JP4344063B2 - Coating method using a die coater - Google Patents

Coating method using a die coater Download PDF

Info

Publication number
JP4344063B2
JP4344063B2 JP2000063664A JP2000063664A JP4344063B2 JP 4344063 B2 JP4344063 B2 JP 4344063B2 JP 2000063664 A JP2000063664 A JP 2000063664A JP 2000063664 A JP2000063664 A JP 2000063664A JP 4344063 B2 JP4344063 B2 JP 4344063B2
Authority
JP
Japan
Prior art keywords
deviation
coating
die body
difference
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000063664A
Other languages
Japanese (ja)
Other versions
JP2001246310A (en
Inventor
卓也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2000063664A priority Critical patent/JP4344063B2/en
Publication of JP2001246310A publication Critical patent/JP2001246310A/en
Application granted granted Critical
Publication of JP4344063B2 publication Critical patent/JP4344063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板等の被処理材へダイコータにより塗布液を塗布するダイコータを用いた塗布方法に関するものであり、特に、「厚みむら」を有する被処理材にガラスペースト等のレベリング性が劣る塗布液をむらなく、かつ、均一な膜厚で塗布する方法に関する。
【0002】
【従来の技術】
従来、ガラス基板等の被処理材上にガラスペースト等の高粘度液(数万cps)の塗布膜を形成する方法としてスクリーン印刷法がある。しかし、このスクリーン印刷法では一回の塗布で形成できる塗布膜の膜厚に限界があるため、近時、あらゆる塗布膜厚に対応できるダイコータによる塗布が注目されている。
【0003】
ところで、前記被処理材には、それ自体に「うねり」、「そり」および「厚みむら」等の変形がある。これらのうち「うねり」および「そり」は、被処理材が例えば可撓性を有するガラス基板の場合、吸引機構を設けた所定の平面度を有するテーブル上に吸引保持することで矯正できるが、「厚みむら」は被処理材を吸引保持しても矯正することはできない。
【0004】
これに対して本発明者は、「厚みむら」を有する被処理材に対して均一な膜厚で塗布液を塗布するダイコータを用いた塗布方法を提案した(特開平10−421号公報参照)。この塗布方法では、まず、ガラス基板をテーブル上に吸引保持することにより、「うねり」および「そり」を矯正した後、塗布液の性状、塗布速度および目標膜厚から決定される基準ギャップにダイ先端とガラス基板の基準面との距離を保持したままダイ本体を移動させ、ダイ本体に取り付けた距離測定センサにより、ダイ先端からガラス基板表面までの距離(実ギャップ)を全塗布領域について予め測定する。次に、前記基準ギャップと測定された実ギャップとの偏差(実偏差)を塗布開始前に演算する。そして、塗布を行う際には、前記測定した実ギャップが基準ギャップと一致するようダイ本体を昇降させて前記実偏差を補正することにより、ダイ本体をガラス基板の表面形状に沿って移動させている。
なお、前記ガラス基板の基準面とは、ガラス基板に厚みむら等の変形がない理想形状と仮定した場合におけるガラス基板の表面位置のことである。
【0005】
【発明が解決しようとする課題】
しかし、「厚みむら」の大きい被処理材上にレベリング性が劣る塗布液を塗布する場合、塗布膜厚が許容値内であるにもかかわらず塗布方向(ダイ本体の移動方向)と垂直な方向に「段むら」(横すじ)が発生することがある。この「段むら」はダイ本体を被処理材の表面形状に沿わせて塗布する際、ダイ本体が急激に昇降することにより発生すると考えられるが、発生した段むらは乾燥後も残留するため製品として使用できない。
【0006】
なお、前記レベリング性とは塗布液自体の流動性のことであり、レベリング性が良好な塗布液を被処理材へ塗布した後所定時間が経過すると、形成された塗布膜が塗布液自体の流動性でならされ、「すじ」や「むら」のない良好な塗布状態となる。このため、一般的には、塗布液の粘度が低いほどレベリング性が高いといえる。しかし、低粘度の塗布液であっても、例えば揮発性の非常に高い溶剤を用いている場合、塗布膜が塗布液自体の流動性でならされる前に溶剤が揮発して乾燥し、その結果、「すじ」や「むら」が発生することがある。このような塗布液は低粘度であってもレベリング性は良好でないことになる。
【0007】
前述のように「段むら」はダイ本体の急激な昇降により発生すると考えられるため、塗布液の性状等から「段むら」を発生しないダイ本体の昇降速度の限界値(限界昇降速度)、すなわち塗布速度(ダイ本体の水平移動速度)が一定の場合におけるダイ本体の限界昇降量が予め決定される。
【0008】
例えば、この限界昇降速度が4μm/secである塗布液を塗布する場合、塗布速度を20mm/secとし、被処理材の実ギャップを10mmピッチで測定したとすると、塗布時にはこれらの測定点間でダイ本体を0.5sec(=10mm÷20mm/sec)で上方または下方に移動させることになる。よって、このときのダイ本体の限界昇降量は2μm(=4μm/sec×0.5sec)となり、ダイ本体の昇降量がこの限界昇降量を上回ると、「段むら」が形成されることになる。
【0009】
前記説明から明らかなように、実ギャップの測定間隔を狭くする程、ダイ本体の昇降量は小さくなるので、段むらの発生を防止するには実ギャップの測定間隔をできるだけ狭くすることが有効である。しかし、この測定間隔は以下に詳述するようにダイ本体の昇降量制御に要する時間により制限されるため、「段むら」の発生を防止するのに有効な距離まで測定間隔を狭くすることはできない。
【0010】
塗布時におけるダイ本体の昇降は、前記昇降量に基づいて測定点毎に制御装置からの制御指令により昇降用モータの回転数を制御することにより実行される。この際、制御装置は測定点毎に制御プログラムの内容をすべて走査した後、昇降用モータに制御指令を出力する。従って、実ギャップの測定間隔を所定値よりも狭くすると、ダイ本体が測定点間を移動するのに要する時間よりも制御装置がダイ本体の昇降量を制御するのに要する時間(制御装置が制御プログラムを走査するのに要する時間と、走査した制御プログラムに基づいて昇降用モータの回転数を制御するのに要する時間との合計)の方が長くなり、ダイ本体の昇降制御が不可能となる。
【0011】
そこで、本発明の目的は、「厚みむら」を有する被処理材に対して、レベリング性が劣る塗布液を段むらが形成されることなく、かつ、被処理材の全塗布領域について均一な膜厚で塗布することができるダイコータを用いた塗布方法を提供することにある。
【0012】
【課題を解決するための手段】
前記目的を達成するため、本発明は、被処理材の表面とダイ本体の先端部との実ギャップを、ダイ本体に設けた距離測定センサにより塗布開始前に全塗布領域についてダイ移動方向に間隔をあけて配置した複数の測定点で測定し、全塗布領域における前記実ギャップの基準ギャップに対する実偏差を制御装置で演算し、塗布時にはこの実偏差に基づいてダイ本体を昇降させるダイコータを用いた塗布方法において、前記基準ギャップと所定の前記測定点におけるダイ本体の塗布位置との差から算出される塗布時偏差と、前記ダイ本体が位置する測定点の下流側に隣接する測定点における予め演算した前記実偏差との差から求まる偏差の差を求め前記偏差の差を、塗布速度および前記隣接する測定点間の距離ならびに少なくとも塗布液の性状から決まる塗布むらを発生しない限界昇降速度から算出される限界昇降量と比較し、前記偏差の差が前記限界昇降量以下であれば前記偏差の差を前記隣接する測定点間のダイ本体の塗布時昇降量とし、前記偏差の差が限界昇降量より大きければ前記限界昇降量を前記隣接する測定点間のダイ本体の塗布時昇降量とすることを特徴とするダイコータを用いた塗布方法を提供するものである。
【0013】
本発明のダイコータを用いた塗布方法では、塗布時のダイ本体の昇降量は塗布液の性状等により予め決定される塗布むらを発生しない限界昇降速度から求められる限界昇降量を上回ることがないため、塗布むら(段むら)のない均一な膜厚の塗布膜を形成することができる。
【0014】
【発明の実施の形態】
次に、本発明の実施形態を図面に従って詳細に説明する。
図1は、本発明に係る塗布方法が適用されるダイコータ1を示している。ダイ本体2には、長手方向に延びるマニホールド2aと、このマニホールド2aと外部を連通する貫通孔2bが設けられている。この貫通孔2bは、塗布液供給ポンプ3を介して塗布液5が入ったタンク6に接続されている。また、ダイ本体2には、前記マニホールド2a内の塗布液5を吐出するためのスリット状のノズル7が設けられている。
【0015】
ダイ本体2の長手方向中央部には支持部材8が設けられている。この支持部材8は、ダイ本体2を矢印Xで示す水平方向に移動させるための水平移動装置10とダイ本体2を矢印Yで示す垂直方向に移動させるためのサーボモータおよびノンバックラッシュのボールネジ機構からなる昇降装置11とで構成された移動装置に連結されている。
【0016】
ダイ本体2は、長手方向両端部近傍に非接触式の距離測定センサ12A,12Bを備えている。なお、この距離測定センサ12A,12Bは非接触式のものに限らず、接触式であってもよい。
【0017】
前記水平移動装置10、昇降装置11、距離測定センサ12A,12Bおよび塗布液供給ポンプ3は、制御装置15と電気的に接続されている。この制御装置15は、各種演算を行う演算処理部15aと、演算結果を記憶する記憶部15bとを備え、後述するように前記距離測定センサ12A,12Bからの入力を演算処理部15aで処理し、その処理結果を記憶部15bに蓄積した後、蓄積したデータに基づいて昇降装置11を制御する。また、制御装置15は、前記水平移動装置10および塗布液供給ポンプ3を制御する。
【0018】
ダイ本体2のリップ先端部2cと対向して所定の平面度の載置面16aを有するテーブル16が配置されている。前記載置面16aには格子状に複数の溝16bが形成され、これらの溝16bは貫通孔16cを介して真空ポンプ17に接続されている。
【0019】
次に、前記ダイコータ1を用いた塗布方法について説明する。
塗布液5はガラスペーストであり、粘度が40Pa・s(40,000cps)、表面張力が0.03N/m(30dyn/cm)である。被処理材であるガラス基板20は、大きさが400mm×200mm、厚みが2.8mm±12μmである。塗布条件は、塗布速度(ダイ本体2の水平方向の移動速度)が20mm/sec、ウエット状態での塗布膜厚が100μm、基準ギャップGRが130μmである。この基準ギャップGRは、所望の塗布膜厚を得ることができるダイ本体2のリップ先端部2cとガラス基板(被処理材)20表面の距離であり、塗布液の物性値、塗布速度等の条件により決定される。また、前記塗布速度が20mm/secという条件下では、本実施形態で塗布液5として使用したガラスペーストについて段むらが生じないダイ本体2の限界昇降速度(昇降速度の上限値)は、4μm/secであることが実験により判明している。
【0020】
まず、ガラス基板20をテーブル16の載置面16a上に配置し、真空ポンプ17で吸引することにより載置面16a上に吸着保持する。ガラス基板20の「そり」および「うねり」は、載置面16aに吸着保持されることにより矯正されるため、ギャップの変動要因は、ガラス基板20の「厚みむら」のみとなる。
【0021】
次に、ダイ本体2のリップ先端部2cとガラス基板20の基準面との距離を前記基準ギャップGR(130μm)に設定した後、図2(A)で示すようにリップ先端部2cと前記基準面との距離が一定に維持されるように水平移動装置10によりダイ本体2を水平に移動させる。そして、この水平移動の際に、距離測定センサ12A,12Bによりガラス基板20の全塗布領域について、ダイ本体2のリップ先端部2cとガラス基板20表面との距離(実ギャップGa)を測定する。基準ギャップGRと実ギャップGaとの関係は、図3に示すとおりである。
【0022】
本実施形態では、ダイ本体2の移動方向に等間隔で配置された20個の測定点i=1,2・・・,19,20について実ギャップGaを測定した。測定距離は200mmとし、隣接する測定点間の間隔(測定ピッチ)は10mmとした。なお、図1と後述する表1および表2におけるi=0は、測定開始点を示している。
【0023】
制御装置15は、距離測定センサ12A,12Bで測定された実ギャップGaに基づいて、以下の演算を行う。まず、下記の式(1)により、実ギャップGaと基準ギャップGRとの偏差(実偏差Da)を各測定点について算出する。
【0024】
【数1】
Da(i)=Ga(i)−GR (1)
Da(i):測定点iにおける実偏差
Ga(i):測定点iにおける実ギャップ
R:基準ギャップ
【0025】
各測定点における実偏差Daは、図4および下記の表1に示すとおりである。また、下記の式(2)で表される隣接する測定点間の実偏差Daの差ΔDaは、下記の表2に示すとおりである。
【0026】
【数2】
ΔDa(i〜i+1)=Da(i+1)−Da(i) (2)
ΔDa(i〜i+1):測定点iと測定点i+1の実偏差の差
Da(i+1):測定点i+1における実偏差
Da(i):測定点iにおける実偏差
【0027】
【表1】

Figure 0004344063
【0028】
【表2】
Figure 0004344063
【0029】
測定ピッチは10mmで塗布速度が20mm/secであるから、ダイ本体2が隣接する測定点間を移動するのに要する時間は0.5sec(=10mm÷20mm/sec)である。また、上述のように限界昇降速度は4μm/secである。従って、「段むら」が発生しない測定点間の限界昇降量ΔDLは2μm(=4μm/sec×0.5sec)である。仮に、前記隣接する測定点間の実偏差Daの差ΔDaに基づいて基準ギャップGRを維持するようにダイ本体2を昇降させ、塗布液5を塗布したとすると、ダイ本体2の測定点間の昇降量が前記限界昇降量ΔDL(2μm)を上回る区間で「段むら」が発生することになる。具体的には、表2におけるi=3〜4、5〜6、6〜7、8〜9、9〜10、10〜11、11〜12、13〜14、14〜15および18〜19の合計10区間でダイ本体2の昇降量が限界昇降量ΔDLを上回り、「段むら」を発生することになる。
【0030】
そこで制御装置15では、以下の演算を実施し、各測定点間におけるダイ本体2の昇降量が限界昇降量ΔDLを上回らないように制御している。
具体的には、20個の各測定点について演算した前記実偏差Da(i)に関し、まず、塗布開始点i=0における塗布時偏差Dt(0)と、この塗布開始点の塗布方向下流側に隣接する測定点i=1における実偏差Da(1)との差、すなわち偏差の差ΔD(0〜1)を制御装置15の演算処理部15aで演算し、演算した偏差の差ΔD(0〜1)と限界昇降量ΔDLを比較する。そして、偏差の差ΔD(0〜1)が限界昇降量ΔDL以下であれば段むらが発生しないので、偏差の差ΔD(0〜1)を測定点i=0〜1間におけるダイ本体2の塗布時昇降量ΔDt(0〜1)として制御装置15の記憶部15bに記憶させる。一方、偏差の差ΔD(0〜1)が限界昇降量ΔDLより大きければ段むらが発生するので、限界昇降量ΔDLをダイ本体2の塗布時昇降量ΔDt(0〜1)として制御装置15の記憶部15bに記憶させる。
【0031】
本実施形態では、表1より偏差の差ΔD(0〜1)=−1.2−0=−1.2μmとなり、限界昇降量ΔDL(2μm)以下なので、ΔD(0〜1)をダイ本体2の塗布時昇降量ΔDt(0〜1)として制御装置15の記憶部15bに記憶させる。
【0032】
ところで、塗布時の測定点i=1におけるダイ本体2の位置、すなわち、塗布時偏差Dt(1)は、測定点i=0〜1間における偏差の差ΔD(0〜1)が限界昇降量ΔDLより大きいか小さいかで異なり、この偏差の差ΔD(0〜1)が限界昇降量ΔDL以下であればi=1におけるダイ本体2の位置、すなわち塗布時偏差Dt(1)は実偏差Da(1)となり、偏差の差ΔD(0〜1)が限界昇降量ΔDLよりも大きければ塗布時偏差Dt(1)=Dt(0)+ΔDL、あるいはDt(1)=Dt(0)−ΔDLとなる(限界昇降量ΔDLの正負は、実偏差の差ΔDaが増加するか、減少するかにより決まる)。
【0033】
つまり、ダイ本体2が測定点iから下流側の測定点i+1に移動する際の塗布時昇降量ΔDt(i〜i+1)は、常に前回の演算で求められた測定点iにおける塗布時偏差Dt(i)が基準となり、測定点iにおける塗布時偏差Dt(i)と測定点i+1における実偏差Da(i+1)との偏差の差ΔD(i〜i+1)が限界昇降量ΔDLよりも大きいか小さいかで判断され、さらに、前記の要領で決まったダイ本体2の塗布時昇降量ΔDt(i〜i+1)により測定点i+1における塗布時偏差Dt(i+1)が決まる。なお、塗布開始位置i=0における塗布時偏差Dt(0)は、塗布開始時にダイ本体2のリップ先端部2cとガラス基板20表面との距離(実ギャップGa)が基準ギャップGRとなるように設定するので常に実偏差Da(0)と等しく、零となる。
【0034】
次に、測定点i=1〜2間におけるダイ本体2の塗布時昇降量ΔDt(1〜2)は、測定点i=1におけるダイ本体2の位置、すなわち、i=1における塗布時偏差Dt(1)とその塗布方向下流側に隣接する測定点i=2における実偏差Da(2)とから偏差の差ΔD(1〜2)=Da(2)−Dt(1)を算出し、この偏差の差ΔD(1〜2)と限界昇降量ΔDLとを比較して決定する。そして、前記測定点i=0〜1間と同様、測定点i=1〜2間におけるダイ本体2の塗布時昇降量ΔDt(1〜2)からi=2における塗布時偏差Dt(2)を決定する。
【0035】
具体的には、測定点i=1における塗布時偏差Dt(1)=−1.2μm、測定点i=2における実偏差Da(2)=−0.7μmなので、偏差の差ΔD(1〜2)=−0.7−(−1.2)=0.5μmとなり、限界昇降量ΔDL(2μm)以下なので偏差の差ΔD(1〜2)=0.5mmを測定点i=1〜2間におけるダイ本体2の塗布時昇降量ΔDt(1〜2)として制御装置15の記憶部15bに記憶させる。さらに、このときの測定点i=2における塗布時偏差Dt(2)は、偏差の差ΔD(1〜2)が限界昇降量ΔDL以下なので、Dt(2)=Da(2)=−0.7μmとなる。そして、測定点i=1〜2間と同様に、前記塗布時偏差Dt(2)を基準に測定点i=2〜3におけるダイ本体2の塗布時昇降量ΔDt(2〜3)を求め、その結果に基づいて測定点i=3における塗布時偏差Dt(3)を決定する。
【0036】
このようにして、i=0からi=20までの各測定点について塗布時偏差Dt(i)および偏差の差ΔD(i〜i+1)ならびに塗布時昇降量ΔDt(i〜i+1)を塗布開始前に制御装置15の演算処理部15aで演算し、演算結果を記憶部15bに記憶させる。本実施形態における実偏差Da(i)および塗布時偏差Dt(i)を表1と図4に示し、偏差の差ΔD(i〜i+1)および塗布時昇降量ΔDt(i〜i+1)を表2に示す。なお、任意の測定点iとその測定点iのダイ本体2の塗布方向下流側に隣接する測定点i+1の間における塗布時昇降量ΔDt(i〜i+1)は、下記の式(3)および(4)で表される。
【0037】
【数3】
Figure 0004344063
ΔDt(i〜i+1):測定点i〜i+1間の塗布時昇降量
ΔDL:限界昇降量
Da(i+1):測定点i+1における実偏差
Dt(i):測定点iにおける塗布時偏差
ΔD(i〜i+1):測定点i+1における実偏差Da(i+1)と測定点iにおける塗布時偏差Dt(i)の差
【0038】
ところで、前記表2より明らかなように、測定点i〜i+1間における塗布時昇降量ΔDt(i〜i+1)の決定に際し、その判断基準として演算される偏差の差ΔD(i〜i+1)は、前述のように、常に測定点iにおける塗布時偏差Dt(i)を基準とするので、例えば、測定点i=7〜8間あるいは測定点i=15〜16間のように実偏差の差ΔDaが限界昇降量ΔDLより小さい区間であっても偏差の差ΔDが塗布時昇降量ΔDtとして優先的に採用され、また、測定点i=4〜5間あるいはi=12〜13間のように実偏差の差ΔDaが限界昇降量ΔDLより小さく、かつ、偏差の差ΔDが限界昇降量ΔDLよりも大きい区間であっても偏差の差ΔDが塗布時昇降量ΔDtの判断基準として採用される。
【0039】
演算終了後、図2(B)に示すように、水平移動装置10によりi=0の位置からダイ本体2を水平移動させつつ、塗布液供給ポンプ3によりタンク6から塗布液5を供給し、ガラス基板20への塗布を行う。この際、制御装置15は、各測定点間におけるダイ本体2の昇降量が塗布時昇降量ΔDtとなるように昇降装置11を制御してダイ本体2を昇降させる。この際、各測定点間におけるダイ本体2の塗布時昇降量ΔDtは限界昇降速度から求められた限界昇降量ΔDL以下に制限されているため、段むらの発生を防止することができる。なお、各測定点におけるダイ本体2のリップ先端部2cとガラス基板20表面とのギャップの基準ギャップGRに対する偏差は、図4および表1に示す塗布時偏差Dtとなる。
【0040】
本実施形態で塗布時偏差Dtと実偏差Daの差が最大となるのは、測定点i=12(塗布開始位置より120mm)である。この測定点i=12では、塗布時偏差Dt(12)が−11.4μm、実偏差Da(12)が−22.8μmであり、両者の差は11.4μmである。しかし、塗布液5のギャップ変動に対する許容量は基準ギャップGt(130μm)に対して±10%程度あるので、117μm〜143μmのギャップ変動が許容され、前記測定点i=12における塗布時偏差Dt(12)と実偏差Da(12)との差は許容範囲内にある。このように、本実施形態の塗布方法では、均一な膜厚の塗布膜を形成することができる。
【0041】
本発明は前記実施形態に限定されず、種々の変形が可能である。例えば、本実施形態では塗布速度を一定として説明したが、所定の測定点間の塗布速度が変わる場合でも、測定点間の移動時間(昇降時間)が変わるだけで、この移動時間から決定される限界昇降量の範囲内でダイ本体を昇降させれば良い。また、本発明は、前記実施形態のように基板に塗布液を塗布する場合に限定されず、塗布開始前にダイ本体のリップ先端部と被処理材表面との実ギャップを測定する方式であれば、被処理材が連続搬送される帯状材であっても適用することができる。
【0042】
【発明の効果】
以上の説明から明らかなように、本発明のダイコータを用いた塗布方法では、所定の測定点における塗布時偏差と、その測定点の下流側に隣接する測定点における実偏差との差が少なくとも塗布液の性状を含む要因により決まる塗布むらを発生しない限界昇降速度から求まる限界昇降量以下であれば、この偏差の差を当該隣接する測定点間におけるダイ本体の塗布時昇降量とする一方、この偏差の差が限界昇降量より大きければ限界昇降量を当該隣接する測定点間におけるダイ本体の塗布時昇降量としている。そのため、本発明の塗布方法であれば、ダイ本体の塗布時昇降量は、限界昇降量以下に制限され、塗布むらのない均一な膜厚の塗布膜を形成することができる。
【図面の簡単な説明】
【図1】 本発明の塗布方法が適用されるダイコータを示す概略図である。
【図2】 (A)は実ギャップ測定時のダイコータを示す概略図、(B)は塗布時のダイコータを示す概略図である。
【図3】 基準ギャップと実ギャップの関係を示す概略図である。
【図4】 基準ギャップに対する実ギャップおよび目標ギャップの偏差を示すグラフである。
【符号の説明】
1 ダイコータ
2 ダイ本体
2a マニホールド
2b 貫通孔
2c リップ先端部
3 塗布液供給ポンプ
5 塗布液
6 タンク
7 ノズル
8 支持部材
10 水平移動装置
11 昇降装置
12A,12B 距離測定センサ
15 制御装置
15a 演算処理部
15b 記憶部
16 テーブル
16a 載置面
16b 溝
16c 貫通孔
17 真空ポンプ
Da 実偏差
Dt 塗布時偏差
ΔDL 限界昇降量[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating method using a die coater that applies a coating solution to a material to be treated such as a glass substrate, and in particular, the leveling property of a glass paste or the like is inferior to a material to be treated having “thickness unevenness”. The present invention relates to a method of applying a coating solution uniformly and with a uniform film thickness.
[0002]
[Prior art]
Conventionally, there is a screen printing method as a method for forming a coating film of a high-viscosity liquid (tens of thousands cps) such as glass paste on a material to be processed such as a glass substrate. However, since there is a limit to the film thickness of the coating film that can be formed by a single coating in this screen printing method, recently, coating by a die coater that can cope with any coating film thickness has attracted attention.
[0003]
By the way, the material to be treated has its own deformation such as “swell”, “sledge”, and “thickness unevenness”. Among these, “swell” and “sledge” can be corrected by suction holding on a table having a predetermined flatness provided with a suction mechanism when the material to be processed is a flexible glass substrate, for example. “Thickness unevenness” cannot be corrected even if the workpiece is sucked and held.
[0004]
On the other hand, the present inventor has proposed a coating method using a die coater that applies a coating solution with a uniform film thickness to a material to be processed having “thickness unevenness” (see JP-A-10-421). . In this coating method, first, the glass substrate is sucked and held on a table to correct swell and warp, and then a die gap is formed into a reference gap determined from the properties of the coating solution, the coating speed, and the target film thickness. The die body is moved while maintaining the distance between the tip and the reference surface of the glass substrate, and the distance (actual gap) from the die tip to the glass substrate surface is measured in advance for the entire coating area by the distance measurement sensor attached to the die body. To do. Next, a deviation (actual deviation) between the reference gap and the measured actual gap is calculated before the start of application. And when applying, the die body is moved along the surface shape of the glass substrate by raising and lowering the die body so that the measured actual gap matches the reference gap and correcting the actual deviation. Yes.
The reference plane of the glass substrate is the surface position of the glass substrate when it is assumed that the glass substrate has an ideal shape without deformation such as uneven thickness.
[0005]
[Problems to be solved by the invention]
However, when applying a coating solution with inferior leveling on a material with large thickness unevenness, the direction perpendicular to the coating direction (the direction of movement of the die body) even though the coating film thickness is within the allowable value In some cases, “step unevenness” (horizontal stripes) may occur. This "step unevenness" is thought to occur when the die body is moved up and down rapidly when applying along the surface shape of the material to be treated. Cannot be used as
[0006]
The leveling property refers to the fluidity of the coating liquid itself, and after a predetermined time has elapsed after the coating liquid having a good leveling property has been applied to the material to be processed, the formed coating film flows. It becomes a good application state without “streaks” and “unevenness”. For this reason, generally, it can be said that leveling property is so high that the viscosity of a coating liquid is low. However, even in the case of a low-viscosity coating solution, for example, when a very volatile solvent is used, the solvent is volatilized and dried before the coating film is smoothed by the fluidity of the coating solution itself. As a result, “streaks” and “unevenness” may occur. Even if such a coating liquid has a low viscosity, the leveling property is not good.
[0007]
As described above, “step unevenness” is considered to occur due to a sudden rise and fall of the die body. Therefore, the limit value (limit lift speed) of the die body that does not generate “step unevenness” due to the properties of the coating liquid, that is, When the coating speed (horizontal movement speed of the die body) is constant, the limit elevation of the die body is determined in advance.
[0008]
For example, when applying a coating liquid having a limit ascending / descending speed of 4 μm / sec, assuming that the coating speed is 20 mm / sec and the actual gap of the material to be processed is measured at a pitch of 10 mm, the distance between these measurement points during coating is as follows. The die body is moved upward or downward at 0.5 sec (= 10 mm ÷ 20 mm / sec). Therefore, the limit elevation of the die body at this time is 2 μm (= 4 μm / sec × 0.5 sec), and if the elevation of the die body exceeds the limit elevation, a “step unevenness” is formed. .
[0009]
As is clear from the above description, as the actual gap measurement interval is narrowed, the amount of elevation of the die body becomes smaller. Therefore, it is effective to reduce the actual gap measurement interval as much as possible in order to prevent unevenness in the steps. is there. However, since this measurement interval is limited by the time required to control the lifting amount of the die body as described in detail below, it is not possible to reduce the measurement interval to a distance effective to prevent the occurrence of “step unevenness”. Can not.
[0010]
The die body is moved up and down at the time of application by controlling the number of rotations of the lifting motor by a control command from the control device for each measurement point based on the amount of lifting. At this time, the control device scans the entire contents of the control program for each measurement point, and then outputs a control command to the lifting motor. Therefore, if the measurement interval of the actual gap is narrower than a predetermined value, the time required for the control device to control the lifting amount of the die body (the control device controls the time) is longer than the time required for the die body to move between the measurement points. The total time required to scan the program and the time required to control the number of revolutions of the lifting motor based on the scanned control program is longer, and the lifting control of the die body becomes impossible. .
[0011]
Accordingly, an object of the present invention is to form a uniform film over the entire application region of the processing material without forming unevenness of the coating liquid having poor leveling property on the processing material having “thickness unevenness”. An object of the present invention is to provide a coating method using a die coater that can be coated with a thickness.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an actual gap between the surface of the material to be processed and the tip of the die main body in the die moving direction for the entire coating area before the start of coating by a distance measuring sensor provided in the die main body. Measured at a plurality of measurement points arranged with a gap, the actual deviation of the actual gap with respect to the reference gap in the entire application area is calculated by a control device, and a die coater that raises and lowers the die body based on the actual deviation at the time of application was used. in the coating method, the coating time of deviation calculated from the difference between the application position of the die body in the reference gap with a predetermined of said measurement points, advance calculation at the measurement point that the die body is adjacent to the downstream side of the measurement points located and said determining a difference of the deviation obtained from the difference between the actual deviation, the difference of the deviation, the properties of the distance as well as at least the coating liquid between the coating speed and the adjacent measurement points Compared with the limit lifting amount calculated from the limit lifting speed that does not cause coating unevenness determined from the above, if the difference in deviation is equal to or less than the limit lifting amount, the difference in deviation is applied to the die body between the adjacent measurement points. A coating method using a die coater, characterized in that if the difference in deviation is larger than a limit lifting amount, the limit lifting amount is set as a lifting amount during coating of the die body between the adjacent measurement points. To do.
[0013]
In the coating method using the die coater of the present invention, the lifting amount of the die body at the time of coating does not exceed the limit lifting amount obtained from the limit lifting speed that does not cause coating unevenness determined in advance by the properties of the coating solution. Thus, it is possible to form a coating film having a uniform film thickness with no coating unevenness (step unevenness).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a die coater 1 to which a coating method according to the present invention is applied. The die body 2 is provided with a manifold 2a extending in the longitudinal direction and a through-hole 2b communicating the manifold 2a with the outside. This through hole 2 b is connected to a tank 6 containing a coating solution 5 through a coating solution supply pump 3. The die body 2 is provided with a slit-like nozzle 7 for discharging the coating liquid 5 in the manifold 2a.
[0015]
A support member 8 is provided at the center in the longitudinal direction of the die body 2. The support member 8 includes a horizontal movement device 10 for moving the die body 2 in the horizontal direction indicated by the arrow X, a servo motor for moving the die body 2 in the vertical direction indicated by the arrow Y, and a non-backlash ball screw mechanism. It is connected with the moving apparatus comprised with the raising / lowering apparatus 11 which consists of.
[0016]
The die body 2 includes non-contact distance measuring sensors 12A and 12B in the vicinity of both ends in the longitudinal direction. The distance measuring sensors 12A and 12B are not limited to non-contact type sensors but may be contact type sensors.
[0017]
The horizontal movement device 10, the lifting device 11, the distance measurement sensors 12 </ b> A and 12 </ b> B, and the coating liquid supply pump 3 are electrically connected to the control device 15. The control device 15 includes a calculation processing unit 15a that performs various calculations and a storage unit 15b that stores calculation results. As will be described later, the calculation processing unit 15a processes inputs from the distance measurement sensors 12A and 12B. Then, after accumulating the processing results in the storage unit 15b, the lifting device 11 is controlled based on the accumulated data. The control device 15 controls the horizontal movement device 10 and the coating liquid supply pump 3.
[0018]
A table 16 having a mounting surface 16a having a predetermined flatness is disposed so as to face the lip tip 2c of the die body 2. A plurality of grooves 16b are formed in a lattice shape on the placement surface 16a, and these grooves 16b are connected to the vacuum pump 17 through the through holes 16c.
[0019]
Next, a coating method using the die coater 1 will be described.
The coating solution 5 is a glass paste having a viscosity of 40 Pa · s (40,000 cps) and a surface tension of 0.03 N / m (30 dyn / cm). The glass substrate 20 which is a material to be processed has a size of 400 mm × 200 mm and a thickness of 2.8 mm ± 12 μm. Coating conditions, it 20 mm / sec (the moving speed in the horizontal direction of the die body 2) coating speed, coating thickness in the wet state 100 [mu] m, the reference gap G R is 130 .mu.m. The reference gap G R is the distance desired coating film of the die body 2 having a thickness can be obtained lip end portion 2c and the glass substrate (workpiece) 20 surface, physical properties of the coating liquid, such as coating speed Determined by conditions. Further, under the condition that the coating speed is 20 mm / sec, the limit lifting speed (upper limit value of the lifting speed) of the die body 2 that does not cause unevenness in the glass paste used as the coating liquid 5 in this embodiment is 4 μm / second. It has been found by experiment that it is sec.
[0020]
First, the glass substrate 20 is placed on the placement surface 16 a of the table 16, and is sucked and held on the placement surface 16 a by being sucked by the vacuum pump 17. Since the “sledge” and “swell” of the glass substrate 20 are corrected by being held by suction on the mounting surface 16a, the variation factor of the gap is only “thickness unevenness” of the glass substrate 20.
[0021]
Next, after setting the distance between the lip tip 2c of the die body 2 and the reference surface of the glass substrate 20 to the reference gap G R (130 μm), as shown in FIG. The die body 2 is moved horizontally by the horizontal movement device 10 so that the distance from the reference plane is kept constant. Then, during this horizontal movement, the distance (actual gap Ga) between the lip tip 2c of the die body 2 and the surface of the glass substrate 20 is measured with respect to the entire coating region of the glass substrate 20 by the distance measuring sensors 12A and 12B. Relationship between the reference gap G R and the actual gap Ga is as shown in FIG.
[0022]
In the present embodiment, the actual gap Ga was measured at 20 measurement points i = 1, 2,..., 19, 20 arranged at equal intervals in the moving direction of the die body 2. The measurement distance was 200 mm, and the interval (measurement pitch) between adjacent measurement points was 10 mm. Note that i = 0 in FIG. 1 and later-described Tables 1 and 2 indicates a measurement start point.
[0023]
The control device 15 performs the following calculation based on the actual gap Ga measured by the distance measurement sensors 12A and 12B. First, by the following equation (1), the deviation between the actual gap Ga and the reference gap G R (actual deviation Da) is calculated for each measurement point.
[0024]
[Expression 1]
Da (i) = Ga (i) −G R (1)
Da (i): actual deviation Ga (i) at measurement point i: actual gap G R at measurement point i: reference gap
The actual deviation Da at each measurement point is as shown in FIG. 4 and Table 1 below. Further, the difference ΔDa of the actual deviation Da between adjacent measurement points represented by the following formula (2) is as shown in Table 2 below.
[0026]
[Expression 2]
ΔDa (i to i + 1) = Da (i + 1) −Da (i) (2)
ΔDa (i to i + 1): Difference in actual deviation between measurement point i and measurement point i + 1 Da (i + 1): Actual deviation Da (i) at measurement point i + 1: Actual deviation at measurement point i
[Table 1]
Figure 0004344063
[0028]
[Table 2]
Figure 0004344063
[0029]
Since the measurement pitch is 10 mm and the coating speed is 20 mm / sec, the time required for the die body 2 to move between adjacent measurement points is 0.5 sec (= 10 mm ÷ 20 mm / sec). Further, as described above, the limit lifting speed is 4 μm / sec. Therefore, the limit elevation ΔL L between the measurement points where “step unevenness” does not occur is 2 μm (= 4 μm / sec × 0.5 sec). If the die body 2 so as to maintain the reference gap G R based on the difference ΔDa the actual deviation Da between adjacent measurement points is lifting, when coated with the coating solution 5, between the measurement point of the die body 2 The “step unevenness” occurs in a section where the amount of ascent / descent exceeds the limit elevation amount ΔD L (2 μm). Specifically, in Table 2, i = 3 to 4, 5 to 6, 6 to 7, 8 to 9, 9 to 10, 10 to 11, 11 to 12, 13 to 14, 14 to 15, and 18 to 19 In a total of 10 sections, the elevation amount of the die body 2 exceeds the limit elevation amount ΔD L , and “step unevenness” occurs.
[0030]
In where the control unit 15, by executing calculation of the following, the lifting amount of the die body 2 between the measuring points is controlled so as not to exceed the limit lifting amount [Delta] D L.
Specifically, with respect to the actual deviation Da (i) calculated for each of the 20 measurement points, first, the application deviation Dt (0) at the application start point i = 0, and the application start point downstream in the application direction. The difference between the actual deviation Da (1) at the measurement point i = 1 adjacent thereto, that is, the deviation difference ΔD (0 to 1) is calculated by the calculation processing unit 15a of the control device 15, and the calculated deviation difference ΔD (0 ˜1) is compared with the limit elevation amount ΔD L. If the deviation difference ΔD (0-1) is less than or equal to the limit elevation amount ΔD L , unevenness in the step does not occur. Therefore, the deviation difference ΔD (0-1) is determined as the die body 2 between the measurement points i = 0 to 1. Is stored in the storage unit 15b of the control device 15 as the up-and-down movement amount ΔDt (0 to 1). On the other hand, if the difference ΔD (0 to 1) in deviation is larger than the limit lifting amount ΔD L , unevenness occurs. Therefore, the limit lifting amount ΔD L is set as the lifting amount ΔDt (0 to 1) during application of the die body 2. 15 storage units 15b.
[0031]
In this embodiment, the deviation difference ΔD (0-1) = − 1.2-0 = −1.2 μm from Table 1, and is less than the limit elevation ΔL L (2 μm). The main body 2 is stored in the storage unit 15b of the control device 15 as the amount of elevation ΔDt (0 to 1) during application.
[0032]
By the way, the position of the die body 2 at the measurement point i = 1 at the time of application, that is, the deviation Dt (1) at the time of application, the difference ΔD (0-1) between the measurement points i = 0 to 1 is the limit elevation. It differs depending on whether it is larger or smaller than ΔD L, and if the difference ΔD (0-1) is less than or equal to the limit lifting amount ΔD L , the position of the die body 2 at i = 1, that is, the coating deviation Dt (1) is actual. Deviation Da (1), and deviation ΔD (0 to 1) is larger than the limit lift ΔD L , application deviation Dt (1) = Dt (0) + ΔD L , or Dt (1) = Dt (0 ) −ΔD L (the sign of the limit elevation ΔD L is determined by whether the difference ΔDa in actual deviation increases or decreases).
[0033]
That is, the application lifting amount ΔDt (i to i + 1) when the die body 2 moves from the measurement point i to the downstream measurement point i + 1 is always the application deviation Dt ( i) is used as a reference, and the difference ΔD (i to i + 1) between the application deviation Dt (i) at the measurement point i and the actual deviation Da (i + 1) at the measurement point i + 1 is larger or smaller than the limit elevation amount ΔD L. Further, the application deviation Dt (i + 1) at the measurement point i + 1 is determined by the application elevation amount ΔDt (i to i + 1) of the die body 2 determined in the above manner. The coating time deviation Dt in the coating start position i = 0 (0) is such that the distance between the lip end portion 2c and the glass substrate 20 surface of the die body 2 (actual gap Ga) becomes the reference gap G R at the start of the coating Therefore, it is always equal to the actual deviation Da (0) and is zero.
[0034]
Next, the elevation amount ΔDt (1-2) during application of the die body 2 between the measurement points i = 1 to 2 is the position of the die body 2 at the measurement point i = 1, that is, the application deviation Dt at i = 1. The difference ΔD (1-2) = Da (2) −Dt (1) is calculated from (1) and the actual deviation Da (2) at the measurement point i = 2 adjacent to the downstream side in the application direction. The difference ΔD (1 to 2) in deviation is determined by comparing with the limit elevation amount ΔD L. Then, as in the case between the measurement points i = 0 to 1, the application deviation Dt (2) at i = 2 from the elevation amount ΔDt (1-2) at the time of application of the die body 2 between the measurement points i = 1 to 2. decide.
[0035]
Specifically, the application deviation Dt (1) at the measurement point i = 1 = −1.2 μm and the actual deviation Da (2) = − 0.7 μm at the measurement point i = 2. 2) = − 0.7 − (− 1.2) = 0.5 μm, which is equal to or less than the limit lifting amount ΔD L (2 μm), so that the difference ΔD (1-2) = 0.5 mm is measured at the measurement points i = 1 to 1. It is stored in the storage unit 15b of the control device 15 as the up-and-down movement amount ΔDt (1-2) of the die body 2 between the two. Further, the application deviation Dt (2) at the measurement point i = 2 at this time is Dt (2) = Da (2) = − 0 because the difference ΔD (1-2) in the deviation is equal to or less than the limit elevation amount ΔD L. .7 μm. Then, similarly to between the measurement points i = 1 to 2, the elevation amount ΔDt (2-3) at the time of application of the die body 2 at the measurement point i = 2 to 3 is obtained with reference to the application time deviation Dt (2). Based on the result, the application deviation Dt (3) at the measurement point i = 3 is determined.
[0036]
In this way, the application deviation Dt (i), the deviation difference ΔD (i to i + 1) and the application raising / lowering amount ΔDt (i to i + 1) are measured for each measurement point from i = 0 to i = 20 before application starts. Then, the calculation processing unit 15a of the control device 15 performs calculation, and the calculation result is stored in the storage unit 15b. The actual deviation Da (i) and the application deviation Dt (i) in this embodiment are shown in Table 1 and FIG. 4, and the difference ΔD (i to i + 1) and the application elevation amount ΔDt (i to i + 1) are shown in Table 2. Shown in In addition, the elevation amount ΔDt (i to i + 1) during coating between an arbitrary measurement point i and a measurement point i + 1 adjacent to the measurement point i on the downstream side in the coating direction of the die body 2 is expressed by the following equations (3) and ( 4).
[0037]
[Equation 3]
Figure 0004344063
ΔDt (i to i + 1): Lifting amount during application between measurement points i to i + 1 ΔD L : Limiting lift amount Da (i + 1): Actual deviation Dt (i) at measurement point i + 1: Deviation ΔD (i during application at measurement point i I + 1): difference between the actual deviation Da (i + 1) at the measurement point i + 1 and the application deviation Dt (i) at the measurement point i
By the way, as is apparent from Table 2, the difference ΔD (i to i + 1) of the deviation calculated as the determination criterion when determining the application lifting amount ΔDt (i to i + 1) between the measurement points i to i + 1 is as follows. As described above, since the application deviation Dt (i) at the measurement point i is always used as a reference, for example, the difference ΔDa between the actual deviations such as between the measurement points i = 7 to 8 or between the measurement points i = 15 to 16. The difference ΔD is preferentially adopted as the elevation amount ΔDt during application even in a section smaller than the limit elevation amount ΔD L , and between the measurement points i = 4-5 or i = 12-13. Even if the difference ΔDa of the actual deviation is smaller than the limit elevation amount ΔD L and the difference ΔD is larger than the limit elevation amount ΔD L , the difference difference ΔD is adopted as a criterion for determining the elevation amount ΔDt during application. The
[0039]
After the calculation, as shown in FIG. 2B, the coating liquid 5 is supplied from the tank 6 by the coating liquid supply pump 3 while horizontally moving the die body 2 from the position of i = 0 by the horizontal movement device 10. Application to the glass substrate 20 is performed. At this time, the control device 15 controls the elevating device 11 so as to elevate and lower the die main body 2 so that the elevating amount of the die main body 2 between the respective measurement points becomes the elevating amount ΔDt during application. At this time, the coating during lifting amount ΔDt die body 2 between the respective measurement point because it is limited to less than the limit lift amount [Delta] D L obtained from the limit lift speed, it is possible to prevent the occurrence of corrugation non-uniformity. Incidentally, the deviation becomes coated upon deviation Dt shown in FIG. 4 and Table 1 relative to the reference gap G R of the gap between the lip end portion 2c and the glass substrate 20 surface of the die body 2 at each measurement point.
[0040]
In this embodiment, the difference between the application deviation Dt and the actual deviation Da is maximum at the measurement point i = 12 (120 mm from the application start position). At this measurement point i = 12, the application deviation Dt (12) is −11.4 μm, the actual deviation Da (12) is −22.8 μm, and the difference between them is 11.4 μm. However, since the allowable amount with respect to the gap fluctuation of the coating liquid 5 is about ± 10% with respect to the reference gap Gt (130 μm), the gap fluctuation of 117 μm to 143 μm is allowed, and the coating deviation Dt (at the measurement point i = 12). The difference between 12) and the actual deviation Da (12) is within an allowable range. Thus, the coating method of this embodiment can form a coating film with a uniform film thickness.
[0041]
The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the present embodiment, the application speed has been described as being constant. However, even when the application speed between predetermined measurement points changes, only the movement time (lifting time) between measurement points changes and is determined from this movement time. What is necessary is just to raise / lower a die main body within the limit raising / lowering amount range. Further, the present invention is not limited to the case where the coating liquid is applied to the substrate as in the above-described embodiment, and may be a system that measures the actual gap between the lip tip of the die body and the surface of the material to be processed before the start of coating. For example, the present invention can be applied even to a strip-shaped material in which the material to be processed is continuously conveyed.
[0042]
【The invention's effect】
As is clear from the above description, in the coating method using the die coater of the present invention, at least the difference between the coating time deviation at a predetermined measurement point and the actual deviation at the measurement point adjacent to the measurement point downstream is applied. If the amount of elevation is less than the limit elevation determined from the limit elevation speed that does not cause coating unevenness determined by factors including the properties of the liquid, the difference in deviation is taken as the elevation during application of the die body between the adjacent measurement points. If the difference in deviation is larger than the limit lifting amount, the limit lifting amount is set as the die lifting amount during application of the die body between the adjacent measurement points. Therefore, according to the coating method of the present invention, the lifting amount during coating of the die main body is limited to a limit lifting amount or less, and a coating film having a uniform film thickness without uneven coating can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a die coater to which a coating method of the present invention is applied.
FIG. 2A is a schematic diagram showing a die coater during actual gap measurement, and FIG. 2B is a schematic diagram showing a die coater during coating.
FIG. 3 is a schematic diagram showing a relationship between a reference gap and an actual gap.
FIG. 4 is a graph showing deviations of an actual gap and a target gap with respect to a reference gap.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Die coater 2 Die main body 2a Manifold 2b Through-hole 2c Lip front-end | tip part 3 Coating liquid supply pump 5 Coating liquid 6 Tank 7 Nozzle 8 Support member 10 Horizontal movement apparatus 11 Lifting apparatus 12A, 12B Distance measurement sensor 15 Control apparatus 15a Arithmetic processing part 15b Storage unit 16 Table 16a Mounting surface 16b Groove 16c Through hole 17 Vacuum pump Da Actual deviation Dt Deviation during application ΔD L Limit lift

Claims (1)

被処理材の表面とダイ本体の先端部との実ギャップを、ダイ本体に設けた距離測定センサにより塗布開始前に全塗布領域についてダイ移動方向に間隔をあけて配置した複数の測定点で測定し、全塗布領域における前記実ギャップの基準ギャップに対する実偏差を制御装置で演算し、塗布時にはこの実偏差に基づいてダイ本体を昇降させるダイコータを用いた塗布方法において、
前記基準ギャップと所定の前記測定点におけるダイ本体の塗布位置との差から算出される塗布時偏差と、前記ダイ本体が位置する測定点の下流側に隣接する測定点における予め演算した前記実偏差との差から求まる偏差の差を求め
前記偏差の差を、塗布速度および前記隣接する測定点間の距離ならびに少なくとも塗布液の性状から決まる塗布むらを発生しない限界昇降速度から算出される限界昇降量と比較し、前記偏差の差が前記限界昇降量以下であれば前記偏差の差を前記隣接する測定点間のダイ本体の塗布時昇降量とし、前記偏差の差が限界昇降量より大きければ前記限界昇降量を前記隣接する測定点間のダイ本体の塗布時昇降量とすることを特徴とするダイコータを用いた塗布方法。
The actual gap between the surface of the workpiece and the tip of the die body is measured at multiple measurement points arranged at intervals in the die movement direction for the entire application area before starting application by a distance measurement sensor provided on the die body. In a coating method using a die coater that calculates the actual deviation of the actual gap with respect to the reference gap in the entire coating area with a control device, and lifts and lowers the die body based on the actual deviation at the time of coating.
A coating upon deviation calculated from the difference between the application position of the die body in the reference gap with a predetermined of said measuring point, the actual deviation is calculated in advance at the measurement point that the die body is adjacent to the downstream side of the measurement points located I asked the difference between the calculated deviation from the difference between,
The difference of the deviation is compared with a limit lifting speed calculated from a coating speed , a distance between the adjacent measurement points, and a limit lifting speed that does not generate coating unevenness determined at least by the properties of the coating liquid, and the difference of the deviation is If the difference in deviation is less than or equal to the limit elevation, the difference in deviation is defined as the amount of elevation during application of the die body between the adjacent measurement points. If the difference in deviation is greater than the limit elevation, the limit elevation is determined between the adjacent measurement points. An application method using a die coater, characterized in that the amount of ascending and descending during application of the die body is set.
JP2000063664A 2000-03-08 2000-03-08 Coating method using a die coater Expired - Lifetime JP4344063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063664A JP4344063B2 (en) 2000-03-08 2000-03-08 Coating method using a die coater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063664A JP4344063B2 (en) 2000-03-08 2000-03-08 Coating method using a die coater

Publications (2)

Publication Number Publication Date
JP2001246310A JP2001246310A (en) 2001-09-11
JP4344063B2 true JP4344063B2 (en) 2009-10-14

Family

ID=18583493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063664A Expired - Lifetime JP4344063B2 (en) 2000-03-08 2000-03-08 Coating method using a die coater

Country Status (1)

Country Link
JP (1) JP4344063B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110000050A (en) * 2013-12-06 2019-07-12 武藏工业株式会社 Liquid material application device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130008A (en) * 2007-11-21 2009-06-11 Toray Eng Co Ltd Coater and its substrate holding method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221187B2 (en) * 1993-11-04 2001-10-22 トヨタ自動車株式会社 Method and apparatus for applying viscous fluid
JP3646747B2 (en) * 1995-11-28 2005-05-11 東レ株式会社 COATING APPARATUS, COATING METHOD, COLOR FILTER MANUFACTURING APPARATUS AND ITS MANUFACTURING METHOD
JPH10421A (en) * 1996-06-18 1998-01-06 Chugai Ro Co Ltd Application method of die coater
JP3731616B2 (en) * 1996-01-30 2006-01-05 東レ株式会社 Coating apparatus and coating method, and color filter manufacturing apparatus and manufacturing method
JPH09314013A (en) * 1996-05-29 1997-12-09 Matsushita Electric Ind Co Ltd Coating applying method and coating applicator
JP4073990B2 (en) * 1997-12-01 2008-04-09 大日本印刷株式会社 Coating film forming method and coating apparatus
JP3659292B2 (en) * 1998-05-06 2005-06-15 日東電工株式会社 Coating thickness control method, coating thickness control apparatus, and pressure-sensitive adhesive tape manufactured using this method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110000050A (en) * 2013-12-06 2019-07-12 武藏工业株式会社 Liquid material application device

Also Published As

Publication number Publication date
JP2001246310A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
TWI270414B (en) Method of manufacturing substrate having resist film
CN108698073B (en) Coating device and coating method
JP3998382B2 (en) Film forming method and film forming apparatus
EP0876848B1 (en) Method of applying coating liquid to base plate by die coater
US10864675B2 (en) Method for the layered construction of a shaped body
JP3684878B2 (en) Coating apparatus, coating member manufacturing method, and color filter manufacturing apparatus and manufacturing method
CN110180744A (en) Coating unit and coating method
JP4344063B2 (en) Coating method using a die coater
JPH10421A (en) Application method of die coater
KR101656933B1 (en) Coating apparatus and coating method
JP4673157B2 (en) Coating equipment
KR20070074269A (en) Dispensing head for paste dispenser
JP4742511B2 (en) Coating method, coating apparatus, and display member manufacturing method
CN108325788B (en) Coating device and coating method
JP4372606B2 (en) Coating film forming device
JP3697419B2 (en) Liquid film forming method and solid film forming method
JP3645586B2 (en) Treatment liquid application equipment
JP2012192332A (en) Coating apparatus, coating method, and method for manufacturing display member
US20040091606A1 (en) Liquid film forming method
JPH09173939A (en) Coating applicator and coating method as well as device for producing color filter and its production method
KR102630373B1 (en) Substrate processing apparatus and method for measuring floating amount of substrate
JP2006237466A (en) Apparatus for coating display panel with protective resin liquid
JP6901616B2 (en) Coating device and coating method
CN108091595B (en) Substrate processing apparatus and substrate processing method
JP2010175919A (en) Spinless coat device and color filter substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

EXPY Cancellation because of completion of term