JP4321420B2 - エンジンの可変バルブタイミング装置 - Google Patents

エンジンの可変バルブタイミング装置 Download PDF

Info

Publication number
JP4321420B2
JP4321420B2 JP2004283904A JP2004283904A JP4321420B2 JP 4321420 B2 JP4321420 B2 JP 4321420B2 JP 2004283904 A JP2004283904 A JP 2004283904A JP 2004283904 A JP2004283904 A JP 2004283904A JP 4321420 B2 JP4321420 B2 JP 4321420B2
Authority
JP
Japan
Prior art keywords
engine
advance
valve
control region
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004283904A
Other languages
English (en)
Other versions
JP2006097539A (ja
Inventor
道広 山内
正美 西田
真希夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004283904A priority Critical patent/JP4321420B2/ja
Publication of JP2006097539A publication Critical patent/JP2006097539A/ja
Application granted granted Critical
Publication of JP4321420B2 publication Critical patent/JP4321420B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

この発明は、エンジンのバルブタイミングを自由に変更しる可変バルブタイミング装置に関し、特に、クランクシャフトとカムシャフトの間をチェーン機構を介して動力伝達を行うように構成したエンジンの可変バルブタイミング装置に関する。
近年、吸気効率の向上、NO低減による排気エミッションの向上、及び内部EGRの導入に応じたポンピングロスの低減による燃費性能の向上などを目的として、吸排気弁のバルブ特性をエンジン運転状況に応じて可変とする可変バルブタイミング装置付きの車両用エンジンが実用されている。
例えば、吸気弁のバルブタイミングを変更する下記特許文献1では、アイドリング時に吸排気のオーバーラップ量が最も少ない最遅角に吸気弁を位相制御することで、エンジンに安定燃焼を行わせつつ、中回転・高負荷時等の負荷運転時には、吸排気のオーバーラップ量を様々変更するよう吸気弁の進角度合を制御することで、内部EGR量を増加させることによりポンピングロスを低減し燃費向上を図ったり、燃焼温度を抑えてNO発生を抑え排気浄化を図ったりしている。さらに、所定の回転数を超える高回転時には、アイドリング時と同様に最遅角に位相制御することで、吸排気のオーバーラップ量をなくし、十分なエンジン出力を得るようにしている。
特開2004−137901号公報
ところで、クランクシャフトとカムシャフトの間をチェーン機構(ローラチェーン)を介して動力伝達を行うように構成したエンジンでは、エンジン回転数の上昇に伴いクランクシャフトのドライブスプロケットとカムシャフトのドリブンスプロケットの間(引張り側)において、チェーン張力が増大する。これはエンジン回転速度の上昇に伴いスプロケットの歯とチェーンのローラとの噛合い速度が高くなるためである。
よって、チェーンの耐久性を評価する耐久評価基準値は、エンジン回転数の上昇に伴って低下するように設定している。
このため、チェーンの仕様の選定は、エンジンの最高回転数等からチェーンの張力値を踏まえた上で慎重に決定している。もっとも、耐張力値の高い過剰なチェーンの仕様の選定は、コストアップ、重量増加を招くため、最適な仕様を選定するのが一般である。
前述の可変バルブタイミング装置付きのエンジンにおいても、こうしたことを前提にチェーンの仕様を選定するが、この可変バルブタイミング装置付きのエンジンでは、特に、高回転時において、最遅角に位相制御するため、油圧ベーン式の位相可変ユニットの進角室内にオイルが無くなり、進角室を挟むカムシャフト側のロータとドリブンスプロケット側のハウジングとが所謂メタルタッチ(金属面同士が直接接触すること)状態となってしまう。
このように、メタルタッチ状態となると、チェーンに対して、エンジンのトルク変動による瞬間的な大荷重が脈動的に作用することになり、チェーンの平均的な張力値が前述の耐久評価基準値よりも低くても、瞬間的に張力のピーク値が耐久評価基準値を超えるおそれが生じ、チェーンの信頼性を悪化させるという問題が生じる。
この問題に対しては、チェーンの仕様を耐張力値の高いものに変更することが考えられるが、瞬間的なピーク値のためだけに耐張力値の高いものに変更することは、前述したように、コストアップ、重量増加を招くため、適切な解決手法とは言えない。
そこで、この発明は、エンジンの可変バルブタイミング装置において、チェーンの仕様を耐張力値の高いものに変更することなく、チェーンの信頼性向上を図ることができるエンジンの可変バルブタイミング装置を提供することを目的とする。
この発明のエンジンの可変バルブタイミング装置は、クランクシャフトからの駆動力を吸気カムシャフトに伝達するチェーン機構と、該チェーン機構と吸気カムシャフトの間に設けられ、吸気カムシャフトの周方向に容積が変化する進角室を有し該進角室にオイルを供給することで吸気弁の開弁位相を進角させる油圧ベーン式の位相可変機構と、少なくともエンジン回転数の情報に基づいて、該位相可変機構の進角室にオイルの供給制御を行う制御手段とを備えたエンジンの可変バルブタイミング装置であって、前記制御手段の制御領域として、前記進角室にオイルを供給せずに、該進角室の容積を最小にして吸気弁の開弁位相を最遅角に設定するアイドル制御領域と、前記進角室にオイルを供給して、少なくともエンジン回転数に応じて吸気弁の開弁位相を所定の進角値に制御する負荷制御領域と、前記進角室にオイルを供給して、所定の高回転領域で前記チェーン機構に生じる衝撃を緩和するように吸気弁の開弁位相を数度の進角値とする高回転制御領域とを含み、前記高回転制御領域が、第一高回転数を超えると進角室にオイルを供給せずに、進角室の容積を最小として吸気弁の開弁位相を最遅角とする第一高回転制御領域と、第一高回転数よりも高い第二高回転数を超えると進角室にオイルを供給してチェーン機構に生じる衝撃を緩和するように吸気弁の開弁位相を数角度の進角値とする第二高回転制御領域とを含むものである。
上記構成によれば、アイドル制御領域では、進角室にオイルを供給せずに進角室の容積を最小にして吸気弁の開弁位相を最遅角に設定することになり、負荷制御領域では、進角室にオイルを供給して、少なくともエンジン回転数に応じて吸気弁の開弁位相を所定の進角値に制御することになり、高回転制御領域では、進角室にオイルを供給して、所定の高回転領域でチェーン機構に生じる衝撃を緩和するように、吸気弁の開弁位相を数度の進角値とすることになる。
すなわち、高回転制御領域において、進角室にオイルを供給することで、アイドル制御領域とは異なり、進角室が所謂メタルタッチ状態とならずオイルで充填されるため、チェーン機構に生じる衝撃を位相可変機構の進角室からリークするオイルで緩和することができるのである。
しかも、前記高回転制御領域が、第一高回転数を超えると進角室にオイルを供給せずに、進角室の容積を最小として吸気弁の開弁位相を最遅角とする第一高回転制御領域と、第一高回転数よりも高い第二高回転数を超えると進角室にオイルを供給してチェーン機構に生じる衝撃を緩和するように、吸気弁の開弁位相を数角度の進角値とする第二高回転制御領域とを含むものであるから、次の作用、効果を奏する。
すなわち、第一高回転数を超える第一高回転制御領域で、進角室にオイルを供給せずに、進角室の容積を最小として吸気弁の開弁位相を最遅角とし、第一高回転数よりも高い第二高回転数を超える第二高回転領域で、進角室にオイルを供給して、チェーン機構に生じる衝撃を緩和するよう吸気弁の開弁位相を数角度の進角値とすることになる。
このため、第一高回転制御領域(第一高回転数と第二高回転数の間)では、進角室がメタルタッチ状態となるもののアイドル制御領域と同様のバルブタイミングとなるため、エンジン出力を最大限高めることができる。一方、第二高回転制御領域(第二高回転数以上)では、耐久評価基準値が低下して瞬間的にチェーンの張力値が超えてしまうおそれが高くなるため、進角室にオイルを供給することでチェーンに生じる衝撃を緩和してチェーン機構の信頼性を向上することができる。
よって、高回転領域において、最大限にエンジン出力を向上しつつも、チェーン機構の信頼性を確保することができる。
なお、この数度の進角値とは、チェーン機構に生じる衝撃を緩和できる程度の進角値であればよく、特に限定されるものではない。
この発明の一実施態様においては、前記吸気カムシャフトに、燃料噴射装置の高圧燃料ポンプを駆動する駆動カムを設けたものである。
上記構成によれば、吸気カムシャフトに設けた駆動カムで燃料噴射装置の高圧燃料ポンプを駆動することになる。
このため、チェーン機構には、吸気カムシャフトに高圧燃料ポンプの駆動抵抗が掛かることから大きな負荷が生じ、チェーンの張力値も大きくなるが、前述のように進角室にオイルを供給してチェーン機構に生じる衝撃を緩和しているため、チェーン機構の信頼性を確保することができる。
よって、チェーンの仕様を耐張力値の高いものに変更しなくても、吸気カムシャフトで高圧燃料ポンプを駆動することができる。
この発明の一実施態様においては、前記高回転制御領域の吸気弁の開弁位相の数度の進角値は、前記負荷制御領域の最小の進角値よりも小さく設定したものである。
上記構成によれば、高回転制御領域の吸気弁の開弁位相の進角値を負荷制御領域の最小の進角値よりも小さく設定することになる。
よって、エンジン性能に対する影響をできるだけ少なくした状態で、チェーン機構の信頼性を向上することができる。
この発明の一実施態様においては、前記高回転制御領域の吸気弁の開弁位相の数度の進角値は、エンジン負荷等によって変化しない一定値としたものである。
上記構成によれば、高回転制御領域の吸気弁の開弁位相の数度の進角値は、エンジン負荷等によって変化しないことになる。
よって、エンジン負荷等に応じて細かい制御を行わないため、一定圧のオイルを常時安定して進角室に供給してチェーン機構の信頼性を向上することができる。
この発明によれば、高回転制御領域において、進角室にオイルを供給することで、アイドル制御領域とは異なり、進角室が所謂メタルタッチ状態とならずオイルで充填されるため、チェーン機構に生じる衝撃を緩和することができる。
したがって、エンジンの可変バルブタイミング装置において、チェーンの仕様を耐張力値の高いものに変更することなく、チェーンの信頼性向上を図ることができる。
また、第一高回転制御領域(第一高回転数と第二高回転数の間)では、進角室がメタルタッチ状態となるもののアイドル制御領域と同様のバルブタイミングとなるため、エンジン出力を最大限高めることができる。一方、第二高回転制御領域(第二高回転数以上)では、耐久評価基準値が低下して瞬間的にチェーンの張力値が超えてしまうおそれが高くなるため、進角室にオイルを供給することでチェーンに生じる衝撃を緩和してチェーン機構の信頼性を向上することができる。
よって、高回転領域において、最大限にエンジン出力を向上しつつも、チェーン機構の信頼性を確保することができる効果がある。
以下、図面に基づいて本発明の実施形態を詳述する。
まず、図1〜図4で本実施形態の可変バルブタイミング装置付きのエンジン1の概略について説明する。図1は、本発明の可変バルブタイミング装置を採用したエンジン1とその周辺機器を示す概略構成図、図2はそのエンジン1を上方から見た平面図、図3は図2に示すA−A線矢視断面図で油圧ベーン式の位相可変ユニットの断面図、図4は可変バルブタイミング装置により変化する開弁位相状態を説明する開弁位相図である。
この可変バルブタイミング装置付きのエンジン1は、図1に示すように、駆動力を外部に出力するクランクシャフト11と、吸気弁(図示せず)を開閉駆動する吸気カムシャフト12と、排気弁(図示せず)を開閉駆動する排気カムシャフト13とを有し、この吸気カムシャフト12と排気カムシャフト13は、チェーン機構2を介してクランクシャフト11から駆動力を受けて回転駆動されるように構成している。
このチェーン機構2は、クランクシャフト11に固定したドライブスプロケット20と、吸気カムシャフト12に固定した第一ドリブンスプロケット21と、排気カムシャフト13に固定した第二ドリブンスプロケット22と、これらスプロケット全てに噛合するチェーン本体23と、で構成している。なお24は、チェーン本体23の張力を調整するアイドラである。このチェーン本体23の詳細構造については、後述する。
また、吸気カムシャフト12と第一ドリブンスプロケット21の間には、吸気カムシャフト12の開弁位相を変更しる油圧ベーン式の位相可変ユニット3を装着している。この位相可変ユニット3に対して作動油(オイル)を給排出することによって、吸気カムシャフト12によって駆動される吸気弁の開弁位相を進角または遅角する。
次に、可変バルブタイミング装置のシステム構造は、クランクシャフト11の回転角を検出するクランク角センサ41と、吸気カムシャフト12の回転位置等を検出するカム角センサ42と、これらセンサ41,42からの情報に基づき吸気カムシャフト12の進角量や遅角量を演算して決定するECU(電子制御装置)43とを備えて構成している。また、これらセンサ41,42の他に、後述のようにエンジン1の負荷状態を検出するエアフローメータやスロットル開度センサ等の負荷検出センサ44と、エンジン1の回転数を検出する回転数検出センサ45と、エンジン1水温を検出する水温センサ46等のセンサ(図9参照)も具備している。
さらに、可変バルブタイミング装置の油路構造は、前述のECU43により駆動される油路制御弁51(スプールバルブ)と、油タンク52内の作動油をオイルポンプ53によって位相可変ユニット3に圧送する供給油通路54と、後述の進角室と連通する進角通路55と、遅角室と連通する遅角通路56と、位相可変ユニット3から油タンク52に作動油を排出する排出油通路57とから構成している。このうち、油路制御弁51のリニアソレノイド51aがデューティ駆動され、位相可変ユニット3に供給される作動油の油量が調整されることで、吸気カムシャフト12の開弁位相を変更するように構成している。なお、作動油は、供給油通路54に介装したリリーフ弁(図示せず)により、所定圧に設定されている。
また、吸気カムシャフト12の第一ドリブンスプロケット21および位相可変ユニット3を設けた端部の反対側端部(図2の右側端部)には、シリンダー筒内に直接燃料を噴射する燃料噴射装置(図示せず)の高圧燃料ポンプ6を駆動する駆動カム61を設けている。
このように駆動カム61を設けたことにより、この吸気カムシャフト12は、通常の吸気カムシャフト12よりも駆動抵抗が大きくなり、吸気カムシャフト12を駆動するチェーン機構2には大きな張力が掛かる構造となっている。
次に、図3で油圧ベーン式の位相可変ユニット3の内部構造について説明する。
まず、吸気カムシャフト12の軸方向端部の外周に、位相可変ユニット3の円筒状のロータ31を吸気カムシャフト12と一体回転するように連結固定し、さらにその外周側に、外嵌合状態で組み合わす円筒状のケーシング32を設けている。この円筒状のケーシング32と円筒状のロータ31は、吸気カムシャフト12の周方向に相対的に回動可能となるように配置しており、さらに、このケーシング32に対しては、前述の第一ドリブンスプロケット21を一体回転するように固定している。
前述の円筒状のロータ31は、円筒状のロータ本体部31aとその外周面から径方向外方に突出する4つのベーン31b…とからなり、中心部を貫通するボルト33で吸気カムシャフト12に固定されることで、吸気カムシャフト12と一体に回転するように構成している。
前述のケーシング32は、薄肉の円筒状のケーシング本体部32aとその内周面から径方向内方に突出する4つの突出壁部32b…からなり、この突出壁部32b…を前記ロータ31のベーン31b…と周方向に交互に並ぶように配置している。この突出壁部32b…には、それぞれ吸気カムシャフト12の軸線方向に延びるように貫通孔を形成し、この各貫通孔にそれぞれ挿通する4つのボルト34…によって、ケーシング32とその蓋部材(図示せず)を第一ドリブンスプロケット21に締結固定している。
前記ロータ31の各ベーン31b…の先端部は、ケーシング32の内周面に摺接しており、同様に、ケーシング32の各突出壁部32b…の先端部も、ロータ31の本体部外周面に摺接している。そして、これらのベーン31b…または突出壁部32b…の各先端部にそれぞれオイルシール35…を配設することで、このベーン31b…と突出壁部32b…の間に、吸気カムシャフト12軸線の周方向に並ぶ8つの受圧室36、37…を区画している。
そして、前記8つの受圧室のうち、ロータ31の各ベーン31b…に対し吸気カムシャフト12の回転方向(図3で矢印で示す方向)に位置づけられた4つの受圧室を、遅角室36として構成している。この遅角室36に前述の遅角通路56(図1参照)を連通し、この遅角室36にオイルを供給することで、ロータ31がケーシング32に対し吸気カムシャフト12の回転方向と反対側に回動され、吸気弁の開弁位相が遅角側に変更されるようになっている。
一方、前記ロータ31の各ベーン31b…に対して前記遅角室36の反対側に位置づけられた4つの受圧室を、進角室37として構成している。この進角室37に前述の進角通路55(図1参照)に連通し、この進角室37にオイルを供給することで、ロータ31がケーシング32に対し吸気カムシャフト12の回転方向と同じ側に回動され、これにより吸気弁の開弁位相が進角側に変更されるようになっている。
なお、この4つの進角室37の内、2つの進角室37(図3で上部と下部との進角室)は、最遅角位置(図3に示す位置)で、ほとんど内部容積がなく、ベーン31bと突出壁部32bの側面が直接当接する所謂メタルタッチ状態となっている。このように、最遅角位置をメタルタッチ状態となることで、確実に最遅角の位置が規定される。
図4は、吸気弁と排気弁の開弁位相を示した図である。
この図から分かるように位相可変ユニット3によって、吸気弁の開弁位相を進角方向(矢印で示す方向)に変更すると、排気弁の開弁期間と吸気弁の開弁期間(一点鎖線で示す)がオーバーラップすることになる。こうして排気弁と吸気弁の開弁期間をオーバーラップさせると、エンジン燃焼時の内部EGR量を増加させることが可能になり、ポンピングロスを低減して燃費向上を図ることができる。また、燃焼温度も抑えることができるため、NO発生を抑えて排気浄化を図ることもできる。
他方、位相可変ユニット3によって吸気弁の開弁位相を遅角方向に変更すると、排気弁の開弁期間と吸気弁の開弁期間(実線で示す)がオーバーラップしないため、アイドル運転時には安定燃焼を確保することができ、また、高回転運転時にはエンジン出力を向上することができる。
このように、位相可変ユニット3によって吸気弁の開弁位相を変更することで、エンジン1の様々な運転状態に応じて、適切な燃焼状態を得ることができる。
次に、本実施形態の可変バルブタイミング装置の詳細構造について、図5〜図11に基づき説明する。
図5〜図7は、チェーン機構2の詳細構造図、図8はエンジン回転数に応じたチェーン張力と耐久評価基準値を示すグラフ、図9は本実施形態の制御ブロック図、図10は本実施形態の制御フローチャート、図11は本実施形態の制御マップ図である。
本実施形態のエンジン1は、前述のようにチェーン機構2を介してクランクシャフト11の駆動力を吸気カムシャフト12と排気カムシャフト13に伝達するように構成している。よって、チェーン機構2には、長期間破損せずに駆動力を伝達できるように耐久性が求められる。
チェーン機構2のチェーン本体23は、所謂ローラチェーンであり、図5〜図7に示すように、第一ドリブンスプロケット21等のスプロケットの歯に噛合する複数のローラ231…(図6、図7参照)と、隣り合う二つのローラ231を連結するローラリンク232と、ローラ231…内を貫通する複数のピン233…と、ローラリンク232と互い違いに配置され隣り合う二つのピン233を連結するピンリンク234と、ピン233とローラ231…の間に配置したブッシュ235とで構成している。なお236は、ピン233とローラ231を固定する固定ピンである。
このチェーン本体23の仕様は、ローラリンク232やピンリンクの板厚t等(図7参照)によって規定されているが、この板厚tが、大きければ大きい程、張力に対する受圧面が大きくなり、チェーン本体23の耐久評価基準値も高まり信頼性が上がる。
しかしながら、板厚tが大きい仕様のものは、コストが高く、また重量も増加するため、生産コストを高めてしまい、エンジン1の燃費も悪化させるという問題がある。
そこで、一般にエンジン出力等を考慮して最適な仕様のチェーン本体23を選定することになる。
もっとも、この選定にあっては、そのエンジン1の最高回転数を考慮する必要がある。すなわち、図8に示すように、チェーン本体23の張力値はエンジン回転数の上昇に伴い増加し、一方、チェーン本体23の耐久評価基準値は回転数上昇に伴い減少するからである。なお、ここでチェーン本体23の張力値が増加するのは、回転数上昇によりスプロケット20,21,22の歯とチェーン本体23のローラ231…との噛合い速度が高まるためである。
そこで、チェーン本体23の選定は、さらに、そのエンジン1の最高回転数を考慮した上で行うことになる。
加えて、本実施形態のような可変バルブタイミング装置付きのエンジン1の場合には、図8に示すように、高回転領域においては、チェーン本体23の張力値(平均値)と評価基準値とが最も近接した状態となり、進角室37がメタルタッチ状態であることによる衝撃荷重大の範囲がある。すなわち、進角室37がメタルタッチ状態であると、エンジン1のトルク変動による瞬間的な大荷重が、直接チェーン本体23に脈動的に作用して、衝撃荷重が大きくなるのである。
このように、衝撃荷重が大きくなると、瞬間的に張力のピーク値がチェーン本体23の耐久評価基準値を超えるおそれが生じ、チェーン機構2の信頼性を悪化させるという問題がある。
そこで、本実施形態では、可変バルブタイミング装置を利用して、このチェーン機構2の信頼性悪化を防止している。すなわち、高回転領域で、位相可変ユニット3の進角室37に作動油を供給することで、位相可変ユニット3を緩衝機構として機能させ、チェーン本体23へ衝撃荷重が作用しにくくしているのである。なお、この理由については、後述する。
図9の本実施形態の制御ブロックおよび図10の本実施形態の制御フローチャートにより、この瞬間的な衝撃荷重を緩和する制御方法について説明する。
本実施形態の可変バルブタイミング装置は、前述のように入力手段としてエンジン負荷を検出する負荷検出センサ44と、エンジン回転数を検出する回転数検出センサ45と、クランクシャフト11の回転角を検出するクランク角センサ41と、カムシャフトの回転角を検出するカム角センサ42と、エンジン水温を検出する水温センサ46とを備えている。そして、これらセンサから得られたデータを演算して所定の制御信号を出力する演算手段としてのECU43を備えており、加えて、このECU43から出力された制御信号により制御される出力手段としての油路制御弁51と燃料噴射装置60とを備えている。
まず、ECU43は、図10に示すように、S1で前述の各センサからデータを読み取る。
次に、S2でエンジン回転数等からアイドル制御領域かを判断する。アイドル制御領域であると判断した場合には、S3に移行して、油路制御弁51を最遅角に位相制御する。すなわち、吸気弁の開弁位相を最遅角にしてオーバーラップ量をなくし、アイドル運転時の安定燃焼を確保しているのである。
一方、S2でアイドル制御領域でないと判断した場合には、S4に移行して第一高回転制御領域かを判断する。このS4で第一高回転領域であると判断した場合には、前述のS2と同様にS3に移行して、油路制御弁51を最遅角に位相制御する。この場合の最遅角の位相制御は、高回転領域でエンジン出力を最大限高めるための制御である。
S4で第一高回転領域でないと判断した場合には、S5でその第一高回転領域よりもさらに高い回転域の第二高回転領域かを判断する。このS5で第二高回転領域であると判断した場合には、S6に移行して所定の進角値、例えば4°の進角で油路制御弁51を位相制御する。このように第二高回転領域において所定の進角値に位相制御することで、前述した瞬間的な衝撃荷重を緩和するのである。
すなわち、第二高回転領域においては、位相可変ユニット3の進角室37に作動油を僅かに供給することで、進角室37をメタルタッチ状態でないオイル充填状態として、衝撃荷重を緩和しているのである。
なお、作動油は、非圧縮性流体であるものの、進角室37から僅かなリークが生じたり、また進角室37が進角通路55と連通し進角通路55でも圧力を受けるため、位相可変ユニット3の進角室37は、衝撃荷重に対して減衰力を生じさせることができる。
S5で第二高回転領域でないと判断した場合には、S7に移行して、エンジン回転数やエンジン負荷に応じた進角値で位相制御することになる。この位相制御は通常の可変バルブタイミング装置で行う一般的なエンジン負荷状態における位相制御であり、詳細な説明は省略する。
こうして、最後にリターンに移行して、以上の制御フローを再度繰り返して行うことで、可変バルブタイミング装置の制御を行う。
本実施形態の可変バルブタイミング装置で制御を行う場合の開弁位相の進角値は、図11の制御マップ図のようになる。
この制御マップ図は、横軸をエンジン回転数として、縦軸をエンジン負荷としたもので、このエンジン回転数とエンジン負荷で決定される領域で開弁位相の進角値を設定している。領域内部に記載した数値が進角値の度数である。
この制御マップ図から分かるように、アイドル回転数の近傍領域では、0°となっており、最遅角に位相制御するアイドル制御領域となっている。また低負荷の領域でも0°と最遅角となっており、エンジン1を空吹かしした状態では吸気弁の開弁位相を変化させないようにしている。
さらに、第一高回転数H1以上でも0°となっており、高回転制御領域で最遅角に位相制御する第一高回転制御領域となっている。
もっとも、第二高回転数H2以上では4°となっており、高回転制御領域で僅かに進角させる第二高回転制御領域となっている。このように、第二高回転数H2以上の高回転で僅かに進角させることで、前述のように位相可変ユニット3を緩衝機構として機能させることができる。
また、この第二高回転制御領域の進角値は、4°であるが、エンジン1の負荷状態によって進角させる進角値の最小値の5°よりも小さな値で設定している。このため、第二高回制御領域で吸気弁の開弁期間を進角したとしても、エンジン1の運転性能にほとんど影響がない状態で位相可変ユニット3を緩衝機構として機能させることができる。
さらに、この第二高回転制御領域の進角値は、負荷に応じて変化するのではなく、常時一定値の4°に設定している。これにより、エンジン負荷に応じて細かい制御を行わないため、一定圧の作動油を常時安定した進角制御を行うことができる。
なお、中回転領域のエンジン負荷状態では、エンジン負荷の増加等に応じて進角値を5°〜30°と大きくする負荷制御領域となっている。この負荷制御領域では、従来の可変バルブタイミング装置で行う制御を行っており詳細な説明は省略する。
次に、以上のように構成した本実施形態の作用及び効果について詳述する。
この実施形態によるエンジン1の可変バルブタイミング装置は、クランクシャフト11からの駆動力を吸気カムシャフト12に伝達するチェーン機構2と、該チェーン機構2と吸気カムシャフト12の間に設けられ、吸気カムシャフト12の周方向に容積が変化する進角室37を有し該進角室37に作動油を供給することで吸気弁の開弁位相を進角させる油圧ベーン式の位相可変ユニット3と、少なくともエンジン回転数の情報に基づいて、該位相可変ユニット3の進角室37に作動油の供給制御を行うECU43とを備えたエンジン1の可変バルブタイミング装置であって、前記ECU43の制御領域として、前記進角室37に作動油を供給せずに、該進角室37の容積を最小にして吸気弁の開弁位相を最遅角に設定するアイドル制御領域と、前記進角室37に作動油を供給して、少なくともエンジン回転数に応じて吸気弁の開弁位相を所定の進角値に制御する負荷制御領域と、前記進角室37に作動油を供給して、所定の高回転領域で前記チェーン機構2に生じる衝撃を緩和するように吸気弁の開弁位相を4°の進角値とする第二高回転制御領域とを含むものである。
上記構成によれば、アイドル制御領域では、進角室37に作動油を供給せずに進角室37の容積を最小にして吸気弁の開弁位相を最遅角に設定することになり、負荷制御領域では、進角室37に作動油を供給して、少なくともエンジン回転数に応じて吸気弁の開弁位相を所定の進角値に制御することになり、第二高回転制御領域では、進角室37に作動油を供給して、所定の高回転領域でチェーン機構2に生じる衝撃を緩和するように吸気弁の開弁位相を4°の進角値とすることになる。
すなわち、第二高回転制御領域において、進角室37に作動油を供給することで、アイドル制御領域とは異なり、進角室37が所謂メタルタッチ状態とならず、作動油で充填されるため、チェーン機構2に生じる衝撃を、位相可変ユニット3の進角室37からリークする作動油で緩和することができるのである。
したがって、エンジン1の可変バルブタイミング装置において、チェーン本体23の仕様を耐張力値の高いものに変更することなく、チェーン機構2の信頼性向上を図ることができる。
なお、この実施形態では、吸気カムシャフト12のみに位相可変ユニット3を設けたエンジンで説明したが、排気カムシャフト13にも位相可変ユニット3を設けたエンジンで実施してもよい。
また、進角値も4°に限定されるものではなく、僅かな進角値であれば、1〜5°の進角値であってもよい。
また、この実施形態では、制御領域として、第一高回転数H1を超えると進角室37に作動油を供給せずに、進角室37の容積を最小として吸気弁の開弁位相を最遅角とする第一高回転制御領域と、第一高回転数H1よりも高い第二高回転数H2を超えると、前述のように、進角室37に作動油を供給してチェーン機構2に生じる衝撃を緩和するように吸気弁の開弁位相を4°の進角値とする第二高回転制御領域とを含むものである。
上記構成によれば、第一高回転数H1を超える第一高回転制御領域で、進角室37に作動油を供給せずに、進角室37の容積を最小として吸気弁の開弁位相を最遅角とし、第一高回転数H1よりも高い第二高回転数H2を超える第二高回転領域で、進角室37に作動油を供給して、チェーン機構2に生じる衝撃を緩和するよう吸気弁の開弁位相を4°の進角値とすることになる。
このため、第一高回転制御領域(第一高回転数H1と第二高回転数H2の間)では、進角室37がメタルタッチ状態となるものの、アイドル制御領域と同様のバルブタイミングとなるため、エンジン出力を最大限高めることができる。一方、第二高回転制御領域(第二高回転数H2以上)では、耐久評価基準値が低下し瞬間的にチェーン本体の張力値が超えてしまうおそれが高くなるため、進角室37に作動油を供給することでチェーン本体23に生じる衝撃を緩和してチェーン機構2の信頼性を向上することができる。
よって、高回転領域において、最大限にエンジン出力を向上しつつも、チェーン機構2の信頼性を確保することができる。
また、この実施形態では、前記吸気カムシャフト12に、燃料噴射装置の高圧燃料ポンプ6を駆動する駆動カム61を設けたものである。
上記構成によれば、吸気カムシャフト12に設けた駆動カム61で燃料噴射装置の高圧燃料ポンプ6を駆動することになる。
このため、吸気カムシャフト12には、高圧燃料ポンプ6の駆動抵抗が大きく掛かり、チェーン機構2に対する負荷が大きくなりチェーン本体23の張力値も大きくなるが、前述のように進角室37に作動油を供給してチェーン機構2に生じる衝撃を緩和しているため、チェーン機構2の信頼性を確保することができる。
よって、チェーン本体23の仕様を耐張力値の高いものに変更しなくても、吸気カムシャフト12で高圧燃料ポンプ6を駆動することができる。
また、この実施形態では、第二高回転制御領域の吸気弁の開弁位相の進角値4°として、前記負荷制御領域の最小の進角値である5°より小さく設定したものである。
上記構成によれば、第二高回転制御領域の吸気弁の開弁位相の進角値を負荷制御領域の最小の進角値よりも小さく設定することになる。
よって、エンジン性能に対する影響をできるだけ少なくした状態で、チェーン機構2の信頼性を向上することができる。
また、この実施形態では、第二高回転制御領域の吸気弁の開弁位相の進角値は、エンジン負荷等によって変化しない一定値の4°としたものである。
上記構成によれば、高回転制御領域の吸気弁の開弁位相の進角値は、エンジン負荷等によって変化しないことになる。
よって、エンジン負荷に応じて細かい制御を行わないため、一定圧の作動油を常時安定して進角室37に供給してチェーン機構2の信頼性を向上することができる。
以上、この発明の構成と、前述の実施形態との対応において、
この発明の位相可変機構は、実施形態の位相可変ユニット3に対応し、
以下同様に、
制御手段は、ECU43に対応するも、
この発明は、前述の実施形態の構成のみに限定されるものではなく、様々な可変バルブタイミング装置に適用する実施形態を含むものである。
本発明の可変バルブタイミング装置を採用したエンジンとその周辺機器を示す概略構成図。 エンジンをヘッドカバー側から見た平面概略図。 図2のA−A線矢視断面図で油圧ベーン式の位相可変ユニットの断面図。 開弁位相状態を説明する開弁位相図。 チェーン機構の詳細図。 チェーン本体の詳細分解図。 チェーン本体の一部断面を含む平面図。 エンジン回転数に応じたチェーンの張力値と耐久評価基準値を示すグラフ。 本実施形態の制御グロック図。 本実施形態の制御フローチャート図。 本実施形態の制御マップ図。
1…エンジン
2…チェーン機構
6…高圧燃料ポンプ
11…クランクシャフト
12…吸気カムシャフト
23…チェーン本体
3…位相可変ユニット(位相可変機構)
37…進角室
43…ECU(制御手段
61…駆動カム

Claims (4)

  1. クランクシャフトからの駆動力を吸気カムシャフトに伝達するチェーン機構と、該チェーン機構と吸気カムシャフトの間に設けられ、吸気カムシャフトの周方向に容積が変化する進角室を有し該進角室にオイルを供給することで吸気弁の開弁位相を進角させる油圧ベーン式の位相可変機構と、少なくともエンジン回転数の情報に基づいて、該位相可変機構の進角室にオイルの供給制御を行う制御手段とを備えたエンジンの可変バルブタイミング装置であって、
    前記制御手段の制御領域として、
    前記進角室にオイルを供給せずに、該進角室の容積を最小にして吸気弁の開弁位相を最遅角に設定するアイドル制御領域と、
    前記進角室にオイルを供給して、少なくともエンジン回転数に応じて吸気弁の開弁位相を所定の進角値に制御する負荷制御領域と、
    前記進角室にオイルを供給して、所定の高回転領域で前記チェーン機構に生じる衝撃を緩和するように吸気弁の開弁位相を数度の進角値とする高回転制御領域とを含み、
    前記高回転制御領域が、第一高回転数を超えると進角室にオイルを供給せずに、進角室の容積を最小として吸気弁の開弁位相を最遅角とする第一高回転制御領域と、
    第一高回転数よりも高い第二高回転数を超えると進角室にオイルを供給してチェーン機構に生じる衝撃を緩和するように吸気弁の開弁位相を数角度の進角値とする第二高回転制御領域とを含む
    エンジンの可変バルブタイミング装置。
  2. 前記吸気カムシャフトに、燃料噴射装置の高圧燃料ポンプを駆動する駆動カムを設けた
    請求項1記載のエンジンの可変バルブタイミング装置。
  3. 前記高回転制御領域の吸気弁の開弁位相の数角度の進角値は、前記負荷制御領域の最小の進角値よりも小さく設定した
    請求項1または2に記載のエンジンの可変バルブタイミング装置。
  4. 前記高回転制御領域の吸気弁の開弁位相の数角度の進角値は、エンジン負荷等によって変化しない一定値とした
    請求項1〜3の何れか1に記載のエンジンの可変バルブタイミング装置。
JP2004283904A 2004-09-29 2004-09-29 エンジンの可変バルブタイミング装置 Expired - Fee Related JP4321420B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283904A JP4321420B2 (ja) 2004-09-29 2004-09-29 エンジンの可変バルブタイミング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283904A JP4321420B2 (ja) 2004-09-29 2004-09-29 エンジンの可変バルブタイミング装置

Publications (2)

Publication Number Publication Date
JP2006097539A JP2006097539A (ja) 2006-04-13
JP4321420B2 true JP4321420B2 (ja) 2009-08-26

Family

ID=36237606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283904A Expired - Fee Related JP4321420B2 (ja) 2004-09-29 2004-09-29 エンジンの可変バルブタイミング装置

Country Status (1)

Country Link
JP (1) JP4321420B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552991B2 (ja) * 2007-01-09 2010-09-29 株式会社デンソー 燃料噴射制御システム及び燃料噴射弁
JP2014009633A (ja) * 2012-06-29 2014-01-20 Mazda Motor Corp エンジンの高圧燃料供給装置

Also Published As

Publication number Publication date
JP2006097539A (ja) 2006-04-13

Similar Documents

Publication Publication Date Title
JP3488585B2 (ja) 内燃機関の動弁装置
KR100694901B1 (ko) 내연기관의 밸브특성 변경장치
US5881690A (en) System for variably controlling operation of an intake/exhaust valve for an internal combustion engine
JP5093521B2 (ja) 内燃機関の可変動弁装置
US8011332B2 (en) Spark ignition type internal combustion engine
KR101204604B1 (ko) 내연 기관용 가변 밸브 장치
US6932037B2 (en) Variable CAM timing (VCT) system having modifications to increase CAM torsionals for engines having limited inherent torsionals
JP4702574B2 (ja) 内燃機関の可変動弁装置
EP2165061B1 (en) Spark-ignited internal combustion engine and method of controlling the same
JP4321420B2 (ja) エンジンの可変バルブタイミング装置
JP5131397B2 (ja) 火花点火式内燃機関
JP2009114965A (ja) 火花点火式内燃機関
EP1375874A1 (en) VCT cam timing system utilizing calculation of camshaft phase for dual dependent cams
JP3826993B2 (ja) 可変バルブタイミング機構の油圧制御装置
JP2836427B2 (ja) 可変バルブタイミング装置
JP3136779B2 (ja) 可変バルブタイミング機構の油圧制御装置
JPH06248986A (ja) 内燃機関のバルブタイミング制御装置の誤動作検出装置
JP2011001898A (ja) カム位相可変型内燃機関
JPH06248916A (ja) 内燃機関の可変バルブタイミング装置
JPS63268935A (ja) エンジンの潤滑油供給装置
JPS631719A (ja) ロ−タリピストンエンジンの吸気装置
JP2012233439A (ja) 火花点火式内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees