JP4328000B2 - 動画像符号化装置および動画像の特殊効果シーン検出装置 - Google Patents

動画像符号化装置および動画像の特殊効果シーン検出装置 Download PDF

Info

Publication number
JP4328000B2
JP4328000B2 JP2000234596A JP2000234596A JP4328000B2 JP 4328000 B2 JP4328000 B2 JP 4328000B2 JP 2000234596 A JP2000234596 A JP 2000234596A JP 2000234596 A JP2000234596 A JP 2000234596A JP 4328000 B2 JP4328000 B2 JP 4328000B2
Authority
JP
Japan
Prior art keywords
motion vector
information
scene
special effect
statistical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000234596A
Other languages
English (en)
Other versions
JP2002051341A (ja
Inventor
章弘 屋森
潔 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000234596A priority Critical patent/JP4328000B2/ja
Publication of JP2002051341A publication Critical patent/JP2002051341A/ja
Application granted granted Critical
Publication of JP4328000B2 publication Critical patent/JP4328000B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/004Predictors, e.g. intraframe, interframe coding

Description

【0001】
【発明の属する技術分野】
本発明は、動画像符号化装置および動画像の特殊効果シーン検出装置に関し、特に、フェードシーンやパニング,チルトなどの特殊効果シーンを含む動画像を符号化する際に用いて好適な、動画像符号化装置および動画像の特殊効果シーン検出装置に関する。
【0002】
【従来の技術】
従来のディジタル動画像符号化方式としては、例えば、MPEG(Moving Picture Experts Group)−1(ISO/IEC 11172-2)やMPEG−2(ISO/IEC 13181-2),MPEG−4(ISO/IEC14496-2),ITU−T(International Telecommunication Union-Telecommunication standardization sector)の映像符号化勧告(H261.,H263.)などが知られているが、これらの方式では、情報量が莫大な動画像を有効帯域で使用できるようにするために、情報圧縮技術を用いていて、共通して、「フレーム間動き予測符号化」と呼ばれる手法を用いている。
【0003】
これらのディジタル動画像符号化方式では、まず、フレーム内符号化により1枚の動画像フレーム(以下、単にフレームという)に対して空間的冗長性を省く処理を行なって情報量圧縮を行ない、次に、このようにフレーム内符号化により符号化した過去のフレームと符号化対象のフレームとの差分情報を符号化するフレーム間符号化が行なわれる。
【0004】
ここで、上記の「フレーム間符号化」とは、動画像の連続性に着目することにより、1枚1枚のフレームを独立してフレーム内符号化するよりも、フレーム内のサブブロックである所定のマクロブロック〔m×n(m,nはいずれも自然数)の画素集合;以下、MBと表記する〕毎に、符号化済みのフレームの或るMBと同位置の符号化対象フレームにおけるMBとの差分を求め、その差分MBを符号化することであり、このようにすることで、より効率良く動画像の冗長性を省いて情報量を圧縮することができる。
【0005】
なお、実際には、フレーム内の絵柄が動いている場合には、単純にフレーム間の同位置MB間差分をとっても、差分量が小さくならないため、さらに、MB毎に動き(ベクトル)探索を行ない、参照フレーム内からより差分の小さいブロック領域を探し出し、現フレームのMBと参照フレームの動き探索により求められたブロック領域との差分MBを求め、その差分MBを符号化することが行なわれる。このとき、動き探索によって求められた動きベクトル情報と差分情報を符号化したものが多重化されてMB符号化情報となる。
【0006】
しかしながら、これらの動画像符号化方式では、例えば、フェードや動きの大きいパニングやチルトなどの映像撮影や編集時に広く用いられている特殊効果シーンに対する符号化効率があまり良くなく、画質の劣化を引き起こす要因となっている。
例えば、上記のフェードは、ビデオ編集の1手法として広く用いられている方式で、通常の画像から次第に白色や黒色などの一定色の画像に変化ゆくフェードアウトと、逆に、一定色の画像から通常の画像が次第に現われてくるフェードインとがあるが、いずれの場合も、フレーム毎に輝度信号のレベルが変化するために動き予測が当たり難く、結果的に、余分な動きベクトル情報を符号化してしまって符号化効率が低下する。
【0007】
一方、パニングやチルトは、例えば、車などの動く物体を追いかけて撮影するときにカメラを横方向もしくは縦方向に流しながら撮影する手法であるが、一般的に、上記の動き探索の探索範囲に限りがあるために、その探索範囲を超えたパニングやチルトのシーンでは、適切な動きベクトルを検出することが不可能で、動き予測が当たらなくなり符号化効率が低下する。
【0008】
このため、これまで、フェードシーンに対する対処としては、例えば、特開平6−46412号公報(以下、公知文献1という)や特開平8−65684号公報(以下、公知文献2という),特開平11−191862号公報(以下、公知文献3という)などで各種手法が提案されている。
ここで、上記の各公知文献1〜3で提案されている各手法の要旨を説明すると、まず、公知文献1による手法(以下、第1手法という)は、フレーム間差分情報を符号化する場合に、フレーム間の平均輝度値の差分を求め、その差分を補正(フェード補正)により除去して符号化することにより、「フェードシーン」においても予測残差を削減して符号化効率を上げることができるという手法であり、公知文献2による手法(以下、第2手法という)は、フレーム間の平均輝度値の差分を求め、その差分補正を動きベクトル探索前のMBに対して行なった上で、動きベクトル探索を行なうことにより、「フェードシーン」においてもより正確な動きベクトルを求めることができるという手法である。そして、公知文献3による手法(以下、第3手法という)は、フレーム間の輝度信号の平均及び分散を求め、これらの各情報に基づいて「フェードシーン」を検出する手法である。
【0009】
一方、パニングなどの特殊効果シーンに対する対処としては、例えば、特開平5−207444号公報(以下、公知文献4という)や特開平9−214974号公報(以下、公知文献5という),特開平10−224741号公報(以下、公知文献6という)などに示されるような各種手法が提案されている。
ここで、上記の公知文献4による手法(以下、第4手法という)は、動きベクトルの統計によりパニングを検出し、その場合に動き予測をフィールド間予測に限定することで符号化効率を向上できるようにした手法であり、上記の公知文献5による手法(以下、第5手法という)は、動きベクトルの統計によりパニング(あるいは、チルト)を検出し、その場合に符号化画面の画像解像度を落とすことで動きベクトルの探索範囲(以下、単に「動き探索範囲」ともいう)を仮想的に拡大するという手法である。
【0010】
例えば、パニング(あるいは、チルト)が検出された場合には、フレームを縦横1/2に間引いた画像を生成して、その画像を符号化することで、同じ範囲の動き探索を行なったとしても、実質縦横2倍の範囲を探索していることになる。そして、上記の公知文献6による手法(以下、第6手法という)は、符号化出力(ストリーム)から種々のカット点検出を行なうことを要旨とした手法である。
【0011】
【発明が解決しようとする課題】
しかしながら、上記の各手法では、それぞれ、次のような課題が生じる。
まず、第1手法では、フレームの輝度情報の変化のみでフェード検出を行なうため、パニングやチルトなどの画像(シーン)をフェードシーンと誤検出してしまう可能性がある。その上、本第1手法では、フェード検出情報を符号化情報へ多重化するため、余分な情報が必要となり、符号化ストリームが完全なMPEG互換ではなくなる。
【0012】
また、第2手法では、動きベクトル探索段階で平均輝度情報を削減するという処理をMB単位で行なうため演算量が莫大になるばかりでなく、フェードの具合によっては平均輝度情報を削減しても、動きベクトルの誤検出が起こる場合がある。その具体例として、フェードとしてフレーム輝度平均が次第に低くなってゆき、最終画素値がZとなる場合を例として考えてみる。
【0013】
例えば、nフレーム目のフレーム内の或る画素位置の輝度値をXnとすると、フェードの式は、次式(1)(画素の輝度値Xnがフレーム毎に一定に変化してゆく場合)や次式(2)(画素の輝度値Xnの変化がフレームによって変わる場合)などで表される。
n+1=max(Xn−A,Z) (Aは固定値)・・・(1)
n+1=(1−α)・Xn+α・Z (0≦α≦1)・・・(2)
上記の式(1)の場合は、フレーム内のどの画素をとってもフレーム毎の輝度情報変化値は同じ“A”であるため、平均輝度成分を取り除くと動きベクトルをうまく検出できそうである。これに対し、上記の式(2)は、変数αをフェード前後で0から1へと段階的に変化させることにより、フェードアウトしていく画像を生成でき、逆に、変数αを1から0へと段階的に変化させることにより、フェードインしてゆく画像を生成できることを表すが、この場合、フェードが進むにつれて輝度情報の変化とともに、フレーム内の輝度値によって輝度情報変化値も変わる、つまり、フレーム内の輝度が生成する模様が変化するため、平均輝度成分を取り除いても動きベクトルの誤検出の発生が十分に考えられる。
【0014】
次に、上記の第3手法では、フレーム間の各画素の輝度値の変化のみならず、その変化の2乗を計算することにより、フェード検出をより正確に行なっているが、上記の第1手法と同様に、輝度値の変化に注目するだけでは、パニングやチルトなどのシーンで誤検出を起こすと思われる。また、本第3手法の場合は輝度値の変化の2乗を計算するので演算量も膨大になってしまう。
【0015】
以上のように、上述した第1〜第3手法では、いずれの場合も、「フェードシーン」の検出にフレーム間の輝度情報の変化しか考慮していないために、「フェードシーン」以外の特殊効果シーン(パニングやチルトなど)を「フェードシーン」として誤検出してしまう可能性が十分にあり、正確なフェード検出が行なえないのである。
【0016】
一方、パニングやチルトなどのシーンに関して、上記の第4手法では、動きベクトルの探索範囲が固定であるため、単位時間当たりの動き量の大きいパニングやチルトにより探索範囲を超えた画像が入力された場合に、動きベクトルを得ることができず対処できない。また、上記の第5手法では、パニングが検出された場合には、低解像度の符号化を行なうため画質が劣化する(ボケる)という課題がある。なお、解像度を落とさずに、単純に、動き探索範囲を拡大すると演算量が膨大になる。
【0017】
さらに、上記の第6手法では、符号化ストリームを復号するときに、シーン検出インデックスを付けるだけ(符号化モードの変更は無し)なので、符号化側の概念は無く、パニングやチルトのシーンに対して符号化効率を上げるという意図は無い。
つまり、上記の第4〜第6手法では、動きベクトルの探索範囲が固定、もしくは、拡大する場合は画像解像度を落とす必要があるため、パニングやチルトなどの特殊効果シーンに対して高画質を維持しながら符号化効率を上げることができないのである。
【0018】
本発明は、以上のような課題に鑑み創案されたもので、入力画像の輝度情報などの特徴情報についての統計情報だけでなく、動きベクトル情報などの入力画像を予測符号化する際に用いられる相関情報についての統計情報をも考慮することで、フェードシーンなどの特殊効果シーンを正確に検出できるようにすることを目的とする。また、パニングやチルトなどの特殊効果シーンに対しては、動きベクトル情報などの相関情報の探索範囲をシフト制御することで、画像解像度を落とすことなく、且つ、相関情報探索のための演算量を増大させることなく、正確な相関情報を取得して符号化効率を向上できるようにすることも目的とする。
【0019】
【課題を解決するための手段】
上記の目的を達成するために、本発明の動画像符号化装置は、入力画像を過去に符号化した画像との相関情報に基づいて予測符号化する予測符号化部と、入力画像の輝度情報についての統計情報である第1統計情報と、入力画像と過去に符号化した画像との間の動きベクトル情報についての第2統計情報とに基づいて入力画像の特殊効果シーンを検出する特殊効果シーン検出部と、この特殊効果シーン検出部で検出された特殊効果シーンに応じて前記予測符号化部による入力画像の符号化状態を制御する制御部とをそなえて構成され、特殊効果シーン検出部が、第1統計情報を取得する輝度情報統計取得部と、第2統計情報を取得する動きベクトル情報統計取得部と、上記の各統計情報が所定の第1検出条件を満足すると入力画像が特殊効果シーンとしてのフェードシーンであることを検出するフェード検出部とをそなえて構成されるとともに、制御部が、フェード検出部にてフェードシーンが検出されると動きベクトル情報をゼロに制御して符号化状態を制御する動きベクトル情報制御部として構成され、所定の第1検出条件が、入力画像についての第1統計情報と、過去に符号化した画像についての第1統計情報との差分である輝度平均差分が第1の閾値より大きく、かつ、第1の閾値よりも大きい第2の閾値より小さく、動きベクトル平均値が、第3の閾値より小さく、動きベクトル分散値が第4の閾値よりも大きい場合であることを特徴としている。
【0020】
上述のごとく構成された本発明の動画像符号化装置では、入力画像のもつ特徴情報についての第1統計情報のみならず、予測符号化時の相関情報についての第2統計情報をも用いて入力画像の特殊効果シーンを検出することができるので、一方の統計情報だけをみると本来検出したい特殊効果シーンと特徴の似た入力画像(シーン)でも、他方の統計情報が本来検出したい特殊効果シーンの特徴を示していなければ検出対象の特殊効果シーンから除外することができる。そして、この上で検出された特殊効果シーンに応じて予測符号化部による符号化状態を制御することで予測符号化誤差の低減を図ることができる。
【0022】
さらに、このような構成を採ると、入力画像の輝度情報についての統計情報と動きベクトル情報についての統計情報とがそれぞれフェードシーンの特徴を示していない限り、入力画像がフェードシーンであるとは検出されないので、例えば、輝度情報についての統計情報だけをみるとフェードシーンの特徴を示すが、動きベクトル情報についての統計情報がフェードシーン以外の特徴を示すような入力画像(例えば、パニングやチルトなどのシーン)をフェードシーンと誤検出してしまうことを回避することができる。そして、フェードシーン検出時には、動きベクトル情報を制御することで、誤った動きベクトル情報の符号化による符号化効率の低下を回避できる。
【0023】
また、本発明の動画像符号化装置では、入力画像を過去に符号化した画像との相関情報に基づいて予測符号化する予測符号化部と、入力画像の輝度情報についての統計情報である第1統計情報と、入力画像と過去に符号化した画像との間の動きベクトル情報についての統計情報であり、動きベクトル平均値と動きベクトル分散値とからなる第2統計情報とに基づいて入力画像の特殊効果シーンを検出する特殊効果シーン検出部と、特殊効果シーン検出部で検出された特殊効果シーンに応じて予測符号化部による入力画像の符号化状態を制御する制御部とをそなえて構成され、上記の予測符号化部、上記の相関情報として動きベクトル情報を得るために符号化対象の入力画像を所定の画素探索範囲で探索する動きベクトル情報探索部をそなえるとともに、上記の特殊効果シーン検出部には、前記第1統計情報取得する輝度情報統計取得部と、前記第2統計情報取得する動きベクトル情報統計取得部と、これらの各統計取得部によって得られた各統計情報が所定の第2検出条件を満足すると入力画像が特殊効果シーンとしてのパニングあるいはチルトのシーンであることを検出するパニング/チルト検出部とをそなえ、且つ、上記の制御部を、このパニング/チルト検出部で上記のパニングあるいはチルトのシーンが検出されると前記第2統計情報に基づいて上記動きベクトル情報探索部での画素探索範囲をシフト制御する探索範囲シフト制御部として構成し、所定の第2条件が、入力画像についての第1統計情報と、過去に符号化した画像についての第1統計情報との差分である輝度平均差分が、第1の閾値より大きく、かつ、第1の閾値よりも大きい第2の閾値より小さく、動きベクトル平均値が第3の閾値以上であり、動きベクトル分散値が第4の閾値よりも小さい場合であるとを特徴としている
【0024】
このような構成を採ると、上記の各統計情報がパニングやチルトのシーン以外の特徴を示す特殊効果シーンを検出対象から除外して、パニングやチルトのシーンを正確に検出することができるとともに、動きベクトル情報探索のための演算量を増大させることなく、パニングやチルトのシーンに応じた必要な動きベクトル情報を得ることができる。
【0027】
さらに、本発明の動画像の特殊効果シーン検出装置は、入力画像の輝度情報についての統計情報である第1統計情報を取得する第1統計情報取得部と、予測符号化対象の入力画像と過去に符号化された画像との間の動きベクトル情報についての統計情報であり、動きベクトル平均値と動きベクトル分散値とからなる第2統計情報を取得する第2統計情報取得部と、これらの各統計情報取得部によって得られた各統計情報に基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出部とをそなえて構成され、特殊効果シーン検出部が、入力画像についての第1統計情報と、過去に符号化した画像についての第1統計情報との差分である輝度平均差分が第1の閾値より大きく、かつ、第1の閾値よりも大きい第2の閾値より小さく、動きベクトル平均値が、第3の閾値より小さく、動きベクトル分散値が第4の閾値よりも大きい場合に、特殊効果シーンが、フェードシーンであることを検出し、輝度平均差分が、第1の閾値より大きく、かつ、第2の閾値より小さく、動きベクトル平均値が第3の閾値以上であり、動きベクトル分散値が第4の閾値よりも小さい場合に、特殊効果シーンが、パニングあるいはチルトのシーンであることを検出することを特徴としている。
【0028】
上述のごとく構成された本特殊効果シーン検出装置では、入力画像のもつ特徴情報についての統計情報のみならず、予測符号化時の相関情報についての統計情報をも用いて入力画像の特殊効果シーンを検出することができるので、一方の統計情報だけをみると本来検出したい特殊効果シーンと特徴の似た入力画像(シーン)でも、他方の統計情報が本来検出したい特殊効果シーンの特徴を示していなければ検出対象の特殊効果シーンから除外することができる。
【0029】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は本発明の一実施形態としての特殊効果シーン検出装置が適用されるディジタル動画像符号化装置の構成を示すブロック図で、この図1に示すディジタル動画像符号化装置(以下、単に「動画像符号化装置」という)1は、フレームメモリ2,原画マクロブロック(MB)取得器3,参照ブロック取得器4,動きベクトル探索器5,予測判定器6,減算器7,加算器11,スイッチ8,12,符号化器9及び局所復号化器10をそなえるとともに、特殊効果シーン検出装置13として、入力画像情報統計取得器14,動き情報統計取得器15,特殊シーン検出器16及び制御部17をそなえて構成されている。
【0030】
ここで、上記のフレームメモリ2は、符号化すべき入力動画像データをフレーム(静止画像)単位で記憶するためのものである。なお、入力動画像データがNTSC方式などにおけるインタレース走査によって生成された画像データの場合、1フレーム分の入力画像は偶フィールドと奇フィールドの2枚のフィールドから成るので、フレームメモリ2には、さらに、フィールド単位に画像データが保持されることになる。以下、これらのフレームとフィールドとを特に区別しない場合は、総称して「ピクチャ」という。
【0031】
また、原画MB取得器3は、フレームメモリ2に記憶されている画像データ(原画ピクチャ)から符号化対象のMBを原画MBとして取得(抽出)するためのもので、例えば、原画ピクチャ内における任意の16×16画素(ピクセル)の矩形領域(画素集合)が原画MBとして抽出されるようになっている。
また、参照ブロック取得器4は、ピクチャ間差分情報を得るのに必要な原画MBに対する参照ブロックをフレームメモリ2から取得するためのもので、例えば図3に模式的に示すように、既に符号化され局所復号化器10にて再生(局所復号)された過去のピクチャ(参照ピクチャ)32において原画ピクチャ31内の原画MB311と同じ位置に位置するMB(参照MB)321を中心として縦横方向にそれぞれ1画素ずつ所定画素分だけずらした範囲(この範囲が動きベクトル探索範囲322となる)のブロックが上記参照ブロックとして得られるようになっている。
【0032】
ただし、フィールド間予測の場合は上記の偶フィールド及び奇フィールドのそれぞれ対応して2つの参照ブロックが取得され、それぞれについて下記に示す動きベクトル探索器5による動きベクトル情報の探索が行なわれて、各フィールド用の動きベクトル情報がそれぞれ得られるようになっている。
そして、動きベクトル探索器(動きベクトル情報探索部)5は、上記の原画MB取得器3で得られた原画MBと参照ブロック取得器4で得られた参照ブロックとに基づいて動き予測を行なって動きベクトル情報(以下、単に「動きベクトル」という)を得るためのもので、例えば図4に模式的に示すように、上記の参照ブロック(動きベクトル探索範囲)322内において原画MB311と最も相関の高いMB(以下、予測MBという)323を探索(ブロックマッチング)し、その予測MB323の参照ピクチャ32内での位置と、原画MB311の原画ピクチャ31内での位置とのずれが動きベクトル(相関情報)30として表わされるようになっている。
【0033】
なお、原画MB311と予測MB323との相関は、一般に、画素のもつ特徴情報(輝度信号や色差信号など)についての差分の絶対値和や2乗和などによって求められ、その値(動き探索評価値)が小さいほど両者の相関が高いと判断される。また、得られた動きベクトルは、符号化情報に多重化される。
さらに、予測判定器6は、符号化対象のピクチャの属性や構造(フレーム又はフィールド)に基づいて予測モード〔ピクチャ(フレーム/フィールド)内/間予測〕を判定し、その判定結果に応じてスイッチ8及び12を制御するとともに、判定結果に応じた最適な動きベクトル(フレーム/フィールド用)を減算器7及び加算器11へ出力するためのものである。
【0034】
なお、上記のピクチャの属性とは、ピクチャ内予測を行なうべき画像かピクチャ間予測を行なうべき画像かなどを意味し、例えば、MPEG方式の場合なら、Iピクチャ(Intra-coded picture)やPピクチャ(Predictive-coded picture)/Bピクチャ(Bidirectionally predictive-coded picture)などの違いに相当する。
【0035】
そして、上記の予測判定器6は、例えば、予測モードが、ピクチャ内予測であれば、スイッチ8及び12をそれぞれ減算器7及び加算器11側とは逆側に切り替えることで、原画MBそのものが符号化器9にて独立して符号化(ピクチャ内符号化)されるように制御する一方、ピクチャ間予測であれば、スイッチ8及び12をそれぞれ減算器7及び加算器11側に切り替えるとともに、ピクチャ間予測モードに応じた動きベクトル(フレーム/フィールド用)を減算器7及び加算器11にそれぞれ出力する。
【0036】
これにより、減算器7にて原画MBから動きベクトルを除いた差分画像データが符号化器9に入力されて符号化される一方、その符号化データを局所復号化器10で復号した差分画像データに、上記の動きベクトルが加算器11にて加算されて元の原画MBが再生されフレームメモリ2に再度保持されることになる。
なお、動きベクトル探索器5によって得られた動きベクトルは、場合によっては使用しない方が良い場合がある(ピクチャ間予測符号化対象の画像でもピクチャ内予測符号化を行なった方が符号化効率が良い場合もある)。このような場合には、予測判定器6は、ピクチャ間予測符号化を行なうべき場合でも、動きベクトル探索器5によって得られた動きベクトルは使用(出力)せず、スイッチ8及び12をそれぞれ減算器7及び加算器11側とは逆側に切り替えて、ピクチャ内予測符号化が行なわれるようにする。
【0037】
次に、上記の符号化器9は、スイッチ8から選択出力されてくる画像データをMB単位に符号化するもので、例えば、MPEG方式の場合であれば、DCT(Discrete Cosine Transform)による直行変換,量子化及び可変長符号化の各処理が符号化処理として含まれることになる。
また、局所復号化器10は、ピクチャ間予測符号化を行なう基本原理として、過去に符号化したピクチャと符号化対象のピクチャとの差分情報を得る必要があるので、符号化器10で符号化されたデータを復号することにより過去に符号化したピクチャを再生するもので、MPEG方式の場合であれば、逆量子化及び逆DCTの各処理が局所復号化処理として含まれることになる。なお、局所復号化処理は、MPEG方式の場合、上記の符号化器9における可変長符号化処理前のデータを用いて行なうのが一般的であるので、逆可変復号化処理は含まないのが普通である。
【0038】
つまり、図1において、特殊効果シーン検出装置13以外の部分は、符号化対象のピクチャを過去に符号化したピクチャとの相関に基づいて予測符号化する予測符号化部21として機能するのである。
次に、上記の特殊効果シーン検出装置13において、入力画像情報統計取得器(輝度情報統計取得部)14は、フレームメモリ2に蓄積された符号化対象のピクチャの特徴情報としての輝度信号(輝度情報)についての統計情報(輝度平均;第1統計情報)を取得するためのもので、例えば、フレーム輝度平均を求める場合は、フレーム内の画素集合をU、フレーム輝度平均をAvePとすると、フレーム輝度平均AvePは、例えば、次式(3)によって求められる。
【0039】
【数1】
Figure 0004328000
【0040】
なお、この輝度平均の算出は、必ずしもピクチャ内の全画素を用いる必要はなく、一部の画素を用いるようにしてもよい。
一方、上記の動き情報統計取得器(動きベクトル情報統計取得部)15は、符号化対象のピクチャと過去に符号化したピクチャとの間の動きベクトルについての統計情報(第2統計情報)として動きベクトル平均及び分散を取得するためのもので、例えば、各MBで得られた動きベクトルを累積してゆき、累積動きベクトルをピクチャのMB数で割ることにより動きベクトル平均を得ることができ、各動きベクトルと動きベクトル平均との差の2乗和や絶対値和を求めてMB数で割ることにより動きベクトル分散を得ることができる。
【0041】
即ち、フレーム内のMB集合をV、各動きベクトルをVec_i、ピクチャのMB数をNum_I、動きベクトルの値を(水平成分,垂直成分)=(VecH_i,VecV_i)とし、水平成分の平均値(以下、単に「水平平均値」という)をAH、水平成分の分散値(以下、単に「水平分散値」という)をVH、垂直成分の平均値(以下、単に「垂直平均値」という)をAV、垂直成分の分散値(以下、単に「垂直分散値」という)をVVとそれぞれ表わすと、動き情報統計取得器15は、それぞれ次式(4)〜(7)で表わされる演算により、動きベクトルの水平成分及び垂直成分についての平均及び分散をそれぞれ求めることができる。
【0042】
【数2】
Figure 0004328000
【0043】
このため、本実施形態の動き情報統計取得器15には、例えば図2中に示すように、上記の式(4)による演算によって水平平均値AHを求める水平動きベクトル平均演算器151、上記の式(5)による演算によって水平分散値VHを求める水平動きベクトル分散演算器152、上記の式(6)による演算によって垂直平均値AVを求める垂直動きベクトル平均演算器153、上記の式(7)による演算によって垂直分散値VVを求める垂直動きベクトル分散演算器154がそなえられている。
【0044】
なお、上記の例は、各動きベクトルと動きベクトル平均との差の絶対値和をとる場合であるが、勿論、2乗和をとるようにしてもよい。また、以下において、動きベクトルの水平成分及び垂直成分についての平均及び分散を特に区別しない場合は、単に「動きベクトル平均」及び「動きベクトル分散」と称することにする。
【0045】
次に、上記の特殊シーン検出器(特殊効果シーン検出部)16は、上記の各統計取得器14,15によって得られた各統計情報(輝度平均,動きベクトル平均及び分散)に基づいて符号化対象のピクチャが、フェードやパニング,チルトなどの特殊効果シーンであることを検出するためのもので、ここでは、上記の各統計情報が、図2により後述するように、閾値L1,L2,MH1〜MH3,MV1〜MV3によって規定される所定の第1検出条件を満足すると符号化対象のピクチャがフェードシーンであると判断し、第2検出条件を満足すると符号化対象のピクチャがパニングもしくはチルトのシーンであると判断するようになっている。
【0046】
つまり、上記の特殊シーン検出器16は、上記の各統計情報が所定の第1検出条件を満足すると符号化対象のピクチャがフェードシーンであることを検出するフェード検出部としての機能と、上記の各統計情報が所定の第2検出条件を満足すると符号化対象のピクチャがパニングあるいはチルトのシーンであることを検出するパニング/チルト検出部としての機能とを兼ね備えているのである。
【0047】
そして、制御部17は、上記の特殊シーン検出器16(特殊効果シーン検出装置13)にて符号化対象のピクチャが特殊効果シーンであると判断された場合に、検出された特殊効果シーンの種別(フェードやパニング/チルトなど)に応じて、符号化状態を制御するためのもので、本実施形態では、特殊シーン検出器16にて、後述するように特殊効果シーンとして、フェードシーンが検出された場合には、動きベクトルを制御する一方、パニングやチルトのシーンが検出された場合には、動きベクトル探索器5による動きベクトル探索範囲を動きベクトルについての統計に基づいてシフト制御するようになっている。
【0048】
例えば、本実施形態では、特殊効果シーンとしてフェードシーンが検出された場合には、全ての動きベクトルを強制的にゼロベクトルにすることで、不要な動きベクトルが選択(符号化)されないようにピクチャの符号化状態を制御して符号化効率を上げることができる。
一方、特殊効果シーンとしてパニングやチルトのシーンが検出された場合には、動きベクトルの統計から動き方向を判別して、その方向へ動きベクトル探索範囲をシフトすることで、パニングやチルトのシーンに対しても演算量を増やすことなく必要な動きベクトルを精度良く求めて符号化効率を上げることができる。
【0049】
つまり、本実施形態の制御部17は、特殊シーン検出器16にてフェードシーンが検出されると動きベクトルを制御して予測符号化部21での符号化状態を制御する動きベクトル情報制御部としての機能と、特殊シーン検出器16にてパニングあるいはチルトのシーンが検出されると動きベクトルの統計情報に基づいて動きベクトル探索器5での探索範囲をシフト制御する探索範囲シフト制御部としての機能とを兼ね備えているのである。
【0050】
以下、上述のごとく構成された本実施形態の動画像符号化装置1(特殊効果シーン検出装置13)の動作について、図2に示すフローチャートを参照しながら詳述する。なお、予測符号化部21での基本的な動作については従来と同様である。即ち、最初の符号化対象のピクチャについては、ピクチャ内符号化が行なわれ、原画MBがそのまま符号化される。そして、以降の継続するピクチャについては、それぞれ前に符号化したピクチャとの差分を符号化するために動き予測が行なわれる。即ち、より原画MBに相関の高いMBが参照ブロック内で探索され、原画MBのピクチャ内での位置と予測MBの参照ブロック内での位置の相対的なずれが動きベクトルとして求められて符号化情報に多重化される。
【0051】
一方、特殊効果シーン検出装置13においては、まず、入力画像情報統計取得器14にて、符号化対象のピクチャについての輝度平均AvePが求められ、前ピクチャについての輝度平均AvePとの差分D(以下、輝度平均差分Dともいう)が求められる。そして、この差分Dと第1の閾値L1とが特殊シーン検出器16において比較されて、差分Dが閾値L1よりも大きいか否かが判別される(ステップS1)。この結果、差分Dが閾値L1以下であるようなら、輝度平均の変化があまり無いと思われるのでフェード検出条件から外れる(フェード非検出;ステップS1のNOルート)。なお、上記の閾値L1としては、例えば、2〜5程度の値を設定するのが適当である。
【0052】
これに対し、上記の差分Dが閾値L1よりも大きければ、フェードシーンの可能性があるので、特殊シーン検出器16は、次に、差分Dと第2の閾値L2とを比較して、差分Dの方が閾値L2よりも小さいかどうかを判別する(ステップS1のYESルートからステップS2)。なお、上記の閾値L2は、L2>L1を満足する値で、例えば、20程度を設定するのが適当である。
【0053】
この結果、差分Dが閾値L2以上であれば、フェードシーンとは異なりピクチャ間の相関がかなり低いシーンチェンジが発生していると思われるので、この場合も、フェード検出条件から除外される(フェード非検出;ステップS2のNOルート)。ちなみに、シーンチェンジ発生の場合には、ピクチャ内符号化を使用した方が一般的に符号化効率が良い。
【0054】
一方、上記の差分Dが第2の閾値L2よりも小さければ、特殊シーン検出器16は、次に、水平動きベクトル平均演算器151〔式(4)参照〕によって求められた水平平均値AHとその水平平均値AHについての閾値MH1とを比較(絶対値比較)して、水平平均値AHの方が閾値MH1よりも小さいかどうかを判別する(ステップS2のYESルートからステップS3)。なお、上記の閾値MH1としては、例えば、10〜16程度の値を設定するのが適当である。
【0055】
上記の判別の結果、水平平均値AHが閾値MH1以上であれば、動きベクトルの水平成分の方向が或る程度揃っていることになるので、そのときの符号化対象のピクチャ(シーン)はフェードシーンではなくパニングのシーンである可能性が高いと判断されて、フェード検出条件からは除外される(フェード非検出;ステップS3のNOルート)。
【0056】
一方、水平平均値AHの方が閾値MH1よりも小さければ、特殊シーン検出器16は、次に、水平動きベクトル分散演算器152〔式(5)参照〕によって求められた水平分散値VHと、その水平分散値VHについての閾値MH2とを比較して、水平分散値VHの方が閾値MH2よりも大きいかどうかを判別する(ステップS3のYESルートからステップS4)。なお、上記の閾値MH2は、MH2<MH1を満足する値で、例えば、MH1/3程度の値を設定するのが適当である。
【0057】
この結果、水平分散値VHが閾値MH2以下であれば、水平平均値AHも水平分散値VHも小さいということになるので、フェードシーン時に発生する動き予測効率の低下が発生していないと思われるので、この場合も、フェード検出条件から除外される(フェード非検出;ステップS4のNOルート)。
一方、水平分散値VHが閾値MH2よりも大きければ、特殊シーン検出器16は、次に、垂直動きベクトル平均演算器153〔式(6)参照〕によって求められた垂直平均値AVと、その垂直平均値AVについての閾値MV1とを比較(絶対値比較)して、垂直平均値AVが閾値MV1よりも小さいかどうかを判別する(ステップS4のYESルートからステップS5)。なお、上記の閾値MV1には、水平平均値についての閾値MH1と同程度の値を設定するのが適当である。
【0058】
この結果、垂直平均値AVが閾値MV1以上であれば、チルトシーンの可能性があるので、フェード検出条件からは除外される(フェード非検出;ステップS5のNOルート)。一方、垂直平均値AVが閾値MV1よりも小さければ、特殊シーン検出器16は、次に、垂直動きベクトル分散演算器154〔式(7)参照〕によって求められた垂直分散値VVと、その垂直分散値VVについての閾値MV2とを比較して、垂直分散値VVが閾値MV2よりも大きいか否かを判別する(ステップS5のYESルートからステップS6)。なお、上記の閾値MV2は、MV2<MV1を満足する値で、例えば、MV1/3程度の値を設定するのが適当である。
【0059】
その結果、垂直分散値VVが閾値MV2以下であれば(ステップS6でNOと判定されれば)、垂直平均値AVも垂直分散値VVも小さいことになるので、この場合も、フェードシーン時に発生する動き予測効率の低下が発生していないと思われるので、フェード検出条件から外れる(フェード非検出)。これに対し、垂直分散値VVが閾値MV2よりも大きい場合は、符号化対象のピクチャがフェードシーンである可能性が非常に高いと判断される(フェード検出;ステップS6のYESルート)。
【0060】
つまり、本実施形態の特殊シーン検出器16は、前記の第1検出条件として、D>L1,D<L2,AH<MH1,VH>MH2,AV<MV1及びVV>MV2という条件を全て満足した場合に初めて、符号化対象のピクチャがフェードシーンであると判断するのである。従って、輝度平均だけをみるとフェードシーンと似た特徴を示すフェードシーン以外のシーン(パニングやチルトなど)をフェードシーンとして誤検出してしまう確率が大幅に低減されて、正確なフェード検出が実現される。
【0061】
そして、このようにして、フェードシーンが検出されると、特殊シーン検出器16は、制御部17に対してフェード検出信号を出力し、これにより、制御部17は、動きベクトル探索器5で得られる全ての動きベクトルを強制的にゼロベクトルに制御する。これにより、フェードシーンにおいて不要な動きベクトルが選択(符号化)されて符号化効率が落ちることを確実に回避することができ、フェードシーンでの符号化効率を飛躍的に向上することができる。
【0062】
ところで、上記のステップS3(S5)において水平平均値AH(垂直平均値AV)が閾値MH1(MV1)以上であった場合、特殊シーン検出器16は、上述したフェード検出と並行して、水平動きベクトル分散演算器152(垂直動きベクトル分散演算器154)によって求められた水平分散値VH(垂直分散値VV)と、その水平分散値VH(垂直分散値VV)についての閾値MH3(MV3)とを比較して、水平分散値VH(垂直分散値VV)が閾値MH3(MV3)よりも小さいかどうかを判別している〔ステップS3(S5)のNOルートからステップS7(S8)〕。
【0063】
なお、上記の閾値MH3(MV3)には、閾値MH2(MV2)と同じ値を設定してもよいが、或る程度以上動きベクトルがばらついていることを検出するための閾値MH2(MV2)と、或る程度以上動きベクトルが揃っていることを検出するための閾値MH3(MV3)というように検出目的が異なるので、上述したように、各値は異なる値〔MH2>MH3(MV2>MV3)〕に設定するのが好ましい。
【0064】
そして、上記の判別の結果、水平分散値VH(垂直分散値VV)が閾値MH3(MV3)よりも小さければ、特殊シーン検出器16は、そのときの符号化対象のピクチャがパニング(チルト)のシーンであると判別して〔パニング(チルト)検出;ステップS7(S8)のYESルート〕、パニング(チルト)検出信号を制御部17へ出力する。なお、水平分散値VH(垂直分散値VV)が閾値MH3(MV3)以上の場合は、動きベクトルが或る程度ばらついていることになるので、パニング(チルト)検出条件からは外れる〔パニング(チルト)非検出;ステップS7(S8)のNOルート〕。
【0065】
つまり、特殊シーン検出器16は、前記の第2検出条件として、D>L1及びD<L2という条件を満足するとともに、AH≧MH1及びVH<MH3(AV≧MV1及びVV<MV3)という条件を満足した場合に初めて、符号化対象のピクチャがパニング(チルト)のシーンであると判断するのである。従って、輝度平均だけをみる場合に比して、より正確にパニングやチルトのシーンを検出することができる。
【0066】
そして、上述のごとくパニング(チルト)が検出されてパニング(チルト)検出信号が制御部17に出力されると、制御部17は、動きベクトルの統計から動きの(パニング又はチルトの)方向を判別し、その方向へ動きベクトル探索範囲322を平均動き量だけシフトする。
例えば図5に模式的に示すように、元の動きベクトル探索範囲322が[MinH,MaxH]である場合に、パニングが検出されると、制御部17は、 [MinH+AH,MaxH+AH]というように元の探索範囲322を水平方向に平均動き量AHだけシフトする。これにより、パニングやチルトなどの一定方向へ移動するシーンに対しても動きベクトルを求めるための演算量を増やすことなく、必要な動きベクトルを精度良く求めて符号化効率を上げることができる。
【0067】
なお、演算量は増えるが、勿論、上記の平均動き量分だけ元の探索範囲322を拡大しても、パニングやチルトなどのシーンにおける動きベクトルを精度良く求めることは可能である。
また、符号化を行なっている場合、フェードやパニング,チルトなどが生じ始めた最初のピクチャから符号化効率が悪くなったのを視覚的に認知することは非常に困難であるため、制御部17は、上述したフェード(パニング/チルト)検出が所定フレーム分連続して発生したことを確認した上で、上述したような制御を実行するようにしてもよい。このようにすることで、フェードやパニング,チルトなどのシーンと、ズームアウトやズームインのシーンとを区別することも可能になり、より正確な検出を行なうことが可能である。
【0068】
さらに、動きベクトルがフレーム枠の外側を指すことは一般に考えられないため、動きベクトルの方向に制限があるフレーム枠側の方のMBを除いて、動きベクトルの統計処理を行なうのも良い方法である。これは、輝度平均の統計で必ずしも全画素を用いる必要がないことと同様である。
また、フェード検出時の制御部17による符号化制御としては、上記のように全ての動きベクトルを0ベクトルにするのではなく、より0ベクトルに近いベクトルが選択されやすいように、重み付け制御を行なう方法も考えられる。例えば、動きベクトルを求める際に行なうブロックマッチング処理の評価値に、動きベクトルの大きさに比例する補正量を加算した上で、ブロックマッチングを行なうことにより、より0ベクトルに近いベクトルが選択されやすいようにしてもよい。
【0069】
また、前記の輝度平均や動きベクトル平均,動きベクトル分散の各演算には、必ずしも前記の式(3)〜式(7)を用いる必要はなく、より簡単な演算を用いてもよい。例えば、演算量削減のために割り算の処理を省いて単なる累積値を求めるようにしても構わないし、1画素飛びに累積を行なうなど、ピクチャ内の全画素の部分集合を用いて処理を行なうことも可能である。ただし、演算式が変わるとそれに応じて設定する閾値(L1,L2,MH1〜MH3,MV1〜MV3)も変更する必要がある。
【0070】
さらに、上記の例では、フェードシーンの検出のために、動きベクトルの水平成分及び垂直成分の双方についての平均値及び分散値を用いているが、水平成分及び垂直成分のいずれか一方のみを用いるようにしてもよいし、平均値及び分散値のいずれか一方のみを用いるようにしてもよい。
また、上記の例では、特殊シーン検出器16が、フェード検出とパニング/チルト検出とで兼用になっているが、フェード検出専用あるいはパニング/チルト検出専用の検出器として構成してもよい。即ち、特殊シーン検出器16は、例えば図6に示すフェード検出フロー(アルゴリズム)に従って動作するように構成してもよいし、図7に示すパニング/チルト検出フロー(アルゴリズム)に従って動作するように構成してもよい。なお、図6及び図7に示すフローチャートにおいて、図2により上述したステップ番号と同一ステップ番号を付した処理は、図2により上述した処理と同様であるものとする。
【0071】
さらに、特殊シーン検出器16をパニング/チルト検出専用の検出器として構成する場合には、必ずしも輝度平均は用いなくてもよく、例えば図8に示すように、動きベクトルの統計のみでパニングやチルトのシーン検出を行なうようにしてもよい。ただし、パニングやチルトのシーンが検出された場合は、必ず上記の動きベクトル探索範囲のシフト制御を行なうのが前提である。
【0072】
そして、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
・付記
(付記1) 入力画像を過去に符号化した画像との相関情報に基づいて予測符号化する予測符号化部と、
該入力画像のもつ特徴情報についての第1統計情報と、該相関情報についての第2統計情報とに基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出部と、
該特殊効果シーン検出部で検出された特殊効果シーンに応じて該予測符号化部による該入力画像の符号化状態を制御する制御部とをそなえて構成されたことを特徴とする、動画像符号化装置。
【0073】
(付記2) 該特殊効果シーン検出部が、
該入力画像の輝度情報についての統計情報を該第1統計情報として取得する輝度情報統計取得部と、
該入力画像と過去に符号化した画像との間の動きベクトル情報についての統計情報を該第2統計情報として取得する動きベクトル情報統計取得部と、
上記の各統計情報が所定の第1検出条件を満足すると該入力画像が該特殊効果シーンとしてのフェードシーンであることを検出するフェード検出部とをそなえて構成されるとともに、
該制御部が、
該フェード検出部にて該フェードシーンが検出されると該動きベクトル情報を制御して該符号化状態を制御する動きベクトル情報制御部として構成されていることを特徴とする、付記1記載の動画像符号化装置。
【0074】
(付記3) 該輝度情報統計取得部が、
該入力画像の全画素もしくは一部の画素についての輝度情報の平均値もしくは累積値を該第1統計情報として取得するように構成されたことを特徴とする、付記2記載の動画像符号化装置。
(付記4) 該動きベクトル情報制御部が、
該フェード検出部にて該フェードシーンが検出されると、全ての動きベクトル情報をゼロに制御するように構成されたことを特徴とする、付記2又は付記3に記載の動画像符号化装置。
【0075】
(付記5) 該動きベクトル情報制御部が、
該フェード検出部にて該フェードシーンが検出されると、よりゼロに近い動きベクトル情報が有効な動きベクトル情報として選択されやすいよう該動きベクトル情報の補正を行なうように構成されたことを特徴とする、付記2又は付記3記載の動画像符号化装置。
【0076】
(付記6) 該予測符号化部が、
該相関情報としての動きベクトル情報を得るために符号化対象の入力画像を所定の画素探索範囲で探索する動きベクトル情報探索部をそなえるとともに、
該特殊効果シーン検出部が、
該入力画像の輝度情報についての統計情報を該第1統計情報として取得する輝度情報統計取得部と、
該動きベクトル情報についての統計情報を該第2統計情報として取得する動きベクトル情報統計取得部と、
上記の各統計情報が所定の第2検出条件を満足すると該入力画像が該特殊効果シーンとしてのパニングあるいはチルトのシーンであることを検出するパニング/チルト検出部とをそなえて構成され、且つ、
該制御部が、
該パニング/チルト検出部で上記のパニングあるいはチルトのシーンが検出されると該第2統計情報に基づいて該動きベクトル情報探索部での該画素探索範囲をシフト制御する探索範囲シフト制御部として構成されていることを特徴とする、付記1記載の動画像符号化装置。
【0077】
(付記7) 該制御部が、
該特殊効果シーン検出部にて所定回数連続して同じ種類の特殊効果シーンが検出されると、該符号化状態の制御を実行するように構成されたことを特徴とする、付記1記載の動画像符号化装置。
(付記8) 過去に符号化した画像との相関情報として動きベクトル情報を得るために符号化対象の入力画像を所定の画素探索範囲で探索する動きベクトル情報探索部と、
該動きベクトル情報探索部によって得られた該動きベクトル情報に基づいて該入力画像を予測符号化する予測符号化部と、
該動きベクトル情報についての統計情報に基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出部と、
該特殊効果シーン検出部で該特殊効果シーンが検出されると該統計情報に応じて該動きベクトル情報探索部での該画素探索範囲をシフト制御する探索範囲シフト制御部とをそなえて構成されたことを特徴とする、動画像符号化装置。
【0078】
(付記9) 入力画像のもつ特徴情報についての統計情報を取得する第1統計情報取得部と、
予測符号化対象の入力画像と過去に符号化された画像との相関情報についての統計情報を取得する第2統計情報取得部と、
上記の各統計情報取得部によって得られた各統計情報に基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出部とをそなえて構成されたことを特徴とする、動画像の特殊効果シーン検出装置。
【0079】
(付記10)入力画像を過去に符号化した画像との相関情報に基づいて予測符号化する予測符号化ステップと、
該入力画像のもつ特徴情報についての第1統計情報と、該相関情報についての第2統計情報とに基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出ステップと、
該特殊効果シーン検出ステップで検出された該特殊効果シーンに応じて該予測符号化ステップでの該入力画像の符号化状態を制御する制御ステップとを有して成ることを特徴とする、動画像符号化方法。
【0080】
(付記11) 過去に符号化した画像との相関情報として動きベクトル情報を得るために符号化対象の入力画像を所定の画素探索範囲で探索する動きベクトル情報探索ステップと、
該動きベクトル情報探索ステップによって得られた該動きベクトル情報に基づいて該入力画像を予測符号化する予測符号化ステップと、
該動きベクトル情報についての統計情報に基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出ステップと、
該特殊効果シーン検出ステップで該特殊効果シーンが検出されると該統計情報に基づいて該画素探索範囲をシフト制御する探索範囲シフト制御ステップとを有して成ることを特徴とする、動画像符号化方法。
【0081】
(付記12) 入力画像のもつ特徴情報についての統計情報と、予測符号化対象の入力画像と過去に符号化された画像との相関情報についての統計情報とをそれぞれ取得する統計情報取得ステップと、
上記の統計情報取得ステップによって得られた各統計情報に基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出ステップとを有して成ることを特徴とする、動画像の特殊効果シーン検出方法。
【0082】
【発明の効果】
以上詳述したように、本発明によれば、入力画像のもつ特徴情報についての第1統計情報のみならず、予測符号化時の相関情報についての第2統計情報をも用いて入力画像の特殊効果シーンを検出することができるので、一方の統計情報だけをみると本来検出したい特殊効果シーンと特徴の似た入力画像(シーン)でも、他方の統計情報が本来検出したい特殊効果シーンの特徴を示していなければ検出対象の特殊効果シーンから除外することができ、所望の特殊効果シーンの検出精度を大幅に向上することができる。
【0083】
そして、この上で検出された特殊効果シーンに応じて予測符号化部による符号化状態を制御することで予測符号化誤差の低減を図ることができるので、特殊効果シーンに対する符号化効率を飛躍的に向上することができる。
例えば、上記の特殊効果シーン検出部において、入力画像の輝度情報についての統計情報と動きベクトル情報についての統計情報とがそれぞれ所定の第1条件を満足しない限り、入力画像がフェードシーンであるとは検出しないようにすれば、動きベクトル情報についての統計情報がフェードシーン以外の特徴を示すような入力画像をフェードシーンと誤検出してしまうことを回避することができるので、正確なフェードシーン検出が実現できる。そして、フェードシーン検出時には、動きベクトル情報を制御することで、誤った動きベクトル情報の符号化による符号化効率の低下を回避できるので、フェードシーンの符号化効率を大幅に向上することができる。
【0084】
また、上記の特殊効果シーン検出部において、上記の各統計情報が所定の第2条件を満足しない限り、入力画像がパニングやチルトのシーンであるとは検出しないようにすれば、パニングやチルトのシーンを正確に検出することができる。そして、この場合、動きベクトル情報の探索範囲を動きベクトル情報の統計情報に基づいてシフト制御すれば、動きベクトル情報探索のための演算量を増大させることなく、パニングやチルトのシーンに応じた必要な動きベクトル情報を確実に得ることができるので、パニングやチルトのシーンの符号化効率を大幅に向上することができる。
【0085】
なお、動きベクトル情報の探索範囲についてのシフト制御は、動きベクトル情報のみから特殊効果シーンが検出された場合に適用してもよく、この場合も、動きベクトル情報探索のための演算量を増大させることなく、パニングやチルトなどの特殊効果シーンに応じた必要な動きベクトル情報を確実に得ることができるので、その特殊効果シーンの符号化効率を大幅に向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての動画像符号化装置の構成を示すブロック図である。
【図2】図1に示す動画像符号化装置(特殊効果シーン検出装置)の動作(処理手順)を説明するためのフローチャートである。
【図3】動きベクトル探索範囲を説明するための模式図である。
【図4】動きベクトルの定義を説明するための模式図である。
【図5】本実施形態に係るパニング/チルトシーン検出時の動きベクトル探索範囲のシフト制御を説明するための模式図である。
【図6】図2に示す処理手順の変形例(フェード検出専用時)を示すフローチャートである。
【図7】図2に示す処理手順の変形例(パニング/チルト検出専用時)を示すフローチャートである。
【図8】図2に示す処理手順の変形例(パニング/チルト検出専用で動きベクトルの統計のみを用いる場合)を示すフローチャートである。
【符号の説明】
1 ディジタル動画像符号化装置
2 フレームメモリ
3 原画マクロブロック(MB)取得
4 参照ブロック取得器
5 動きベクトル探索器(動きベクトル情報探索部)
6 予測判定器
7 減算器
8,12 スイッチ
9 符号化器
10 局所復号化器
11 加算器
13 特殊効果シーン検出装置
14 入力画像情報統計取得器(輝度情報統計取得部)
15 動き情報統計取得器(動きベクトル情報統計取得部)
16 特殊シーン検出器(特殊効果シーン検出部;フェード検出部,パニング/チルト検出部)
17 制御部(動きベクトル情報制御部,探索範囲シフト制御部)
21 予測符号化部
30 動きベクトル
31 原画ピクチャ
32 参照ピクチャ
151 水平動きベクトル平均演算器
152 水平動きベクトル分散演算器
153 垂直動きベクトル平均演算器
154 垂直動きベクトル分散演算器
311 原画MB
321 参照MB
322 動きベクトル探索範囲
323 予測MB

Claims (3)

  1. 入力画像を過去に符号化した画像との相関情報に基づいて予測符号化する予測符号化部と、
    該入力画像の輝度情報についての統計情報である第1統計情報と、該入力画像と過去に符号化した画像との間の動きベクトル情報についての統計情報であり、動きベクトル平均値と動きベクトル分散値とからなる第2統計情報とに基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出部と、
    該特殊効果シーン検出部で検出された特殊効果シーンに応じて該予測符号化部による該入力画像の符号化状態を制御する制御部とをそなえて構成され、
    該特殊効果シーン検出部が、
    該第1統計情報を取得する輝度情報統計取得部と、
    該第2統計情報を取得する動きベクトル情報統計取得部と、
    上記の各統計情報が所定の第1検出条件を満足すると該入力画像が該特殊効果シーンとしてのフェードシーンであることを検出するフェード検出部とをそなえて構成されるとともに、
    該制御部が、該フェード検出部にて該フェードシーンが検出されると該動きベクトル情報をゼロに制御して該符号化状態を制御する動きベクトル情報制御部として構成され、
    該所定の第1検出条件が、該入力画像についての第1統計情報と、過去に符号化した画像についての第1統計情報との差分である輝度平均差分が第1の閾値より大きく、かつ、第1の閾値よりも大きい第2の閾値より小さく、該動きベクトル平均値が、第3の閾値より小さく、該動きベクトル分散値が第4の閾値よりも大きい場合であることを特徴とする、動画像符号化装置。
  2. 入力画像を過去に符号化した画像との相関情報に基づいて予測符号化する予測符号化部と、
    該入力画像の輝度情報についての統計情報である第1統計情報と、該入力画像と過去に符号化した画像との間の動きベクトル情報についての統計情報であり、動きベクトル平均値と動きベクトル分散値とからなる第2統計情報とに基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出部と、
    該特殊効果シーン検出部で検出された特殊効果シーンに応じて該予測符号化部による該入力画像の符号化状態を制御する制御部とをそなえて構成され、
    該予測符号化部が、
    該相関情報としての動きベクトル情報を得るために符号化対象の入力画像を所定の画素探索範囲で探索する動きベクトル情報探索部をそなえるとともに、
    該特殊効果シーン検出部が、
    該第1統計情報を取得する輝度情報統計取得部と、
    該第2統計情報を取得する動きベクトル情報統計取得部と、
    上記の各統計情報が所定の第2検出条件を満足すると該入力画像が該特殊効果シーンとしてのパニングあるいはチルトのシーンであることを検出するパニング/チルト検出部とをそなえて構成され、且つ、
    該制御部が、
    該パニング/チルト検出部で上記のパニングあるいはチルトのシーンが検出されると該第2統計情報に基づいて該動きベクトル情報探索部での該画素探索範囲をシフト制御する探索範囲シフト制御部として構成され、
    該所定の第2条件が、該入力画像についての第1統計情報と、過去に符号化した画像についての第1統計情報との差分である輝度平均差分が、第1の閾値より大きく、かつ、第1の閾値よりも大きい第2の閾値より小さく、該動きベクトル平均値が第3の閾値以上であり、該動きベクトル分散値が第4の閾値よりも小さい場合であることを特徴とする、動画像符号化装置。
  3. 入力画像の輝度情報についての統計情報である第1統計情報を取得する第1統計情報取得部と、
    予測符号化対象の入力画像と過去に符号化された画像との間の動きベクトル情報についての統計情報であり、動きベクトル平均値と動きベクトル分散値とからなる第2統計情報を取得する第2統計情報取得部と、
    上記の各統計情報取得部によって得られた各統計情報に基づいて該入力画像の特殊効果シーンを検出する特殊効果シーン検出部とをそなえて構成され、
    該特殊効果シーン検出部が、
    該入力画像についての第1統計情報と、過去に符号化した画像についての第1統計情報との差分である輝度平均差分が第1の閾値より大きく、かつ、第1の閾値よりも大きい第2の閾値より小さく、該動きベクトル平均値が、第3の閾値より小さく、該動きベクトル分散値が第4の閾値よりも大きい場合に、該特殊効果シーンが、フェードシーンであることを検出し、
    該輝度平均差分が、該第1の閾値より大きく、かつ、該第2の閾値より小さく、該動きベクトル平均値が該第3の閾値以上であり、該動きベクトル分散値が該第4の閾値よりも小さい場合に、該特殊効果シーンが、パニングあるいはチルトのシーンであることを検出することを特徴とする、動画像の特殊効果シーン検出装置。
JP2000234596A 2000-08-02 2000-08-02 動画像符号化装置および動画像の特殊効果シーン検出装置 Expired - Fee Related JP4328000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000234596A JP4328000B2 (ja) 2000-08-02 2000-08-02 動画像符号化装置および動画像の特殊効果シーン検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000234596A JP4328000B2 (ja) 2000-08-02 2000-08-02 動画像符号化装置および動画像の特殊効果シーン検出装置

Publications (2)

Publication Number Publication Date
JP2002051341A JP2002051341A (ja) 2002-02-15
JP4328000B2 true JP4328000B2 (ja) 2009-09-09

Family

ID=18726942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000234596A Expired - Fee Related JP4328000B2 (ja) 2000-08-02 2000-08-02 動画像符号化装置および動画像の特殊効果シーン検出装置

Country Status (1)

Country Link
JP (1) JP4328000B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211023B2 (ja) * 2002-02-22 2009-01-21 富士通株式会社 動画像処理方法及び動画像処理装置
US7277486B2 (en) 2002-05-03 2007-10-02 Microsoft Corporation Parameterization for fading compensation
US7463684B2 (en) 2002-05-03 2008-12-09 Microsoft Corporation Fading estimation/compensation
US7609767B2 (en) * 2002-05-03 2009-10-27 Microsoft Corporation Signaling for fading compensation
US8009739B2 (en) 2003-09-07 2011-08-30 Microsoft Corporation Intensity estimation/compensation for interlaced forward-predicted fields
JP4232971B2 (ja) * 2004-04-16 2009-03-04 Kddi株式会社 動き予測情報検出装置
JP4398390B2 (ja) * 2005-02-09 2010-01-13 Nttエレクトロニクス株式会社 フェード検出装置
FR2887731A1 (fr) * 2005-06-23 2006-12-29 Nextream France Sa Methode et dispositif de detection de fondus dans une sequence d'images
JP4764136B2 (ja) * 2005-10-31 2011-08-31 富士通セミコンダクター株式会社 動画像符号化装置、及びフェードシーン検出装置
JP4690250B2 (ja) * 2006-05-29 2011-06-01 日本放送協会 フェード検出装置
US8243790B2 (en) * 2007-09-28 2012-08-14 Dolby Laboratories Licensing Corporation Treating video information
JP5295638B2 (ja) * 2008-05-22 2013-09-18 池上通信機株式会社 テレビカメラ
JP5156704B2 (ja) 2008-07-29 2013-03-06 パナソニック株式会社 画像符号化装置、画像符号化方法、集積回路及びカメラ
JP2013038490A (ja) * 2011-08-04 2013-02-21 Jvc Kenwood Corp スクロール判定装置及び方法
WO2015128294A1 (en) * 2014-02-27 2015-09-03 Thomson Licensing Method and apparatus for determining an orientation of a video

Also Published As

Publication number Publication date
JP2002051341A (ja) 2002-02-15

Similar Documents

Publication Publication Date Title
KR100587280B1 (ko) 오류 은폐방법
US7720148B2 (en) Efficient multi-frame motion estimation for video compression
KR101045199B1 (ko) 화소 데이터의 적응형 잡음 필터링을 위한 방법 및 장치
JP4328000B2 (ja) 動画像符号化装置および動画像の特殊効果シーン検出装置
EP1993292B1 (en) Dynamic image encoding method and device and program using the same
US8514939B2 (en) Method and system for motion compensated picture rate up-conversion of digital video using picture boundary processing
JP6352173B2 (ja) プリプロセッサ方法および装置
EP2536143B1 (en) Method and a digital video encoder system for encoding digital video data
JPH08228356A (ja) 画像を表す信号を処理するシステム
US20070092007A1 (en) Methods and systems for video data processing employing frame/field region predictions in motion estimation
JP2007067469A (ja) フレーム内予測符号化制御方法、フレーム内予測符号化制御装置、フレーム内予測符号化制御プログラムおよびそのプログラムを記録した記録媒体
KR20040069210A (ko) 코딩 정보 및 로컬 공간 특징을 이용한 디지털 비디오신호들의 후처리에서의 선명도 향상
US8514935B2 (en) Image coding apparatus, image coding method, integrated circuit, and camera
JP3576402B2 (ja) 画像復号化装置
US20120008685A1 (en) Image coding device and image coding method
KR20110036886A (ko) 움직임 추정 반복 탐색의 개선 방법 및 시스템, 다음 탐색 영역의 중심점 결정 방법 및 시스템, 지역적 최소값의 회피 방법 및 시스템
JP2005513968A (ja) 映像鮮明度の向上における一時的な整合性の改善
JP2012034225A (ja) 動きベクトル検出装置及び動きベクトル検出方法、コンピュータプログラム
JP4624308B2 (ja) 動画像復号装置及び動画像復号方法
JP4573297B2 (ja) 移動物体抽出装置
KR0185841B1 (ko) 영상 부호기에서의 움직임 추정 장치
JP5701018B2 (ja) 画像復号装置
JP4829951B2 (ja) フレーム内予測符号化制御方法、フレーム内予測符号化制御装置、フレーム内予測符号化制御プログラムおよびそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP6016484B2 (ja) 符号化装置
JPH09219865A (ja) 映像符号化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees