JP4333135B2 - 酸化亜鉛薄膜及び弾性表面波デバイス - Google Patents

酸化亜鉛薄膜及び弾性表面波デバイス Download PDF

Info

Publication number
JP4333135B2
JP4333135B2 JP2002366712A JP2002366712A JP4333135B2 JP 4333135 B2 JP4333135 B2 JP 4333135B2 JP 2002366712 A JP2002366712 A JP 2002366712A JP 2002366712 A JP2002366712 A JP 2002366712A JP 4333135 B2 JP4333135 B2 JP 4333135B2
Authority
JP
Japan
Prior art keywords
zinc oxide
thin film
oxide thin
axis orientation
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002366712A
Other languages
English (en)
Other versions
JP2004196583A (ja
Inventor
竜児 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002366712A priority Critical patent/JP4333135B2/ja
Publication of JP2004196583A publication Critical patent/JP2004196583A/ja
Application granted granted Critical
Publication of JP4333135B2 publication Critical patent/JP4333135B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は酸化亜鉛薄膜及び弾性表面波デバイス並びにこれらの製造方法に関する。
【0002】
【従来の技術】
弾性表面波(Surface Acoustic Wave:SAW)は、水面上を伝わっていく波と同じように弾性体の表面にエネルギーが集中して伝播する波である。この弾性表面波を利用するデバイスとしては、圧電基板の表面上に薄膜電極トランスデューサ(Interdigital Transducer、以下、単に「IDT」という。)を形成し、これを介して電気信号とSAWとの間の変換、逆変換を行うものがある。このデバイスは、半導体ICと同様に基板表面に対するプロセス技術のみで形成することができる。結晶中の弾性振動は、同一周波数の電磁波と比べて波長が10分の一程度ときわめて短く、高周波デバイスの動作を担う波動として適している。SAWは数十MHzから数GHz帯のマイクロ波デバイスに適し、フィルタや共振器等のIC化が困難なデバイスを抜本的に小型化できるという利点がある。
【0003】
また、基板の表面に圧電膜或いは磁性膜を形成し、これらの薄膜を弾性表面波の伝播媒体として用いる場合がある。ここで、上記の薄膜の表面上にIDTを設ければ、高周波帯域の弾性表面波を直接励振、検出する薄膜変換器を構成することができる。この場合、基板には圧電材料を用いる必要がないので、基板材料の選択の自由度が増し、多機能化を図ることが可能であると共に、特性の良い安価な通信用の弾性表面波デバイスの実現が期待される。
【0004】
従来、圧電薄膜を用いた弾性表面波デバイスとしては、ダイヤモンドの表面に酸化亜鉛(ZnO)の薄膜を形成してなるものが知られている。このデバイスにおいて、酸化亜鉛薄膜は酸化亜鉛結晶のc軸を膜の法線方向に向けたc軸配向膜である(非特許文献1参照)。
【0005】
また、サファイア基板のR面上に酸化亜鉛薄膜を形成してなるSAWフィルタも知られている。このSAWフィルタは、酸化亜鉛薄膜がa軸配向膜であり、このa軸配向膜を用いることによってデバイスの高周波数化を図ったものである(非特許文献2参照)。
【0006】
【非特許文献1】
「ダイヤモンド基板による高周波化」 エレクトロニクス 1977年8月号、33〜35ページ
【非特許文献2】
「ZnO/サファイア基板による高周波化」 エレクトロニクス 1977年8月号、36〜38ページ
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来のダイヤモンド上に酸化亜鉛薄膜を形成してなるSAWフィルタにおいては、基板がダイヤモンドであるために高価になるとともに、酸化亜鉛薄膜がc軸配向膜であるので電気機械結合係数が低いという問題点がある。
【0008】
また、上記従来のサファイア基板上に酸化亜鉛薄膜を形成してなるSAWフィルタにおいては、基板がサファイアであるために高価になるとともに、酸化亜鉛薄膜をa軸配向膜とするためにサファイアのカット角が制限され、正確なR面を形成する必要があるという問題点がある。
【0009】
そこで本発明は上記問題点を解決するものであり、その課題は、高価な基板を用いることなく製造することができるとともに、基板のカット角を制御する必要もなく、製造コストを低減できる酸化亜鉛薄膜及びこれを用いた弾性表面波デバイスを提供することにある。また、従来よりも電気機械結合係数が高く、高い性能を有する酸化亜鉛薄膜及びこれを用いた弾性表面波デバイスを提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために本発明の酸化亜鉛薄膜は、石英基板上に成膜された酸化亜鉛薄膜であって、少なくとも表面側においてa軸配向が現れ、圧電性を有することを特徴とする。この発明によれば、石英基板上に成膜された酸化亜鉛薄膜であることによって従来の酸化亜鉛薄膜よりも安価に形成することができる。また、少なくとも表面側にa軸配向が現れ、圧電性を有することにより、a軸配向に起因して高い電気機械結合係数を得ることが可能になり、高性能の弾性表面波デバイスを構成することができる。ここで、a軸配向が現れるとは、X線回折によりa軸配向に対応する回折ピークが観測可能であることを意味する。
【0011】
また、本発明の別の酸化亜鉛薄膜は、基板上に成膜された酸化亜鉛薄膜であって、前記基板側において主としてc軸配向し、表面側でa軸配向が現れ、圧電性を有することを特徴とする。この発明によれば、a軸配向に起因して高い電気機械結合係数を得ることが可能になり、高性能の弾性表面波デバイスを構成することができる。また、基板側においてc軸配向しているため、a軸配向を形成するために高価な基板や特定の結晶面を有する基板を用意する必要がなくなるため、安価に製造できる。
【0012】
本発明において、前記基板は石英基板であり、その上に形成された酸化亜鉛膜の厚みが4μm以上であることが好ましい。この発明によれば、石英基板上に厚みが4μm以上となるように酸化亜鉛薄膜を形成することによって、表面側において優勢なa軸配向を有する酸化亜鉛薄膜が構成される。
【0013】
本発明において、前記表面側において、c軸配向度よりもa軸配向度が優勢であることが好ましい。表面側においてa軸配向度がc軸配向度よりも優勢であることにより、酸化亜鉛薄膜の電気機械結合係数をより高めることができる。ここで、a軸配向度がc軸配向度よりも優勢であるとは、a軸配向に対応するX線回折強度がc軸配向に対応するX軸回折強度よりも強いことを意味する。
【0014】
本発明において、前記表面側において、c軸配向度よりもa軸配向度が4倍以上優勢であることが望ましい。c軸配向度よりもa軸配向度が4倍以上優勢であることにより、酸化亜鉛薄膜の電気機械結合係数をさらに高めることができ、a軸配向膜の電気機械結合係数と同等の性能を得ることができる。ここで、a軸配向度がc軸配向度よりも4倍以上優勢であるとは、a軸配向に対応するX線回折強度がc軸配向に対応するX軸回折強度の4倍以上であることを意味する。
【0015】
さらに、本発明の異なる酸化亜鉛薄膜は、石英基板上に成膜された酸化亜鉛薄膜であって、厚みが4μm以上であり、圧電性を有することを特徴とする。この発明によれば、石英基板上に厚みが4μm以上の酸化亜鉛薄膜を成膜することにより、その表面側においてa軸配向が現れ、a軸配向度がc軸配向度よりも優勢になる。特に、厚みが6μm以上の酸化亜鉛薄膜では、a軸配向度がc軸配向度の4倍以上優勢になる。
【0016】
本発明において、c軸配向の酸化亜鉛薄膜の電気機械結合係数の最大値を越える電気機械結合係数を有することが好ましい。本発明に係る酸化亜鉛薄膜において、c軸配向の酸化亜鉛薄膜の電気機械結合係数よりも高い電気機械結合係数を有するものは、従来のc軸配向膜を用いた弾性表面波デバイスよりも高い性能を得ることができるので、特に効果的である。
【0017】
次に、本発明の弾性表面波デバイスは、上記のいずれかに記載の酸化亜鉛薄膜の表面にすだれ状電極を設けたことを特徴とする。この発明によれば、高い電気機械結合係数を有する酸化亜鉛薄膜上にすだれ状電極が設けられていることにより、高効率の弾性表面波デバイスを構成することができる。弾性表面波デバイスとしては、フィルタ、遅延線、レゾネータ(共振器)、コンボルバ(相関器)などが挙げられる。
【0018】
次に、本発明の酸化亜鉛薄膜の製造方法は、石英基板上に酸化亜鉛薄膜を形成するに際して、表面側にa軸配向が現れるまで堆積させることを特徴とする。石英基板上に酸化亜鉛薄膜を形成すると、当初はc軸配向の膜が形成されるが、ある程度の厚みまで堆積させていくとa軸配向が現れ、厚みの増大によって徐々にa軸配向度が高くなっていく。この場合、表面側にa軸配向が現れる酸化亜鉛薄膜は、高価なCVD(化学気相成膜)装置を必要とせず、安価なスパッタリング装置(たとえば高周波マグネトロンスパッタリング装置)でも成膜可能である。
【0019】
本発明において、前記表面側において、c軸配向度よりもa軸配向度が優勢になるまで堆積させることが好ましい。
【0020】
本発明において、前記表面側において、c軸配向度よりもa軸配向度が4倍以上優勢になるまで堆積させることが望ましい。
【0021】
また、本発明の別の酸化亜鉛薄膜の製造方法は、石英基板上に酸化亜鉛薄膜を形成するに際して、厚みが4μm以上になるまで堆積させることを特徴とする。石英基板上に厚みが4μm以上になるまで酸化亜鉛薄膜を堆積させることによって、酸化亜鉛薄膜の表面側にa軸配向が現れ、a軸配向度がc軸配向度よりも優勢になる。特に、厚みを6μm以上とすることによって、a軸配向度がc軸配向度の4倍以上となる。
【0022】
次に、本発明の弾性表面波デバイスの製造方法は、上記のいずれかに記載の方法で形成してなる酸化亜鉛薄膜の表面上に、すだれ状電極を形成することを特徴とする。このすだれ状電極の形成は、たとえば、酸化亜鉛薄膜上に電極材料を形成し、その上にさらにレジストマスクを設け、このレジストマスクを用いて電極材料をすだれ状にパターニングすることによって形成することができる。
【0023】
【発明の実施の形態】
次に、添付図面を参照して本発明に係る酸化亜鉛薄膜及び弾性表面波デバイス並びにこれらの製造方法の実施形態について詳細に説明する。図1は、本発明に係る酸化亜鉛薄膜を有する弾性表面波デバイスの一例を模式的に示す概略斜視図である。この弾性表面波デバイス100は、石英基板101の表面上に酸化亜鉛薄膜102が形成され、この酸化亜鉛薄膜102の表面上に、すだれ状電極103を有するIDT110が形成されてなるものである。この図示例では、IDT110の両側にグレーティング反射器120が配置される。図示例の弾性表面波デバイス100は、すだれ状電極103によってIDT110にて形成される弾性表面波がグレーティング反射器120間において共振する共振器を構成する。なお、本発明に係る弾性表面波デバイスとしては、上記の共振器に限らず、フィルタ、遅延線、コンボルバ(相関器)などを構成することも可能である。これらの場合、上記の図示例とは異なり2以上のIDTを設けることがある。
【0024】
図2は、本発明の弾性表面波デバイス100の断面構造を模式的に示す概略縦断面図である。石英基板101は、取り扱い可能な範囲の厚みを有し、たとえば、数百μm〜数mm程度の厚みのものが用いられる。石英基板101は洗浄等により十分に清浄化されたものが用いられる。酸化亜鉛薄膜102は、基本的に石英基板101の清浄化された表面上に堆積させたものであり、その厚みtは、通常、0.5〜50μmの範囲内である。酸化亜鉛薄膜102の表面上に形成されたすだれ状電極103は、金属などの電極材料を適宜の方法でパターニングすることによって形成される。従来一般には、IDT110のすだれ状電極103は、0.5〜10μm程度の波長λの弾性表面波に対応する配列構造を有する。たとえばシングル電極構造の場合には、上記波長λの1/2の間隔ですだれ状電極103が配列される。ダブル(スプリット)電極構造では、波長λの1/4の間隔で配列される。
【0025】
図3は、酸化亜鉛(ZnO)薄膜の電気機械結合係数kの正規化された膜厚khに対する依存性を示すグラフである。ここで、a軸配向膜である場合とc軸配向膜である場合とを対比して示してある。また、正規化された膜厚khとは、上記の厚みtを弾性表面波の波長λで正規化したものである。すなわち、弾性表面波の波長λ[μm]、酸化亜鉛薄膜102の厚みt[μm]において、kh=2πt/λである。
【0026】
c軸配向膜の電気機械結合係数の最大値は1.2%であるが、a軸配向膜の電気機械結合係数の最大値は膜厚khが2.5〜3.5の場合に約1.7%程度である。通常用いられる弾性表面波デバイスの酸化亜鉛薄膜は、膜厚khが6以上の領域にあるが、この領域においては、a軸配向膜の電気機械結合係数は約1.4%である。
【0027】
上記のように、a軸配向の酸化亜鉛薄膜は、c軸配向膜よりも40%程度高い電気機械結合係数を有するので、その分、フィルタの挿入損失が小さくなり、帯域幅は広くなり、また、より小型に構成することが可能になるなど、性能面でも小型化の観点でもデバイス構成上有利になる。
【0028】
本発明者らは、基板上に酸化亜鉛薄膜を形成する実験を鋭意行った結果、石英基板101上に酸化亜鉛薄膜102を形成すると、厚みが薄い場合には酸化亜鉛薄膜は基本的にc軸配向であるが、ある程度厚く形成していくと、酸化亜鉛薄膜の表面側(表面近傍)においてa軸配向が現れることを発見した。a軸配向は、酸化亜鉛薄膜の厚みが概ね3μmを越えると出現し、厚みが4μm程度になると、a軸配向に対応するX線回折のピークがc軸配向に対応するX軸回折のピークよりも強くなり、厚みが6μm程度になると、a軸配向に対応するX線回折のピークがc軸配向に対応するX線回折のピークの4倍を超え、5倍程度になることが判明した。
【0029】
ここで、上記のX線回折に用いたX線の波長は、管球にCuを用いた場合1.54056オングストローム(0.154056nm)である。図9には、酸化亜鉛薄膜のX線回折におけるa軸配向に対応する回折ピーク(回折角2θ=32度)と、c軸配向に対応する回折ピーク(回折角2θ=34度)の例を示す。また、酸化亜鉛薄膜のロッキング曲線の例を示す。このロッキング曲線をガウス曲線でフィッティングしたときの分散σ、或いは、半値幅は、酸化亜鉛薄膜の配向性のばらつきを示す指標として知られている。
【0030】
上記のような実験事実に基づいて、本発明に係る酸化亜鉛薄膜102の断面構造を図示したものが図4である。上記のように、酸化亜鉛薄膜102において、その厚みが薄い場合には基本的にc軸配向膜となっているが、厚みが増加するに従って徐々にa軸配向の割合が増えていき、4μm程度の厚みになると、a軸配向に対応するX線回折強度、すなわち上記回折ピークの高さ(以下、単に「a軸配向度」という。)がc軸配向に対応するX線回折強度、すなわち上記回折ピークの高さ(以下、単に「c軸配向度」という。)を上回る。したがって、図4に示すように、4μm以上の厚みtを有する酸化亜鉛薄膜102においては、基板側ではc軸配向であるが、表面側ではa軸配向が優勢となっており、全体として厚み方向に徐々に膜質が変化しているものと推察される。その結果、弾性表面波は酸化亜鉛薄膜の表面近傍において伝播するため、主にa軸配向の圧電結晶によって特性が得られるものと考えられる。
【0031】
図5には、a軸配向に対応するピークと、c軸配向に対応するピークとのX線回折強度の比、すなわち、a軸配向度/c軸配向度の値(以下、単に「回折強度比」という。)の、酸化亜鉛薄膜の厚みtに対する依存性を示す。このグラフを見ればわかるように、回折強度比は、酸化亜鉛薄膜の厚みtが3μmを越えたあたりから急激に増大し、厚みtが4μmを越えるとa軸配向が優勢になる。実際には、上記のX船回折強度は酸化亜鉛薄膜102の表面だけでなく、その内部(すなわち表面からある程度の深さまで)の構造に対するX線回折をも反映したものとなるが、この点をも勘案すると、全体の傾向としては、酸化亜鉛薄膜102の厚みtが3μmを越えたあたりから、図4に示すように厚さ方向に徐々にa軸配向の割合が増大していく膜構造を有しているものと考えられる。
【0032】
図6には、弾性表面波の速度Vsと、酸化亜鉛薄膜の正規化された膜厚khとの関係を示す。弾性表面波の速度Vsは、膜厚khが1.0以下の領域において、膜厚khが小さくなるほど単調に増大する。膜厚khが1.0を越えると、弾性表面波の速度Vsはほぼ一定になる。また、弾性表面波の速度Vsは、a軸配向膜とc軸配向膜とでほとんど差異が無く、いずれの結晶配向であってもほぼ同等の速度を有することがわかる。したがって、上記のように表面側においてa軸配向が出現している酸化亜鉛薄膜102においては、周波数特性としてはc軸配向膜とほぼ同様の周波数特性を得ることができるものであって、図3に示すように電気機械結合係数がc軸配向膜よりもa軸配向膜の方が高いことによって、全体としてはc軸配向膜よりも高い性能を有する弾性表面波デバイスを構成できる。
【0033】
次に、図7を参照して本発明に係る酸化亜鉛薄膜及び弾性表面波デバイスの製造工程について説明する。まず、石英基板101の表面を清浄化した後に、当該表面上に酸化亜鉛薄膜102を形成する。石英基板の清浄化は、純水や溶剤等を用いた洗浄等により行うことができる。たとえば、硫酸で処理した後に中和し、さらに純水で洗浄した後に乾燥させる。
【0034】
酸化亜鉛薄膜102の成膜工程は、スパッタリング法、蒸着法、レーザアブレーション法などによって行うことができる。たとえば、スパッタリング法としては、高周波マグネトロンスパッタリングが挙げられる。スパッタリング法を用いる場合、ターゲット材質としては、金属Znでもよく、酸化亜鉛でもよいが、酸化亜鉛のターゲットを用いることが膜質を向上させるために好ましい。ターゲット材質の具体例としては、たとえば、ZnO−LiO(酸化亜鉛に1.5モル%の酸化リチウムを添加したもの)がある。以下の記述では、このターゲットを用いて実験を行っている。
【0035】
雰囲気としては、Arなどの不活性ガスに酸素を混合したもの(たとえば混合比が容積比で50:50)が用いられる。チャンバーの気圧はたとえば5[Pa]以下である。また、スパッタリングの電力(パワー)は200[W]以上の範囲とする。このスパッタリングパワーの値は膜質に影響する。上記の範囲では、一般にパワーが大きいほど成膜速度が増大するが、膜質は低下する。また、基板温度はたとえば常温、スパッタリング時間はたとえば10分から1時間程度である。
【0036】
次に、図7(b)に示すように、酸化亜鉛薄膜102の上に電極材料層103Aを形成する。この電極材料層103Aとしては、たとえば、Al等の金属を用いることができる。成膜方法としては、スパッタリング法、蒸着法、レーザアブレーション法などを用いることができる。
【0037】
次に、図7(c)に示すように、電極材料層103A上にレジスト層105Aを形成する。レジスト層105Aは、たとえば感光性レジストをスピンコーティング法などによって塗布し、乾燥若しくは加熱硬化させることによって形成できる。その後、当該レジスト層のパターニングを行う。このパターニングは、たとえば、通常のフォトリソグラフィ法等を用いる。より具体的には、レジスト層105Aを所定の露光マスクを用いてパターン露光し、その後、レジスト層105Aを現像することによって、図7(d)に示すレジストマスク105を形成する。
【0038】
次に、上記のレジストマスク105を用いて、エッチングなどによって電極材料層103Aをパターニングし、図8(e)に示すすだれ状電極103を形成する。その後、レジストマスク105を除去することによって、表面にすだれ状電極103を備えた弾性表面波デバイスの構造が形成される。
【0039】
図8は、上記の酸化亜鉛薄膜102の成膜工程において用いるスパッタリング装置の概略構成を示す。この装置10は、原料ガスを混合して供給するガス供給手段11と、このガス供給手段11から所定のガスの供給を受ける高周波スパッタリング装置等の装置本体12と、装置本体12に電力を供給する電力供給手段13と、装置本体12のチャンバー内部を排気する排気装置14とを備えている。装置本体12のチャンバー内には図示しないターゲットと、石英基板101を配置する基板ホルダとが対向配置される。
【0040】
【実施例】
次に、上記の実験内容のうち、数種の条件で成膜した酸化亜鉛薄膜をX線回折によって調べた結果について例示する。
【0041】
(比較例1) 上記の石英基板上に、上記のスパッタリング装置を用いて、スパッタリングパワー200Wで15分間、酸化亜鉛を堆積させた。成膜された酸化亜鉛薄膜の厚みtは0.5μmである。この酸化亜鉛薄膜をX線回折によって検査すると、酸化亜鉛のc軸配向に対応するピーク(回折角2θ=34度)のみが観察された。また、この酸化亜鉛薄膜のロッキング曲線の半値幅は5.745度であった。
【0042】
(比較例2) 上記の石英基板上に、上記のスパッタリング装置を用いて、スパッタリングパワー200Wで60分間、酸化亜鉛を堆積させた。成膜された酸化亜鉛薄膜の厚みは2μmであった。この酸化亜鉛薄膜に対するX線回折のデータでも、酸化亜鉛のc軸配向に対応する回折ピーク(回折角2θ=34度)のみが現れた。この酸化亜鉛薄膜のロッキング曲線の半値幅は5.418度であった。
【0043】
(実施例1) 上記の石英基板上に、上記のスパッタリング装置を用いて、スパッタリングパワー350Wで60分間、酸化亜鉛を堆積させた。成膜された酸化亜鉛薄膜の厚みtは4μmであった。この試料では、X線回折により、a軸配向に対応する回折ピーク(回折角2θ=32度)と、c軸配向に対応する回折ピーク(回折角2θ=34度)の双方が現れた。ここで、a軸配向に対応する回折ピークの強度は、c軸配向に対応する回折ピークの強度の約2〜4倍程度となっていた。また、ロッキング曲線の半値幅は8.9度であった。
【0044】
(実施例2) 上記の石英基板上に、上記のスパッタリング装置を用いて、スパッタリングパワー600Wで60分間、酸化亜鉛を堆積させた。成膜された酸化亜鉛薄膜の厚みtは6μmであった。この酸化亜鉛薄膜に対するX線回折を行ったところ、a軸配向に対応する回折ピークの強度は、c軸配向に対応する回折ピークの強度よりも4倍〜6倍、より具体的には5倍程度となっていた。なお、ロッキング曲線の半値幅は18.76度であった。
【0045】
一般に、スパッタリングパワーを増大させると、成膜速度は増加するが、その代わりに、膜質が悪化し、ロッキング曲線の半値幅が増大する。逆に言えば、スパッタリングパワーを200〜400Wの範囲内とすれば、高品位の膜質を有する酸化亜鉛薄膜を形成することができる。ただし、スパッタリングパワーが350以上になるとロッキング曲線は徐々に広がり始め、400Wを越えるとロッキング曲線の半値幅は明らかに増大し、膜質は悪化する。
【0046】
また、酸化亜鉛薄膜の厚みtが3μm未満ではa軸配向度は低く、a軸配向に対応する回折ピークは観測されなかった。しかし、厚みが3μmを越えると、4μm前後まで図9に示す回折強度比は急激に増大し、a軸配向に起因する結晶性を主体として有するものとなっている。厚みが6μm前後では、a軸配向に対応する回折ピークの強度が、c軸配向に対応する回折ピークの強度の4〜6倍、典型的には5倍となっている。
【0047】
以上説明した本実施形態においては、石英基板上に形成した厚み4μm以上の酸化亜鉛薄膜、或いは、厚さ方向にc軸配向からa軸配向に遷移する酸化亜鉛薄膜に関するものである。これらの酸化亜鉛薄膜は、いずれも、表面側にa軸配向が現れた圧電性薄膜となるため、a軸配向に起因する電気機械結合係数の増大が認められる。したがって、従来の弾性表面波デバイスよりも低損失で、帯域幅が広く、小型のデバイスを構成することが可能になる。
【0048】
本実施形態では、ダイヤモンドやサファイアなどの高価な基板を用いる必要がなく、また、基板の結晶面を特定方位に設定する必要もないため、余分な工数も不要になり、さらに、比較的安価な成膜装置(スパッタリング装置など)を用いても充分実施可能であるため、製造コストを低減することができる。
【図面の簡単な説明】
【図1】 本発明に係る弾性表面波デバイスの外観を示す概略斜視図。
【図2】 弾性表面波デバイスの概略断面図。
【図3】 電気機械結合係数と膜厚khとの関係を示すグラフ。
【図4】 本実施形態の酸化亜鉛薄膜の拡大断面図。
【図5】 回折強度比と酸化亜鉛薄膜の厚みtとの関係を示すグラフ。
【図6】 弾性表面波の速度Vsと膜厚khとの関係を示すグラフ。
【図7】 弾性表面波デバイスの製造工程を示す工程断面図(a)−(f)。
【図8】 成膜装置の構成を示す概略構成図。
【図9】 酸化亜鉛薄膜のX線回折強度と、ロッキング曲線とを示すグラフ。
【符号の説明】
100…弾性表面波デバイス、101…石英基板、102…酸化亜鉛薄膜、103…すだれ状電極、110…IDT、120…グレーティング反射器、t…酸化亜鉛薄膜の厚み、kh…酸化亜鉛薄膜の正規化された膜厚、λ…弾性表面波の波長

Claims (5)

  1. 石英基板上に成膜された、厚みが4μm以上の酸化亜鉛薄膜であって、前記石英基板側において主としてc軸配向し、表面側でa軸配向が現れ、圧電性を有することを特徴とする酸化亜鉛薄膜。
  2. 前記表面側において、c軸配向度よりもa軸配向度が優勢であることを特徴とする請求項1に記載の酸化亜鉛薄膜。
  3. 前記表面側において、c軸配向度よりもa軸配向度が4倍以上優勢であることを特徴とする請求項に記載の酸化亜鉛薄膜。
  4. c軸配向の酸化亜鉛薄膜の電気機械結合係数の最大値を越える電気機械結合係数を有することを特徴とする請求項1又はに記載の酸化亜鉛薄膜。
  5. 請求項1乃至のいずれか1項に記載の酸化亜鉛薄膜の表面にすだれ状電極を設けたことを特徴とする弾性表面波デバイス。
JP2002366712A 2002-12-18 2002-12-18 酸化亜鉛薄膜及び弾性表面波デバイス Expired - Fee Related JP4333135B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366712A JP4333135B2 (ja) 2002-12-18 2002-12-18 酸化亜鉛薄膜及び弾性表面波デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366712A JP4333135B2 (ja) 2002-12-18 2002-12-18 酸化亜鉛薄膜及び弾性表面波デバイス

Publications (2)

Publication Number Publication Date
JP2004196583A JP2004196583A (ja) 2004-07-15
JP4333135B2 true JP4333135B2 (ja) 2009-09-16

Family

ID=32763837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366712A Expired - Fee Related JP4333135B2 (ja) 2002-12-18 2002-12-18 酸化亜鉛薄膜及び弾性表面波デバイス

Country Status (1)

Country Link
JP (1) JP4333135B2 (ja)

Also Published As

Publication number Publication date
JP2004196583A (ja) 2004-07-15

Similar Documents

Publication Publication Date Title
US10574203B2 (en) Bonded wafers and surface acoustic wave devices using same
US8330556B2 (en) Passivation layers in acoustic resonators
US8631547B2 (en) Method of isolation for acoustic resonator device
JP5025963B2 (ja) 電子部品とその製造方法及びこの電子部品を用いた電子機器
JP3225495B2 (ja) 表面弾性波素子及びその製造方法
JP3282645B2 (ja) 表面弾性波素子
CN112953436A (zh) 一种saw-baw混合谐振器
CN112688657A (zh) 一种声波谐振器及其制备方法
JP4345329B2 (ja) 弾性表面波デバイス
JP4637600B2 (ja) 弾性表面波素子および通信装置
Ghatge et al. High $ k_ {t}^{2}\cdot Q $ Waveguide-Based ScAlN-on-Si UHF and SHF Resonators
JP3318920B2 (ja) 表面弾性波素子
US7213322B2 (en) Method for manufacturing surface acoustic wave device
JP2008244653A (ja) 薄膜バルク波共振器の製造方法
JPH06152299A (ja) 弾性表面波デバイス
JP4345328B2 (ja) 弾性表面波デバイス及びその製造方法
JP4333135B2 (ja) 酸化亜鉛薄膜及び弾性表面波デバイス
CN114520637A (zh) 一种基于弛豫铁电单晶的声表面波谐振器及制备方法
JP2001285021A (ja) 弾性表面波装置
JPH11116397A (ja) (020)配向ペロブスカイト型ニオブ酸カリウム薄膜及び該薄膜を有する弾性表面波素子
WO2024020769A1 (zh) 体声波谐振器及其制备方法、电子设备
JP3316090B2 (ja) 弾性表面波共振子、その製造方法、及び弾性表面波フィルタ
JP2001094383A (ja) 弾性表面波装置およびその製造方法
JP2005142902A (ja) 弾性表面波素子用基板
JP3132074B2 (ja) ダイヤモンド弾性表面波素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees