JP4332986B2 - 質量流量制御装置 - Google Patents
質量流量制御装置 Download PDFInfo
- Publication number
- JP4332986B2 JP4332986B2 JP2000122254A JP2000122254A JP4332986B2 JP 4332986 B2 JP4332986 B2 JP 4332986B2 JP 2000122254 A JP2000122254 A JP 2000122254A JP 2000122254 A JP2000122254 A JP 2000122254A JP 4332986 B2 JP4332986 B2 JP 4332986B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- flow
- control valve
- zero
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
- Flow Control (AREA)
Description
【発明の属する技術分野】
本発明は、半導体製造装置等において使用される原料ガス等の流体の質量流量を精度良く制御するマスフローコントローラなどの質量流量制御装置に関する。
【0002】
【従来の技術】
一般に、半導体製造装置等において使用される原料ガス或いは原料液体にあっては、製造される集積回路の電気的特性を高く維持するために、プロセス中においてはその流量を精度良く制御する必要がある。このため、この種の原料流体の流量を精度良く制御する装置として、一般に、質量流量制御装置、例えばマスフローコントローラが用いられる。ここで一般的なマスフローコントローラは、本出願人が先に開示した例えば特開平9−258832号公報等に示されており、このマスフローコントローラについて説明する。
【0003】
図6は従来のマスフローコントローラを示す概略構成図、図7は流量センサ部のブリッジ回路の原理を示す図である。図示例において、2はマスフローコントローラ4が介設された流体通路であり、この一端は原料ガス源側に接続され、他端は流体使用系としてのガス使用系である、例えば成膜装置側に接続される。このマスフローコントローラ4内には、ダイヤフラム6とこれを微少なストロークで押圧する例えば積層圧電素子のアクチュエータ8を有する流量制御弁10が設けられており、上記ダイヤフラム6により弁口12の開度、すなわち弁開度を調整して原料流体の流量を制御するようになっている。そして、流量センサ部14で得られたセンサ出力信号S1と外部より入力される流量信号S2とを流量制御部16にて比較して、両信号が一致するように上記弁開度を制御することになる。
【0004】
具体的には、この流量制御弁10の上流側は、上記流量センサ部14の一部を構成するバイパス流路18とこれに並列になされた細管よりなるセンサ流路20とに分離されており、両流路18、20には設計上予め定められた一定の分流比で原料流体が流れるようになっている。そして、このセンサ流路20には、上記流路センサ部14を形成するブリッジ回路22(図7参照)の一部を構成する2つの発熱抵抗線24A、24Bが巻回されている。この発熱抵抗線24A、24Bは温度上昇によってその抵抗値が変化する特性を有している。そして、このブリッジ回路22は、他の抵抗器R1、R2とで電気的に平衡状態になされている。このようなブリッジ回路22において上流側より下流側へ原料流体が流れることによって生ずる熱の移動をブリッジ回路の不平衡として捉えることにより、このセンサ流路20を流れる原料流体の流量が判り、これにより流体通路2全体に流れる流量が判ることになる。
この流量センサ部14から出力されるセンサ出力信号S1は一定の幅を持った電圧値でフルスケールに対する流量を表しており、通常は0〜5V(ボルト)の範囲内でその流量を表す。
【0005】
一方、上述のように図示しないガス使用系である例えば成膜装置のメイン制御部より、そのプロセス時に必要とする原料流体の流量が流量信号S2として入力されている。この流量信号S2も、一定の幅を持った電圧値でフルスケールに対する流量を表し、この場合も通常は0〜5V(ボルト)の範囲内でその流量を表している。そして、流量制御部16は、上記流量信号S2とセンサ出力信号S1との値が一致するように上記流量制御弁10の弁開度を制御することにより、原料流体の流量を制御するようになっている。例えばフルスケールが100ccmである流量を制御する場合には、流量信号S2を5Vに設定すると、センサ出力信号S1が5Vを示すように弁開度が制御され、この時、流体通路2全体(バイパス流路18の流量とセンサ流路20の流量の合計)が100ccmとなる。
【0006】
また、このマスフローコントローラ4における流量制御弁10の全閉時のシール性はその機械的特性上完全なものではなく、全閉時においても僅かな流量、例えばフルスケール流量の0.2〜0.5%程度は漏れてしまう。そのため、このマスフローコントローラ4の上流側及び下流側の流体通路2には、流量ゼロの時に閉状態となる液密性の高い上流側開閉弁28及び下流側開閉弁30がそれぞれ介設されており、ガス使用系へ流体を流さないようにしている。
図8は各信号と各開閉弁の動作のタイムチャートの一例を示すグラフである。図8(A)は流量信号S2を示し、図8(B)は上流側及び下流側開閉弁の動作を示し、図8(C)は流量制御部16からアクチュエータ8へ向けて出力される駆動信号S3を示し、図8(D)はセンサ出力信号S1を示す。
【0007】
外部より入力される流量信号S2が流量ゼロを示している時は、上流側及び下流側開閉弁28、30は共に全閉になされており、所定量のガス流量を流すべく流量ゼロ以外の流量信号S2が入力されると、上流側及び下流側開閉弁28、30は共に全開になされる。
この時、原料ガス源が接続されているガス圧力の高い上流側からガスがマスフローコントローラ4内に突入してその流入が突入流量32として検出されるが、この突入流量32を無視するために所定時間Δtの遅延をかけて駆動信号S3を出力し、これにより流量制御弁10は開状態になされて所定の弁開度に維持されてガスを流す。そして、流量信号S2が流量ゼロを指示した時には、上記上流側及び下流側開閉弁28、30と流量制御弁10を直ちに全閉状態とし、ガスの流れを停止することになる。
【0008】
【発明が解決しようとする課題】
ところで、上記したような流量センサ部14にあっては、ブリッジ回路22に用いる発熱抵抗線24A、24Bや抵抗器R1、R2などのそれぞれの抵抗値が経時変化することは避けられない。例えば図9は発熱抵抗線等の抵抗値が経時変化した時に発生する特性のズレの一例を示すグラフであり、流量とセンサ出力信号S1との関係を示している。ここではフルスケールの流量が100ccmであり、その流量に対応して0〜5Vの範囲内でセンサ出力信号が出力される場合を示している。このグラフに示すように、発熱抵抗線24A、24B等の抵抗値の経時変化で特性が図中、一点鎖線で示すように変化してしまい、ゼロ点ズレΔmが生じてしまう。
【0009】
このような状況下において、最近の半導体製造プロセスでは、同じ原料流体を比較的小流量の領域で使用したり、比較的大流量の領域で使用したりする場合がある。例えば原料流体である成膜ガスを、予備プロセスでは略100ccm程度の流量で使用し、引き続いて行なう本プロセスでは略10ccm程度の流量で使用する場合がある。この場合、フルスケールの流量である100ccm近傍で流量制御する場合には、流量の誤差はそれ程生ぜずに許容範囲内に納まるが、フルスケールの流量の10%程度の流量、例えば10ccm程度の近傍で流量制御する場合には上記ゼロ点ズレの量が大き過ぎて許容範囲外となり、無視できない。図8(D)にこの時の状態を示しており、センサ出力信号S1にゼロ点ズレ量Δmが上乗せされた状態で制御が行なわれている。
【0010】
ここで、このゼロ点ズレ量がどの程度悪影響を及ぼすかについて図10を参照して簡単に説明する。図10において、上段の図10(A)はゼロ点ズレなしの場合の発熱抵抗線24A、24Bの抵抗値の一例を示し、下段の図10(B)はゼロ点ズレありの場合の抵抗値の一例を示している。例えばゼロ点ズレなしの場合において、流量ゼロの時は両抵抗線の抵抗値は共に50Ωであり、フルスケール出力の時は一方の抵抗線24Bの抵抗値は51Ωを示し、他方の抵抗線24Aの抵抗値は49Ωを示したとする。この時、1Ω分に相当する流量出力が出る。これに対して、下段に示すように0.01Ωのゼロ点ズレが生じて、流量ゼロの時は、一方の抵抗線24Bが50Ωであり、他方の抵抗線24Aが50.01Ωを示し、フルスケールの時は一方の抵抗線24Bの抵抗値は51Ωを示し、他方の抵抗線24Aが49.01Ωを示したとする。この場合、流量ゼロの時は0.005Ω分に相当する流量出力となり、これはフルスケールの流量に対して0.5%の誤差となる。また、フルスケールの時は1.005Ω分に相当する流量出力となり、これもフルスケールの流量に対して0.5%の誤差となる。この場合、抵抗値の変化量は0.01Ω/50Ω=0.02%となって非常に少ないが、上述のように流量誤差は25倍の0.5%まで拡大してしまう。フルスケールの流量に対して0.5%の流量の誤差は、前述したように例えば10ccm程度の小流量域の制御に対しては大きな悪影響を及ぼしてしまう。
【0011】
そのため、このような問題点を回避するために、従来にあってはフルスケールの流量が100ccmのマスフローコントローラとフルスケールの流量が10ccmのマスフローコントローラと2台設け、これらを並設してプロセス条件に応じて切り換え使用していた。そのため、高価なマスフローコントローラの設置台数が多くなってコスト高になり、また配管スペースが多く必要となるという問題があった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、外部より入力される流量信号の指示流量が一旦流量ゼロになると自動的にゼロ点調整を行なうことができる質量流量制御装置を提供することにある。
【0012】
【課題を解決するための手段】
請求項1に規定する発明は、少なくとも下流側に、外部より入力される流量信号が流量ゼロを指示した時に閉じられる下流側開閉弁を介設した流体通路に介設されて流体使用系へ供給される流体の流量を制御する質量流量制御装置であって、流れる流体の流量を検知する流量センサ部と、流量制御弁と、前記流量信号と前記流量センサ部のセンサ出力信号とに基づいて前記流量制御弁の弁開度を調整する流量制御部とを有する質量流量制御装置において、前記流量信号が流量ゼロを指示したことに応答して、または外部からのゼロ点調整指示信号に応答して、前記流量制御弁と前記下流側開閉弁との間の流体通路内と、前記流量制御弁の上流側の流体通路内との間の差圧をなくすような差圧調整動作を行なうように前記流量制御弁を動作させる差圧調整部と、前記差圧調整動作後に前記流量センサ部の出力をゼロ点調整するゼロ点調整部とを備えるように構成したものである。
【0013】
これにより、流量信号が流量ゼロを指示したことに応答して差圧調整部は、流量制御弁を操作することによって差圧調整動作を行なう。これによって、流量制御弁を中心としてこの上流側と下流側との間の差圧をなくし、流体が移動しないような状態とする。その後、ゼロ点調整部が動作して、上記流量センサ部の出力をゼロ点調整する。
これにより、流量制御装置内において移動する流体が完全に停止した状態でゼロ点調整を行なうことができるので、精度の高いゼロ点調整を正確に行うことが可能となる。
【0014】
請求項2に規定するように、例えば前記差圧調整動作は、前記流量信号が流量ゼロを指示したと同時に、または外部からゼロ点調整指示信号が入力したと同時に、前記流量制御弁を全閉する第1の全閉工程と、その後、所定の時間経過した後に前記流量制御弁を所定の時間だけ開状態にする開動作工程と、その後、前記流量制御弁を再度全閉する第2の全閉工程とを含むようにしてもよい。
請求項3に規定するように、例えば前記差圧調整動作は、前記流量信号が流量ゼロを指示した後に、、または外部からゼロ点調整指示信号が入力した後に、所定の時間だけ開状態を維持した後に前記流量制御弁を全閉するようにしてもよい。
【0015】
請求項4に規定するように、例えば前記質量流量制御装置の上流側の前記ガス流路に、前記下流側開閉弁と同じ開閉動作をする上流側開閉弁が介設されているようにしてもよい。
請求項5に規定するように、例えば前記ゼロ点調整量の積算量が、前記流量制御弁の全開時の流量の所定の割合に達した時にその旨を警報する警報部を有するようにしてもよい。
【0016】
【発明の実施の形態】
以下に、本発明に係る質量流量制御装置の一実施例を添付図面に基づいて詳述する。
図1は本発明に係る質量流量制御装置を設けたガス供給システムを示す全体構成図、図2は本発明に係る質量流量制御装置を示すブロック構成図、図3は各信号と各開閉弁の動作のタイムチャートの一例を示すグラフである。尚、ここでは先に説明した図面中の構成部分と同一構成部分については同一符号を付して説明する。
図示するように、本発明の質量流量制御装置としての例えばマスフローコントローラ40は、使用流体である処理ガスを貯留する原料ガス源42と流体使用系としてのガス使用系、例えば成膜装置44との間を接続した流体通路2に介設されている。そして、このマスフローコントローラ40の上流側には、上流側開閉弁28が介設され、また、下流側には、下流側開閉弁30が介設されており、各開閉弁28、30は、ガスが少しでも流れる時は共に全開状態となり、流量ゼロの時は共に全閉状態となる。そして、成膜装置44のメイン制御部42Aからは、半導体ウエハの処理工程に応じて用いられるガスの流量が、流量信号S2として上記マスフローコントローラ40へ入力される。この流量信号S2は、前述のように例えば0〜5Vの範囲内のアナログ信号として出力される。
【0017】
このマスフローコントローラ40内には、図2に示す様にダイヤフラム6とこれを微少なストロークで押圧する例えば積層圧電素子のアクチュエータ8を有する流量制御弁10が設けられており、上記ダイヤフラム6により弁口12の開度、すなわち弁開度を調整して原料流体の流量を制御するようになっている。そして、流量センサ部14で得られたセンサ出力信号S1と外部より入力される流量信号S2とを流量制御部16にて比較して、両信号が一致するように上記弁開度を制御することになる。
【0018】
具体的には、この流量制御弁10の上流側は、上記流量センサ部14の一部を構成するバイパス流路18とこれに並列になされた細管よりなるセンサ流路20とに分離されており、両流路18、20には設計上予め定められた一定の分流比で原料流体が流れるようになっている。そして、このセンサ流路20には、上記流路センサ部14を形成するブリッジ回路22(図7参照)の一部を構成する2つの発熱抵抗線24A、24Bが巻回されている。この発熱抵抗線24A、24Bは温度上昇によってその抵抗値が変化する特性を有している。そして、このブリッジ回路22は、他の抵抗器R1、R2とで電気的に平衡状態になされている。このようなブリッジ回路22において上流側より下流側へ原料流体が流れることによって生ずる熱の移動をブリッジ回路の不平衡として捉えることにより、このセンサ流路20を流れる原料流体の流量が判り、これにより流体通路2全体に流れる流量が判ることになる。
この流量センサ部14から出力されるセンサ出力信号S1は一定の幅を持った電圧値でフルスケールに対する流量を表しており、通常は0〜5V(ボルト)の範囲内でその流量を表す。
【0019】
一方、上述のようにガス使用系である例えば成膜装置44のメイン制御部42A(図1参照)より、そのプロセス時に必要とする原料流体の流量が流量信号S2として入力されている。この流量信号S2も、一定の幅を持った電圧値でフルスケールに対する流量を表し、この場合も通常は0〜5V(ボルト)の範囲内でその流量を表している。そして、流量制御部16は、アクチュエータ8に向けて駆動信号S3を出力して上記流量信号S2とセンサ出力信号S1との値が一致するように上記流量制御弁10の弁開度を制御することにより、原料流体の流量を制御するようになっている。
【0020】
そして、上記流量制御部16には、本発明の特徴とする差圧調整部46とゼロ点調整部48とが設けられている。この差圧調整部46は、上記流量信号S2が流量ゼロを指示したことに応答して、上記流量制御弁10と上記下流側開閉弁30との間の流体通路内空間Aと、上記流量制御弁10の上流側の流体通路内空間Bとの間の差圧をなくすような差圧調整動作を行なうように上記流量制御弁10を動作させる。ここで図2に示す場合には、流体通路内空間Bは、その上流側は上流側開閉弁28までである。
また、上記ゼロ点調整部48は、上記差圧調整動作後に上記流量センサ部14の出力をゼロ点調整するものである。ここでは例えば、ゼロ点調整時のセンサ出力信号S1をリセットすることにより、流量ゼロを示す信号を出力させる。すなわち、このゼロ点調整直前のセンサ出力値であるゼロ点ズレ量を記憶し、リセット後(ゼロ点調整後)は、この記憶したゼロ点ズレ量を減算した値をセンサ出力信号S1として出力するようになっている。
【0021】
また、上記差圧調整動作の一例としては、上記流量信号S2が流量ゼロを指示したと同時に上記流量制御弁10を全閉する第1の全閉工程と、その後、所定の時間、例えば図3中のt1経過した後に上記流量制御弁10を所定の時間、例えば図3中のt2だけ開状態にする開動作工程と、その後、上記流量制御弁10を再度全閉する第2の全閉工程とを実行するようになっている。
この動作により、流量制御弁10を挟んでこの上流側空間Bと下流側空間Aとの間の圧力差がなくなり、特に、上流側空間Bにおけるガスの流れを完全に停止させるようになっている。
【0022】
また、ゼロ点調整部48には、例えば赤色発光ダイオード等を含む警報部50が設けられており、上述したように補正したゼロ点ズレ量の積算値が、フルスケールの流量の所定の割合、例えば10%に達したならば、警報をオペレータに向けて発するようになっている。また、流量制御部16には、モード選択スイッチ52が設けられており、これをオン・オフすることにより、上記したようなゼロ点調整動作を自動的に行なうか否かを選択できるようになっている。
また、この流量制御部16にはゼロ点調整指示スイッチ53が設けられており、必要に応じてオペレータがこのスイッチ53をオンすることにより、上記ゼロ点調整動作を強制的に実行するようになっている。更に、差圧調整部46には、成膜装置44のメイン制御部42Aより、必要に応じて出力されるゼロ点調整指示信号を入力するようになっている。
【0023】
次に、以上のように構成された本発明装置の動作を図3及び図4も参照して説明する。
図4は本発明装置の動作を示すフローチャートである。図3において、図3(A)は流量信号S2を示し、図3(B)は上流側及び下流側開閉弁28、30の動作を示し、図3(C)は駆動信号S3を示し、図3(D)はセンサ出力信号S1を示す。ここでは、モード選択スイッチ52により自動ゼロ点調整モードが選択されているものとする。
【0024】
まず、成膜装置44(図1参照)が休止の時には、このメイン制御部42Aから出力されている流量信号S2は流量ゼロを指示しており、また、弁開閉信号も全閉を指示しており、従って、マスフローコントローラ40の流量制御弁10が全閉状態になされているのは勿論、上流側及び下流側開閉弁28、30も共に全閉状態になされており、流体としての例えば処理ガスの流れは完全に停止している。ここで流量センサ部14の抵抗線等の経時変化により図3(D)に示すように、センサ出力信号S1に僅かにゼロ点ズレΔmが発生しているものと仮定する。
ここで、成膜装置44内において成膜処理のような熱処理が開始されると(ステップ1)、流量信号S2は流量ゼロ以外の所定の流量のガスを流すように指示を出す。この流量信号S2は前述のように0〜5Vの範囲内のアナログ信号で流量に対応されている。このように、所定の流量のガスを流す指示がマスフローコントローラ40に入力されると、マスフローコントローラ40では流量制御弁10の弁開度をコントロールして指示された所定の流量のガスを流す(ステップ2)。すなわち、流量信号S2が流量ゼロからガスを流す指示に変化すると同時に図3(B)に示すように上流側及び下流側開閉弁28、30は全閉状態から全開状態に移行する。
【0025】
また、流量制御部16は、図3(C)に示すようにΔt秒だけ遅延させて駆動信号S3をアクチュエータ8に向けて出力することにより、流量制御弁10を所定の弁開度まで開き、処理ガスを流し始める。ここでΔt秒だけ遅延させる理由は、流量センサ部14で検出されるセンサ出力信号S1(図3(D)参照)の突入流量32の検知を無視するためである。
このように処理ガスが流れると、その流量は流量センサ部14にて検出され、その検出値がセンサ出力信号S1として上記流量制御部16へと出力される。この流量制御部16では、このセンサ出力信号S1と流量信号S2とを常時比較して両信号が一致するように例えばPID制御により上述したように流量制御弁10の弁開度をフィードバック制御することになる。このようにして、安定的に所定量の処理ガスが成膜装置44側へ供給されることになる。尚、ここでは、ガス供給量にゼロ点ズレ相当量の誤差が発生している。
【0026】
ここで、差圧調整部46では、上記流量信号S2の指示が流量ゼロに変化したか否かが常にチェックされている(ステップ3)。そして、例えば所定時間の成膜処理が完了して流量信号S2の指示が流量ゼロに変化すると、これと同時に差圧調整部46は流量制御部16をして差圧調整動作を行なわしめる。すなわち、流量信号S2の流量ゼロへの移行と同時に流量制御弁10を全閉状態にして第1の全閉工程を行なう(ステップ5)。
また、上記したように流量信号S2の指示が流量ゼロに変化すると、この時同時に成膜装置44のメイン制御部42Aは弁開閉信号として閉を指示する信号を出力するので、直ちに上流側及び下流側開閉弁28、30は全開状態から全閉状態へ移行する(ステップ4)。上記流量制御部10の全閉状態は、所定の時間t1、例えば2秒間程度継続する。そして、所定の時間t1が経過したならば(ステップ6)、流量制御弁10を開いて、この開状態を所定の時間t2だけ維持する開動作工程を行なう(ステップ7)。この開動作工程では、ガスの流れを容易にするためにできれば全開状態が好ましい。この開動作工程により、図2において空間Aと空間Bとの間にガスが流れて両空間A、B間における差圧がゼロになる。ここで実際には、成膜装置側にて真空引きされているので、流量制御弁10よりも下流側の空間Aが減圧(負圧)雰囲気になっており、従って、ガスは上流側の空間Bから空間Aの方へ流れることになる。この開動作工程では、上述のように両空間A、B間に差圧によりガスが流れるのでセンサ出力信号S1は瞬間的に突入流量56を検出する。この時の開状態を維持する時間t2は、上述のように両区間A、B間の差圧がなくなるのに十分な時間、例えば少なくとも3〜5秒程度行なえばよい。
【0027】
このようにして、所定の時間t2だけ開状態を維持したならば(ステップ8)、次に、流量制御弁10を全開状態から再度全閉状態にする第2の全閉工程を行なう(ステップ9)。このようにして、第2の全閉工程を行なったならば、実際にガスの流れがなくてガス流量ゼロの状態が保証されているので、ゼロ点調整を直ちに行なう(ステップ10)。これにより、センサ出力信号S1に乗っていたゼロ点ズレ量Δmが相殺されるようにセンサ出力信号S1がリセットされることになる。図3(D)に示すように、ゼロ点調整後のセンサ出力信号S1中にはゼロ点ズレ量Δmが含まれておらず、真に正しい流量値を示す信号となる。
【0028】
上述したような差圧調整動作及びゼロ点調整は、外部より入力される流量信号S1が流量ゼロになると行なわれることになる。
この場合、上記差圧調整動作及びゼロ点調整は、プログラムにより、流量ゼロになる毎に行なうようにしてもよいし、或いは流量ゼロに複数回、例えば5回なる毎に1回行なうようにしてもよい。また、これに加えて、成膜装置44のメイン制御部42Aよりゼロ点調整指示信号が入力された時、或いはオペレータがゼロ点調整指示スイッチ53をオンした時、行われるようにしてもよい。
従って、このゼロ点調整動作以降に行なわれる熱処理時には、フルスケールの流量に対して10%程度の低流量域の制御の場合にも、ゼロ点ズレ量を含んでいない精度の高い正確なガス流量制御を行なうことが可能となる。
この場合、本発明のように差圧調整動作を行わないでゼロ点調整を行なった場合には、空間A、B間には差圧が存在し、且つ前述のように流量制御部10は全閉時でも非常に僅かに漏れが発生することは回避できないので、流量センサ部14は微量なリークガス流を検出している状態となっている。従って、この状態でゼロ点調整を行なえば、そのリークガス流の分の誤差が発生してしまい、正確なゼロ点調整を行なうことができない。
【0029】
また、前述のように、ゼロ点調整を繰り返し行なう時、その時のゼロ点ズレ量を、ゼロ点調整部48は記憶して積算しており、この積算値が所定量、例えばフルスケール流量の10%を越えて大きくなった場合には、装置不良をオペレータに知らせるように、例えば警報部50を駆動する。
尚、上記説明においては、差圧調整動作としては流量信号S2の示す流量が流量ゼロに変化したと同時に流量制御弁10を全閉し、その後、時間t1だけ経過した時に全開し、更に、この全開状態で時間t2だけ経過した時に再度全閉するようにして空間A、B間の差圧をなくすようにしたが、これに限定されず、例えば図5に示すように流量信号S2の示す流量が流量ゼロに変化した場合でも、所定の時間、例えばt1+t2の間は流量制御弁10の弁開度をそのまま維持し、その後、これを全閉するようにしてもよい。尚、この場合にも流量信号S2が流量ゼロに変化したと同時に上流側及び下流側開閉弁28、30を共に全閉するのは、図3を参照して説明した操作と同じである。
【0030】
このような差圧調整動作の場合にも、上記期間t1+t2の間に、空間A、B間にてガスが移動して両空間A、B間の差圧がゼロになり、処理ガスの流れが停止する。そして、この状態でゼロ点調整動作を行なえばよい。
また、本実施例では、流量制御弁10の上下流側の双方に開閉弁28、30を設けた流体通路2を例にとって説明したが、少なくとも下流側開閉弁30を設けてあればよく、上流側開閉弁28は設けていなくてもよい。この場合には、図1において示した空間Bの領域が更に上流側まで延びることになり、また、図3(D)及び図5(D)に示すセンサ出力信号S1の突入流量32は発生しなくなる。
また、本発明は、流量制御弁の全体の制御系はアナログ処理回路でもデジタル処理回路でも適用できるのは勿論である。
【0031】
【発明の効果】
以上説明したように、本発明の質量流制御装置によれば、次のように優れた作用効果を発揮することができる。
本発明によれば、流量信号が流量ゼロを指示したことに応答して差圧調整動作を行なって流体の流れを完全に停止させ、この直後にゼロ点調整を行なうことにより、流量制御装置内において移動する流体が完全に停止した状態でゼロ点調整を行なうことができるので、精度の高いゼロ点調整を正確に行うことができる。
また、設置台数も少なくできるので、その分、スペースを省略できる。
【図面の簡単な説明】
【図1】本発明に係る質量流量制御装置を設けたガス供給システムを示す全体構成図である。
【図2】本発明に係る質量流量制御装置を示すブロック構成図である。
【図3】各信号と各開閉弁の動作のタイムチャートの一例を示すグラフである。
【図4】本発明装置の動作を示すフローチャートである。
【図5】差圧調整動作の他の態様を説明するための図である。
【図6】従来のマスフローコントローラを示す概略構成図である。
【図7】流量センサ部のブリッジ回路の原理を示す図である。
【図8】各信号と各開閉弁の動作のタイムチャートの一例を示すグラフである。
【図9】発熱抵抗線等の抵抗値が経時変化した時に発生する特性のズレの一例を示すグラフである。
【図10】ゼロ点ズレ量がどの程度悪影響を及ぼすかについて説明するための図である。
【符号の説明】
2 流体通路
6 ダイヤフラム
8 アクチュエータ
10 流量制御弁
12 弁口
14 流量センサ部
16 流量制御部
18 バイパス流路
20 センサ流路
22 ブリッジ回路
28 上流側開閉弁
30 下流側開閉弁
32 突入流量
40 マスフローコントローラ(質量流量制御装置)
44 成膜装置(流体使用系)
46 差圧調整部
48 ゼロ点調整部
50 警報部
S1 センサ出力信号
S2 流量信号
Claims (5)
- 少なくとも下流側に、外部より入力される流量信号が流量ゼロを指示した時に閉じられる下流側開閉弁を介設した流体通路に介設されて流体使用系へ供給される流体の流量を制御する質量流量制御装置であって、流れる流体の流量を検知する流量センサ部と、流量制御弁と、前記流量信号と前記流量センサ部のセンサ出力信号とに基づいて前記流量制御弁の弁開度を調整する流量制御部とを有する質量流量制御装置において、
前記流量信号が流量ゼロを指示したことに応答して、または外部からのゼロ点調整指示信号に応答して、前記流量制御弁と前記下流側開閉弁との間の流体通路内と、前記流量制御弁の上流側の流体通路内との間の差圧をなくすような差圧調整動作を行なうように前記流量制御弁を動作させる差圧調整部と、
前記差圧調整動作後に前記流量センサ部の出力をゼロ点調整するゼロ点調整部とを備えるように構成したことを特徴とする質量流量制御装置。 - 前記差圧調整動作は、前記流量信号が流量ゼロを指示したと同時に、または外部からゼロ点調整指示信号が入力したと同時に、前記流量制御弁を全閉する第1の全閉工程と、その後、所定の時間経過した後に前記流量制御弁を所定の時間だけ開状態にする開動作工程と、その後、前記流量制御弁を再度全閉する第2の全閉工程とを含むことを特徴とする請求項1記載の質量流量制御装置。
- 前記差圧調整動作は、前記流量信号が流量ゼロを指示した後に、、または外部からゼロ点調整指示信号が入力した後に、所定の時間だけ開状態を維持した後に前記流量制御弁を全閉することを特徴とする請求項1記載の質量流量制御装置。
- 前記質量流量制御装置の上流側の前記ガス流路に、前記下流側開閉弁と同じ開閉動作をする上流側開閉弁が介設されていることを特徴とする請求項1乃至3のいずれかに記載の質量流量制御装置。
- 前記ゼロ点調整量の積算量が、前記流量制御弁の全開時の流量の所定の割合に達した時にその旨を警報する警報部を有することを特徴とする請求項1乃至4のいずれかに記載の質量流量制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000122254A JP4332986B2 (ja) | 2000-04-24 | 2000-04-24 | 質量流量制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000122254A JP4332986B2 (ja) | 2000-04-24 | 2000-04-24 | 質量流量制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001306153A JP2001306153A (ja) | 2001-11-02 |
JP4332986B2 true JP4332986B2 (ja) | 2009-09-16 |
Family
ID=18632752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000122254A Expired - Lifetime JP4332986B2 (ja) | 2000-04-24 | 2000-04-24 | 質量流量制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4332986B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9772629B2 (en) | 2011-09-29 | 2017-09-26 | Applied Materials, Inc. | Methods for monitoring a flow controller coupled to a process chamber |
US9739655B2 (en) * | 2012-03-07 | 2017-08-22 | Illinois Tool Works Inc. | System and method for using a rate of decay measurement for real time measurement and correction of zero offset and zero drift of a mass flow controller or mass flow meter |
JP2013251279A (ja) * | 2013-09-18 | 2013-12-12 | Jx Nippon Oil & Energy Corp | 燃料電池システム |
JP6216601B2 (ja) * | 2013-10-09 | 2017-10-18 | 旭有機材株式会社 | 流量制御装置 |
-
2000
- 2000-04-24 JP JP2000122254A patent/JP4332986B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001306153A (ja) | 2001-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015111391A1 (ja) | 圧力式流量制御装置及びその流量制御開始時のオーバーシュート防止方法 | |
JP5799961B2 (ja) | 一貫した応答を実現する、オンツールおよびオンサイトmfc最適化方法およびシステム | |
TWI497248B (zh) | A gas split supply device and a gas diversion supply method using the same | |
JP6771772B2 (ja) | 圧力式流量制御装置及びその異常検知方法 | |
TWI719513B (zh) | 流量控制方法及流量控制裝置 | |
US11269362B2 (en) | Flow rate control method and flow rate control device | |
JP2018097759A (ja) | 流量制御装置、及び、流量制御装置用プログラム | |
TWI534577B (zh) | 壓力式流量控制裝置 | |
JP2015138338A5 (ja) | ||
WO2005098295A1 (ja) | 比例電磁弁の制御装置 | |
JP2018018351A (ja) | 圧力式流量制御装置 | |
JP7197897B2 (ja) | コントロール弁のシートリーク検知方法 | |
JP2020013269A (ja) | 流量制御装置 | |
JP4332986B2 (ja) | 質量流量制御装置 | |
JP3417391B2 (ja) | 流量制御方法 | |
JP3551906B2 (ja) | 質量流量制御装置 | |
JP7469089B2 (ja) | マスフローコントローラおよび流量制御方法 | |
JP7054297B2 (ja) | 流体制御装置及び流体制御装置用プログラム | |
JPH064139A (ja) | 流量コントローラー | |
JP4752086B2 (ja) | 質量流量制御装置 | |
JP7232506B2 (ja) | 流量圧力制御装置 | |
JP7382796B2 (ja) | ピエゾバルブ、流体制御装置、及び、ピエゾバルブ診断方法 | |
JP7535461B2 (ja) | 圧力制御システム、圧力制御方法、及び、圧力制御プログラム | |
JPH09144932A (ja) | ソレノイドバルブ駆動回路 | |
JP2004013249A (ja) | ガス供給システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090602 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090615 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120703 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4332986 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120703 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130703 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |