JP4323360B2 - 火災感知器の状態情報取得システム - Google Patents

火災感知器の状態情報取得システム Download PDF

Info

Publication number
JP4323360B2
JP4323360B2 JP2004100400A JP2004100400A JP4323360B2 JP 4323360 B2 JP4323360 B2 JP 4323360B2 JP 2004100400 A JP2004100400 A JP 2004100400A JP 2004100400 A JP2004100400 A JP 2004100400A JP 4323360 B2 JP4323360 B2 JP 4323360B2
Authority
JP
Japan
Prior art keywords
sensitivity
pulse
fire
fire detector
trigger signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004100400A
Other languages
English (en)
Other versions
JP2005284916A (ja
Inventor
尚 伊藤
誠 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2004100400A priority Critical patent/JP4323360B2/ja
Publication of JP2005284916A publication Critical patent/JP2005284916A/ja
Application granted granted Critical
Publication of JP4323360B2 publication Critical patent/JP4323360B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Description

この発明は、建物各部の各監視空間に設置され、例えば煙を検知して火災発生を報知する火災感知器を備えた火災感知器の状態情報取得システムに関するものである。
従来の火災感知装置では、テスターから火災感知器に光などの放射エネルギーを入射させて、火災感知器の自動試験を行わせていた(例えば、特許文献1)。
米国特許第6326880号明細書
従来の火災感知装置では、検出素子の感度データ等の情報信号が火災感知器の送信素子から常に送信されている。そこで、送信するための情報取得に関する動作が火災感知器で連続的に行われることになり、消費電力が多くなってしまうという課題があった。
この発明は、このような状況に鑑み、火災感知器がトリガー信号の有無を周期的に確認し、トリガー信号の受信時に、情報取得に関する動作を実行するようにして、消費電力を小さくした火災感知器を用いるシステムを得ることを目的とする。
この発明による火災感知器の状態情報取得システムは、トリガー信号を受信する感知器側受信素子と、該感知器側受信素子の上記トリガー信号の受信の有無を周期的に確認して該トリガー信号の受信時に情報取得に関する動作を実行する制御手段と、を有する火災感知器と、上記トリガー信号を送信する端末機器側送信素子を有し、該端末機器側送信素子から該トリガー信号を上記周期以上の期間、連続的に発生する端末機器と、を備えたものである。そして、上記火災感知器は、感知器側送信素子を有し、上記制御手段が、上記トリガー信号の受信がある時に、該感知器側送信素子から応答信号を送信する。
この発明によれば、トリガー信号が、制御手段のトリガー信号の受信の有無を確認する周期以上の期間、端末機器側送信素子から連続的に発生されるので、制御手段は、連続的にトリガー信号の受信の有無を確認することなく、例えばマイコンの起動するタイミングでトリガー信号の受信の有無を検出でき、消費電力を低減することができる。
図1はこの発明の実施の形態に係る火災感知器の状態情報取得システムを模式的に示すシステム図、図2はこの発明の実施の形態に係る火災感知器を示す正面図、図3はこの発明の実施の形態に係る火災感知器の構成を模式的に示すブロック図、図4はこの発明の実施の形態に係る火災感知器の回路構成を模式的に示すブロック回路図、図5はこの発明の実施の形態に係る感度テスターを示す正面図、図6はこの発明の実施の形態に係る感度テスターの構成を模式的に示すブロック図、図7はこの発明の実施の形態に係る感度テスターの回路構成を模式的に示すブロック回路図である。図8はこの発明の実施の形態に係る火災感知器の全体動作を説明するフロー図、図9はこの発明の実施の形態に係る火災感知器における火災判別動作を説明するフロー図、図10はこの発明の実施の形態に係る火災感知器における感度測定動作を説明するフロー図、図11はこの発明の実施の形態に係る火災感知器におけるブリンキング動作を説明するフロー図、図12はこの発明の実施の形態に係る感度テスターの動作を説明するフロー図である。図13はこの発明の実施の形態に係る火災感知器における感度とA/D値との関係を説明する図、図14はこの発明の実施の形態に係る火災感知器における火災表示灯および感度データ送信用発光素子の動作を説明するタイミングチャート、図15はこの発明の実施の形態に係る火災感知器における感度データ送信用発光素子への出力パルスを示す図、図16はこの発明の実施の形態に係る火災感知器における感度レベルに対応するパルス間隔の設定状態を説明するタイミングチャート、図17はこの発明の実施の形態に係る感度テスターにおける動作を説明するタイミングチャートである。
図1において、火災感知器の状態情報取得システムは、例えば天井に取り付けられて火災を検知する火災感知器1と、火災感知器1に電源兼信号線4で接続され、火災感知器1に電力を供給するとともに、火災感知器1からの火災信号を受信する火災受信機2と、点検者が火災感知器1の検出部の状態を確認する際に、火災感知器1からの情報信号を受信・表示する端末機器としての感度テスター3とから構成されている。
つぎに、火災感知器1の構成について図2乃至図4を参照しつつ説明する。なお、ここでは、火災感知器1として煙感知器を用いるものとする。
煙検出用発光素子11は、煙を検出するための発光を行う発光ダイオード(LED)であり、煙検出用受光素子12は、煙検出用発光素子11から発光された光を受光するためのフォトダイオードである。煙検出用発光素子11および煙検出用受光素子12は、本体10内に設けられた暗箱(図示せず)内に設置され、煙検出部を構成している。この暗箱は、煙が入るラビリンスを備えている。そして、煙検出用発光素子11から発光された光がラビリンスから入った煙粒子により散乱され、その散乱光が煙検出用受光素子12に受光される。この煙検出用受光素子12の出力がアンプ13によって増幅される。
マイコン14は、火災感知器1全体の動作を制御する回路チップであり、マイクロプロセッサ(MPU)およびデータを保持するための記憶手段(メモリ)を内部に備え、各部に入出力するための複数のポートおよびアナログデジタル変換器(A/D)を有している。そして、マイコン14は、アンプ13の出力をA/D変換してデータ(A/D値)として取り込む。ここで、マイコン14は、アンプ13のゲインを火災判別時に対して感度測定時に高くなるように切り換えている。
EEPROM15は、書き換え可能な不揮発性メモリであり、火災判別レベル、初期状態での出力レベル、煙検出機能に関する断線判別レベル、感度許容範囲の上限値および下限値のレベルなどがA/D値と対比されるデータとして格納されている。これらのデータは、製造時に、感度調整されて書き込まれることになる。
火災表示灯16は、火災(煙)を検知したことを視覚的に報知するものであり、赤色などの可視光を発光するLEDが用いられる。この火災表示灯16は、火災感知器1の設置場所のどの方向からも見えるように、本体10の外面に2つ設けられている。
ブリンキング用トランジスタ17は、マイコン14からのパルス出力を受けて例えば10.5秒間隔で周期的にオンする。そこで、火災表示灯16が、例えば10.5秒間隔で周期的に点灯(ブリンキング)し、火災感知器1が稼働していることを視覚的に判別できる。
スイッチング回路18は、火災を検出したときに、マイコン14からの出力に基づいてオンされる自己保持回路である。このスイッチング回路18のオン状態保持により、火災受信機2からの一対の電源兼信号線4間のインピーダンスが高インピーダンスから低インピーダンスに変化され、火災受信機2に火災信号を送出する。また、この火災信号の送出と同時に、火災表示灯16が連続点灯する。
端子19は、火災受信機2からの一対の電源兼信号線4が接続される端子であり、火災信号出力端子と電源端子とを兼ねている。
感知器側送信素子としての感度データ送信用発光素子20は、感度データを送信する赤外LEDであり、マイコン14の制御により、例えば10.5秒間隔の周期で火災表示灯16の点灯に同期して発光(送信)している。この感度データ送信用発光素子20は、その発光が火災感知器1の設置面である天井から床面に向かって円錐状に出射されるように本体10の正面側に配設されている。即ち、感度データ送信用発光素子20の送信角度範囲が広角度となっている。
感知器側受信素子としての起動パルス受信用受光素子21は、感度テスター3から送信されるトリガー信号としての起動パルスを受光するためのフォトダイオードである。そして、光学フィルタ(図示せず)が起動パルス受信用受光素子21の前面に配置され、可視光をカットしている。さらに、起動パルス受信用受光素子21の受信角度範囲も、感度データ送信用発光素子20と同様に、広角度となっている。
ここで、EEPROM15に書き込まれるデータについて図13を参照しつつ説明する。なお、図13は火災感知器1における感度とA/D値との関係を示している。
この火災感知器1における感度許容範囲は、例えば1%/ft〜3%/ftとなっている。そして、初期の特性(NORMAL LEVEL)に基づいて、上下限の状態の特性を予想して、その状態の0%/ftのA/D値をD2、D3として、D1、D2、D3およびD4(A/D値)が、それぞれ断線判別レベル、感度許容範囲の下限値、感度許容範囲の上限値および火災判別レベルとして予め設定されて、EEPROM15に書き込まれる。また、感度許容範囲における上限領域(D3近辺)及び下限領域(D2近辺)を密に、かつ、中央領域を粗にして、例えばトータル30段に分割して得られた30段のレベル(A/D値)が感度出力されるパルス間隔TwのレベルとしてEEPROM15に書き込まれる。この30段の分割に関する粗密によって、限られた段数の中で、異常に近い部分のレベルを詳細に出力することができる。なお、D1、D2、D3およびD4の関係は、D1<D2<D3<D4となっている。
さらに、上記30段に対応するパルス間隔Twが各感度レベルに対応付けられてEEPROM15に書き込まれる。つまり、D3に対応するパルス間隔Twは1msに設定され、D2に対応するパルス間隔Twは40msに設定されている。また、1msと40msとの間をトータル30分割して得られたパルス間隔Twが、それぞれ上述の30段の感度レベルに対応する。さらに、感度異常の送信信号を表すパルス間隔Tw1、Tw2が例えば感度許容範囲に対応するパルス間隔1ms〜40msの範囲外である60ms、65msに設定されてEEPROM15に格納されている。
なお、後述するように、マイコン14は、感度としてA/D値が上下限D2、D3の範囲を外れるときに感度異常と判断して、火災表示灯16によって異常状態を示す点滅を行うので、異常時の範囲を上記30段から外しているが、異常時の範囲を含めて、上記30段のレベルを設定してもよい。
また、マイコン14のMPUには、制御手段23を備えている。この制御手段23は、起動パルス受信用受光素子21の起動パルス受信の有無を周期的に確認し、起動パルス受信時に、情報取得に関する動作を実行する。この情報取得に関する動作は、検出部を作動させて、検出部の出力をA/D値として取り込み、取り込まれた6つのA/D値を平均化して現在の感度として出力するものである。そして、制御手段23は、取り込まれたA/D値が感度許容範囲内に入っているか否かを判定する。さらに、得られた現在の感度が感度許容範囲を30段に分割して得られた感度レベルのいずれの段の感度レベルに合致しているかを判定し、合致する段の感度レベルに適合する2パルスのパルス間隔Twを設定して感度データ送信用発光素子20にパルス発光させる。また、取り込まれたA/D値が感度許容範囲内に入っていないと判別すると、パルス間隔Tw1(Tw2)を設定して感度データ送信用発光素子20にパルス発光させる。
なお、制御手段23は、起動パルス受信時に、起動パルスの受信を知らせる送信信号(応答パルスP0)を感度データ送信用発光素子20から送信させる機能を備えている。ここでは、取得する情報は検出部の感度情報である。
つぎに、感度テスター3の構成について図5乃至図7を参照しつつ説明する。
電源兼切換表示灯31は、緑色とオレンジ色の2色のLEDで構成され、感度テスター3の電源がオンされている状態を示すとともに、火災感知器が光電式/イオン化式の切換状態を示す。そして、感度測定の対象として、光電式の火災感知器の場合には緑色のLEDを点灯させ、イオン化式の火災感知器である場合にはオレンジ色のLEDを点灯させる。なお、電源投入時には、光電式が選択されるようになっている。
エラー表示灯32は赤色のLEDで構成され、感度テスター3が火災感知器1からの感度データを正常に受信できなかった場合に点灯する。表示器33は感度の数値を表示する7セグメント表示器であり、また、受信した感度データが許容範囲の上限値を超えている場合に「88」を表示し、下限値を下回っている場合に「00」を表示する。なお、感度データが許容範囲外であることがわかれば、「88」または「00」以外の表示であってもよい。
端末機器側受信素子としての感度データ受信用受光素子34は、感度データ送信用発光素子20から発光された赤外光を受光するためのフォトダイオードである。そして、光学フィルタ(図示せず)が感度データ受信用受光素子34の前面に配置され、可視光をカットしている。また、感度データ受信用受光素子34は本体30に穿設された開口30aから離間させて本体30内に配設され、受信角度範囲を狭くして指向性を高めている。
端末機器側送信素子としての起動パルス送信用発光素子35は、火災感知器1に向けて起動パルスを送信する赤外LEDである。この起動パルス送信用発光素子35は、マイコン38からの制御により、起動パルスを発光・送信する。また、起動パルス送信用発光素子35は本体30に穿設された開口30bから離間させて本体30内に配設され、送信角度範囲を狭くして指向性を高めている。
電源スイッチ36は、本体30の表面に設けられた押し釦式のスイッチであり、長押しにより電源をオン/オフする。そして、電源投入後の通常操作(長押しでない操作)により、光電式とイオン化式とのモード切替が行われる。
起動パルス送信・測定開始スイッチ37は、本体30の表面に設けられた押し釦式のスイッチであり、この起動パルス送信・測定開始スイッチ37の作動により、火災感知器1に起動パルスを送信するとともに、火災感知器1から送信される感度データの信号の受信を開始する。
マイコン38は、感度テスター3全体の動作を制御する回路チップであり、マイクロプロセッサ(MPU)39およびデータを保持するための記憶手段(メモリ)40を内部に備え、各部に入出力するための複数のポートを有している。
そして、マイコン38は、起動パルス送信・測定開始スイッチ37の作動を受けて、起動パルス送信用発光素子35から起動パルスを発光させ、火災感知器1に起動パルスを送信する。また、マイコン38は、火災感知器1からの送信信号を受信して、火災感知器1への起動パルスの送信を停止するとともに、火災感知器1から発信される感度データの信号の受信を開始する。
そして、感度データ受信用受光素子34の出力はアンプ41によって増幅され、搬送波復調器42により復調された後、マイコン38に取り込まれる。マイコン38に取り込まれた感度データのパルス間隔Twが、パルス間隔測定部43によって測定される。MPU39は、測定されたパルス間隔Twとメモリ40に格納されているデータとを比較して火災感知器1の感度の状態を判定し、判定結果を表示駆動部44に出力して表示器33に表示させる。なお、感度テスター3は手のひらサイズで携帯型であり、感度テスター3には、電池45が内蔵されている。
つぎに、このように構成された火災感知器の動作について図8乃至図11に示されるフローチャートおよび図14乃至図16に示されるタイムチャートを参照しつつ説明する。なお、以降および各図において、ステップ1、ステップ2・・を便宜上S1、S2・・と示している。
まず、火災感知器1全体の動作を制御するマイコン14の動作について、図8に示されるフローチャートに基づいて説明する。
電源が火災感知器1に投入され、動作をスタートする(S1)。そして、イニシャル処理(S2)を行った後、マイコン14を所定周期で起動させるタイマー回路24が動作を開始する。このタイマー回路24は3.5秒毎にタイムアップし(S3)、マイコン14に起動出力を出力する。これにより、マイコン14が、図14の(a)に示されるように、3.5秒周期でスリープ状態からラン状態となる。
ついで、マイコン14が起動すると、計数C1を1インクリメントする(S4)。そして、計数C1が3であるか否かを判定する(S5)。
S5において、C1≠3であれば、S6に移行して火災判別ルーチンを実行した後、S9に移行してブリンキングルーチンを実行する。また、S5において、C1=3であれば、C1を0に戻し(S7)、S8に移行して感度測定ルーチンを実行した後、S9に移行してブリンキングルーチンを実行する。このS4およびS5における計数動作は、3回に1回、火災判別ルーチンに代えて感度測定ルーチンを実行させるものである。
そして、S9のブリンキングルーチンが終了すれば、初期に戻って、タイムアップ(S3)を待つ。この時、マイコン14はスリープ状態であり、ステップとして示されていないが、ブリンキングルーチンの処理後に、マイコン14は自動的にラン状態からスリープ状態に入る。
つぎに、火災判別ルーチンの処理について図9を参照しつつ説明する。
火災判別ルーチンでは、マイコン14は、まずアンプ13を起動させる(S11)。このアンプ13の起動時、アンプ13の立ち上がり時間があるので、それに合わせて、起動パルス受信用受光素子21が起動パルスを受信しているか否かを判別する(S12)。S12において、起動パルス受信用受光素子21が起動パルスを受信していると判別されると、S13に移行して起動フラグF3をオンする。ついで、S14に移行して感度データ送信用発光素子20から応答パルスP0を送信した後、受光出力を取り込むことなくS9に移行してブリンキングルーチンが実行される。
ここで、S14の後にすぐS9へ移行するのは、応答パルスP0の発光によるわずかな電源電圧変動の影響を受けることが考えられ、正確なA/D値取り込みが確保できないからである。
また、S12において、起動パルス受信用受光素子21が起動パルスを受信していないと判別されると、S15に移行する。そして、S15において、マイコン14は、煙検出用発光素子11を発光させ、アンプ13で増幅された煙検出用受光素子12の受光出力をA/D変換して取り込む。
ついで、マイコン14は、取り込んだA/D値とEEPROM15に格納されている断線判別レベル(D1)とを比較し、煙検出用発光素子11または煙検出用受光素子12の断線などの異常を判別する(S16)。S16において、断線(取り込んだA/D値≦D1)と判別されると、S18に移行して断線フラグF1をオンする。また、断線でない(取り込んだA/D値>D1)と判別されると、S17に移行して断線フラグF1をオフとする。
続いて、マイコン14は、A/D値をEEPROM15に格納されている火災判別レベル(D4)と比較し、火災が発生したかを判別する(S19)。S19において、火災が発生していない(取り込んだA/D値<D4)と判別されると、S9に移行してブリンキングルーチンが実行される。一方、S19において、火災が発生している(取り込んだA/D値≧D4)と判別されると、S20に移行してスイッチング回路18に火災出力を出力し、その後S21に移行してマイコン14がストップ状態となる。
そして、スイッチング回路18は、火災出力を受けてオンして自己保持し、端子19間を低インピーダンス状態に維持する。これにより、端子19に接続されている電源兼信号線4を介して火災受信機2に火災信号が出力される。また、スイッチング回路18がオン状態に自己保持されているので、火災表示灯16が、図14の(c)に示されるように、点灯状態を維持し、火災発生が視覚的に報知される。ここで、マイコン14を火災出力後にストップ状態とすることは、スイッチング回路18がオン状態となると、低インピーダンス状態となり、電源電位が低下してしまい、火災感知器1が通常通りに動作できなくなるからである。
つぎに、感度測定ルーチンの処理について図10を参照しつつ説明する。
感度測定ルーチンでは、マイコン14は、まずアンプ13を起動させる(S31)。このアンプ13の起動時、アンプ13の立ち上がり時間があるので、それに合わせて、起動パルス受信用受光素子21が起動パルスを受信しているか否かを判別する(S32)。S32において、起動パルス受信用受光素子21が起動パルスを受信していると判別されると、S33に移行して起動フラグF3をオンする。ついで、S34に移行して感度データ送信用発光素子20から応答パルスP0を送信した後、受光出力を取り込むことなくS9に移行してブリンキングルーチンが実行される。
また、S32において、起動パルス受信用受光素子21が起動パルスを受信していないと判別されると、S35に移行する。そして、S35において、マイコン14は、煙検出用発光素子11を発光させ、アンプ13で増幅された煙検出用受光素子12の受光出力をA/D変換して取り込む。この感度測定ルーチンでは、煙が存在していないため、煙検出用受光素子12の出力は低レベルとなる。そこで、低レベルの出力を正確に判別するために、アンプ13のゲインを高く設定し、大きく増幅した受光出力を取り込んでいる。
ついで、マイコン14は、メモリに記憶されているA/D値を書き換える。すなわち、メモリに格納されている一番古いデータを最新のデータに更新するフィルター処理を行う。そして、メモリに格納されている6個のデータからA/D値の平均値を算出する(S36)。この算出した平均値を現在の感度としてメモリの所定位置に格納する(S37)。
ついで、マイコン14は、メモリに格納されている平均値と、EEPROM15に格納されている許容範囲の上限値および下限値のレベル(D3、D2)とを比較し、現在の感度が許容範囲内であるかを判別する(S38)。S38において、現在の感度が許容範囲外(取り込んだA/D値<D2、あるいはA/D値>D3)であると判別されると、S40に移行して異常フラグF2をオンとする。一方、S38において、現在の感度が許容範囲内(D2≦取り込んだA/D値≦D3)であると判別されると、S39に移行して異常フラグF2をオフとする。その後、S9に移行してブリンキングルーチンが実行される。
なお、火災感知器1の経年変化は、暗箱内の汚れや回路素子の劣化などにより感度が徐々に変化することにより発生するものである。この感度変化は徐々に変化することから、この感度測定ルーチンでは、1分間の平均値をとることで、一瞬の異常値の影響をなくしている。
つぎに、ブリンキングルーチンの処理について図11を参照しつつ説明する。
ブリンキングルーチンでは、マイコン14は、まず送信フラグF4がオンされているか否かを判別する(S41)。そして、S41において、送信フラグF4がオンされていると判別されると、マイコン14は、メモリに格納されている現在の感度のデータを読み出し(S42)、当該データに対応した発光出力を出力し(S43)、送信フラグF4をオフとして(S44)、S47に移行する。
そして、S43においては、マイコン14は、EEPROM15に格納されている感度許容範囲の上限値(D3)から下限値(D2)までに対して、現在の感度のデータがD2とD3との間のいずれの段の感度レベルに属しているかを判断する。そして、例えば、現在の感度のデータがD3に一致していれば、図16の(a)に示されるように、1msのパルス間隔Twの発光出力を出力する。また、現在の感度のデータがD2に一致していれば、図16の(b)に示されるように、40msのパルス間隔Twの発光出力を出力する。そして、EEPROM15に格納されている30段の感度レベルに対応するパルス間隔Twから、現在の感度のデータが属する段の感度レベルに対応するパルス間隔Twを選択し、選択されたパルス間隔Twの発光出力を出力する。
また、S43において、現在の感度のデータが感度許容範囲より下回っていると、パルス間隔Tw1を選択し、パルス間隔Tw1の発光出力を出力する。また、現在の感度のデータが感度許容範囲を上回っていると、パルス間隔Tw2を選択し、パルス間隔Tw2の発光出力を出力する。
この感度のデータに対応した発光出力は、図15に示されるように、特定の周波数fc、例えば38kHzで変調されて、感度データ送信用発光素子20に出力される。これにより、感度データ送信用発光素子20から発光される光が白熱電球や蛍光灯などのノイズ光源から光と区別される。
また、S41において、送信フラグF4がオフされていると判別されると、S45に移行して係数C1が0であるかを判別する。S45において、C1≠0であると判別されると、S50に移行する。また、S45において、C1=0であると判別されると、S46に移行して断線フラグF1がオンしているかを判別する。
そして、S46において、断線フラグF1がオンしていると判別されると、マイコン14はブリンキング用トランジスタ17の消灯を維持させ、S50に移行する。そして、火災表示灯16は、図14の(d)に示されるように、消灯し、断線不良の発生、あるいは電源オフが視覚的に報知される。
また、S46において、断線フラグF1がオフしていると判別されると、S47に移行して異常フラグF2がオンしているかを判別する。
そして、S47において、異常フラグF2がオフしていると判別されると、S48に移行し、マイコン14はブリンキング用トランジスタ17に通常のパルス点灯出力を出力した後、S50に移行する。このパルス点灯出力により、ブリンキング用トランジスタ17がパルス的にオンし、火災表示灯16はパルス点灯し、火災感知器1が正常に動作していることが視覚的に報知される。この火災表示灯16のパルス点灯は、係数C1が0、断線フラグF1がオフ、かつ、異常フラグF2がオフの場合に行われ、図14の(b)に示されるように、10.5秒に1回の割合で、周期的にパルス点灯するブリンキング動作となる。
また、S47において、異常フラグF2がオンしていると判別されると、S49に移行してブリンキング用トランジスタ17にパルス点灯出力を2回出力した後、S50に移行する。そして、パルス点灯出力がブリンキング用トランジスタ17に2回出力されると、火災表示灯16が、図14の(e)に示されるように、2回続けてパルス点灯するダブルブリンキングを行い、通常のブリンキングと明確に区別でき、火災感知器1が感度異常であることが視覚的に報知される。
ついで、S50において、起動フラグF3がオンしているか否かを判別する。そして、起動フラグF3がオンしていると判別されると、S51に移行して送信フラグF4をオンし、ついでS52に移行して起動フラグF3をオフとした後、初期に戻って、タイムアップ(S3)を待つ。また、S50において、起動フラグF3がオフしていると判別されると、初期に戻って、タイムアップ(S3)を待つ。
これにより、起動パルスを受信した場合(起動フラグF3がオンしている場合)、次のタイムアップ後(3.5秒後)、現在の感度のデータを表すパルス間隔Twの2パルスが感度データ送信用発光素子20から発光される。そして、この感度のデータの送信は、計数C1にかかわらず行われ、同時に、火災表示灯16のパルス点灯が同じタイミングで行われ、感度データが送信されていることが目視確認できる。
つぎに、感度テスター3の動作について図12および図17を参照しつつ説明する。なお、図12に示されるフローチャートは、感度テスター3全体の動作を制御するマイコン37の動作である。
感度テスター3は、まず電源スイッチ36の長押しにより電源が投入されてスタートする。そこで、マイコン37はイニシャル処理(S61)を行った後、スイッチ操作を監視する。
そして、S62において、電源スイッチ36が通常操作されると、モード切替が行われ(S63)、感度測定される火災感知器1が光電式かイオン化式かが選択され、電源兼切換表示灯31が選択されたモードに応じて点灯する。
ついで、S64において、起動パルス送信・測定開始スイッチ37がオンされたか否かを判別する。起動パルス送信・測定開始スイッチ37がオンされたと判別されると、S65に移行してタイマーT4がスタートされ、ついでS66に移行して起動パルス送信用発光素子35を発光させ、起動パルスを送信させる。そして、S67に移行して応答パルスP0の有無を判別する。このタイマーT4は、10秒に設定されている。そこで、タイマーT4がタイムアップするまで、起動パルスを連続して送信する。そして、応答パルスP0が受信されることなくタイマーT4がタイムアップすると(S68)、S86に移行してエラー表示灯32を点灯させ、エラー表示する。
また、タイマーT4がタイムアップするまでに応答パルスP0が受信されると、S69に移行してタイマーT4をクリアし、S70に移行してタイマーT1をスタートさせた後、S71に移行して感度データを示す1回目のパルスP1を待つ。この時、タイマーT1は例えば30秒に設定され、タイマーT1がタイムアップするまで1回目のパルスP1を待つ(S72)。そして、タイマーT1がタイムアップすると、エラーと判断し、S86に移行してエラー表示灯32を点灯させ、エラー表示する。
そして、S71において1回目のパルスP1が受信されると、カウンタがスタートされ(S73)、タイマーT1がクリアされる(S74)。ついで、タイマーT2がスタートされ(S75)、感度データを示す2回目のパルスP2を待つ(S76)。この時、タイマーT2は例えば0.5秒に設定され、タイマーT2がタイムアップするまで2回目のパルスP2を待つ(S77)。そして、タイマーT2がタイムアップすると、エラーと判断し、S86に移行してエラー表示灯32を点灯させ、エラー表示する。
そして、S76において2回目のパルスP2が受信されると、カウンタがストップされ(S78)、タイマーT2がクリアされる(S79)。ついで、タイマーT3がスタートされ(S80)、パルスを待つ(S81)。この時、タイマーT3は例えば3.0秒に設定されている。そして、タイマーT3がタイムアップするまでに3回目のパルスが受信されると、ノイズによるエラーと判断し、タイマーT3がクリアされ(S82)、S86に移行してエラー表示灯32を点灯させ、エラー表示する。つまり、必要のないパルスを検出していることであり、図17の(b)に示されるように、3回目のパルスがノイズパルスPnと認識され、エラー表示されることになる。
また、図17の(a)に示されるように、3回目のパルスが受信されることなくタイマーT3がタイムアップする(S83)と、S84に移行する。そこで、マイコン38は、カウンタがスタートしてストップするまでのカウント値から現在の感度を換算し、現在の感度の数値(単位:%/ft)を表示器33に表示する(S85)。また、カウント値から換算された現在の感度が感度許容範囲を下回っていると、「00」を表示器33に表示し、上回っていると、「88」を表示器33に表示する。これにより、点検者が感度の異常を認識できる。この時、マイコン38は、取得した現在の感度をメモリ40に保持し、表示器33への表示を維持する。
このように、感度テスター3は、起動パルス送信・測定開始スイッチ37の操作に基づいて火災感知器1からの感度データの受信動作を行い、表示器33に受信した現在の感度を表示(S85)し、あるいは、エラー表示灯32にエラー表示する(S86)。その後、マイコン37は、イニシャル処理を行った後のスイッチ操作の監視に戻る。そして、起動パルス送信・測定開始スイッチ37の操作があるたびに、上述の動作を繰り返す。なお、起動パルス送信・測定開始スイッチ37の操作時には、表示器33またはエラー表示灯32の表示はクリアされ、メモリ40に格納されている現在の感度もクリアされる。
また、タイマーT1、T2、T4がタイムアップしてしまった場合(S68、S72、S77)、或いはタイマーT3がタイムアップする前に3つめのパルスが受信された場合(S81)には、応答パルスP0または感度データを示す2つのパルスP1、P2が正常に受信されなかったとし、マイコン38は、エラー表示灯32を点灯し、エラー表示を行う。そこで、点検者は、起動パルス送信・測定開始スイッチ37を操作して、感度測定を再度実行することになる。
また、火災感知器1の近傍に設置されている照明機器から照明光として赤外光が照射されることがある。この照明機器からの赤外光が感度テスター3に受信されると、タイマーT3がタイムアップする前に3つめのパルス、即ちノイズが受信されたことになる。この場合、エラー表示灯32が点灯し、点検者が視覚的にエラーを認識できる。そこで、点検者は、感度テスター3を火災感知器1に近づけて感度測定を再度実行することができ、ノイズを確実に排除することができる。
このように、この発明によれば、制御手段23が、起動パルス受信用受光素子21の起動パルスの受信の有無を周期的(3.5秒毎)に確認して起動パルスの受信時に情報取得(感度取得)に関する動作を実行している。そして、感度テスター3が、起動パルス送信用発光素子35から起動パルスを上記周期以上(10秒)の期間、連続的に発生している。そこで、火災感知器1は、例えばマイコンの起動するタイミングで起動パルスの受信の有無を確認でき、起動パルスの受信時に情報取得に関する動作を実行できるので、消費電力を低減することができる。
また、火災感知器1は、起動パルスの受信がある時に、情報取得に関する動作の実行に先だって応答パルスP0を送信し、感度テスター3は、応答パルスP0を受信すると、起動パルスの送信を停止し、情報信号の受信を開始している。そこで、感度テスター3による情報信号の受信動作が火災感知器1による取得情報の送信動作に同期して行われ、より消費電力を低減することができる。
また、感度データ送信用発光素子20および起動パルス受信用受光素子21の送受信角度範囲が広角度範囲に設定され、感度データ受信用受光素子34および起動パルス送信用発光素子35の送受信角度範囲が狭角度範囲に設定されている。そこで、感度テスター3の作業位置が限定されず、感度テスター3の送受信方向を火災感知器1に向けることで、ノイズ成分を拾わずに確実な信号の送受信を行うことができる。
また、現在の感度が感度許容範囲内であるか否かを判別し、感度許容範囲外である(感度異常)と判別したときに、パルス間隔Tw1、Tw2で2パルスを感度データ送信用発光素子20から発光させるとともに、火災表示灯16をダブルブリンキングさせている。そこで、点検者が、火災感知器1の点検作業時に、感度テスター3Aの表示器33の「00」又は「88」の表示から感度異常を認識できるとともに、火災表示灯16のダブルブリンキングから感度異常を認識できるので、感度異常が実際に発生していることを明確に判断できる。
また、感度許容範囲内に入っている感度情報と感度許容範囲内に入っていない異常情報とが単一の感度データ送信用発光素子20を用いて送信されているので、部品点数が削減され、火災感知器1の低コスト化、小型化が図られる。
また、現在の感度が感度許容範囲内のいずれの段の感度レベルに入っているかを判断し、現在の感度が入っている段の感度レベルに適合するパルス間隔Twを設定し、設定されたパルス間隔Twで感度データ送信用発光素子20に2パルスを所定のタイミングで発信させるようにしている。そこで、感度データをコード化した伝送データに基づいて発光素子を発光させて感度データを送信する従来技術に比べて、感度データ送信用発光素子20の発光回数が極めて低減され、低消費電力化が図られる。
また、感度許容範囲の上限領域および下限領域を密に分割し、感度許容範囲の中央領域を粗に分割して、30段の感度レベルを得ているので、感度許容範囲の上限領域および下限領域の分解能が高くなり、感度許容範囲の上限領域または下限領域に到達した時の現在の感度を高精度に検知できる。そこで、現在の感度が感度許容範囲外となる前に、火災感知器1の検出部を交換することができ、安定した火災検知を実現できる。
また、感度データ送信用発光素子20から感度データを送信するパルスに同期して、火災表示灯16をブリンキングさせているので、点検者が火災感知器1から感度データが送信されていることを目視確認でき、感度データの点検作業が容易となる。
また、感度テスター3が、所定のタイミングに3つ以上のパルスを受信したときに、又は、所定のタイミング外でパルスを受信したときに、エラー表示灯32にエラー表示するようにしているので、ノイズによる感度データの誤検出を防止できる。そこで、エラー表示32にエラー表示されたら、再度測定をし直すことで、ノイズの影響を排除して、正確な感度データを得ることができる。
なお、上記実施の形態では、感度許容範囲の上限領域および下限領域を密に分割し、感度許容範囲の中央領域を粗に分割して、30段の感度レベルを得るものとして説明しているが、感度許容範囲を均一に30段に分割して感度レベルを得るようにしてもよい。
また、上記実施の形態では、感度レベルの段数は30段に限定されるものではなく、火災感知器1の仕様に基づいて適宜設定されるものである。
また、上記実施の形態では、現在の感度を表すための30段の感度レベルに対応するパルス間隔TwをEEPROM15に予め格納するものとして説明しているが、マイコン14が、現在の感度が30段の感度レベルのいずれの段の感度レベルに対応するかを判別した後、該当する段の感度レベルに対応するパルス間隔Twを演算処理して算出するようにしてもよい。この場合、マイコン14が、EEPROM15に格納されている感度許容範囲の上限値(D3)および下限値(D2)を読み出し、読み出された上限値(D3)および下限値(D2)に基づいて30段の感度レベルを演算処理して算出するようにしてもよい。
また、上記実施の形態では、現在の感度(感度レベル)を2パルスのパルス間隔で表すものとして説明しているが、感度レベルを表すパルスの時間的要素はパルス間隔に限定されるものではなく、例えばパルス幅で表すようにしてもよい。
また、上記実施の形態では、表示器33を用いて感度表示を行い、エラー表示灯32を用いてエラー表示を行うものとしているが、表示器33を用いて感度表示とエラー表示を行うようにしてもよい。
また、上記実施の形態では、火災感知器として煙感知器を用いるものとして説明しているが、火災感知器は煙感知器に限定されるものではなく、例えば熱感知器などを用いてもよい。
また、上記実施の形態では、検出部の感度データを取得するものとして説明しているが、取得する情報は検出部の感度データに限定されるものではなく、例えば自動試験機能を有するときの正常あるいは異常の結果、設定されているアドレスやシリアル番号、火災感知器としての種別、動作の履歴などでもよい。
この発明の実施の形態に係る火災感知器の状態情報取得システムを模式的に示すシステム図である。 この発明の実施の形態に係る火災感知器を示す正面図である。 この発明の実施の形態に係る火災感知器の構成を模式的に示すブロック図である。 この発明の実施の形態に係る火災感知器の回路構成を模式的に示すブロック回路図である。 この発明の実施の形態に係る感度テスターを示す正面図である。 この発明の実施の形態に係る感度テスターの構成を模式的に示すブロック図である。 この発明の実施の形態に係る感度テスターの回路構成を模式的に示すブロック回路図である。 この発明の実施の形態に係る火災感知器の全体動作を説明するフロー図である。 この発明の実施の形態に係る火災感知器における火災判別動作を説明するフロー図である。 この発明の実施の形態に係る火災感知器における感度測定動作を説明するフロー図である。 この発明の実施の形態に係る火災感知器におけるブリンキング動作を説明するフロー図である。 この発明の実施の形態に係る感度テスターの動作を説明するフロー図である。 この発明の実施の形態に係る火災感知器における感度とA/D値との関係を説明する図である。 この発明の実施の形態に係る火災感知器における火災表示灯および感度データ送信用発光素子の動作を説明するタイミングチャートである。 この発明の実施の形態に係る火災感知器における感度データ送信用発光素子への出力パルスを示す図である。 この発明の実施の形態に係る火災感知器における感度レベルに対応するパルス間隔の設定状態を説明するタイミングチャートである。 この発明の実施の形態に係る感度テスターにおける動作を説明するタイミングチャートである。
符号の説明
1 火災感知器、3 感度テスター(端末機器)、20 感度データ送信用発光素子(感知器側送信素子)、21 起動パルス受信用受光素子(感知器側受信素子)、23 制御手段、34 感度データ受信用受光素子(端末機器側受信素子)、35 起動パルス送信用発光素子(端末機器側送信素子)。

Claims (3)

  1. トリガー信号を受信する感知器側受信素子と、該感知器側受信素子の上記トリガー信号の受信の有無を周期的に確認して該トリガー信号の受信時に情報取得に関する動作を実行する制御手段と、を有する火災感知器と、
    上記トリガー信号を送信する端末機器側送信素子を有し、該端末機器側送信素子から該トリガー信号を上記周期以上の期間、連続的に発生する端末機器と、を備え、
    上記火災感知器は、感知器側送信素子を有し、上記制御手段が、上記トリガー信号の受信がある時に、該感知器側送信素子から応答信号を送信することを特徴とする火災感知器の状態情報取得システム。
  2. トリガー信号を受信する感知器側受信素子と、情報信号を送信する感知器側送信素子と、該感知器側受信素子の上記トリガー信号の受信の有無を周期的に確認し、該トリガー信号の受信時に情報取得に関する動作を実行し、取得した上記情報信号を上記感知器側送信素子から送信する制御手段と、を有する火災感知器と、
    端末機器側送信素子と、端末機器側受信素子と、を有し、該端末機器側送信素子から上記トリガー信号を上記周期以上の期間、連続的に発生させるとともに、上記情報信号を該端末機器側受信素子により受信する端末機器と、を備え、
    上記制御手段は、上記トリガー信号の受信がある時に、上記情報取得に関する動作の実行に先だって該感知器側送信素子から応答信号を送信し、上記端末機器は、上記端末機器側受信素子が上記応答信号を受信すると、上記トリガー信号の送信を停止し、上記情報信号の受信を開始することを特徴とする火災感知器の状態情報取得システム。
  3. 上記感知器側受信素子および感知器側送信素子の送受信角度範囲が、上記端末機器側送信素子および受信素子の送受信角度範囲より広角度に構成されていることを特徴とする請求項2記載の火災感知器の状態情報取得システム。
JP2004100400A 2004-03-30 2004-03-30 火災感知器の状態情報取得システム Expired - Fee Related JP4323360B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100400A JP4323360B2 (ja) 2004-03-30 2004-03-30 火災感知器の状態情報取得システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100400A JP4323360B2 (ja) 2004-03-30 2004-03-30 火災感知器の状態情報取得システム

Publications (2)

Publication Number Publication Date
JP2005284916A JP2005284916A (ja) 2005-10-13
JP4323360B2 true JP4323360B2 (ja) 2009-09-02

Family

ID=35183206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100400A Expired - Fee Related JP4323360B2 (ja) 2004-03-30 2004-03-30 火災感知器の状態情報取得システム

Country Status (1)

Country Link
JP (1) JP4323360B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241930A (ja) * 2006-03-13 2007-09-20 Yazaki Corp 警報器

Also Published As

Publication number Publication date
JP2005284916A (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4344269B2 (ja) 火災感知器およびその状態情報取得システム
KR20100130599A (ko) 경보기
JP6013027B2 (ja) 火災報知システム、火災報知システムの火災判断方法、及び火災報知システムの火災判断プログラム
JP3243115B2 (ja) 光電式感知器及び火災感知システム
US7948628B2 (en) Window cleanliness detection system
JP5022767B2 (ja) 多光軸光電センサ
JP4323360B2 (ja) 火災感知器の状態情報取得システム
JP4391046B2 (ja) 火災感知器
JP4359526B2 (ja) 火災感知器
JP2006065545A (ja) 火災感知器の状態表示器
JPH07262464A (ja) 火災感知器および火災受信機
JP3945756B2 (ja) 火災感知器
JP2007028388A (ja) 光電スイッチ
JP7397934B2 (ja) 光電式煙感知器
JP4281866B2 (ja) 火災報知設備および火災感知器
JPH023889A (ja) 汚れ度合表示装置
JP2003109136A (ja) 火災報知設備および火災感知器
JP3849079B2 (ja) 火災感知器
JPH056489A (ja) 光電式煙感知器
JP2005250986A (ja) 火災感知器
JPH05225466A (ja) 光電式分離型煙感知器
JP2018116333A (ja) 火災感知器、火災感知器の情報取得システム、及び火災感知器の感度検査装置
JPS5947360B2 (ja) 減光式火災感知器
JPH0574029U (ja) 多光軸光電スイッチ
JPH02311997A (ja) 光電式煙感知器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees