JP4331508B2 - 硬化鋳物及び製造方法、並びに鋳物の硬化方法 - Google Patents

硬化鋳物及び製造方法、並びに鋳物の硬化方法 Download PDF

Info

Publication number
JP4331508B2
JP4331508B2 JP2003116759A JP2003116759A JP4331508B2 JP 4331508 B2 JP4331508 B2 JP 4331508B2 JP 2003116759 A JP2003116759 A JP 2003116759A JP 2003116759 A JP2003116759 A JP 2003116759A JP 4331508 B2 JP4331508 B2 JP 4331508B2
Authority
JP
Japan
Prior art keywords
casting
hardened
closed space
dense layer
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003116759A
Other languages
English (en)
Other versions
JP2004322112A (ja
Inventor
志郎 川島
秀勝 平原
Original Assignee
旭テック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭テック株式会社 filed Critical 旭テック株式会社
Priority to JP2003116759A priority Critical patent/JP4331508B2/ja
Publication of JP2004322112A publication Critical patent/JP2004322112A/ja
Application granted granted Critical
Publication of JP4331508B2 publication Critical patent/JP4331508B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面側に一定の厚さを有する緻密層が形成され、その緻密層の形成により硬化が図られた鋳物に関する。
【0002】
【従来の技術】
溶融した金属(溶湯)を鋳型に入れて冷却し成形して得られる鋳物は、比較的、製造方法が簡便なことから、種々の用途に適用されているが、鋳物に求められる特性と、原料として使用される金属材料乃至用いられる鋳造方法によっては、問題が生じる場合がある。
【0003】
例えば、地球環境問題の1つである地球温暖化を抑制するため、二酸化炭素排出を導く自動車燃料消費量の低減が世界的に強く求められており、これに応えるため、自動車を構成する部品、部材等には、燃費改善に寄与する軽量化材料が採用されているが、なかでも比較的低コストなアルミニウム(Al)合金材料からなる鋳物が、例えばエンジン周り、足周りの部品等として多く採用されている。
【0004】
これら自動車用部品等には、安全性、信頼性に直結することから、より高い機械的性質を備えることが求められる。従って、一般に、鋳造方法として、生産性に優れるが高強度のものは製造し難いダイカスト法の採用は困難である。又、重力鋳造法は生産性が低く、鋳物が高コストになるので、生産対象が限定されてしまう。
【0005】
低圧鋳造法は、得られる機械的性質と生産性とのバランスにおいて比較的好ましい鋳造法である。しかし、この方法を採用する場合でも、押湯部近傍は最後に凝固することから収縮孔や気孔等の内部鋳造欠陥が集まり機械的性質が低下し易く、部品等によっては押湯部近傍にも高い機械的性質を付与する要望があって、これに応えられないという問題がある。押湯部を大きくすることで機械的性質低下の問題は解決し得るが、歩留まりが低下し競争力を有さない鋳物となり市場に受け入れられ難い。
【0006】
具体的な例を示し上記問題を説明する。鋳物である自動車部品等の一例としてディーゼルエンジン用のシリンダヘッドの吸気ポート・排気ポート近傍部分を、図2(a)、図2(b)に表す。例えば、このディーゼルエンジン用のシリンダヘッド20を低圧鋳造法により作製する場合、中子の保持安定化を図るため、引け巣の発生を防止するために、シリンダ対向面21が押湯部近傍、即ち最後に凝固する部分に近い部分、を構成するため機械的性質が低下し易い。一方、ディーゼルエンジンは点火を用いず高圧縮により高温となった空気に軽油を注入して自然着火させるため、シリンダ対向面21には高い圧力がかかることになる。その結果、例えば狭小形状の吸気ポート28及び排気ポート29(バルブ23が開閉する開孔部)間のバルブシート22にクラックが入るという問題が生じていた。
【0007】
ところで、従来、鋳物の機械的性質を向上させる手段として、鋳物に対する後処理であるショットピーニング処理が知られている(ショットピーニングの応用技術は、例えば、特許文献1〜4に開示されている)。ショットピーニング処理とは、特許文献1の記載にもあるように、微小粒を高速で投射することにより、被処理材の極表面だけを塑性変形させ、圧縮残留応力を発生させ、機械的強度を向上させる技術である。
【0008】
しかしながら、このショットピーニング処理を、例えば上記シリンダヘッド20のシリンダ対向面21に施しても、バルブシート22部分にクラックが入るという問題は解消されない。理由は、処理対象が被処理材の表面だけに止まることから、特許文献2にも記載されているように、被処理材の表面の性状劣化等を、むしろ誘発することになるからである。より具体的には、表面近くに内在した酸化フィルム等の鋳造欠陥を、顕在化させてしまうこと等である。又、上記処理は、凝固中に放出される水素ガスにより生じ得る表面近くの欠陥を、潰すまでの効果は有しない。当然、望む機械的性質は得られない。
【0009】
【特許文献1】
特公平8−11366号公報
【特許文献2】
特許第3225066号公報
【特許文献3】
特許第3212433号公報
【特許文献4】
特開2001−138030号公報
【0010】
【発明が解決しようとする課題】
以上、鋳物としてディーゼルエンジン用のシリンダヘッドを例示して、従来の問題を説明したが、本発明は、これらに鑑みてなされたものであり、その目的とするところは、成形するための鋳造法によらず、又、鋳造時の凝固順序によらず例え押湯部近傍であっても、高い機械的性質が与えられ得る鋳物を提供することにある。
【0011】
鋳物に高い機械的性質を付与する手段について検討が重ねられた結果、鋳造法の選択やその選択された鋳造法を含む製造方法について改善、見直しを図るよりも、成形後の鋳物に対する後処理について新たなる手段を開発すべきとの方針のもと研究が重ねられた結果、従来のショットピーニング処理に代わる以下に示す手段、及び、その手段により得られる以下に示す鋳物によって、上記目的が達成されることが見出された。
【0012】
【課題を解決するための手段】
即ち、本発明によれば、表面側に形成された緻密層により硬化された鋳物を製造する方法であって、鋳型内に溶湯を注入して鋳造成形し、主材料が鋳鉄又は鋳造用アルミニウム合金の鋳物を得た後に、前記鋳物の少なくとも一表面において、前記一表面を構成面とする閉空間を形成し、前記閉空間内に、少なくとも金属球若しくはカットワイヤを含む1乃至2以上の混合物である硬化材を、前記閉空間に対し体積比で略5〜70%となる投入量で投入して、振動数が略5〜20Hz、揺れ幅が略30〜200mm、延べ揺動時間が略3〜120分で鋳物を揺動させ、前記一表面を含む鋳物の表面側に緻密層を形成することを特徴とする硬化鋳物の製造方法が提供される。
【0013】
本発明に係る硬化鋳物の製造方法においては、緻密層を形成する前又は後において、熱処理を施すことが好ましい。熱処理は限定されるものではないが、例えばT5処理、T6処理、T7処理等を挙げることが出来る。
【0014】
また、本発明に係る硬化鋳物の製造方法においては、緻密層を形成した後に、一表面を含む鋳物の表面に平坦化処理を施す工程を有することが好ましい。上記硬化材の投入及び鋳物の揺動により、鋳物の表面は平滑化され表面粗さは改善されるが、極僅かな凸凹が形成されるので、鋳物の用途によっては平坦化処理を施すことが求められる場合がある。尚、平坦化処理は、熱処理の前でも後に行ってもよい。
【0015】
更に、本発明によれば、主材料が鋳鉄又は鋳造用アルミニウム合金の鋳物の表面側に緻密層を形成し鋳物を硬化する方法であって、前記鋳物の表面を構成面とする閉空間を形成し、前記閉空間内に、少なくとも金属球若しくはカットワイヤを含む1乃至2以上の混合物である硬化材を、前記閉空間に対し体積比で略5〜70%となる投入量で投入して、振動数が略5〜20Hz、揺れ幅が略30〜200mm、延べ揺動時間が略3〜120分で鋳物を揺動させることを特徴とする鋳物の硬化方法が提供される。
【0016】
また、本発明によれば、上記した本発明の硬化方法により得られる、表面側に形成された緻密層により硬化された鋳物であって、緻密層の厚さが300〜2000μmであることを特徴とする鋳物が提供される。この硬化鋳物は、AC2B、AC3A、AC4A、AC4CH、AC4Dからなる鋳造用アルミニウム合金材料群から選ばれる何れか1の材料若しくは2以上が混合された材料を主原料として鋳造されてなることが好ましい。
【0017】
又、本発明においては、珪素(Si)の含有率が10質量%以下であり銅(Cu)の含有率が2質量%以下である鋳造用アルミニウム合金を鋳造して得られる非熱処理の鋳物であって、0.2%耐力が150N/mm 2 以上、且つ、硬度がブリネル硬度で70HB以上又はマイクロビッカース硬度で70HV以上であることが好ましい。
【0018】
上記の硬化鋳物としてディーゼルエンジン用シリンダヘッドが好適である。このようなディーゼルエンジン用シリンダヘッドは、従来の問題を解決し、高圧下におけるバルブシート部分のクラック発生を防止し得る。
【0021】
又、本発明によれば、主材料が鋳鉄又は鋳造用アルミニウム合金の鋳物の表面側に緻密層を形成し鋳物の表面を硬化する装置であって、前記鋳物の表面を構成面とする閉空間を形成し前記閉空間内に、少なくとも金属球若しくはカットワイヤを含む1乃至2以上の混合物である硬化材が、前記閉空間に対し体積比で略5〜70%となる投入量で投入された鋳物を任意の向きに固定し得る架台と、前記架台を、振動数が略5〜20Hz、揺れ幅が略30〜200mm、延べ揺動時間が略3〜120分で揺動させる揺動手段と、を有することを特徴とする鋳物硬化装置が提供される。本発明に係る鋳物硬化装置においては、揺動手段が、原動機と、原動機に接続されたクランクとを有することが好ましい。
【0022】
【発明の実施の形態】
以下、本発明の硬化鋳物及び製造方法、並びに、鋳物の硬化方法について、順次、実施形態を詳細に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。尚、本明細書において、単に硬化鋳物あるいは本発明に係る鋳物という場合には、第1の硬化鋳物と第2の硬化鋳物の両方を指す。
【0023】
本発明において、鋳物とは鋳造法により得られる金属の成形体をいい、用いられる鋳造法は限定されない。即ち、ダイカストも鋳物に含まれる。又、鋳物に形成される緻密層の緻密とは金属組織の相対的な緻密さを示し、表面側に形成された緻密層とは、表面側に形成された鋳物内部の金属組織に対して相対的に緻密である層をいう。表面側とは表面を含み表面から一定の深さの部分をいい、緻密層が極表面だけでなく所定の厚さにより形成されていることを示すものである。更に、本発明に係る鋳物は、緻密層と鋳物内部の緻密ではない層(粗粒層とよぶ)との二層で構成されることに限定されず、金属組織の相対的な緻密さが異なる三以上の層により形成されていてもよい。
【0024】
先ず、本発明に係る硬化鋳物について説明する。本発明に係る硬化鋳物は、第1及び第2の鋳物から構成される。
【0025】
本発明に係る第1の硬化鋳物は、鋳造法により成形された成形体たる鋳物であり、表面側に緻密層が形成され、その緻密層により硬化が図られた鋳物である。本発明に係る第1の硬化鋳物は、緻密層の厚さが300〜2000μmであることを特徴とする。厚さが300〜2000μmであるという従来のショットピーニング処理が施された鋳物にはない厚い緻密層を有する硬化鋳物は、従来より高い機械的性質、具体的には、より高い耐力及び硬度が付与され、高い圧力がかかってもクラック等の問題が生じることがない。又、後述する製造方法(乃至硬化方法)に示すように、厚さが300〜2000μmの緻密層が形成されることにより、鋳造欠陥が修復され、少なくとも表面側近傍には鋳造欠陥が存在しなくなることからも、従来より優れた機械的性質を有する鋳物となり得る。又、鋳物であるから鋳型により所望の形状に成形することが出来る。
【0026】
本発明に係る第1の硬化鋳物は、JIS(日本工業規格)記号のAC2B、AC3A、AC4A、AC4CH、AC4Dで示される鋳造用アルミニウム合金材料群から選ばれる何れか1の材料若しくは2以上が混合された材料を主原料として鋳造して得ることが可能である。表1に化学成分値が示されるこれらの鋳造用アルミニウム合金は、Siが適量含有されて好ましい流動性を有し、鋳造成形時において、湯流れや凝固収縮性がよい等の鋳造性に優れ、引け巣性等の鋳造欠陥が生じ難い優れた材料である。
【0027】
【表1】
Figure 0004331508
【0028】
しかし、マグネシウムとの混在でMg2Siとして析出して機械的性質を向上させるには一定の限界がある。又、AC2Bを除きCuの含有量は1.5質量%以下であり耐腐食性を有するが、一方、機械的性質を改善するには一定の限界がある。換言すれば、AC2B、AC3A、AC4A、AC4CH、AC4Dで示される鋳造用アルミニウム合金は従来の鋳物に用いられる場合には、図2(a)、図2(b)に例示されたディーゼルエンジン用のシリンダヘッド20に適う耐力及び硬度を付与するには必ずしも適切な材料ではなかった。
【0029】
本発明に係る第1の硬化鋳物によれば、AC4A等の鋳造用アルミニウム合金の優位性(流動性、耐腐食性等)を生かしつつ、表面側に300〜2000μmという従来にない厚さの緻密層が形成され硬化が図られているので、高い圧力に対してもクラック等が生じない。即ち、これらの鋳造用アルミニウム合金により作製された本発明に係る第1の硬化鋳物は、鋳造欠陥が少なく錆に強く、加えて、高い耐力と硬度を有する鋳物となり得る。
【0030】
次に、本発明に係る第2の硬化鋳物は、Siの含有率が10質量%以下でありCuの含有率が2質量%以下である鋳造用アルミニウム合金を鋳造して得られる非熱処理の鋳物である。本発明に係る第2の硬化鋳物においては、0.2%耐力が150N/mm2以上、且つ、硬度がブリネル硬度で70HB以上又はマイクロビッカース硬度で70HV以上であることを特徴とする。
【0031】
従来、Siの含有率が10質量%以下でありCuの含有率が2質量%以下である鋳造用アルミニウム合金を用い、熱処理なしで得られる鋳物では、0.2%耐力で140N/mm2、硬度では69HB(ブリネル硬度)、又は69HV(マイクロビッカース硬度)程度が上限であり、これはディーゼルエンジン用のシリンダヘッドとして適うものではなかった。
【0032】
Siの含有率が10質量%を越える鋳造用アルミニウム合金(例えばAC3AやAC8A(JIS記号))を用いMg2Siの析出量を確保するか、又は、Cuの含有率が2質量%を越える鋳造用アルミニウム合金(例えばAC2BやAC4B(JIS記号))を用いることによれば、高い耐力と高い硬度を備えた鋳物を作製することは容易である。しかしながら、Siは入れ過ぎると強度向上の弊害になり、又、Cuは入れ過ぎると耐腐食性を低下させる。従って、これらの含有量がより少ない鋳造用アルミニウム合金を用いて高い耐力と高い硬度を実現した鋳物が望まれていたが、従来は提供されていなかった。
【0033】
又、Si及びCuの含有率が少ない鋳造用アルミニウム合金を用いた鋳物であっても熱処理すれば高い機械的性質を付与し得るが、熱処理に伴い製造コストも上昇し、市場に受け入れられ難くなる。従って、熱処理なしに一定以上高い耐力と高い硬度を備えた鋳物が得られることが望まれていた。
【0034】
本発明に係る第2の硬化鋳物は、後述する方法により鋳物に対する後処理として硬化が施されているので、Siの含有率が10質量%以下でありCuの含有率が2質量%以下であっても、上記の如く、高い耐力と高い硬度を備えた鋳物になり得る。
【0035】
上記特徴を有する本発明に係る第1及び第2の硬化鋳物の好適な用途として、車両用部材、部品を挙げることが出来る。例えば、上記した図2(a)に側面の断面図が示され、図2(b)シリンダ対向面21が示されるディーゼルエンジン用のシリンダヘッド20である。特に、高い圧縮比により高い圧力が生じ得るディ−ゼルエンジン周りの部品等として好適である。本発明に係る硬化鋳物の特徴を備えたこれら部品等は、高い耐力と高い硬度を備えることから、必要により狭小形状にならざるを得ない部品等であっても、長期にわたりクラック発生等の問題が生じず、ディ−ゼルエンジンの安定した継続運転を実現し、エンジンの信頼性向上に寄与する。
【0036】
続いて、本発明に係る鋳物の硬化方法について説明する。
【0037】
本発明に係る鋳物の硬化方法は、鋳物の表面側に緻密層を形成して鋳物を硬化する方法である。本発明に係る鋳物の硬化方法においては、鋳物の表面を構成面とする閉空間を形成し、閉空間内に硬化材を投入して鋳物を揺動させるところに特徴を有する。尚、本明細書において硬化とは硬度を向上させることを指す。
【0038】
本発明に係る鋳物の硬化方法においては、鋳物を形成する材料に適した硬さを有する硬化材を鋳物の表面を構成面とする空間に投入し、その空間を閉じて、以下に述べる好ましい揺れ幅、振動数、揺動時間で、鋳物を揺動させる。そうすると、硬化材が鋳物表面に対して衝突を繰り返し、鋳物に表面側から一定の厚さを有する緻密層が形成され、その結果、鋳物の硬度を向上させることが出来る。尚、本明細書において、振動数とは時間あたり繰り返される揺動の回数を指し、単位はヘルツ(Hz)である。
【0039】
従来のショットピーニング処理を施した場合には、鋳物は極表面の改質しか行われていなかったが、本発明に係る鋳物の硬化方法によれば、鋳物に表面側から300〜2000μmの厚さの緻密層を形成することが可能である。
【0040】
又、本発明に係る鋳物の硬化方法では、成形した鋳物に対し後処理として厚い緻密層を形成するため、仮に鋳物の表面近傍に鋳造欠陥が存在していたとしても、厚い緻密層を形成する過程、即ち鋳物表面に対し硬化材が衝突を繰り返す工程を経ることによって、鋳造欠陥が修復されるという効果を発現する。従って、本発明に係る鋳物の硬化方法により硬化された鋳物の少なくとも表面側近傍には鋳造欠陥が皆無となり、いっそう高い硬度が付与されることになる。
【0041】
鋳物を揺動させるにあたり、硬化対象である鋳物の表面を構成面とする閉空間を形成し、その閉空間に硬化材を投入するが、閉空間は少なくとも硬化対象である表面を含む面に対し余裕空間を形成することが好ましい。余裕空間を形成しないと、閉空間端部まで硬化材が移動し難くなり、閉空間の端部において鋳物の表面に対する硬化材の衝突が不十分になって、硬化したい鋳物の表面側に所定の厚さの緻密層が形成出来なくなるからである。
【0042】
余裕空間を、図3に例示する。図3は、図2(a)、図2(b)に示すシリンダヘッド20のシリンダ対向面21を構成するバルブシート22部分を硬化対象としたとき、シリンダ対向面21を囲い蓋32で閉じたところを表す断面図である。囲い蓋32により、バルブシート22の直ぐ上部の空間の他に余裕空間33を含む閉空間31が形成されているので、シリンダヘッド20を揺動させることによって、閉空間31に投入された硬化材が両端にあるバルブシート22の上部空間においても自由に運動し、バルブシート22を含むシリンダ対向面21の一定範囲の表面を均一に硬化し得る。尚、シリンダ対向面21の全面を硬化対象とする場合には、シリンダ対向面21の端部において硬化材を自由に運動させるため、余裕空間33は、図示しないが、シリンダ対向面21の端部より外れた外部空間として形成される。
【0043】
硬化材としては、少なくとも大きめの金属球若しくは金属球より極小なカットワイヤを含むことが好ましい。金属球若しくはカットワイヤを単独で用いてもよく、金属粒、研削剤乃至研磨剤、乾燥砂、等を混合し、2以上の混合物として、用いることも出来る。より好ましくは、少なくとも大きめの金属球を含む混合物である。又、大小の異なる金属球を用いることも好ましい。大きさの異なる硬化材を混在させることにより、それら硬化材が、より均一に漏れなく鋳物表面に対し衝突を繰り返すとともに、大きめの金属球により加圧され、鋳物の表面側の硬度を向上させ得るものと考えられる。
【0044】
金属球の径若しくはカットワイヤの長さ、あるいは、金属球若しくはカットワイヤを構成する材料は、鋳物を構成する材料、あるいは、鋳物の表面に形成する閉空間の高さ、等との相関により決定され、限定されるものではない。例えば、鋳物がアルミニウム合金からなるディーゼルエンジン用シリンダヘッドの場合には、φ10〜20mmの鋼球乃至ステンレス球を好適に用いることが出来る。
【0045】
又、上記したような硬化材は、鋳物の表面に形成した閉空間の体積に対して、概ね5〜70%の体積になるように投入することが好ましい。硬化材が閉空間の中で自由に動き、硬化材と鋳物表面との衝突回数が確保されることを担保するためである。5体積%未満では、硬化材は閉空間の中で自由に動くものの、鋳物表面の面積に対し硬化材が少なすぎる結果、硬化材と鋳物表面との衝突回数及び加圧力が確保されずに、鋳物の表面側に充分な厚さの緻密層が形成されず、好ましくない。70体積%より多いと、硬化材が閉空間の中で自由に動く範囲が限定され、硬化材と鋳物表面との衝突回数及び加圧力が確保されずに、同様に鋳物の表面側に充分な厚さの緻密層が形成されず、好ましくない。
【0046】
以下、硬化材と鋳物表面とを衝突させるための鋳物の揺動について記載する。本発明は揺動条件を限定するものではないが、より好ましい条件としては、以下の通りである。
【0047】
振動数は、概ね5〜20Hzであることが好ましい。硬化材と鋳物表面との単位時間あたりの衝突回数を確保するためである。振動数が5Hz未満では、硬化材と鋳物表面との衝突回数が確保されず、硬化材が鋳物の表面全体において表面側に緻密層を形成しきれず、硬度が向上せず、好ましくない。又、硬化材(例えば鋼球)の数にもよるが、振動数が20Hzより多くても、硬度向上効果は小さく、振動数を上げるために費やすエネルギー対効果は低下するため、好ましくない。
【0048】
又、揺動の揺れ幅は、概ね30〜200mmであることが好ましい。閉空間内での硬化材の移動範囲を適切に設定することを通して、硬化材と鋳物表面との単位時間あたりの衝突回数を確保するためである。揺れ幅が30mm未満では、硬化材と鋳物表面との衝突回数が確保されず、硬化材が鋳物の表面全体において表面側に緻密層を形成しきれない結果、硬度が向上せず、好ましくない。又、揺れ幅が200mmより大きくても、硬化材が鋳物表面に接している時間が長くなるだけで、硬化材と鋳物表面との衝突回数は増加せず、硬度の向上効果は大きくはない。
【0049】
更には、揺動の延べ揺動時間は、概ね3〜120分であることが好ましい。硬化材と鋳物表面との延べ衝突回数を確保するためである。延べ揺動時間が3分未満では、硬化材と鋳物表面との延べ衝突回数が確保されず、硬化材が鋳物表面の全体において表面側に緻密層を形成しきれずに、硬度が充分に付与された部分と充分ではない部分とが存在してしまい、好ましくない。又、延べ揺動時間が120分より多くても、硬度の向上効果は小さく、鋳物製造にかかる時間対効果は向上しないため、好ましくない。
【0050】
本発明に係る鋳物の硬化方法においては、鋳物を揺動させる方向を、硬化材と鋳物表面との衝突回数が確保されるように、選定することが好ましい。それは硬化鋳物の閉空間の形状により異なる。例えば、図3に示すシリンダヘッド20を揺動させる場合には、閉空間31の長手方向、即ち、図3に示す矢印Qで示される方向に揺動させることは好ましくない。閉空間31での移動距離が長くなる硬化材の比率が増えて、揺動による硬化材と鋳物表面との衝突回数が減じられるからある。シリンダヘッド20を揺動させる場合に好ましい揺動方向は、例えば、図3に示す矢印Sで示される方向である。揺動中に方向を変えることも好ましい。
【0051】
本発明に係る鋳物の硬化方法は、鋳鉄若しくは鋳造用アルミニウム合金を主原料とする鋳物を対象とすることが好ましい。鋳造成形時において、湯流れや凝固収縮性がよい等の鋳造性に優れ鋳造欠陥が生じ難く、硬化を施すことにより、引張強さ、伸び、靱性等の機械的性質を、尚更に向上させることが出来るからである。
【0052】
鋳鉄とは、所定量の炭素を含む鉄−炭素合金をいう。鋳鉄の種類は限定されるものではないが、より優れる機械的性質を有する球状黒鉛鋳鉄を用いることが、より好ましい。鋳造用アルミニウム合金は、熱処理の有無、含有する他元素及びその組成比、等により種々存在するが、その種類は限定されるものではない。日本工業規格により、JIS記号AC等で規定されているものを用いることが好ましく、AC2B、AC3A、AC4A、AC4CH、AC4D等を例示することが出来る。
【0053】
次に、本発明に係る鋳物硬化装置について説明する。
【0054】
本発明に係る鋳物硬化装置は、鋳物の表面側に緻密層を形成し、鋳物の表面を硬化する装置である。本発明に係る鋳物硬化装置においては、鋳物の表面を構成面とする閉空間を形成しその閉空間内に硬化材が投入された鋳物を任意の向きに固定し得る架台と、その架台を揺動させる揺動手段と、を有することに特徴がある。
【0055】
図7は、鋳物硬化装置の一実施形態を示す斜視図である。鋳物硬化装置70は、揺動手段74と、閉空間が形成され閉空間内に硬化材が投入された鋳物を載せる架台73とから構成される。揺動手段74は原動機71と、原動機71に接続されたクランク72からなり、原動機71による回転運動をクランク72で往復運動に変え、架台73を矢印S2方向に揺動させることが出来る。架台73はの形状は限定されない。鋳物の形状と揺動方向とが固定されている場合には、特定の形状を呈してもよいが、平板でも構わず、鋳物を任意の向きに固定出来ればよい。
【0056】
例えば、図3に示すシリンダヘッド20を、鋳物硬化装置70を用いて揺動させるには、閉空間31に所定の硬化材を投入したシリンダヘッド20を、鋳物硬化装置70の揺動方向である矢印S2方向に対して、矢印S方向(図3)とが一致するように、架台73に固定して、原動機71を稼動させればよい。
【0057】
続いて、本発明に係る硬化鋳物の製造方法について説明する。
【0058】
本発明に係る硬化鋳物の製造方法は、表面側に形成された緻密層により硬化された鋳物を製造する方法である。本発明に係る硬化鋳物の製造方法においては、鋳型内に溶湯を注入して鋳造成形し鋳物を得た後に、鋳物の少なくとも一表面において、その一表面を構成面とする閉空間を形成し、その閉空間内に硬化材を投入して鋳物を揺動させ、一表面を含む鋳物の表面側に緻密層を形成するところに特徴がある。そして、本発明に係る硬化鋳物の製造方法は、好ましくは、緻密層を形成する前又は後において熱処理を施す。鋳造成形に用いる鋳型は、砂型、金型等何れでもよく、又、鋳造法は、その手段を限定するものではなく、重力鋳造法、ダイカスト法や低圧鋳造法を含み、所定形状のキャビティを有する鋳型に溶融した金属(溶湯)を注入し成形する方法であればよい。
【0059】
本発明に係る硬化鋳物の製造方法は、図1(a)に示されるように、少なくとも鋳造工程1と硬化処理工程2を有し、好ましくは熱処理工程3を有する。これら工程を含む製造方法の概略は次の通りである。先ず、所定の材料を原料として用意し、溶解して溶湯を得た後に、必要に応じ溶湯に清浄化処理を施す。そして、溶湯を鋳型へ注ぎ、冷却等により成形する(鋳造工程1)。次いで、得られた成形体(鋳物)に発生したバリ等を除去し外側の形状を整える。そして、鋳物の一表面を構成面として閉空間を形成し、例えば金属球と金属粒からなる硬化材を投入して鋳物を揺動させて、鋳物の表面側に所定の厚さの緻密層を設け硬度を付与する(硬化処理工程2)。その後、例えばT6処理等を施して、鋳物の機械的性質を向上させる(熱処理工程3)。
【0060】
本発明に係る硬化鋳物の製造方法は、図1(b)に示されるように、熱処理工程3を硬化処理工程2の前に行ってもよい。即ち、緻密層を設けることによる機械的性質の向上と、熱処理による機械的性質の向上とは、作用効果を異とするため各々独立して行い得る。より好ましくは、硬化処理工程2を先に行う。又、熱処理はT5処理やT7処理でもよく、限定されない。熱処理は行わなくてもよい。
【0061】
更には、図1(c)に示されるように、少なくとも硬化処理工程2を終えた後に、平坦化処理工程4を行うことが好ましい場合がある。硬化処理は硬化材を鋳物表面に衝突させる処理であるため、硬化処理された鋳物の表面は表面粗さが非常に小さい滑らかな面になり得るが、一方、底部と頂部の差が極小さい凹凸が確認される。例えばシリンダヘッドのシリンダ対向面を硬化させる場合にはシリンダ対向面がシリンダと接合する面となるが、この例のように、硬化処理を施す面が別の面と接合する面になるときは、極僅かであるが凹凸のついた面では好ましくないことがある。この場合、例えば、フライス加工等による平坦化処理を施すことにより密着して接合させることが出来る。平坦化処理を施しても、硬化された鋳物に形成された緻密層は所定の厚さを有することから、硬度を低下させることがない。
【0062】
【実施例】
次に、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に限られるものではない。
【0063】
鋳物として、V型6気筒ディーゼルエンジン用のシリンダヘッドを、アルミニウム合金(AC4CH)を原料として鋳造法により成形し、6体用意した(シリンダヘッドA〜Fとする)。シリンダヘッドの形状は図2(a)、図2(b)に示される如く複雑な孔部が形成された概ね矩形体である。
【0064】
成形された6体のシリンダヘッドのうち3体(シリンダヘッドA,B,Cとする)について、シリンダ対向面のバルブシートを硬化対象として閉空間を形成し(図3参照)、この閉空間の中へ硬化材としてφ15mmの鋼球とφ10mmの鋼球とを投入し、振動数8Hz、揺れ幅60mmで揺動させ、シリンダ対向面のバルブシート部分の硬化処理を施した。又、揺動方向は、シリンダヘッドに対し概ね垂直方向(図3中の矢印Sで示す方向)とした。尚、成形された6体のシリンダヘッドのうちシリンダヘッドD,E,Fについては硬化処理は施していない。
【0065】
シリンダヘッドA〜Fから、吸気ポート28と排気ポート29との間のバルブシート22(図2(b)参照)を含む試験片を4体ずつ切り出した。そして、各試験片について以下の通り、引張試験、及び、硬度試験を行った。
【0066】
(引張試験)
【0067】
シリンダヘッドAから得た試験片のうち3体(実施例1〜3)及びシリンダヘッドDから得た試験片のうち3体(比較例1〜3)を用いて引張試験を行い、機械的性質(引張強さ、0.2%耐力、伸び)を測定した。結果を図4に示す。尚、引張試験は日本工業規格に基づいて行った。
【0068】
(硬度試験その1)
【0069】
シリンダヘッドBから得た試験片4体(実施例4〜7)及びシリンダヘッドEから得た試験片4体(比較例4〜7)を用いて、各試験片に対して、表面から40μmの深さの部分と、表面から2000μmの深さの部分とを対象にそれぞれマイクロビッカース硬度試験を行い、硬度を測定した。結果を表2に示す。尚、マイクロビッカース硬度試験は日本工業規格に基づいて行った。
【0070】
【表2】
Figure 0004331508
【0071】
(硬度試験その2)
【0072】
上記実施例4で使用した試験片に対して、上記硬度試験その1とは別の部分で、表面から深さ3mmまでを対象にマイクロビッカース硬度試験を行い、硬度を測定した。結果を図6に示す。尚、表面から深さ0.5mmまでは50μm毎に、深さ0.5mmを越えてから深さ1.5mmまでは100μm毎に、深さ1.5mmを越えてからは200μm毎に、硬度試験を行った。
【0073】
(硬度試験その3)
【0074】
シリンダヘッドCから得た試験片のうち3体(実施例8〜10)及びシリンダヘッドFから得た試験片のうち3体(比較例8〜10)を用いてブリネル硬度試験を行い、硬度を測定した。結果を図5に示す。尚、ブリネル硬度試験は日本工業規格に基づいて行った。
【0075】
【発明の効果】
以上説明したように、本発明によれば、表面側に厚さが300〜2000μmである緻密層が形成された硬化鋳物、乃至は、Siの含有率が10質量%以下でありCuの含有率が2質量%以下である鋳造用アルミニウム合金を鋳造して得られる非熱処理の鋳物であって、0.2%耐力が150N/mm2以上、且つ、硬度がブリネル硬度で70HB以上又はマイクロビッカース硬度で70HV以上である硬化鋳物が提供される。これら硬化鋳物は、狭小形状をなす部分があって、そこへ高い圧力がかかっても、クラックの発生等の問題が生じ難いため、例えばディーゼルエンジン用のシリンダヘッドに好適に採用され、安定継続運転を通じてディーゼルエンジンの信頼性向上に寄与する。
【0076】
又、本発明によれば、鋳物に対する後処理として、一定の厚さを有する緻密層を形成し硬度を向上させる鋳物の硬化方法、及び、その硬化方法を含む鋳物の製造方法が提供される。従って、鋳物を得るための鋳造法によらず生産性の高い方法を選んで優れた硬度の鋳物を得ることが出来る。又、例えば鋳物の鋳造時の押湯部近傍であっても、優れた硬度を付与することが可能であるため、押湯部を大きくする等により歩留まりを低下させることがない。
【図面の簡単な説明】
【図1】 本発明に係る硬化鋳物の製造方法の一例を示す図であり、図1(a)、図1(b)、図1(c)は製造工程のブロックフロー図である。
【図2】 鋳物の一例であるディ−ゼルエンジン用シリンダヘッドを示す図であり、図2(a)はシリンダ対向面を下方とした場合の側面の断面図を示し、図2(b)は図2(a)において図中の下方から見た図であり、シリンダ対向面を表す図である。
【図3】 本発明に係る鋳物の硬化方法の一実施形態を示す断面図であり、鋳物の一例であるシリンダヘッドのシリンダ対向面に囲い蓋によって閉空間を形成したところを示す図である。
【図4】 実施例における引張試験の結果を示すグラフである。
【図5】 実施例におけるブリネル硬度試験の結果を示すグラフである。
【図6】 実施例におけるマイクロビッカース硬度試験の結果を示すグラフである。
【図7】 本発明に係る鋳物硬化装置の一実施形態を示す斜視図である。
【符号の説明】
1…鋳造工程、2…硬化処理工程、3…熱処理工程、4…平坦化処理工程、20…シリンダヘッド、21…シリンダ対向面、22…バルブシート、23…バルブ28…吸気ポート、29…排気ポート、31…閉空間、32…囲い蓋、33…余裕空間。

Claims (6)

  1. 表面側に形成された緻密層により硬化された鋳物を製造する方法であって、
    鋳型内に溶湯を注入して鋳造成形し、主材料が鋳鉄又は鋳造用アルミニウム合金の鋳物を得た後に、前記鋳物の少なくとも一表面において、前記一表面を構成面とする閉空間を形成し、前記閉空間内に、少なくとも金属球若しくはカットワイヤを含む1乃至2以上の混合物である硬化材を、前記閉空間に対し体積比で5〜70%となる投入量で投入して、振動数が5〜20Hz、揺れ幅が30〜200mm、延べ揺動時間が3〜120分で鋳物を揺動させ、前記一表面を含む鋳物の表面側に緻密層を形成することを特徴とする硬化鋳物の製造方法。
  2. 前記緻密層を形成する前又は後に、熱処理を施す工程を有する請求項1に記載の硬化鋳物の製造方法。
  3. 前記緻密層を形成した後に、前記一表面を含む鋳物の表面に平坦化処理を施す工程を有する請求項1に記載の硬化鋳物の製造方法。
  4. 主材料が鋳鉄又は鋳造用アルミニウム合金の鋳物の表面側に緻密層を形成し鋳物を硬化する方法であって、
    前記鋳物の表面を構成面とする閉空間を形成し、前記閉空間内に、少なくとも金属球若しくはカットワイヤを含む1乃至2以上の混合物である硬化材を、前記閉空間に対し体積比で5〜70%となる投入量で投入して、振動数が5〜20Hz、揺れ幅が30〜200mm、延べ揺動時間が3〜120分で鋳物を揺動させることを特徴とする鋳物の硬化方法。
  5. 主材料が鋳鉄又は鋳造用アルミニウム合金の鋳物の表面側に緻密層を形成し鋳物の表面を硬化する装置であって、
    前記鋳物の表面を構成面とする閉空間を形成し前記閉空間内に、少なくとも金属球若しくはカットワイヤを含む1乃至2以上の混合物である硬化材が、前記閉空間に対し体積比で5〜70%となる投入量で投入された鋳物を任意の向きに固定し得る架台と、前記架台を、振動数が5〜20Hz、揺れ幅が30〜200mm、延べ揺動時間が3〜120分で揺動させる揺動手段と、を有することを特徴とする鋳物硬化装置。
  6. 前記揺動手段が、原動機と、前記原動機に接続されたクランクとを有する請求項に記載の鋳物硬化装置。
JP2003116759A 2003-04-22 2003-04-22 硬化鋳物及び製造方法、並びに鋳物の硬化方法 Expired - Lifetime JP4331508B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116759A JP4331508B2 (ja) 2003-04-22 2003-04-22 硬化鋳物及び製造方法、並びに鋳物の硬化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116759A JP4331508B2 (ja) 2003-04-22 2003-04-22 硬化鋳物及び製造方法、並びに鋳物の硬化方法

Publications (2)

Publication Number Publication Date
JP2004322112A JP2004322112A (ja) 2004-11-18
JP4331508B2 true JP4331508B2 (ja) 2009-09-16

Family

ID=33496867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116759A Expired - Lifetime JP4331508B2 (ja) 2003-04-22 2003-04-22 硬化鋳物及び製造方法、並びに鋳物の硬化方法

Country Status (1)

Country Link
JP (1) JP4331508B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114377A1 (ja) 2006-03-30 2007-10-11 Asahi Tec Corporation 上下揺動式加工装置
JP5059385B2 (ja) * 2006-11-29 2012-10-24 旭テック株式会社 軽合金鋳造製車両用ホイール
JP2008132457A (ja) * 2006-11-29 2008-06-12 Asahi Tec Corp 車両用アルミニウムホイールの塗装方法
JP2008132528A (ja) * 2006-11-29 2008-06-12 Asahi Tec Corp 軽合金製鋳造部品の表面加工方法
JP5037994B2 (ja) * 2007-02-07 2012-10-03 旭テック株式会社 車両用ホイール向け表面層加工用治具
JP2008188746A (ja) * 2007-02-07 2008-08-21 Asahi Tec Corp 軽合金製品加工用治具及びそれを用いた軽合金製品の表面層加工方法
JP5064844B2 (ja) * 2007-03-09 2012-10-31 旭テック株式会社 車両用ホイールの表面層加工用治具
JP2008246522A (ja) * 2007-03-29 2008-10-16 Asahi Tec Corp 軽合金製鋳造品周面加工用治具及び軽合金製鋳造品周面加工装置
JP5048411B2 (ja) * 2007-07-18 2012-10-17 旭テック株式会社 軽合金製鋳造部品の塗面の前処理方法及び軽合金製鋳造部品
CN105568082B (zh) * 2016-02-02 2018-03-23 北京航空航天大学 一种Al‑Si‑Cu‑Mg 铸造合金的热处理方法

Also Published As

Publication number Publication date
JP2004322112A (ja) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4115826B2 (ja) アルミニウム合金鋳包み性に優れた鉄系焼結体およびその製造方法
JP4331508B2 (ja) 硬化鋳物及び製造方法、並びに鋳物の硬化方法
JP2009264347A (ja) 鋳包構造体
JP2012067740A (ja) 鋳包用シリンダライナ
JP2011509348A (ja) プレアロイ銅合金粉末鍛造連接棒
Goenka et al. Automobile parts casting-methods and materials used: a review
US20090266331A1 (en) Piston for internal combustion engine and process for manufacturing the same
JP6461954B2 (ja) アルミニウムピストンの製造方法
JP4396576B2 (ja) ピストンの製造方法
Boonmee Ductile and compacted graphite iron casting skin–evaluation, effect on fatigue strength and elimination
JPH10277723A (ja) 内燃機関用ピストンの製造方法
Labrecque et al. Comparative study of fatigue endurance limit for 4 and 6 mm thin wall ductile iron castings
JP3513281B2 (ja) 耐圧・高強度アルミニウムの鋳造法
JP2009503354A5 (ja)
JP2024505389A (ja) ピストンリング溝インサートおよび作製方法
JPS6021306A (ja) 複合強化部材の製造方法
KR20190067813A (ko) 내연 기관 블록 및 헤드용 버미큘라 주철 합금
JPH0230790B2 (ja)
TWI377099B (ja)
JP4205940B2 (ja) 振動減衰能及び強度に優れたねずみ鋳鉄の製造方法
US20220062982A1 (en) Die-casting method using sintered material and a die-cast product manufactured thereby
JPH0330709B2 (ja)
JPS6233730A (ja) 耐摩耗性複合材料
JP2004114159A (ja) 耐圧・高強度アルミニウム鋳物・シリンダヘッド
Demiralp Production and characterization of aluminum matrix composites for small-scale unmanned aircraft engine pistons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Ref document number: 4331508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term