2、5×1015/cm2のドーズ量)でそれぞれ注入した試料をそれぞれ作製し、これらを比較評価した。この時、リンの注入に要する時間は約8分である。そして、加熱温度500℃、24時間でゲッタリングを行った。また、それぞれゲッタリングされた領域の幅を30μmとした試料と、50μmとした試料とで比較した。図28にその結果を示す。図28から、リンよりもドーズ量が少ないにも関わらず、アルゴンのほうがゲッタリング能力が高いことが示されている。また、アルゴンの添加量が少ない、即ち、5×1015/cm2のドーズ量であっても加熱時間が長ければ十分ゲッタリングされ、エッチピットの密度を少なくすることが可能である。
【0032】
このように、リンを用いたゲッタリングと比較して、希ガス元素の添加による本発明のゲッタリング能力は高く、さらに高濃度、例えば1×1020〜5×1021/cm3で添加できるため、結晶化に用いる金属元素の添加量を多くすることができる。即ち、結晶化に用いる金属元素の添加量を多くすることによって結晶化の処理時間をさらに短時間で行うことが可能となる。また、結晶化の処理時間を変えない場合には、結晶化に用いる金属元素の添加量を多くすることによって、さらなる低温で結晶化することができる。また、結晶化に用いる金属元素の添加量を多くすることによって、自然核の発生を低減することができ、良好な結晶質半導体膜を形成することができる。
【0033】
また、本発明のゲッタリングは、結晶化に用いた金属元素のゲッタリングだけでなく、他の重金属元素のゲッタリングも行われる。
【0034】
また、本発明のゲッタリングによって、結晶構造の半導体膜のアニールも行われる。
【0035】
また、アイランドを形成するまでに高温熱処理が施されているため、基板の収縮がアイランド形成後の工程で生じず、パターニングのずれを最小限に抑えることができ、デバイス製造の上で歩留まりが向上する。また、熱処理回数が少ない本発明は、基板の厚さが薄く(例えば0.7mmや0.5mm)とも基板に与える影響が小さいため、問題なく使用可能である。
【0036】
本明細書で開示する作製工程に関する発明の構成は、
非晶質構造を有する半導体膜に金属元素を添加する第1工程と、
前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第2工程と、
前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第3工程と、
前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第4工程と、
前記不純物領域を除去する第5工程とを有することを特徴とする半導体装置の作製方法。
【0037】
上記構成において、前記希ガス元素はHe、Ne、Ar、Kr、Xeから選ばれた一種または複数種であることを特徴としている。
【0038】
また、上記構成において、前記第3工程における前記希ガス元素に加えて、H、H2、O、O2、P、H2Oから選ばれた一種または複数種を添加することを特徴としている。
【0039】
また、上記構成において、前記第3工程は、希ガス元素及び水蒸気を含む雰囲気下で行うことを特徴としている。
【0040】
また、上記各構成において、前記第5の工程の後、前記半導体膜に強光またはレーザー光を表面側または裏面側から照射して前記不純物元素を活性化する工程を有することを特徴としている。
【0041】
また、上記各構成において、前記第2工程は、加熱処理であることを特徴としている。
【0042】
また、上記各構成において、前記第2工程は、前記非晶質構造を有する半導体膜に強光を照射する処理であることを特徴としている。
【0043】
また、上記各構成において、前記第2工程は、加熱処理を行い、且つ、前記非晶質構造を有する半導体膜に強光を照射する処理であることを特徴としている。
【0044】
また、上記各構成において、前記第4工程は、加熱処理であることを特徴としている。
【0045】
また、上記各構成において、前記第4工程は、前記半導体膜に強光を照射する処理であることを特徴としている。
【0046】
また、上記各構成において、前記第4工程は、加熱処理を行い、且つ、前記半導体膜に強光を照射する処理であることを特徴としている。
【0047】
また、上記各構成において、前記強光は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、または高圧水銀ランプから射出された光であることを特徴としている。
【0048】
また、上記各構成において、前記金属元素はFe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu、Auから選ばれた一種または複数種であることを特徴としている。
【0049】
また、作製方法に関する他の発明の構成は、
非晶質構造を有する半導体膜に金属元素を添加する第1工程と、
前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第2工程と、
前記結晶構造を有する半導体膜上に第1のマスクを形成する第3工程と、
前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第4工程と、
前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第5工程と、
前記結晶構造を有する半導体膜上に第2のマスクを形成する第6工程と、
前記半導体膜を選択的に除去する第7工程とを有することを特徴とする半導体装置の作製方法である。
【0050】
また、上記構成において、前記第7の工程は、前記不純物領域と、前記結晶構造を有する半導体膜の一部とを除去する工程であることを特徴とする半導体装置の作製方法。
【0051】
また、上記構成において、前記第2のマスクは、前記第1のマスクの端部より内側の位置に設けることを特徴としている。
【0052】
また、作製方法に関する他の発明の構成は、
非晶質構造を有する半導体膜に第1のマスクを形成する第1工程と、
前記非晶質構造を有する半導体膜に金属元素を選択的に添加する第2工程と、
前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第3工程と、
前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第4工程と、
前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第5工程と、
前記結晶構造を有する半導体膜上に第2のマスクを形成する第6工程と、
前記半導体膜を選択的に除去する第7工程とを有することを特徴とする半導体装置の作製方法である。
【0053】
また、作製方法に関する他の発明の構成は、
非晶質構造を有する半導体膜に第1のマスクを形成する第1工程と、
前記非晶質構造を有する半導体膜に金属元素を選択的に添加する第2工程と、
前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第3工程と、
前記結晶構造を有する半導体膜上に第2のマスクを形成する第4工程と、
前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第5工程と、
前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第6工程と、
前記結晶構造を有する半導体膜上に第3のマスクを形成する第7工程と、
前記半導体膜を選択的に除去する第8工程とを有することを特徴とする半導体装置の作製方法である。
【0054】
また、本発明の構成は、
半導体層と、該半導体層に接する絶縁膜と、該絶縁膜に接するゲート電極とを含むTFTを基板上に備えた半導体装置であって、
前記基板は、少なくとも一部に希ガス元素を含む領域を有していることを特徴とする半導体装置である。なお、この基板は絶縁性基板または半導体基板である。また、この構成は、希ガス元素を添加した工程の際、基板にも希ガス元素が添加されて得られるものである。この時、図14(C)に希ガス元素を添加した直後の状態の簡略図を示した。さらに希ガス元素に加え、H、H2、O、O2、P、H2Oから選ばれた一種または複数種を添加した場合も同様に基板にも下地絶縁膜にもH、H2、O、O2、P、H2Oから選ばれた一種または複数種が添加される。ただし、希ガス元素に比べて、これらは後の熱処理により拡散しやすい。
【0055】
また、上記構成において、前記希ガス元素を含む領域を形成するマスクと前記半導体層を形成するマスクは同一であることを特徴としている。こうすることでマスク数を増加させることなく半導体装置が得られる。
【0056】
また、本発明の他の構成は、
基板上に接する絶縁膜と、半導体層とを含むTFTを備えた半導体装置であって、
前記絶縁膜は、少なくとも一部に希ガス元素を含む領域を有していることを特徴とする半導体装置である。
【0057】
なお、上記絶縁膜はブロッキング層として設けられた下地絶縁膜である。この下地絶縁膜に希ガスが添加される時の状態を、図14(B)に示した。
【0058】
また、上記構成において、前記基板は、少なくとも一部に希ガス元素を含む領域を有している。即ち、マスクを形成しなかった領域には、基板にも下地絶縁膜にも希ガス元素が添加されている。さらに希ガス元素に加え、H、H2、O、O2、P、H2Oから選ばれた一種または複数種を添加した場合も同様に基板にも下地絶縁膜にもH、H2、O、O2、P、H2Oから選ばれた一種または複数種が添加される。ただし、希ガス元素に比べて、これらは後の熱処理により拡散しやすい。
【0059】
また、前記希ガス元素を含む領域を形成するマスクと前記半導体層を形成するマスクは同一であることを特徴としている。
【0060】
【発明の実施の形態】
本発明の実施形態について、以下に説明する。
【0061】
図1及び図2は本発明の一実施形態を説明する図であり、非晶質半導体膜の全面に触媒作用のある金属元素を全面に添加して結晶化した後、ゲッタリングを行う方法である。
【0062】
図1(A)において、基板101はバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラス、或いは石英などを用いることができる。基板101の表面には、ブロッキング層102として無機絶縁膜を10〜200nmの厚さで形成する。好適なブロッキング層の一例は、プラズマCVD法で作製される酸化窒化シリコン膜であり、SiH4、NH3、N2Oから作製される第1酸化窒化シリコン膜を50nmの厚さに形成し、SiH4とN2Oから作製される第2酸化窒化珪素膜を100nmの厚さに形成したものが適用される。ブロッキング層102はガラス基板に含まれるアルカリ金属がこの上層に形成する半導体膜中に拡散しないために設けるものであり、石英を基板とする場合には省略することも可能である。
【0063】
ブロッキング層102の上に形成する非晶質構造を有する半導体膜103は、シリコンを主成分とする半導体材料を用いる。代表的には、非晶質シリコン膜又は非晶質シリコンゲルマニウム膜などが適用され、プラズマCVD法や減圧CVD法、或いはスパッタ法で10〜100nmの厚さに形成する。良質な結晶を得るためには、非晶質構造を有する半導体膜103に含まれる酸素、窒素、炭素などの不純物濃度を極力低減する必要があり、高純度の材料ガスを用いることはもとより、超高真空対応のCVD装置を用いることが望ましい。
【0064】
次いで、非晶質構造を有する半導体膜103の表面に、結晶化を促進する触媒作用のある金属元素を添加する。半導体膜の結晶化を促進する触媒作用のある金属元素としては鉄(Fe)、ニッケル(Ni)、コバルト(Co)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、銅(Cu)、金(Au)などであり、これらから選ばれた一種または複数種を用いることができる。代表的にはニッケルを用い、重量換算で3〜50ppmのニッケルを含む酢酸ニッケル塩溶液をスピナーで塗布して触媒含有層104を形成する。(図1(A))後の工程で行うゲッタリング能力が非常に高いため、高濃度のニッケルを含む溶液を使用することが可能である。また、高濃度の溶液を塗布するためにスピナーの回転数を低減してもよい。この場合、当該溶液の馴染みをよくするために、非晶質構造を有する半導体膜103の表面処理として、オゾン含有水溶液で極薄い酸化膜を形成し、その酸化膜をフッ酸と過酸化水素水の混合液でエッチングして清浄な表面を形成した後、再度オゾン含有水溶液で処理して極薄い酸化膜を形成しておく。シリコンなど半導体膜の表面は本来疎水性なので、このように酸化膜を形成しておくことにより酢酸ニッケル塩溶液を均一に塗布することができる。
【0065】
勿論、触媒含有層104は上記塗布方法に限定されず、スパッタ法、蒸着法、プラズマ処理などにより形成しても良い。
【0066】
次いで、加熱処理または強光の照射を行い、結晶化を行う。この場合、結晶化は触媒となる金属元素が接した半導体膜の部分でシリサイドが形成され、それを核として結晶化が進行する。こうして、図1(B)に示す結晶質半導体膜105が形成される。熱処理により結晶化を行う場合は、この非晶質シリコン膜に脱水素化(500℃、1時間)を行った後、熱結晶化(550℃〜650℃で4〜24時間)を行うとよい。また、強光の照射により結晶化を行う場合は、赤外光、可視光、または紫外光のいずれか一またはそれらの組み合わせを用いることが可能であるが、代表的には、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、または高圧水銀ランプから射出された光を用いる。(図1(B))なお、必要であれば、第1の強光を照射する前に非晶質構造を有する半導体膜103に含有する水素を放出させる熱処理を行ってもよい。また、加熱処理と強光の照射とを同時に行って結晶化を行ってもよい。
【0067】
結晶化の直後、半導体膜に含まれる金属元素を低減するため、フッ素を含むエッチャントを用いて触媒となる金属元素をエッチングで低減または除去してもよい。
【0068】
次いで、結晶化率(膜の全体積における結晶成分の割合)を高め、結晶粒内に残される欠陥を補修するために、結晶質半導体膜105に対して光を照射する。(図1(C))光には波長400nm以下のエキシマレーザー光や、YAGレーザーの第2高調波、第3高調波を用いる。また、連続発振の気体レーザもしくは固体レーザを用いてもよい。固体レーザとしては、Cr、Nd、Er、Ho、Ce、Co、Ti又はTmがドーピングされたYAG、YVO4、YLF、YAlO3などの結晶を使ったレーザが適用される。当該レーザの基本波はドーピングする材料によって異なり、1μm前後の基本波を有するレーザ光が得られる。基本波に対する高調波は、非線形光学素子を用いることで得ることができる。ここでは、繰り返し周波数10〜1000Hz程度のパルスレーザー光を用い、当該レーザー光を光学系にて100〜400mJ/cm2に集光し、90〜95%のオーバーラップ率をもって結晶質半導体膜105に対するレーザー処理を行っても良い。また、レーザー光に代えて強光を照射してもよいし、同時にレーザー光と強光とを照射してもよい。
【0069】
なお、連続発振が可能な固体レーザを用いる場合、出力10Wの連続発振のYVO4レーザから射出されたレーザ光を非線形光学素子により高調波に変換する。また、共振器の中にYVO4結晶と非線形光学素子を入れて、高調波を射出する方法もある。そして、好ましくは光学系により照射面にて矩形状または楕円形状のレーザ光に成形して、被処理体に照射する。このときのエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。そして、0.5〜2000cm/s程度の速度でレーザ光に対して相対的に半導体膜を移動させて照射する。
【0070】
次いで、欠陥を補修する処理の直後に、結晶質半導体膜に含まれる金属元素を低減するため、フッ素を含むエッチャントを用いて触媒となる金属元素をエッチングで低減または除去してもよい。また、このエッチングで表面に凹凸が生じてしまった場合には、強光を照射して表面を平坦化してもよい。
【0071】
次いで、オゾンを含む溶液で半導体膜表面の有機物を除去する洗浄を行い、表面に極薄い酸化膜を形成する。この極薄い酸化膜を通過させて微量な不純物元素(ボロンまたはリン)を半導体膜に添加するチャネルドープを行ってTFTのしきい値を制御することが望ましい。また、チャネルドープを行った後で不純物元素を活性化させるため強光を照射してもよい。また、ニッケルを添加する前に同様の洗浄を行い、極薄い酸化膜を形成した後にチャネルドープを行ってもよい。
【0072】
次いで、結晶質半導体膜上に100〜200nmの厚さの酸化珪素膜106aを形成する。(図1(D))酸化珪素膜の作製方法は限定されないが、例えば、オルトケイ酸テトラエチル(Tetraethyl Ortho Silicate:TEOS)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させ形成する。
【0073】
次いで、酸化珪素膜上にレジストからなるマスク107を形成する。このマスクによってパターニングし、TFTの半導体層となる部分を覆う酸化珪素からなる絶縁層106bを形成した後、半導体膜に希ガス元素を添加してゲッタリングサイト108を形成する。(図2(A))ここでは、イオンドーピング法またはイオン注入法を用い、半導体膜に添加される希ガス元素の濃度を1×1020〜5×1021/cm3とすることが望ましい。この時、レジストからなるマスクをそのまま残した状態で希ガス元素のドーピングを行ってもよいし、レジストマスクからなるマスクを除去した後、希ガス元素のドーピングを行ってもよい。希ガス元素のドーピング後は、レジストからなるマスクを除去する。また、希ガス元素に加え、周期表15族元素または周期表13族元素を添加してもよい。なお、図2(A)では、半導体膜のみに希ガス元素が添加されたように図示したが、実際は、希ガスを添加する工程の条件によって、図14(A)〜図14(C)に示したような金属元素の濃度分布を制御できる。図14(A)は、半導体膜の浅い位置にピークを有する濃度分布120となるような条件で行ったものであり、図14(B)は半導体膜の中間位置にピークを有する濃度分布121となるような条件で行ったため、ブロッキング層102にも希ガス元素が添加された例である。また、図14(C)は半導体膜の深い位置にピークを有する濃度分布122となるような条件で行ったため、ブロッキング層102及び基板101にも希ガス元素が添加された例である。図14(B)や図14(C)に示したようにブロッキング層や基板に希ガス元素を添加することによって応力の緩和を図ることができる。
【0074】
次いで、ゲッタリングを行う。(図2(B))ゲッタリングは窒素雰囲気中で450〜800℃、1〜24時間、例えば550℃にて14時間の熱処理を行うと、ゲッタリングサイト108に金属元素を偏析させることができる。このゲッタリングにより、絶縁層106bで覆われた半導体膜に含まれる金属元素を除去、または金属元素の濃度を低減する。また、熱処理に代えて強光を照射してもよい。また、熱処理に加えて強光を照射してもよい。ただし、ゲッタリングの加熱手段に、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、または高圧水銀ランプから射出された光を用いるRTA法を用いる場合、半導体膜の加熱温度が400℃〜550℃となるように強光を照射することが望ましい。また、450〜800℃に加熱された不活性ガス中に短時間さらして瞬間的に熱処理を行ってもよい。あまり高い加熱温度としてしまうと半導体膜中の歪みが無くなってしまい、ゲッタリングサイト(ニッケルシリサイド)からニッケルを飛び出させる作用やニッケルを捕獲する作用が消えてしまうため、ゲッタリング効率が低下してしまう。
【0075】
ゲッタリングが終わったら、上記マスクをそのまま用いてゲッタリングサイトを除去して、金属元素が低減された領域からなる所望の形状を有する半導体層109を形成し、最後に酸化珪素からなる絶縁層を除去する。(図2(C))絶縁層を除去する際、半導体層の表面もわずかにエッチングすることが望ましい。図36にゲッタリング後にFPM(フッ酸、過酸化水素水、純水の混合液)によりニッケルシリサイドをエッチングした際の光学顕微鏡写真を示した。図36から半導体層の周縁部にエッチピットが多数観察されていることから、ゲッタリングによって半導体層の周縁部にニッケルが偏析しやすいと予想される。ちなみに図36は、ガラス基板上に膜厚50nmの下地絶縁膜と、膜厚50nmのポリシリコン膜(ニッケル添加した後、結晶化させたもの)とを形成し、アルゴンを加速電圧10keV、1×1015/cm2のドーズ量で選択的に添加し、550℃、4時間でゲッタリングを行った後、FPM処理を行ったものである。
【0076】
また、レジストからなるマスクを形成した段階で、酸化珪素膜を通過させて希ガス元素のドーピングを行ってゲッタリングサイトを形成してもよい。この場合には、ドーピング後マスクを除去してゲッタリングした後、酸化珪素膜を除去し、その後、半導体膜のうち、希ガス元素が添加された領域(ゲッタリングサイト)のみを選択的に除去して半導体層を形成する。エッチャントとしてダッシュ液、サト液、セコ液等を用いれば、希ガス元素が添加された領域は非晶質化されているため、結晶質半導体膜である領域(希ガスが添加されていない)と選択的にエッチングすることができる。
【0077】
次いで、半導体層109の表面をフッ酸を含むエッチャントで洗浄した後、ゲート絶縁膜となる珪素を主成分とする絶縁膜110を形成する。(図2(D))半導体層109の表面洗浄とゲート絶縁膜の形成は、大気にふれさせずに連続的に行うことが望ましい。また、この表面洗浄の前または後に活性化工程を加え、チャネルドープにより添加された不純物元素を活性化させてもよい。
【0078】
次いで、絶縁膜110表面を洗浄し、ゲート電極を形成した後、半導体層109にn型またはp型を付与する不純物元素を適宜添加して、ソース領域及びドレイン領域を形成する。また、必要であればLDD領域も形成してもよい。n型またはp型を付与する不純物元素を添加した後、不純物元素を活性化するために加熱処理、強光の照射、またはレーザー光の照射を行えばよい。特に、室温〜300℃の雰囲気中において、表面または裏面からYAGレーザーの第2高調波または第3高調波を照射して不純物元素を活性化させることは非常に有効である。
【0079】
以降の工程は、層間絶縁膜の形成、水素化、ソース領域、ドレイン領域に達するコンタクトホールの形成、ソース電極、ドレイン電極の形成等を行ってTFTを完成させる。
【0080】
こうして形成したTFTを画素部のスイッチング素子、または駆動回路を構成するTFTとして用い、様々な電子機器に搭載する。
【0081】
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行うこととする。
【0082】
【実施例】
[実施例1]
ここでは、同一基板上に画素部と、画素部の周辺に設ける駆動回路のTFT(nチャネル型TFT及びpチャネル型TFT)を同時に作製する方法について図3〜図6を用いて説明する。
【0083】
まず、本実施例ではコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板200を用いる。なお、基板200としては、透光性を有する基板であれば限定されず、石英基板を用いても良い。また、本実施例の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。
【0084】
次いで、基板200上に酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの絶縁膜から成る下地膜201を形成する。本実施例では下地膜201として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。下地膜201の一層目としては、プラズマCVD法を用い、SiH4、NH3、及びN2Oを反応ガスとして成膜される酸化窒化シリコン膜201aを10〜200nm(好ましくは50〜100nm)形成する。本実施例では、膜厚50nmの酸化窒化シリコン膜201a(組成比Si=32%、O=27%、N=24%、H=17%)を形成した。次いで、下地膜201のニ層目としては、プラズマCVD法を用い、SiH4及びN2Oを反応ガスとして成膜される酸化窒化シリコン膜201bを50〜200nm(好ましくは100〜150nm)の厚さに積層形成する。本実施例では、膜厚100nmの酸化窒化シリコン膜201b(組成比Si=32%、O=59%、N=7%、H=2%)を形成した。
【0085】
次いで、下地膜上に半導体層202〜206を形成する。半導体層202〜206は、非晶質構造を有する半導体膜を公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜した後、公知の結晶化処理(レーザー結晶化法、熱結晶化法、またはニッケルなどの触媒を用いた熱結晶化法等)を行って得られた結晶質半導体膜を所望の形状にパターニングして形成する。この半導体層202〜206の厚さは25〜80nm(好ましくは30〜60nm)の厚さで形成する。結晶質半導体膜の材料に限定はないが、好ましくはシリコンまたはシリコンゲルマニウム(SiXGe1-X(X=0.0001〜0.02))合金などで形成すると良い。本実施例では、プラズマCVD法を用い、55nmの非晶質シリコン膜を成膜した後、ニッケルを含む溶液を非晶質シリコン膜上に保持させた。この非晶質シリコン膜に脱水素化(500℃、1時間)を行った後、熱結晶化(550℃、4時間)を行い、さらに結晶化を改善するためのレーザーアニ―ル処理を行って結晶質シリコン膜を形成した。そして、実施の形態に示したように、酸化シリコン膜からなるマスクを形成した後、結晶質シリコン膜に希ガス元素をマスクで選択的に添加して、ゲッタリングを行った後、結晶質シリコン膜のパターニングを行い、その後、マスクを除去した。なお、希ガス元素を添加する際、アルゴンと微量の水蒸気とを含む原料ガスとしてイオンドープする。こうして、結晶質シリコン膜からなる半導体層202〜206を形成した。この半導体層202〜206のパターニングが終了した状態は、実施の形態における図1(C)に相当する。なお、酸化膜を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを適宜行ってもよい。
【0086】
次いで、半導体層202〜206の表面をバッファーフッ酸等のフッ酸系のエッチャントで洗浄した後、プラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとして珪素を主成分とする絶縁膜207を形成する。本実施例では、プラズマCVD法により115nmの厚さで酸化窒化シリコン膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、このゲート絶縁膜となる絶縁膜は酸化窒化シリコン膜に限定されるものでなく、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い。
【0087】
次いで、図3(A)に示すように、ゲート絶縁膜207上に膜厚20〜100nmの第1の導電膜208と、膜厚100〜400nmの第2の導電膜209とを積層形成する。本実施例では、膜厚30nmのTaN膜からなる第1の導電膜208と、膜厚370nmのW膜からなる第2の導電膜209を積層形成した。TaN膜はスパッタ法で形成し、Taのターゲットを用い、窒素を含む雰囲気内でスパッタした。また、W膜は、Wのターゲットを用いたスパッタ法で形成した。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成することもできる。
【0088】
なお、本実施例では、第1の導電膜208をTaN、第2の導電膜209をWとしたが、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cu、Cr、Ndから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料で単層または積層を用いればよい。また、リン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜を用いてもよい。また、AgPdCu合金を用いてもよい。また、第1の導電膜をタンタル(Ta)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化チタン(TiN)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をAl膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をCu膜とする組み合わせとしてもよい。
【0089】
次に、フォトリソグラフィ法を用いてレジストからなるマスク210〜215を形成し、電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。本実施例では第1のエッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を25/25/10(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行った。なお、基板側の電極面積サイズは、12.5cm×12.5cmであり、コイル型の電極面積サイズ(ここではコイルの設けられた石英円板)は、直径25cmの円板である。なお、エッチング用ガスとしては、Cl2、BCl3、SiCl4、CCl4などを代表とする塩素系ガスまたはCF4、SF6、NF3などを代表とするフッ素系ガス、またはO2を適宜用いることができる。ここでは、松下電器産業(株)製のICPを用いたドライエッチング装置(Model E645−□ICP)を用いた。基板側(試料ステージ)にも150WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。第1のエッチング条件でのWに対するエッチング速度は200.39nm/min、TaNに対するエッチング速度は80.32nm/minであり、TaNに対するWの選択比は約2.5である。また、この第1のエッチング条件によって、Wのテーパー角は、約26°となる。
【0090】
この後、レジストからなるマスク210〜215を除去せずに第2のエッチング条件に変え、エッチング用ガスにCF4とCl2とを用い、それぞれのガス流量比を30/30(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行った。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。第2のエッチング条件でのWに対するエッチング速度は58.97nm/min、TaNに対するエッチング速度は66.43nm/minである。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増加させると良い。
【0091】
上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15〜45°とすればよい。
【0092】
こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層216〜221(第1の導電層216a〜221aと第2の導電層216b〜221b)を形成する。図示しないが、ゲート絶縁膜となる絶縁膜207のうち、第1の形状の導電層216〜221で覆われない領域は10〜20nm程度エッチングされ薄くなった領域が形成される。
【0093】
そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層にn型を付与する不純物元素を添加する。(図3(B))ドーピング処理はイオンドープ法、若しくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013〜1×1015/cm2とし、加速電圧を60〜100keVとして行う。本実施例ではドーズ量を5×1014/cm2とし、加速電圧を80keVとして行った。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用いた。この場合、導電層216〜221がn型を付与する不純物元素に対するマスクとなり、自己整合的に高濃度不純物領域222〜233が形成される。高濃度不純物領域222〜233には3×1019〜3×1020/cm3の濃度範囲でn型を付与する不純物元素を添加する。
【0094】
次いで、レジストからなるマスクを除去せずに第2のエッチング処理を行う。ここでは、エッチング用ガスにSF6とCl2とO2とを用い、それぞれのガス流量比を24/12/24(sccm)とし、1.3Paの圧力でコイル型の電極に700WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを25秒行った。基板側(試料ステージ)にも10WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。第2のエッチング処理でのWに対するエッチング速度は227.3nm/min、TaNに対するエッチング速度は32.1nm/minであり、TaNに対するWの選択比は7.1であり、絶縁膜207であるSiONに対するエッチング速度は33.7nm/minであり、TaNに対するWの選択比は6.83である。このようにエッチングガス用ガスにSF6を用いた場合、絶縁膜207との選択比が高いので膜減りを抑えることができる。また、駆動回路のTFTにおいては、テーパ−部のチャネル長方向の幅が長ければ長いほど信頼性が高いため、テーパ−部を形成する際、SF6を含むエッチングガスでドライエッチングを行うことが有効である。
【0095】
この第2のエッチング処理によりWのテーパー角は70°となった。この第2のエッチング処理により第2の導電層234b〜239bを形成する。一方、第1の導電層は、ほとんどエッチングされず、第1の導電層234a〜239aを形成する。図示しないが、実際には、第1の導電層の幅は、第2のエッチング処理前に比べて約0.15μm程度、即ち線幅全体で0.3μm程度後退する。
【0096】
また、上記第2のエッチング処理において、CF4とCl2とO2とをエッチングガスに用いることも可能である。その場合は、それぞれのガス流量比を25/25/10(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行えばよい。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2とO2とを用いる場合のWに対するエッチング速度は124.62nm/min、TaNに対するエッチング速度は20.67nm/minであり、TaNに対するWの選択比は6.05である。従って、W膜が選択的にエッチングされる。
【0097】
次いで、レジストからなるマスクを除去した後、第2のドーピング処理を行って図3(C)の状態を得る。ドーピングは第2の導電層234b〜239bを不純物元素に対するマスクとして用い、第1の導電層のテーパー部下方の半導体層に不純物元素が添加されるようにドーピングする。本実施例では、不純物元素としてP(リン)を用い、ドーピング条件をドーズ量1.5×1014/cm2、加速電圧90keV、イオン電流密度0.5μA/cm2、フォスフィン(PH3)5%水素希釈ガス、ガス流量30sccmにてプラズマドーピングを行った。こうして、第1の導電層と重なる低濃度不純物領域241〜254を自己整合的に形成する。この低濃度不純物領域241〜254へ添加されたリン(P)の濃度は、1×1017〜1×1019/cm3であり、且つ、第1の導電層のテーパー部の膜厚に従って濃度勾配を有している。なお、第1の導電層のテーパー部と重なる半導体層において、第1の導電層のテーパー部の端部から内側に向かって不純物濃度(P濃度)が次第に低くなっている。また、高濃度不純物領域222〜233にも不純物元素が添加され、高濃度不純物領域255〜266を形成する。
【0098】
次いで、後にnチャネル型TFTの活性層となる半導体層をレジストからなるマスク267〜269で覆い、第3のドーピング処理を行う。この第3のドーピング処理により、pチャネル型TFTの活性層となる半導体層に前記一導電型(n型)とは逆の導電型(p型)を付与する不純物元素が添加されたp型不純物領域270〜273(高濃度不純物領域270a〜273a及び低濃度不純物領域270b〜273b)を形成する。なお、テーパ−部を通過させてドープするため、p型の低濃度不純物領域270b〜273bは、n型の低濃度不純物領域241〜254と同様の濃度勾配を有している。(図4(A))第1の導電層234a、236bを不純物元素に対するマスクとして用い、p型を付与する不純物元素を添加してp型不純物領域を形成する。本実施例では、p型不純物領域270〜273はジボラン(B26)を用い、ドーピング条件をドーズ量1×1015/cm2、加速電圧30keVとしたイオンドープ法で形成する。なお、第1のドーピング処理及び第2のドーピング処理によって、不純物領域270a〜273aにはそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもボロンの濃度が6×1019〜6×1020/cm3となるようにドーピング処理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。
【0099】
また、第2のエッチング処理で膜減りしない条件、例えばSF6をエッチングガスに用いた場合、ボロンのドーピングを容易とするため、第3のドーピング処理の前に絶縁膜207を薄膜化するエッチング(CHF3ガスを用いた反応性イオンエッチング法(RIE法))を行ってもよい。
【0100】
次いで、レジストからなるマスク274を形成して第3のエッチング処理を行う。この第3のエッチング処理では第1の導電層のテーパー部のみを選択的にエッチングする。第3のエッチング処理は、エッチングガスにWとの選択比が高いCl3を用い、ICPエッチング装置を用いて行う。本実施例では、Cl3のガス流量比を80(sccm)とし、1.2Paの圧力でコイル型の電極に350WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを30秒行った。基板側(試料ステージ)にも50WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。第3のエッチングにより、第1の導電層237c〜239cが形成される。(図4(B))
【0101】
上記第3のエッチング処理によって、画素部には、第1の導電層237c〜239cと重ならず、濃度勾配を有する低濃度不純物領域(LDD領域)247〜254が形成される。なお、駆動回路において、低濃度不純物領域(GOLD領域)241〜246は、第1の導電層234a〜236aと重なったままである。このように、各回路に応じてTFTの構造を作り分けている。
【0102】
また、第1の導電層237cと第2の導電層237bとで形成された電極は、後の工程で形成されるサンプリング回路のnチャネル型TFTのゲート電極となる。同様に、第1の導電層238cと第2の導電層238bとで形成された電極は、後の工程で形成される画素部のnチャネル型TFTのゲート電極となり、第1の導電層239cと第2の導電層239bとで形成された電極は、後の工程で形成される画素部の保持容量の一方の電極となる。
【0103】
また、本実施例では第3のドーピング処理の後に、第3のエッチング処理を行った例を示したが、第3のエッチング処理を行った後に第3のドーピング処理を行ってもよい。
【0104】
次いで、レジストからなるマスク274を除去して第1の層間絶縁膜275を形成する。この第1の層間絶縁膜275としては、プラズマCVD法またはスパッタ法を用い、厚さを10〜200nmとしてシリコンを含む絶縁膜で形成する。この第1の層間絶縁膜は、膜減りした絶縁膜に後でコンタクトホールを形成する際、半導体層をオーバーエッチングしないようにエッチングストッパーとしての機能を果たすものである。本実施例では、プラズマCVD法により膜厚50nmの酸化シリコン膜を形成した。勿論、第1の層間絶縁膜275は酸化シリコン膜に限定されるものでなく、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い。
【0105】
次いで、図4(C)に示すように、それぞれの半導体層に添加された不純物元素を活性化処理する工程を行う。この活性化工程はYAGレーザーまたはエキシマレーザーを裏面から照射することによって行う。裏面から照射することによって、ゲート電極と絶縁膜を介して重なる不純物領域の活性化を行うことができる。
【0106】
また、反射板を用いてレーザー光を照射してもよい。その場合、固体レーザー、代表的にはYAGレーザー)で行うことが望ましい。反射板を用いる場合は、図8にその簡略図を示したように、鏡面を有する反射板504を用いて、基板501の表面側からと、裏面側からとで線状のYAGレーザーの第2高調波または第3高調波を同時に照射する方法を用いた。YAGレーザーは可視光であるので、基板が透光性を有していれば吸収されず、アモルファスシリコンに吸収される。特に、本実施例のようにゲート電極の下に低濃度不純物領域を設けている場合、ゲート電極と絶縁膜を介して重なる不純物領域の活性化を行うことが非常に困難であった。図8に示す反射板を用いた活性化方法によって不純物領域506またはチャネル形成領域505に含まれる不純物元素の活性化を行うことができる。図8中、502は下地膜、503は高濃度不純物領域、507はシリンドリカルレンズである。なお、YAGレーザーアニール法の他にラピッドサーマルアニール法(RTA法)を適用することもできる。
【0107】
また、本実施例では、上記活性化の前に第1の層間絶縁膜を形成した例を示したが、上記活性化を行った後、第1の層間絶縁膜を形成する工程としてもよい。
【0108】
次いで、窒化シリコン膜からなる第2の層間絶縁膜276を形成して熱処理(300〜550℃で1〜12時間の熱処理)を行い、半導体層を水素化する工程を行う。本実施例では、窒素雰囲気中で410℃、1時間の熱処理を行った。この工程は第2の層間絶縁膜276に含まれる水素により半導体層のダングリングボンドを終端する工程である。第1の層間絶縁膜の存在に関係なく半導体層を水素化することができる。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。
【0109】
次いで、第2の層間絶縁膜276上に有機絶縁物材料から成る第3の層間絶縁膜277を形成する。本実施例では膜厚1.6μmのアクリル樹脂膜を形成した。次いで、各不純物領域(257、258、261〜263、265、270a、271a、272a、273a)に達するコンタクトホールを形成するためのパターニングを行う。本実施例では複数のエッチング処理を行った。本実施例では第2の層間絶縁膜をエッチングストッパーとして第3の層間絶縁膜をエッチングした後、第1の層間絶縁膜をエッチングストッパーとして第2の層間絶縁膜をエッチングしてから第1の層間絶縁膜をエッチングした。
【0110】
次いで、不純物領域(257、258、261〜263、270a、271a、272a、273a)とそれぞれ電気的に接続する電極278〜286と、不純物領域265と電気的に接続する画素電極287を形成する。これらの電極及び画素電極の材料は、AlまたはAgを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いる。
【0111】
以上の様にして、nチャネル型TFT306及びpチャネル型TFT305からなるロジック回路部303と、nチャネル型TFT308及びpチャネル型TFT307からなるサンプリング回路部304とを有する駆動回路301と、nチャネルTFT309からなる画素TFT及び保持容量310とを有する画素部302とを同一基板上に形成することができる。本明細書中ではこのような基板を便宜上アクティブマトリクス基板と呼ぶ。
【0112】
本実施例では、各回路に応じてTFTの構造が異なっている。
【0113】
画素部のnチャネル型TFT309には、消費電力を低く抑えることが要求され、オフ電流値が十分低いTFT構造とすることが望ましい。また、本実施例では、低濃度不純物領域249〜252に濃度勾配を持たせ、さらにゲート電極(238b、238c)と重ならない構造とした。また、nチャネル型TFT309におけるゲート電極の端部は、ゲート絶縁膜を挟んで、チャネル形成領域と低濃度不純物領域との界面と概略一致する。また、各低濃度不純物領域249〜252の濃度分布は、チャネル形成領域292、293からの距離が増大するとともに不純物濃度が増加している。
【0114】
なお、本実施例ではnチャネル型TFT309は、ソース領域およびドレイン領域の間に二つのチャネル形成領域を有した構造(ダブルゲート構造)となっているが、本実施例はダブルゲート構造に限定されることなく、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
【0115】
また、保持容量310の一方の電極として機能する不純物領域253、254、265、266には、それぞれn型を付与する不純物元素が添加されている。保持容量310は、絶縁膜207を誘電体として、電極239b、239cと、半導体層とで形成している。なお、本実施例では不純物領域と電極239b、239cとが重ならない構造としたが、重なる構造とすれば、さらに容量を増大することができる。なお、本発明は、本実施例の保持容量を形成する構造に限定されず、公知の構造、例えば容量配線を用いた容量を用いることも可能である。
【0116】
また、サンプリング回路部304、代表的にはアナログスイッチ回路のnチャネル型TFT308には、同様にオフ電流値が低いことが好ましい。本実施例では、低濃度不純物領域247、248に濃度勾配を持たせ、さらにゲート電極(237b、237c)と重ならない構造とした。また、各低濃度不純物領域247、248の濃度分布は、チャネル形成領域291からの距離が増大するとともに不純物濃度が増加している。ただし、オン電流値または信頼性を重視するのであれば、低濃度不純物領域がゲート電極と重なる構造としてもよい。
【0117】
また、pチャネル型TFT307は、オン電流値または信頼性を重視するため、低濃度不純物領域272b、273bがゲート電極236a、236bと重なる構造とした。また、各低濃度不純物領域272b、273bの濃度分布は、チャネル形成領域290からの距離が増大するとともに不純物濃度が増加している。また、pチャネル型TFT307におけるゲート電極の端部は、ゲート絶縁膜を挟んで、低濃度不純物領域272b、273bと高濃度不純物領域272a、273aとの界面と概略一致する。
【0118】
また、ロジック回路部のpチャネル型TFT305は、オン電流値または信頼性を重視するため、低濃度不純物領域270b、271bがゲート電極234a、234bと重なる構造とした。また、各低濃度不純物領域270b、271bの濃度分布は、チャネル形成領域288からの距離が増大するとともに不純物濃度が増加している。
【0119】
また、同様にnチャネル型TFT306は、低濃度不純物領域272b、273bがゲート電極235a、235bと重なる構造とした。また、各低濃度不純物領域272b、273bの濃度分布は、チャネル形成領域289からの距離が増大するとともに不純物濃度が増加している。
【0120】
こうして、本実施例では、同一基板上に信頼性の高いTFT306を備えた駆動回路と、オフ電流値が低減された画素TFT309とを備えた画素部とを同時に形成することができた。
【0121】
また、本実施例では、希ガス元素を多量に添加したため、下地膜及び基板にも添加される。なお、希ガス元素に加え、水素、酸素、または水が下地膜及び基板にも添加されるが、ドーピング後の熱処理等により拡散しやすい。一方、希ガス元素は、比較的高温の熱処理等でも拡散、脱離は起きにくい。希ガス元素は、下地膜及び基板のうち、マスク106bで覆われた領域以外の領域、即ち半導体層202〜206が配置された領域以外の領域に添加される。
【0122】
[実施例2]
本実施例では、実施例1で作製したアクティブマトリクス基板から、アクティブマトリクス型液晶表示装置を作製する工程を以下に説明する。説明には図6を用いる。
【0123】
まず、実施例1に従い、図5の状態のアクティブマトリクス基板を得た後、図5のアクティブマトリクス基板上に配向膜401を形成しラビング処理を行う。なお、本実施例では配向膜401を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサを所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。
【0124】
次いで、対向基板400を用意する。この対向基板には、着色層402、遮光層403が各画素に対応して配置されたカラーフィルタが設けられている。また、駆動回路の部分にも遮光層403を設けた。このカラーフィルタと遮光層とを覆う平坦化膜404を設けた。次いで、平坦化膜404上に透明導電膜からなる対向電極405を画素部に形成し、対向基板の全面に配向膜406を形成し、ラビング処理を施した。
【0125】
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材407で貼り合わせる。シール材407にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料408を注入し、封止剤(図示せず)によって完全に封止する。液晶材料408には公知の液晶材料を用いれば良い。このようにして図6に示すアクティブマトリクス型液晶表示装置が完成する。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、公知の技術を用いて偏光板等を適宜設けた。そして、公知の技術を用いてFPCを貼りつけた。
【0126】
こうして得られた液晶モジュールの構成を図7の上面図を用いて説明する。なお、図6と対応する部分には同じ符号を用いた。
【0127】
図7(A)で示す上面図は、画素部、駆動回路、FPC(フレキシブルプリント配線板:Flexible Printed Circuit)411を貼り付ける外部入力端子409、外部入力端子と各回路の入力部までを接続する配線410などが形成されたアクティブマトリクス基板と、カラーフィルタなどが設けられた対向基板400とがシール材407を介して貼り合わされている。
【0128】
ゲート配線側駆動回路301aと重なるように対向基板側に遮光層403aが設けられ、ソース配線側駆動回路301bと重なるように対向基板側に遮光層403bが形成されている。また、画素部302上の対向基板側に設けられたカラーフィルタ402は遮光層と、赤色(R)、緑色(G)、青色(B)の各色の着色層とが各画素に対応して設けられている。実際に表示する際には、赤色(R)の着色層、緑色(G)の着色層、青色(B)の着色層の3色でカラー表示を形成するが、これら各色の着色層の配列は任意なものとする。
【0129】
ここでは、カラー化を図るためにカラーフィルタ402を対向基板に設けているが特に限定されず、アクティブマトリクス基板を作製する際、アクティブマトリクス基板にカラーフィルタを形成してもよい。
【0130】
また、カラーフィルタにおいて隣り合う画素の間には遮光層が設けられており、表示領域以外の箇所を遮光している。また、ここでは、駆動回路を覆う領域にも遮光層403a、403bを設けているが、駆動回路を覆う領域は、後に液晶表示装置を電子機器の表示部として組み込む際、カバーで覆うため、特に遮光層を設けない構成としてもよい。また、アクティブマトリクス基板を作製する際、アクティブマトリクス基板に遮光層を形成してもよい。
【0131】
また、上記遮光層を設けずに、対向基板と対向電極の間に、カラーフィルタを構成する着色層を複数層重ねた積層で遮光するように適宜配置し、表示領域以外の箇所(各画素電極の間隙)や、駆動回路を遮光してもよい。
【0132】
また、外部入力端子にはベースフィルムと配線から成るFPC411が異方性導電性樹脂で貼り合わされている。さらに補強板で機械的強度を高めている。
【0133】
以上のようにして作製される液晶モジュールは各種電子機器の表示部として用いることができる。
【0134】
[実施例3]
本実施例は、実施例1とは、マスクとなる絶縁膜106aの形成後の工程が異なる例を示す。本実施例は、レジストからなるマスクを除去した後、希ガス元素を添加する例である。それ以外の工程は同一であるので、図9では、図2と同じ符号を用いる。
【0135】
まず、実施の形態に従って図1(D)と同じ状態を得る。次いで、実施の形態に従ってレジストからなるマスクを形成し、酸化シリコン膜をパターニングして酸化シリコン膜からなるマスクを形成する。次いで、レジストからなるマスクを除去した後、希ガス元素を添加する。(図9(A))
【0136】
以降の工程は、実施の形態に従えば、図9(B)〜図9(D)の状態が得られ、実施例1に従えば、図6に示すアクティブマトリクス基板が得られる。
【0137】
なお、本実施例は実施例2と組み合わせることが可能である。
【0138】
[実施例4]
本実施例では、実施例1とレジストからなるマスクを形成した後の工程が異なっている。
【0139】
本実施例は、レジストからなるマスクを形成した後、実施例1のように酸化シリコン膜からなる絶縁膜をエッチングすることなく、酸化シリコン膜からなる絶縁膜106aを通過させて希ガス元素を添加する。(図10(A))この際、SIMS分析を行ったニッケルの濃度プロファイルを図20に示す。図20は希ガス元素(ここではAr)を絶縁膜(膜厚0.9μm)を通過させて添加した直後のニッケルの濃度を示している。ニッケルは、半導体膜中に1×1018〜1×1019/cm3存在している。添加した条件は、ドーピングガスとしてアルゴンガス100%、ドーズ量4×1015/cm2、加速電圧90kVである。
【0140】
次いで、ゲッタリングを行うが、酸化シリコンからなる絶縁膜106aで覆ったままの状態で行う。(図10(B))ここでのゲッタリングは、550℃、4時間で行い、その後、SIMS分析を行った結果が図21である。図21からは、ゲッタリングにより半導体膜中のニッケルが検出下限まで除去されたことが示されている。
【0141】
次いで、絶縁膜106aを除去する。(図10(C))
【0142】
次いで、前の工程により希ガス元素が添加されて非晶質化した部分(ゲッタリングサイト)108を選択的にエッチングする。(図10(D))
【0143】
エッチャントとしてダッシュ液、サト液、セコ液等を用いることができる。ただし、セコ液はクロムが含まれているので工業的には不向きである。
【0144】
以上の工程により結晶質シリコンからなる半導体層109のみを残存させることができる。
【0145】
なお、本実施例は実施例2と組み合わせることが可能である。
【0146】
[実施例5]
本実施例では、結晶化処理とゲッタリング処理とを同一処理で行う例を図11に示す。
【0147】
まず、実施の形態に従って、基板601上にブロッキング層602、非晶質半導体膜603を形成する。次いで、ニッケル含有層604を形成する。ここではスパッタ法によりニッケルの薄膜を形成した。
【0148】
次いで、珪素を主成分とする絶縁膜を形成し、該絶縁膜上にレジストからなるマスク606を形成する。次いで、レジストからなるマスクを用いてエッチングを行い絶縁膜を選択的に除去して絶縁膜からなるマスク605を形成する。
【0149】
次いで、レジストからなるマスク606及び絶縁膜からなるマスク605を用いて、希ガス元素を非晶質半導体膜に添加する。図11(C)中、希ガス元素が選択的に添加された領域を不純物領域607として示した。
【0150】
次いで、結晶化とゲッタリングとを両方行うための熱処理または強光の照射を行う。熱処理で行う場合は、500℃〜650℃で4〜24時間、例えば550℃、4時間で行えばよい。この加熱処理により絶縁膜からなるマスク605と接している非晶質半導体膜がニッケルの作用により結晶化される。この加熱処理では、結晶化と同時に、非晶質半導体膜中のニッケルが移動して希ガス元素が添加された不純物領域にゲッタリングされる。図11(D)の矢印の方向にニッケルが移動する。なお、希ガス元素を添加した領域は、ほとんど結晶化されない。本発明者の実験では、希ガスを添加した場合、リンを添加した場合と比較して熱処理を施しても結晶性が回復しにくい。この比較結果は、図22、図23で示した。図22はそれぞれの条件(条件1=加速電圧80kV、1.5×1015/cm2のドーズ量でリンをドーピング、条件2=加速電圧80kV、1.5×1015/cm2のドーズ量でリンをドーピングし、加速電圧90kV、2×1015/cm2のドーズ量でアルゴンをドーピング、条件3=加速電圧80kV、1.5×1015/cm2のドーズ量でリンをドーピングし、加速電圧90kV、4×1015/cm2のドーズ量でアルゴンをドーピング、条件4=加速電圧90kV、4×1015/cm2のドーズ量でアルゴンをドーピング)で添加した直後のラマンスペクトルを示し、図23は、窒素雰囲気で550℃、4時間の熱処理を行った直後のラマンスペクトルを示している。
【0151】
次いで、マスク606を用いて不純物領域609を除去して、結晶質半導体膜からなる半導体層610を得ることができる。
【0152】
本実施例では、結晶化とゲッタリングを同時に行うため、スループットが格段に向上する。
【0153】
また、ブロッキング層602、非晶質半導体膜603、ニッケル含有層604、及びシリコンを主成分とする絶縁膜を大気にふれることなく連続してCVD法により形成してもよい。
【0154】
なお、本実施例は実施例1または実施例2と自由に組み合わせることが可能である。
【0155】
[実施例6]
本実施例では、マスクを用いて金属元素を選択的に添加する例を図12に示す。
【0156】
まず、実施の形態または実施例1に従って、基板901上に下地膜(ブロッキング層)902、非晶質構造を有する半導体膜903を形成する。次いで、珪素を主成分とする絶縁膜を形成する。なお、この下地膜902と半導体膜903と絶縁膜を大気解放せずに連続で成膜すると不純物が混入しないため、好ましい。
【0157】
次いで、レジストからなるマスク906を形成し、エッチングを行って絶縁膜を選択的に除去して絶縁膜からなるマスク905を形成する。(図12(A))
【0158】
次いで、実施の形態または実施例1に従って、金属含有層907を形成する。(図12(B))次いで、実施の形態または実施例1に従って結晶化を行い、結晶構造を有する半導体膜908が得られる。(図12(C))この結晶化では図12(C)中の矢印で示した方向に結晶成長する。なお、マスク905で覆われていない領域には高濃度のニッケルが存在している。
【0159】
次いで、実施の形態に従って、マスク905を用いて希ガス元素を添加し、不純物領域909を形成する。(図12(D))
【0160】
次いで、実施の形態に従って、ゲッタリングを行う。(図12(E))この際、結晶構造を有する半導体膜のうち、領域910、即ち不純物領域909以外の領域は、ゲッタリングにより金属元素が低減された。
【0161】
次いで、マスク905を用いて、不純物領域909を除去した後、マスク905を除去して半導体層911を形成する。(図12(F))
【0162】
なお、本実施例は実施例1または実施例2と自由に組み合わせることが可能である。
【0163】
[実施例7]
本実施例は実施の形態1とは異なり、希ガス元素を選択的に添加するマスクと半導体膜のパターニングで使用するマスクとを別々とする例である。図13に本実施例の簡略工程図を示す。
【0164】
まず、実施の形態1に従って、図1(D)と同じ状態を得る。
【0165】
次いで、実施の形態1よりも大きめにレジストからなるマスク1107を形成し、該マスクを用いて酸化シリコン膜をエッチングしてマスク1106bを形成する。次いで、希ガス元素をマスク1106bを用いて選択的に添加してゲッタリングサイト1108を形成する。
【0166】
次いで、マスク1107を除去した後、ゲッタリングを行う。ゲッタリングは、実施の形態1に従って行えばよい。
【0167】
次いで、マスク1106bを除去して、再度レジストからなるマスク1111を形成する。このマスクは半導体膜をパターニングするためのものであり、マスク1107よりも内側に設けられるものである。
【0168】
次いで、マスク1111で覆われた領域以外の半導体膜を除去する。ゲッタリングを行うと、金属元素が希ガス元素を添加した領域の境界に偏析しやすい傾向があることから、希ガス元素を添加した領域付近の半導体膜も除去する。こうして、結晶構造を有する半導体膜1109を形成する。
【0169】
以降の工程は、実施の形態1に従って半導体膜1109を覆う絶縁膜1110を形成すればよい。そして、実施例1に従ってアクティブマトリクス基板を作製する。
【0170】
こうして、得られたアクティブマトリクス基板上のTFTは優れた電気特性を有する。図25にそのTFT(L/W=7μm/8μm、駆動回路のnチャネル型TFT、ゲート絶縁膜の膜厚115nm)の電圧/電流特性を電気特性を示す。
【0171】
図25において、TFTのしきい値(Vth)は、1.222V、S値は、0.175V/dec、電界効果移動度(μFE)は、179.9cm2/Vs、オン電流値は、Vds(ソース領域とドレイン領域の電圧差)=14Vの時に2.34×10-4A、オフ電流値は、Vds=14Vの時に3.7×10-12Aとなった。これらの値は全て良好なTFT特性値を示している。
【0172】
なお、本実施例は実施例1乃至6のいずれか一と組み合わせることが可能である。
【0173】
[実施例8]
実施例1では画素電極が反射性を有する金属材料で形成された反射型の表示装置の例を示したが、本実施例では画素電極を透光性を有する導電膜で形成した透過型の表示装置の例を図15に示す。
【0174】
層間絶縁膜800を形成する工程までは実施例1と同じであるので、ここでは省略する。実施例1に従って層間絶縁膜277を形成した後、透光性を有する導電膜からなる画素電極801を形成する。透光性を有する導電膜としては、ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等を用いればよい。
【0175】
その後、層間絶縁膜800にコンタクトホールを形成する。次いで、画素電極801と重なる接続電極802を形成する。この接続電極802は、コンタクトホールを通じてドレイン領域と接続されている。また、この接続電極802と同時に他のTFTのソース電極またはドレイン電極も形成する。
【0176】
また、ここでは全ての駆動回路を基板上に形成した例を示したが、駆動回路の一部に数個のICを用いてもよい。
【0177】
以上のようにしてアクティブマトリクス基板が形成される。このアクティブマトリクス基板を用い、実施例2に従って液晶モジュールを作製し、バックライト804、導光板805を設け、カバー806で覆えば、図15に示すアクティブマトリクス型液晶表示装置が完成する。なお、カバー806と液晶モジュールは接着剤や有機樹脂を用いて貼り合わせる。また、基板と対向基板を貼り合わせる際、枠で囲んで有機樹脂を枠と基板との間に充填して接着してもよい。また、透過型であるので偏光板803は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
【0178】
なお、本実施例は実施例1乃至7のいずれか一と組み合わせることが可能である。
【0179】
[実施例9]
本実施例では、EL(Electro Luminescence)素子を備えた発光表示装置を作製する例を図16に示す。
【0180】
図16(A)は、ELモジュールをを示す上面図、図16(B)は図16(A)をA−A’で切断した断面図である。絶縁表面を有する基板700(例えば、ガラス基板、結晶化ガラス基板、もしくはプラスチック基板等)に、画素部702、ソース側駆動回路701、及びゲート側駆動回路703を形成する。これらの画素部や駆動回路は、実施の形態に従えば得ることができる。また、718はシール材、719はDLC膜であり、画素部および駆動回路部はシール材718で覆われ、そのシール材は保護膜719で覆われている。さらに、接着材を用いてカバー材720で封止されている。カバー材720としては、プラスチック、ガラス、金属、セラミックス等、いかなる組成の基材でもよい。また、カバー材720の形状および支持体の形状も特に限定されず、平面を有するもの、曲面を有するもの、可曲性を有するもの、フィルム状のものであってもよい。熱や外力などによる変形に耐えるためカバー材720は基板700と同じ材質のもの、例えばガラス基板を用いることが望ましく、サンドブラスト法などにより図16に示す凹部形状(深さ3〜10μm)に加工する。さらに加工して乾燥剤721が設置できる凹部(深さ50〜200μm)を形成することが望ましい。また、多面取りでELモジュールを製造する場合、基板とカバー材とを貼り合わせた後、CO2レーザー等を用いて端面が一致するように分断してもよい。
【0181】
また、ここでは図示しないが、用いる金属層(ここでは陰極など)の反射により背景が映り込むことを防ぐために、位相差板(λ/4板)や偏光板からなる円偏光板と呼ばれる円偏光手段を基板(発光を通過させる基板またはカバー材)に設けてもよい。
【0182】
なお、708はソース側駆動回路701及びゲート側駆動回路703に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)709からビデオ信号やクロック信号を受け取る。また、本実施例の発光装置は、デジタル駆動であってもよく、アナログ駆動であってもよく、ビデオ信号はデジタル信号であってもよいし、アナログ信号であってもよい。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。また、これらの画素部や駆動回路と同一基板上に複雑な集積回路(CPU、コントローラ等)を形成することも可能であるが、少ないマスク数での作製は困難である。従って、CPU、コントローラ等を備えたICチップを、COG(chip on glass)方式やTAB(tape automated bonding)方式やワイヤボンディング方法で実装することが好ましい。
【0183】
次に、断面構造について図16(B)を用いて説明する。基板700上に絶縁膜710が設けられ、絶縁膜710の上方には画素部702、ゲート側駆動回路703が形成されており、画素部702は電流制御用TFT711とそのドレインに電気的に接続された画素電極712を含む複数の画素により形成される。また、1つの画素に複数、即ち、2つ、または3つ、またはそれ以上のTFTや様々な回路(カレントミラー回路など)を組み込んだ構造としてもよい。また、ゲート側駆動回路703はnチャネル型TFT713とpチャネル型TFT714とを組み合わせたCMOS回路を用いて形成される。
【0184】
これらのTFT(711、713、714を含む)は、実施の形態または実施例1に従って作製すればよい。なお、ここではトップゲート型TFTの例を示したが、特に限定されず、ボトムゲート型TFT、順スタガ型TFTとしてもよい。
【0185】
画素電極712はEL素子の陽極として機能する。また、画素電極712の両端にはバンク715が形成され、画素電極712上にはEL層716およびEL素子の陰極717が形成される。
【0186】
EL層716としては、発光層、電荷輸送層または電荷注入層を自由に組み合わせてEL層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、低分子系有機EL材料や高分子系有機EL材料を用いればよい。また、EL層として一重項励起により発光(蛍光)する発光材料(シングレット化合物)からなる薄膜、または三重項励起により発光(リン光)する発光材料(トリプレット化合物)からなる薄膜を用いることができる。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機EL材料や無機材料は公知の材料を用いることができる。
【0187】
陰極717は全画素に共通の配線としても機能し、接続配線708を経由してFPC709に電気的に接続されている。さらに、画素部702及びゲート側駆動回路703に含まれる素子は全て陰極717、シール材718、及び保護膜719で覆われている。
【0188】
なお、シール材718としては、できるだけ可視光に対して透明もしくは半透明な材料を用いるのが好ましい。また、シール材718はできるだけ水分や酸素を透過しない材料であることが望ましい。
【0189】
また、シール材718を用いて発光素子を完全に覆った後、すくなくとも図16に示すようにDLC膜等からなる保護膜719をシール材718の表面(露呈面)に設けることが好ましい。また、基板の裏面を含む全面に保護膜を設けてもよい。ここで、外部入力端子(FPC)が設けられる部分に保護膜が成膜されないように注意することが必要である。マスクを用いて保護膜が成膜されないようにしてもよいし、CVD装置でマスキングテープとして用いるテフロン(登録商標)等のテープで外部入力端子部分を覆うことで保護膜が成膜されないようにしてもよい。
【0190】
以上のような構造でEL素子をシール材718及び保護膜719で封入することにより、EL素子を外部から完全に遮断することができ、外部から水分や酸素等のEL層の酸化による劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置を得ることができる。
【0191】
また、画素電極を陽極(Pt、Cr、W、Niなど)とし、EL層と、透光性を有する陰極(薄い金属層(AgMgやAlLi)と透明導電膜との積層(ITOまたはZnO)を積層して図9とは逆方向に発光する構成としてもよい。また、画素電極を陰極とし、EL層と陽極を積層して図16とは逆方向に発光する構成としてもよい。図17にその一例を示す。なお、上面図は同一であるので省略する。
【0192】
図17に示した断面構造について以下に説明する。基板1000としては、ガラス基板や石英基板の他にも、半導体基板または金属基板も使用することができる。基板1000上に絶縁膜1010が設けられ、絶縁膜1010の上方には画素部1002、ゲート側駆動回路1003が形成されており、画素部1002は電流制御用TFT1011とそのドレインに電気的に接続された画素電極1012を含む複数の画素により形成される。また、ゲート側駆動回路1003はnチャネル型TFT1013とpチャネル型TFT1014とを組み合わせたCMOS回路を用いて形成される。なお、ここではトップゲート型TFTの例を示したが、特に限定されず、ボトムゲート型TFT、順スタガ型TFTとしてもよい。
【0193】
画素電極1012はEL素子の陰極として機能する。また、画素電極1012の両端にはバンク1015が形成され、画素電極1012上にはEL層1016およびEL素子の陽極1017が形成される。
【0194】
陽極1017は全画素に共通の配線としても機能し、接続配線1008を経由してFPC1009に電気的に接続されている。さらに、画素部1002及びゲート側駆動回路1003に含まれる素子は全て陽極1017、シール材1018、及びDLC等からなる保護膜1019で覆われている。また、カバー材1021と基板1000とを接着剤で貼り合わせた。また、カバー材には凹部を設け、乾燥剤1021を設置する。
【0195】
なお、シール材1018としては、できるだけ可視光に対して透明もしくは半透明な材料を用いるのが好ましい。また、シール材1018はできるだけ水分や酸素を透過しない材料であることが望ましい。
【0196】
また、図17では、画素電極を陰極とし、EL層と陽極を積層したため、発光方向は図17に示す矢印の方向となっている。
【0197】
なお、本実施例は実施例1乃至8のいずれか一と組み合わせることが可能である。
【0198】
[実施例10]
本実施例では、実施例1とは異なる例を図18に示す。
【0199】
まず、絶縁表面を有する基板11上に導電膜を形成し、パターニングを施すことにより走査線12を形成する。この走査線12は後に形成される活性層を光から保護する遮光層としても機能する。ここでは基板11として石英基板を用い、走査線12としてポリシリコン膜(膜厚50nm)とタングステンシリサイド(W−Si)膜(膜厚100nm)の積層構造を用いた。また、ポリシリコン膜はタングステンシリサイドから基板への汚染を保護するものである。
【0200】
次いで、走査線12を覆う絶縁膜13a、13bを膜厚100〜1000nm(代表的には300〜500nm)で形成する。ここではCVD法を用いた膜厚100nmの酸化シリコン膜とLPCVD法を用いた膜厚280nmの酸化シリコン膜を積層させた。
【0201】
次いで、非晶質半導体膜を膜厚10〜100nmで形成する。ここでは膜厚69nmの非晶質シリコン膜(アモルファスシリコン膜)をLPCVD法を用いて形成した。次いで、この非晶質半導体膜を結晶化させる技術として実施の形態または実施例1に示した技術を用いて結晶化、ゲッタリング、パターニングを行い結晶質シリコン膜の不要な部分を除去して、半導体層14を形成する。
【0202】
次いで、保持容量を形成するため、マスクを形成して半導体層の一部(保持容量とする領域)にリンをドーピングする。
【0203】
次いで、マスクを除去し、半導体層を覆う絶縁膜を形成した後、マスクを形成して保持容量とする領域上の絶縁膜を選択的に除去する。
【0204】
次いで、マスクを除去し、熱酸化を行って絶縁膜(ゲート絶縁膜)15を形成する。この熱酸化によって最終的なゲート絶縁膜の膜厚は80nmとなった。なお、保持容量とする領域上に他の領域より薄い絶縁膜を形成した。
【0205】
次いで、TFTのチャネル領域となる領域にp型またはn型の不純物元素を低濃度に添加するチャネルドープ工程を全面または選択的に行った。このチャネルドープ工程は、TFTしきい値電圧を制御するための工程である。なお、ここではジボラン(B26)を質量分離しないでプラズマ励起したイオンドープ法でボロンを添加した。もちろん、質量分離を行うイオンインプランテーション法を用いてもよい。
【0206】
次いで、絶縁膜15、及び絶縁膜13a、13b上にマスクを形成し、走査線12に達するコンタクトホールを形成する。そして、コンタクトホールの形成後、マスクを除去する。
【0207】
次いで、導電膜を形成し、パターニングを行ってゲート電極16および容量配線17を形成する。ここでは、リンがドープされたシリコン膜(膜厚150nm)とタングステンシリサイド(膜厚150nm)との積層構造を用いた。なお、保持容量は、絶縁膜15を誘電体とし、容量配線17と半導体層の一部とで構成されている。
【0208】
次いで、ゲート電極16および容量配線17をマスクとして自己整合的にリンを低濃度に添加する。この低濃度に添加された領域のリンの濃度が、1×1016〜5×1018atoms/cm3、代表的には3×1017〜3×1018atoms/cm3となるように調整する。
【0209】
次いで、マスクを形成してリンを高濃度に添加し、ソース領域またはドレイン領域となる高濃度不純物領域を形成する。この高濃度不純物領域のリンの濃度が1×1020〜1×1021atoms/cm3(代表的には3×1019〜3×1020/cm3)となるように調整する。なお、半導体層14のうち、ゲート電極16と重なる領域はチャネル形成領域となり、マスクで覆われた領域は低濃度不純物領域となりLDD領域として機能する。そして、不純物元素の添加後、マスクを除去する。
【0210】
次いで、画素と同一基板上に形成される駆動回路に用いるpチャネル型TFTを形成するために、マスクでnチャネル型TFTとなる領域を覆い、ボロンを添加してソース領域またはドレイン領域を形成する。
【0211】
次いで、マスク412を除去した後、ゲート電極16および容量配線17を覆うパッシベーション膜18を形成する。ここでは、酸化シリコン膜を70nmの膜厚で形成した。次いで、半導体層にそれぞれの濃度で添加されたn型またはp型不純物元素を活性化するための熱処理または強光の照射処理工程を行う。ここでは裏面からYAGレーザーを照射して活性化を行った。YAGレーザーに代えてエキシマレーザーを照射してもよい。
【0212】
次いで、有機樹脂材料からなる層間絶縁膜19を形成する。ここでは膜厚400nmのアクリル樹脂膜を用いた。次いで、半導体層に達するコンタクトホールを形成した後、電極20及びソース配線21を形成する。本実施例では電極20及びソース配線21を、Ti膜を100nm、Tiを含むアルミニウム膜を300nm、Ti膜150nmをスパッタ法で連続して形成した3層構造の積層膜とした。
【0213】
次いで、水素化処理をおこなった後、アクリルからなる層間絶縁膜22を形成する。次いで、層間絶縁膜22上に遮光性を有する導電膜100nmを成膜し、遮光層23を形成する。次いで、層間絶縁膜24を形成する。次いで、電極20に達するコンタクトホール形成する。次いで、100nmの透明導電膜(ここでは酸化インジウム・スズ(ITO)膜)を形成した後、パターニングして画素電極25を形成する。
【0214】
なお、本実施例は一例であって本実施例の工程に限定されないことはいうまでもない。例えば、各導電膜としては、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、クロム(Cr)、シリコン(Si)から選ばれた元素、または前記元素を組み合わせた合金膜(代表的には、Mo―W合金、Mo―Ta合金)を用いることができる。また、各絶縁膜としては、酸化シリコン膜や窒化シリコン膜や酸化窒化シリコン膜や有機樹脂材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、BCB(ベンゾシクロブテン)等)膜を用いることができる。
【0215】
また、本実施例においては、絶縁膜13a、13bにも希ガス元素が添加された。ただし、希ガス元素が添加された領域は、半導体層14が設けられている領域以外である。
【0216】
なお、本実施例は実施例1乃至9のいずれか一と組み合わせることが可能である。
【0217】
[実施例11]
実施例1では、トップゲート型TFTを例に説明したが、本発明は図19に示すボトムゲート型TFTにも適用することができる。
【0218】
図19(A)は、画素部の画素の一つを拡大した上面図であり、図19(A)において、点線A−A'で切断した部分が、図19(B)の画素部の断面構造に相当する。
【0219】
図19に示す画素部において、画素TFT部はNチャネル型TFTで形成されている。基板上51にゲート電極52が形成され、その上に窒化珪素からなる第1絶縁膜53a、酸化珪素からなる第2絶縁膜53bが設けられている。また、第2絶縁膜上には、活性層としてソース領域またはドレイン領域54〜56と、チャネル形成領域57、58と、前記ソース領域またはドレイン領域とチャネル形成領域の間にLDD領域59、60が形成される。また、チャネル形成領域57、58は絶縁層61、62で保護される。絶縁層61、62及び活性層を覆う第1の層間絶縁膜63にコンタクトホールを形成した後、ソース領域54に接続する配線64が形成され、ドレイン領域56に配線65が接続され、さらにその上にパッシベーション膜66が形成される。そして、その上に第2の層間絶縁膜67が形成される。さらに、その上に第3の層間絶縁膜68が形成され、ITO、SnO2等の透明導電膜からなる画素電極69が配線65と接続される。また、70は画素電極69と隣接する画素電極である。
【0220】
本実施例では、活性層を上記実施の形態に従って形成する。
【0221】
本実施例では一例としてチャネルストップ型のボトムゲート型のTFTの例を示したが特に限定されない。
【0222】
なお、本実施例では、画素部の画素TFTのゲート配線をダブルゲート構造としているが、オフ電流のバラツキを低減するために、トリプルゲート構造等のマルチゲート構造としても構わない。また、開口率を向上させるためにシングルゲート構造としてもよい。
【0223】
また、画素部の容量部は、第1絶縁膜及び第2絶縁膜を誘電体として、容量配線71と、ドレイン領域56とで形成されている。
【0224】
なお、図19で示した画素部はあくまで一例に過ぎず、特に上記構成に限定されないことはいうまでもない。
【0225】
なお、本実施例は実施例1乃至10のいずれか一と組み合わせることが可能である。
【0226】
[実施例12]
本実施例では、実施例1と異なるプロセスでアクティブマトリクス基板を作製した例について図30〜32に示す。
【0227】
本実施例は、基板1600上に下地膜1601(酸化窒化シリコン膜1601a、酸化窒化シリコン膜1601bの積層)を設け、その上に半導体層1602〜1606を形成し、絶縁膜1607を形成し、該絶縁膜上に第1の導電膜1608と、第2の導電膜1609とを積層形成する工程は、実施例1と同一である。また、半導体層の形成は実施の形態に従って形成すればよい。従って、詳しい説明はここでは省略する。なお、図30(A)は、図3(A)と同じ状態を示している。
【0228】
次いで、実施例3と同様な方法で第1のエッチング処理を行い、第1の導電層と第2の導電層から成る第1の形状の導電層1616〜1621(第1の導電層1616a〜1621aと第2の導電層1616b〜1621b)を形成する。(図30(B))なお、この工程までが実施例1と同一である。
【0229】
そして、本実施例は、第1のエッチング処理に引き続き、レジストからなるマスクを除去せずに第2のエッチング処理を行う。ここでは、エッチング用ガスにSF6とCl2とO2とを用い、それぞれのガス流量比を24/12/24(sccm)とし、1.3Paの圧力でコイル型の電極に700WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを25秒行った。基板側(試料ステージ)にも10WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。第2のエッチング処理でのWに対するエッチング速度は227.3nm/min、TaNに対するエッチング速度は32.1nm/minであり、TaNに対するWの選択比は7.1であり、絶縁膜1607であるSiONに対するエッチング速度は33.7nm/minであり、TaNに対するWの選択比は6.83である。このようにエッチングガス用ガスにSF6を用いた場合、絶縁膜1607との選択比が高いので膜減りを抑えることができる。また、駆動回路のTFTにおいては、テーパ−部のチャネル長方向の幅が長ければ長いほど信頼性が高いため、テーパ−部を形成する際、SF6を含むエッチングガスでドライエッチングを行うことが有効である。
【0230】
この第2のエッチング処理によりWのテーパー角は70°となった。この第2のエッチング処理により第2の導電層1622b〜1627bを形成する。一方、第1の導電層は、ほとんどエッチングされず、第1の導電層1622a〜1627aを形成する。また、上記第2のエッチング処理において、CF4とCl2とO2とをエッチングガスに用いることも可能である。
【0231】
次いで、レジストからなるマスクを除去した後、第1のドーピング処理を行って図30(C)の状態を得る。ドーピングは第1の導電層1622a〜1627aを不純物元素に対するマスクとして用いて第1の導電層のテーパー部下方の半導体層に不純物元素が添加されないようにドーピングする。本実施例では、不純物元素としてP(リン)を用い、フォスフィン(PH3)5%水素希釈ガス、ガス流量30sccmにてプラズマドーピングを行った。こうして、第1の導電層と重なる低濃度不純物領域(n――領域)1628を自己整合的に形成する。この低濃度不純物領域1628へ添加されたリン(P)の濃度は、1×1017〜1×1019/cm3である。
【0232】
また、第1のドーピング処理は、第1の導電層のテーパー部下方の半導体層に不純物元素が添加されるようにドーピングしてもよい。その場合には、第1の導電層のテーパー部の膜厚に従って濃度勾配を有することになる。
【0233】
次いで、レジストからなるマスク1629〜1632を形成した後、第2のドーピング処理を行い、半導体層にn型を付与する不純物元素を添加する。(図31(A))なお、後にpチャネル型TFTの活性層となる半導体層はマスク1629、1630で覆う。ドーピング処理はイオンドープ法、若しくはイオン注入法で行えば良い。ここでは、n型を付与する不純物元素としてリンを用い、フォスフィン(PH3)5%水素希釈ガスとしたイオンドープ法を用いて添加する。
【0234】
第2のドーピング処理により、後にロジック回路部のnチャネル型TFTとなる半導体層1603には、導電層1623がリンに対するマスクとなり、自己整合的に高濃度不純物領域(n+領域)1643、1644が形成される。また、この第2のドーピング処理時、テーパー部の下方にも添加して低濃度不純物領域(n-領域)1633、1634を形成する。よって、後に形成されるロジック回路部のnチャネル型TFTは、ゲート電極と重なる領域(GOLD領域)のみを備える。なお、低濃度不純物領域(n-領域)1633、1634においては、第1の導電層のテーパー部と重なる半導体層において、第1の導電層のテーパー部の端部から内側に向かって不純物濃度(P濃度)が次第に低くなっている。
【0235】
また、第2のドーピング処理により、後にサンプリング回路部のnチャネル型TFTとなる半導体層1605には、マスク1631で覆われなかった領域に高濃度不純物領域1645、1646が形成され、マスク1631で覆われた領域には低濃度不純物領域(n--領域)1635、1636が形成される。従って、後にサンプリング回路部のnチャネル型TFTは、ゲート電極と重ならない低濃度不純物領域(LDD領域)のみを備える。
【0236】
また、第2のドーピング処理により、後に画素部のnチャネル型TFTとなる半導体層1606には、マスク1632で覆われなかった領域に高濃度不純物領域1647〜1650が形成され、マスク1632で覆われた領域には低濃度不純物領域(n--領域)1637〜1640が形成される。従って、後に画素部のnチャネル型TFTは、ゲート電極と重ならない低濃度不純物領域(LDD領域)のみを備える。また、後に画素部の容量部となる領域には、自己整合的に高濃度不純物領域1650が形成され、テーパー部の下方には低濃度不純物領域(n-領域)1641、1642が形成される。
【0237】
第2のドーピング処理により、高濃度不純物領域1643〜1650には、3×1019〜1×1021/cm3の濃度範囲でn型を付与する不純物元素が添加される。
【0238】
また、第2のドーピング処理の前後で希ガス元素を添加してもよく、その場合、後の熱処理でさらにゲッタリングすることができる。また、その場合には全ての半導体層の端部に添加されるようなマスクを第2のドーピング処理で用いることが望ましい。
【0239】
次いで、マスク1629〜1632を除去した後、後にnチャネル型TFTの活性層となる半導体層をレジストからなるマスク1651〜1653で覆い、第3のドーピング処理を行う。(図31(B))テーパー部を通過してp型の不純物元素が添加され、低濃度でp型の不純物元素を含む領域(ゲート電極と重なる領域(GOLD領域)1654b〜1657b)が形成される。この第3のドーピング処理により、低濃度でn型の不純物元素をふくみ、且つ高濃度でp型の不純物元素を含む領域1654a〜1657aを形成する。領域1654a〜1657aには低濃度のリンが含まれているが、ボロンの濃度を6×1019〜6×1020/cm3となるようにドーピング処理し、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。
【0240】
また、本実施例では第1のドーピング処理、第2のドーピング処理、第3のドーピング処理の順に行ったが、特に限定されず、工程順序を自由に変更してもよい。
【0241】
次いで、レジストからなるマスク1651〜1653を除去して、第1の層間絶縁膜1658を形成する。この第1の層間絶縁膜1658としては、プラズマCVD法またはスパッタ法を用い、厚さを10〜200nmとしてシリコンを含む絶縁膜で形成する。
【0242】
次いで、図31(C)に示すように、それぞれの半導体層に添加された不純物元素を活性化処理する工程を行う。この活性化工程はYAGレーザーまたはエキシマレーザーを裏面から照射することによって行う。裏面から照射することによって、ゲート電極と絶縁膜を介して重なる不純物領域の活性化を行うことができる。
【0243】
また、本実施例では、上記活性化の前に第1の層間絶縁膜を形成した例を示したが、上記活性化を行った後、第1の層間絶縁膜を形成する工程としてもよい。
【0244】
次いで、窒化シリコン膜からなる第2の層間絶縁膜1659を形成して熱処理(300〜550℃で1〜12時間の熱処理)を行い、半導体層を水素化する工程を行う。本実施例では、窒素雰囲気中で410℃、1時間の熱処理を行った。この工程は第2の層間絶縁膜1659に含まれる水素により半導体層のダングリングボンドを終端する工程である。第1の層間絶縁膜の存在に関係なく半導体層を水素化することができる。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。
【0245】
次いで、第2の層間絶縁膜1659上に有機絶縁物材料から成る第3の層間絶縁膜1660を形成する。本実施例では膜厚1.6μmのアクリル樹脂膜を形成した。次いで、各高濃度不純物領域に達するコンタクトホールを形成するためのパターニングを行う。本実施例では複数のエッチング処理を行った。本実施例では第2の層間絶縁膜をエッチングストッパーとして第3の層間絶縁膜をエッチングした後、第1の層間絶縁膜をエッチングストッパーとして第2の層間絶縁膜をエッチングしてから第1の層間絶縁膜をエッチングした。
【0246】
次いで、高濃度不純物領域とそれぞれ電気的に接続する電極1661〜1669と、高濃度不純物領域1649と電気的に接続する画素電極1670を形成する。これらの電極及び画素電極の材料は、AlまたはAgを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いる。
【0247】
以上の様にして、nチャネル型TFT1706及びpチャネル型TFT1705からなるロジック回路部1703と、nチャネル型TFT1708及びpチャネル型TFT1707からなるサンプリング回路部1704とを有する駆動回路1701と、nチャネルTFT1709からなる画素TFT及び保持容量1710とを有する画素部1702とを同一基板上に形成することができる。(図32)
【0248】
なお、本実施例ではnチャネル型TFT1709は、ソース領域およびドレイン領域の間に二つのチャネル形成領域を有した構造(ダブルゲート構造)となっているが、本実施例はダブルゲート構造に限定されることなく、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
【0249】
本実施例では、第2のドーピング処理により、自己整合的またはマスクによって各回路に適した高濃度不純物領域を作り分けることを特徴としている。nチャネル型TFT1706、1708、1709のTFTの構造は、いずれも低濃度ドレイン(LDD:Lightly Doped Drain)構造となっている。この構造はチャネル形成領域と、高濃度に不純物元素を添加して形成するソース領域またはドレイン領域との間に低濃度に不純物元素を添加した領域を設けたものであり、この領域をLDD領域と呼んでいる。さらにnチャネル型TFT1706は、ゲート絶縁膜を介してLDD領域をゲート電極と重ねて配置させた、いわゆるGOLD(Gate-drain Overlapped LDD)構造である。また、nチャネル型TFT1708、1709は、ゲート電極と重ならない領域(LDD領域)のみを備えている構造である。なお、本明細書では、絶縁膜を介してゲート電極と重なる低濃度不純物領域(n-領域)をGOLD領域と呼び、ゲート電極と重ならない低濃度不純物領域(n--領域)をLDD領域と呼ぶ。このゲート電極と重ならない領域(LDD領域)のチャネル方向の幅は、第2のドーピング処理時のマスクを適宜変更することで自由設定することができる。また、第1のドーピング処理の条件を変え、テーパー部の下方にも不純物元素が添加されるようにすれば、nチャネル型TFT1708、1709は、ゲート電極と重なる領域(GOLD領域)と、ゲート電極と重ならない領域(LDD領域)とを両方備えた構造とすることも可能である。
【0250】
なお、本実施例は実施例1乃至12のいずれか一と自由に組み合わせることが可能である。
【0251】
[実施例13]
本発明を実施して形成された駆動回路や画素部は様々なモジュール(アクティブマトリクス型液晶モジュール、アクティブマトリクス型ELモジュール、アクティブマトリクス型ECモジュール)に用いることができる。即ち、本発明を実施することによって、それらを組み込んだ全ての電子機器が完成される。
【0252】
その様な電子機器としては、ビデオカメラ、デジタルカメラ、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、プロジェクタ、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図33〜図35に示す。
【0253】
図33(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004等を含む。
【0254】
図33(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106等を含む。
【0255】
図33(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示部2205等を含む。
【0256】
図33(D)はゴーグル型ディスプレイであり、本体2301、表示部2302、アーム部2303等を含む。
【0257】
図33(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体2401、表示部2402、スピーカ部2403、記録媒体2404、操作スイッチ2405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。
【0258】
図33(F)はデジタルカメラであり、本体2501、表示部2502、接眼部2503、操作スイッチ2504、受像部(図示しない)等を含む。
【0259】
図34(A)はフロント型プロジェクターであり、投射装置2601、スクリーン2602等を含む。本発明は投射装置2601の一部を構成する液晶モジュール2808に適用し、装置全体を完成させることができる。
【0260】
図34(B)はリア型プロジェクターであり、本体2701、投射装置2702、ミラー2703、スクリーン2704等を含む。本発明は投射装置2702の一部を構成する液晶モジュール2808に適用し、装置全体を完成させることができる。
【0261】
なお、図34(C)は、図34(A)及び図34(B)中における投射装置2601、2702の構造の一例を示した図である。投射装置2601、2702は、光源光学系2801、ミラー2802、2804〜2806、ダイクロイックミラー2803、プリズム2807、液晶モジュール2808、位相差板2809、投射光学系2810で構成される。投射光学系2810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図34(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。
【0262】
また、図34(D)は、図34(C)中における光源光学系2801の構造の一例を示した図である。本実施例では、光源光学系2801は、リフレクター2811、光源2812、レンズアレイ2813、2814、偏光変換素子2815、集光レンズ2816で構成される。なお、図34(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。
【0263】
ただし、図34に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及びELモジュールでの適用例は図示していない。
【0264】
図35(A)は携帯電話であり、本体2901、音声出力部2902、音声入力部2903、表示部2904、操作スイッチ2905、アンテナ2906、画像入力部(CCD、イメージセンサ等)2907等を含む。
【0265】
図35(B)は携帯書籍(電子書籍)であり、本体3001、表示部3002、3003、記憶媒体3004、操作スイッチ3005、アンテナ3006等を含む。
【0266】
図35(C)はディスプレイであり、本体3101、支持台3102、表示部3103等を含む。
【0267】
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器の作製方法に適用することが可能である。また、本実施例の電子機器は実施例1〜12のどのような組み合わせからなる構成を用いても実現することができる。
【0268】
【発明の効果】
本発明により、熱処理を用いて結晶化を行い、活性化を熱処理以外の方法で行う場合は、高温熱処理2回(結晶化、ゲッタリング)に抑えることができ、強光により結晶化を行い、活性化を熱処理以外の方法で行う場合には、高温熱処理1回(ゲッタリング)に抑えることができる。
【0269】
また、希ガスを添加する処理時間は、1分または2分程度の短時間で高濃度の希ガス元素を半導体膜に添加することができるため、リンを用いたゲッタリングと比較してスループットが格段に向上する。
【0270】
また、リンを用いたゲッタリングと比較して、希ガス元素の添加による本発明のゲッタリング能力は高く、さらに高濃度、例えば1×1020〜5×1021/cm3で添加できるため、結晶化に用いる金属元素の添加量を多くすることができる。即ち、結晶化に用いる金属元素の添加量を多くすることによって結晶化の処理時間をさらに短時間で行うことが可能となる。また、結晶化の処理時間を変えない場合には、結晶化に用いる金属元素の添加量を多くすることによって、さらなる低温で結晶化することができる。また、結晶化に用いる金属元素の添加量を多くすることによって、自然核の発生を低減することができ、良好な結晶質半導体膜を形成することができる。
【図面の簡単な説明】
【図1】 半導体層の作製工程を示す図。
【図2】 半導体層の作製工程を示す図。
【図3】 AM−LCDの作製工程を示す図。
【図4】 AM−LCDの作製工程を示す図。
【図5】 AM−LCDの作製工程を示す図。
【図6】 アクティブマトリクス型液晶表示装置の断面構造図
【図7】 液晶モジュールの外観を示す図。
【図8】 活性化工程を示す図。
【図9】 半導体層の作製工程を示す図。
【図10】 半導体層の作製工程を示す図。
【図11】 半導体層の作製工程を示す図。
【図12】 半導体層の作製工程を示す図。
【図13】 半導体層の作製工程を示す図。
【図14】 希ガス元素の濃度分布を示す図。
【図15】 透過型の例を示す図。
【図16】 ELモジュールを示す上面図及び断面図。
【図17】 ELモジュールを示す断面図。
【図18】 アクティブマトリクス型液晶表示装置の断面構造図。
【図19】 アクティブマトリクス型液晶表示装置の断面構造図。
【図20】 アニール前のニッケル濃度を示すグラフ。
【図21】 アニール後のニッケル濃度を示すグラフ。
【図22】 アニール前のラマンスペクトルを示すグラフ。
【図23】 アニール後のラマンスペクトルを示すグラフ。
【図24】 E×Bスペクトルデータを示すグラフ。
【図25】 TFTにおける電圧/電流特性を示す図。
【図26】 ゲッタリングされる領域(幅50μm)におけるエッチピット密度と加熱温度と加熱時間との関係を示す図。
【図27】 ゲッタリングされる領域(幅30μm)におけるエッチピット密度と加熱温度と加熱時間との関係を示す図。
【図28】 ゲッタリングされる領域(幅30μm)におけるエッチピット密度と加熱温度と加熱時間との関係を示す図。
【図29】 ゲッタリング後のFPM処理により観察されるエッチピットを示す簡略図。
【図30】 AM−LCDの作製工程を示す図。
【図31】 AM−LCDの作製工程を示す図。
【図32】 AM−LCDの作製工程を示す図。
【図33】 電子機器の一例を示す図。
【図34】 電子機器の一例を示す図。
【図35】 電子機器の一例を示す図。
【図36】 ゲッタリング後にFPM処理を行った後の観察写真図。

Claims (18)

  1. 非晶質構造を有する半導体膜に結晶化を促進する触媒作用のある金属元素を添加する第1工程と、
    前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第2工程と、
    前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第3工程と、
    前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第4工程と、
    前記不純物領域を除去する第5工程と、を有し、
    前記第3工程は、希ガス元素及び水蒸気を含む雰囲気下で行うことを特徴とする半導体装置の作製方法。
  2. 請求項1において、前記第3工程における前記希ガス元素に加えて、H、H、O、O、Pから選ばれた一種または複数種を添加することを特徴とする半導体装置の作製方法。
  3. 請求項1または請求項2において、前記第5工程の後、前記半導体膜に強光またはレーザー光を表面側または裏面側から照射して前記半導体膜の不純物元素を活性化する工程を有することを特徴とする半導体装置の作製方法。
  4. 請求項1乃至3のいずれか一において、前記第2工程の後、第3工程の前にオゾンを含む溶液で前記結晶構造を有する半導体膜の表面を酸化する工程を有することを特徴とする半導体装置の作製方法。
  5. 請求項1乃至4のいずれか一において、前記第2工程は、加熱処理であることを特徴とする半導体装置の作製方法。
  6. 請求項1乃至4のいずれか一において、前記第2工程は、前記非晶質構造を有する半導体膜に強光を照射する処理であることを特徴とする半導体装置の作製方法。
  7. 請求項1乃至4のいずれか一において、前記第2工程は、加熱処理を行い、且つ、前記非晶質構造を有する半導体膜に強光を照射する処理であることを特徴とする半導体装置の作製方法。
  8. 請求項1乃至7のいずれか一において、前記第4工程は、加熱処理であることを特徴とする半導体装置の作製方法。
  9. 請求項1乃至7のいずれか一において、前記第4工程は、前記半導体膜に強光を照射する処理であることを特徴とする半導体装置の作製方法。
  10. 請求項1乃至7のいずれか一において、前記第4工程は、加熱処理を行い、且つ、前記半導体膜に強光を照射する処理であることを特徴とする半導体装置の作製方法。
  11. 請求項3、6、7、9及び10のいずれか一において、前記強光は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、または高圧水銀ランプから射出された光であることを特徴とする半導体装置の作製方法。
  12. 請求項1乃至11のいずれか一において、前記金属元素はFe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu、Auから選ばれた一種または複数種であることを特徴とする半導体装置の作製方法。
  13. 請求項1乃至12のいずれか一において、前記希ガス元素はHe、Ne、Ar、Kr、Xeから選ばれた一種または複数種であることを特徴とする半導体装置の作製方法。
  14. 非晶質構造を有する半導体膜に結晶化を促進する触媒作用のある金属元素を添加する第1工程と、
    前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第2工程と、
    前記結晶構造を有する半導体膜上に第1のマスクを形成する第3工程と、
    前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第4工程と、
    前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第5工程と、
    前記結晶構造を有する半導体膜上に第2のマスクを形成する第6工程と、
    前記半導体膜を選択的に除去する第7工程と、を有し、
    前記第4工程は、希ガス元素及び水蒸気を含む雰囲気下で行うことを特徴とする半導体装置の作製方法。
  15. 請求項14において、前記第7の工程は、前記不純物領域と、前記結晶構造を有する半導体膜の一部とを除去する工程であることを特徴とする半導体装置の作製方法。
  16. 請求項14において、前記第2のマスクは、前記第1のマスクの端部より内側の位置に設けることを特徴とする半導体装置の作製方法。
  17. 非晶質構造を有する半導体膜に第1のマスクを形成する第1工程と、
    前記非晶質構造を有する半導体膜に結晶化を促進する触媒作用のある金属元素を選択的に添加する第2工程と、
    前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第3工程と、
    前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第4工程と、
    前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第5工程と、
    前記結晶構造を有する半導体膜上に第2のマスクを形成する第6工程と、
    前記半導体膜を選択的に除去する第7工程と、を有し、
    前記第4工程は、希ガス元素及び水蒸気を含む雰囲気下で行うことを特徴とする半導体装置の作製方法。
  18. 非晶質構造を有する半導体膜に結晶化を促進する触媒作用のある金属元素を添加する第1工程と、
    前記半導体膜を結晶化させて結晶構造を有する半導体膜を形成する第2工程と、
    前記結晶構造を有する半導体膜上に酸化珪素膜を形成する第3工程と、
    前記酸化珪素膜上に第1のマスクを形成する第4工程と、
    前記第1のマスクを用いて前記酸化珪素膜を通して前記結晶構造を有する半導体膜に、希ガス元素を選択的に添加して不純物領域を形成する第5工程と、
    前記第1のマスクを除去する第6工程と、
    前記不純物領域に前記金属元素をゲッタリングして結晶構造を有する半導体膜中の前記金属元素を選択的に除去または低減する第7工程と、
    前記酸化珪素膜を除去する第8工程と、
    前記結晶構造を有する半導体膜上に第2のマスクを形成する第9工程と、
    前記半導体膜を選択的に除去する第10工程と、を有し、
    前記第5工程は、希ガス元素及び水蒸気を含む雰囲気下で行うことを特徴とする半導体装置の作製方法。
JP2002019634A 2001-01-29 2002-01-29 半導体装置の作製方法 Expired - Fee Related JP4346852B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019634A JP4346852B2 (ja) 2001-01-29 2002-01-29 半導体装置の作製方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001019357 2001-01-29
JP2001-22398 2001-01-30
JP2001022398 2001-01-30
JP2001-19357 2001-01-30
JP2002019634A JP4346852B2 (ja) 2001-01-29 2002-01-29 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2002313722A JP2002313722A (ja) 2002-10-25
JP2002313722A5 JP2002313722A5 (ja) 2005-08-11
JP4346852B2 true JP4346852B2 (ja) 2009-10-21

Family

ID=27345833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019634A Expired - Fee Related JP4346852B2 (ja) 2001-01-29 2002-01-29 半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP4346852B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335255B2 (en) 2002-11-26 2008-02-26 Semiconductor Energy Laboratory, Co., Ltd. Manufacturing method of semiconductor device
JP4651933B2 (ja) * 2002-11-26 2011-03-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2007011061A1 (en) 2005-07-22 2007-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2002313722A (ja) 2002-10-25

Similar Documents

Publication Publication Date Title
US7605029B2 (en) Method of manufacturing semiconductor device
JP5106136B2 (ja) 半導体装置の作製方法
US7109074B2 (en) Method of manufacturing a semiconductor device
JP4939690B2 (ja) 半導体装置の作製方法
US7202119B2 (en) Method of manufacturing semiconductor device
JP4993810B2 (ja) 半導体装置の作製方法
JP5088993B2 (ja) 半導体装置の作製方法
US7091110B2 (en) Method of manufacturing a semiconductor device by gettering using a anti-diffusion layer
JP4346852B2 (ja) 半導体装置の作製方法
JP4176362B2 (ja) 半導体装置の作製方法
JP4216003B2 (ja) 半導体装置の作製方法
JP2004022900A (ja) 半導体装置の作製方法
JP4212844B2 (ja) 半導体装置の作製方法
US20030062546A1 (en) Semiconductor device and manufacturing method thereof
JP5256144B2 (ja) 半導体装置の作製方法
JP4342843B2 (ja) 半導体装置の作製方法
JP5005881B2 (ja) 半導体装置の作製方法
JP4837871B2 (ja) 半導体装置の作製方法
JP4712197B2 (ja) 半導体装置の作製方法
JP4267253B2 (ja) 半導体装置の作製方法
JP2002217106A (ja) 半導体装置およびその作製方法
JP4176366B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees