JP4316582B2 - Method for producing metallic nickel from crude nickel sulfate - Google Patents

Method for producing metallic nickel from crude nickel sulfate Download PDF

Info

Publication number
JP4316582B2
JP4316582B2 JP2006098305A JP2006098305A JP4316582B2 JP 4316582 B2 JP4316582 B2 JP 4316582B2 JP 2006098305 A JP2006098305 A JP 2006098305A JP 2006098305 A JP2006098305 A JP 2006098305A JP 4316582 B2 JP4316582 B2 JP 4316582B2
Authority
JP
Japan
Prior art keywords
nickel
crude
nickel sulfate
cobalt
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006098305A
Other languages
Japanese (ja)
Other versions
JP2007270291A (en
Inventor
弘雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006098305A priority Critical patent/JP4316582B2/en
Publication of JP2007270291A publication Critical patent/JP2007270291A/en
Application granted granted Critical
Publication of JP4316582B2 publication Critical patent/JP4316582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、非鉄金属製錬工程から回収した不純物を含む硫酸ニッケル塩またはその溶液から金属製品として利用可能な品位99.99%相当の金属ニッケルを製造する方法に関するものであり、より詳しく述べるなら銅製錬の電解工程から回収した、銅・ひ素・鉄・亜鉛・コバルトなどの重金属を少量だけ不純物として含有する粗製硫酸ニッケルを原料として、湿式処理により液を精製した後に回収したニッケル成分を用いて電解液を調製し電解採取により金属ニッケルを製造する方法に関する。   The present invention relates to a nickel sulfate salt containing impurities recovered from a non-ferrous metal smelting process or a method for producing metallic nickel equivalent to 99.99% grade usable as a metal product from a solution thereof, more specifically, copper smelting. Using the nickel component recovered after refining the liquid by wet processing, starting from crude nickel sulfate containing a small amount of impurities such as copper, arsenic, iron, zinc, and cobalt as impurities And producing nickel metal by electrowinning.

銅製錬においては、電気銅製造の際に硫酸浴を用いるが、この電解液中に原料銅鉱石に含まれる種々の不純物のうち銅よりも卑な成分が電解液に蓄積するため、電解液の一部を抜き出して不純物を分離する。不純物のうち比較的量が多いものにニッケルがある。ニッケルは有用な成分であるため、通常は電解液から主成分の銅やひ素の大半を晶析、電解、硫化などで除いて、得られた硫酸ニッケル溶液を濃縮して冷却し、粗製硫酸ニッケルを回収し薬剤として利用する。
例えば、脱鉄の例としては、特許文献1(特許第3208746)では共沈による脱Asのため塩素酸化による二段階の処理で最終的にはpH3.5以上で処理してFe0.2mg/Lまで除いている。
しかしながら、この方法では有毒ガスの塩素を用いるので塩化浴電解を併設してガスが利用できるのでなければ、安全上は課題がある。
また、脱コバルトの従来例としては、塩化物系の液処理では、特許文献2(特開平8-295965)にあるように酸化剤として塩素ガスを利用してコバルトや鉛を酸化して沈殿させる方法が報告されている。
しかしながら、この方法は塩化浴電解で生じる塩素を利用するものであり、環境上の問題があるほか、硫酸ニッケル液に塩素が加わることで最終的に回収したニッケル分に塩素が付随して電解工程に持ち込まれるため電解で塩素に耐性のある高価な不溶性アノードを使用する必要が生じる。
特許第3208746 特開平8-295965
In copper smelting, a sulfuric acid bath is used in the production of electrolytic copper. Among the various impurities contained in the raw material copper ore in this electrolytic solution, components that are lower than copper accumulate in the electrolytic solution. Part is extracted to separate impurities. Nickel is a relatively large amount of impurities. Since nickel is a useful component, the majority of the main component copper and arsenic is usually removed from the electrolyte by crystallization, electrolysis, sulfidation, etc., and the resulting nickel sulfate solution is concentrated and cooled to obtain crude nickel sulfate. Is recovered and used as a medicine.
For example, as an example of deironing, in Patent Document 1 (Patent No. 3208746), Fe As 2 mg / L is finally treated at pH 3.5 or more in a two-stage treatment by chlorination for de-As by coprecipitation. It is excluded.
However, since this method uses toxic gas chlorine, there is a problem in terms of safety unless the gas can be used together with chloride bath electrolysis.
Further, as a conventional example of cobalt removal, in chloride-based liquid treatment, as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 8-295965), cobalt and lead are oxidized and precipitated using chlorine gas as an oxidizing agent. A method has been reported.
However, this method uses chlorine generated in the chloride bath electrolysis, and there are environmental problems, as well as the step of electrolysis where chlorine is attached to the nickel component finally recovered by adding chlorine to the nickel sulfate solution. Therefore, it is necessary to use an expensive insoluble anode that is resistant to chlorine by electrolysis.
Patent No.3208746 JP-A 8-295965

しかし、この方法で回収される粗製硫酸ニッケルには、もとの銅電解液中の各種の不純物、主に銅、ひ素、鉄、亜鉛、コバルトなどがそれぞれ0.01から0.5%程度混入する。このためニッケルメッキ液原料や高純度の電気ニッケル原料としてそのまま利用することはできない。
粗硫酸ニッケルの用途としては、ニッケル鉱石などからの製錬原料として工程に入れて処理しニッケルを製造することが重要な用途となる。
湿式法によるニッケル製造方法としては、塩化物系または硫酸塩系の液として得た鉱石浸出液を浄液して、溶媒抽出により鉱石に共存するコバルトを分離して、ニッケルとコバルトをそれぞれ電解採取する方法が公知の技術として実用化されている。現在、日本国内で稼働しているのは鉱石の浸出能力に優れた塩化物溶液とするプロセスである。塩化物として処理する場合には、電解採取で発生する塩素を鉱石浸出および途中の浄液工程での酸化剤として利用する。この場合、硫酸ニッケルをそのまま鉱石浸出液に加えると液に余分な硫酸根を持ち込むこととなるので事前のニッケル分離が必要となる。しかし、中和や抽出などの方法を経由しても、硫酸根は少なからぬ量が混入する。
However, the crude nickel sulfate recovered by this method is mixed with about 0.01 to 0.5% of various impurities in the original copper electrolyte, mainly copper, arsenic, iron, zinc, cobalt and the like. For this reason, it cannot be used as it is as a nickel plating solution raw material or a high-purity electric nickel raw material.
As an application of the crude nickel sulfate, it is important to produce nickel by processing it as a smelting raw material from nickel ore or the like.
As a nickel production method by a wet method, the ore leachate obtained as a chloride-based or sulfate-based solution is purified, and the cobalt coexisting in the ore is separated by solvent extraction, and nickel and cobalt are electrolyzed respectively. The method has been put into practical use as a known technique. Currently operating in Japan is a chloride solution process with excellent ore leaching capacity. In the case of treatment as chloride, chlorine generated by electrowinning is used as an oxidant in ore leaching and a liquid purification process in the middle. In this case, if nickel sulfate is added to the ore leaching solution as it is, extra sulfate radicals are brought into the solution, so that prior nickel separation is required. However, even through a method such as neutralization or extraction, a considerable amount of sulfate radicals are mixed.

一方、硫酸系の液として扱う場合には、粗製硫酸ニッケルのように、不純物の種類は多いものの、鉱石を処理する場合と異なり不純物含有率の低い、比較的品位のよい原料を用いると、少量の不純物除去のために多量のニッケルの繰り返しロスを発生することとなる。また、鉱石からのニッケル製錬で重要な収入源となるコバルトの製造も、粗製硫酸ニッケル中のコバルト含有量が非常に少ないため、粗製硫酸ニッケル単独で処理することはコバルトの分離回収に関しては経済的には成り立たない。 On the other hand, when handling as a sulfuric acid-based liquid, although there are many types of impurities, such as crude nickel sulfate, unlike the case of processing ore, if a raw material with a low impurity content and a relatively good quality is used, a small amount In order to remove impurities, a large amount of nickel is repeatedly lost. In addition, the production of cobalt, which is an important source of income for nickel smelting from ore, also has a very low cobalt content in the crude nickel sulfate. Therefore, treatment with crude nickel sulfate alone is economical for the separation and recovery of cobalt. It is not true.

本発明は、上記問題を解決し、粗製硫酸ニッケルのように比較的品位の高い原料から、硫酸系の液のまま単独で処理して、市販の電気ニッケルに相当する高品位の金属ニッケルを製造するために適した方法を提供するものである。 The present invention solves the above-mentioned problems and produces a high-grade metallic nickel equivalent to a commercially available nickel by treating a raw material of a relatively high quality such as crude nickel sulfate alone with a sulfuric acid-based liquid. It is intended to provide a suitable method for doing this.

本発明では、銅製錬の電解液から回収した、銅・ひ素・鉄・亜鉛・コバルトを含む粗製硫酸ニッケルを対象に、少量の不純物を効率よく除くために適した条件と方法で簡便に浄液することで、高品位の電気ニッケルを経済的に製造する。 In the present invention, purified nickel can be easily purified by using conditions and methods suitable for efficiently removing a small amount of impurities, targeting crude nickel sulfate containing copper, arsenic, iron, zinc, and cobalt recovered from a copper smelting electrolyte. By doing so, high-grade electric nickel is economically produced.


すなわち本発明は、(1)少量の銅、ひ素、鉄、亜鉛、コバルトを重金属不純物として含む粗製硫酸ニッケルを原料として、これを溶解した液を硫化して銅とひ素の一部を除き、空気酸化した後に、中和して鉄と残りのひ素を、有機リン酸エステル類を抽出剤として亜鉛を、コバルト除去のためコバルトに対し2.5〜12.5当量の酸化ニッケル(III)を添加してコバルトを酸化しpHを調節し、コバルトを処理液中に1-2mg/Lになるように沈殿除去し、液中のコバルト以外の銅、ひ素、鉄、亜鉛からなる不純物濃度を0.1mg/L未満まで低下させた液から中和により回収したニッケル原料を硫酸溶液とし、これを電解して品位99.99%以上の金属ニッケルを製造する粗製硫酸ニッケルからの金属ニッケル製造方法。(2)上記(1)において、処理対象とする粗製硫酸ニッケルが銅製錬工程から回収した不純物の品位が各0.5%未満の粗製硫酸ニッケルである粗製硫酸ニッケルからの金属ニッケル製造方法。(3)上記(1)において、硫化のために硫化アルカリまたは硫化水素を液の酸化還元電位が-50mV未満に達するまで加える粗製硫酸ニッケルからの金属ニッケル製造方法。(4)上記(1)において、空気酸化をpH4.5〜5.5、温度60〜70℃で行う粗製硫酸ニッケルからの金属ニッケル製造方法。(5)上記(1)において、亜鉛抽出に有機リン酸エステルを抽出剤として用い、抽出時pH3-3.5として除去する粗製硫酸ニッケルからの金属ニッケル製造方法。である。
:
That is, the present invention is (1) using crude nickel sulfate containing a small amount of copper, arsenic, iron, zinc, and cobalt as heavy metal impurities as a raw material, and sulfiding the dissolved solution to remove a part of the copper and arsenic; After oxidation, neutralize iron and the remaining arsenic, add zinc using organophosphates as an extractant, and add 2.5 to 12.5 equivalents of nickel (III) oxide to the cobalt to remove cobalt. Oxidation and pH adjustment, cobalt is precipitated and removed in the treatment liquid so that the concentration is 1-2 mg / L, and the impurity concentration of copper, arsenic, iron, and zinc other than cobalt in the liquid is less than 0.1 mg / L. A method for producing metallic nickel from crude nickel sulfate, wherein a nickel raw material recovered by neutralization from a lowered solution is made into a sulfuric acid solution and electrolyzed to produce metallic nickel having a quality of 99.99% or more. (2) A method for producing metallic nickel from crude nickel sulfate according to (1) above, wherein the crude nickel sulfate to be treated is a crude nickel sulfate having a grade of impurities of less than 0.5% each recovered from the copper smelting step. (3) A method for producing metallic nickel from crude nickel sulfate in (1) above, wherein alkali sulfide or hydrogen sulfide is added for sulfidization until the redox potential of the liquid reaches less than -50 mV. (4) A method for producing metallic nickel from crude nickel sulfate in (1) above, wherein the air oxidation is performed at a pH of 4.5 to 5.5 and a temperature of 60 to 70 ° C. (5) A method for producing metallic nickel from crude nickel sulfate in (1) above, wherein an organic phosphate is used as an extractant for zinc extraction and is removed at pH 3-3.5 during extraction. It is.

本発明によれば、
(1)粗製硫酸ニッケルから硫酸塩の形のまま独立したプロセスの中で処理して効率的に高品位の金属ニッケルが製造できる。
According to the present invention,
(1) High quality metallic nickel can be efficiently produced by treating in an independent process in the form of sulfate from crude nickel sulfate.

銅電解工程から濃縮・冷却により回収する粗製硫酸ニッケルは、硫酸ニッケルの6水塩ないし7水塩でニッケル含有率は約20%であり、通常2%前後の硫酸が付着している。浄液処理での溶液の濃度は特に制約はされないが、全体の処理液量を極端に増やさぬためには濃度は高くする。一方、溶解度による制約があるため、実用的にはNi濃度として50から130g/L、より好ましくは80〜100g/Lの範囲とする。
原料の粗製硫酸ニッケルに含まれる前記の不純物は電気的に卑な亜鉛や非鉄金属イオンであるひ素もニッケル電解採取時に共電着して取り込まれやすいため、高品位の金属ニッケルを製造するためには浄液段階で十分に濃度を低下させる必要がある。市販品の品位99.99%の電気ニッケルに相当する品位、各不純物品位として数ppmを確保するには、浄液工程で1mg/L未満、望ましくは0.1mg/L未満まで濃度を下げる必要がある。
Crude nickel sulfate recovered from the copper electrolysis process by concentration and cooling is nickel sulfate hexahydrate or heptahydrate, the nickel content is about 20%, and usually around 2% sulfuric acid is adhered. The concentration of the solution in the purification treatment is not particularly limited, but the concentration is increased in order not to increase the total amount of the treatment solution extremely. On the other hand, since there is a restriction due to solubility, the Ni concentration is practically in the range of 50 to 130 g / L, more preferably 80 to 100 g / L.
In order to produce high-quality metallic nickel, the impurities contained in the raw crude nickel sulfate are easy to be co-deposited during nickel electrowinning, as well as arsenic, which is electrically base zinc and non-ferrous metal ions. It is necessary to reduce the concentration sufficiently at the liquid purification stage. In order to secure several ppm for the quality equivalent to 99.99% electrolytic nickel of commercial products and each impurity grade, it is necessary to reduce the concentration to less than 1 mg / L, preferably less than 0.1 mg / L in the liquid purification process.

<硫化・脱銅>
まず、銅とひ素を除くため、硫化を行う。硫化のための試薬は硫化水素ガスでも、硫化ナトリウムや水硫化ナトリウムなどの硫化アルカリでも利用可能であるが、有毒ガスの硫化水素よりは硫化アルカリのほうが取扱やすい。粗製硫酸ニッケル溶液は強酸性である。銅除去のためには予備中和は不要であるが、ひ素の除去には事前に過剰の酸を中和しておくのが好ましい。
室温での処理で、酸化還元電位が 50mV(Ag-AgCl基準)に達するまで硫化剤を加えれば銅が、-50〜-60mVに達するまで加えればひ素が除去できる。ろ過して硫化物沈殿を除く。
<Sulfurization / decopperization>
First, sulfidation is performed to remove copper and arsenic. Reagents for sulfiding can be hydrogen sulfide gas or alkali sulfides such as sodium sulfide and sodium hydrosulfide, but alkali sulfide is easier to handle than toxic gas hydrogen sulfide. The crude nickel sulfate solution is strongly acidic. Pre-neutralization is not necessary for removing copper, but it is preferable to neutralize excess acid in advance for removing arsenic.
In the treatment at room temperature, copper can be added by adding a sulfurizing agent until the redox potential reaches 50 mV (Ag-AgCl standard), and arsenic can be removed by adding it until it reaches -50 to -60 mV. Filter to remove sulfide precipitate.

<脱鉄>
粗製硫酸ニッケルに含まれる鉄は二価と三価の混合物のため、酸化して三価の形とした後に中和して除去する。酸化には、公知技術である空気酸化や酸化剤による酸化が利用できる。空気酸化は処理に時間を要するが、液の汚染や過剰の酸化剤が残り後工程に影響する問題を防ぐことができる。
空気酸化で効率的に脱鉄するには、60-70℃に加熱してかつpHを5以上に維持する。
空気酸化で鉄を完全に除くには、pHはより高く設定するのが好ましい。
また温度が低いと空気酸化反応が遅く実用性を損なう。極端な高温は加熱コストの増加要因となる。なお、公知のとおり空気酸化による脱鉄でもひ素共沈効果があるため、前段の硫化でひ素除去が不完全であってもこの段階でひ素除去は可能である。あらかじめひ素を除いておけば、原料の粗製硫酸ニッケルに含まれる鉄分でFe/As比率が高く保たれるため完全にAsを除くことができる。この意味からも脱鉄に先立ち硫化を行っておくのが好ましい。
<Deironation>
Since iron contained in the crude nickel sulfate is a mixture of divalent and trivalent, it is oxidized to a trivalent form and then neutralized and removed. For the oxidation, known techniques such as air oxidation and oxidation with an oxidizing agent can be used. Although air oxidation requires time for the treatment, it is possible to prevent problems such as contamination of the liquid and excess oxidant remaining and affecting the subsequent process.
For efficient iron removal by air oxidation, heat to 60-70 ° C and maintain the pH above 5.
In order to completely remove iron by air oxidation, it is preferable to set the pH higher.
If the temperature is low, the air oxidation reaction is slow and impairs practicality. Extremely high temperatures increase heating costs. As is well known, iron removal by air oxidation also has an arsenic coprecipitation effect, so that arsenic removal is possible at this stage even if arsenic removal is incomplete due to the previous sulfidation. If arsenic is removed in advance, As can be completely removed because the Fe / As ratio is kept high in the iron content of the raw nickel sulfate. From this point of view, it is preferable to perform sulfidation prior to iron removal.

<脱亜鉛>
亜鉛の除去には溶媒抽出が最も効果がある。抽出剤としては、有機リン酸エステル類、例えばアルキルホスホン酸モノアルキルエステル(商品例:第八化学PC-88Aなど)やジアルキルりん酸エステル(商品例:第八化学DP-8Rなど)が有効である。亜鉛を1mg/L未満の濃度まで除去するには抽出pHは少なくとも3.5以上にする必要がある。
<Dezincing>
Solvent extraction is most effective in removing zinc. As the extractant, organic phosphate esters such as alkylphosphonic acid monoalkyl esters (product examples: Eighth Chemical PC-88A, etc.) and dialkyl phosphate esters (product examples: Eighth Chemical DP-8R, etc.) are effective. is there. In order to remove zinc to a concentration of less than 1 mg / L, the extraction pH needs to be at least 3.5.

<脱コバルト>
硫酸ニッケル中のコバルトは二価の形態であり、溶媒抽出でニッケルと分離可能であるが、微量に含まれるコバルトを低濃度まで除去するためには、大過剰にあるニッケルを含む液に多段の溶媒抽出工程をかける必要がある。
その代わりに、微量のコバルトを中和で沈殿しやすい三価の形に酸化して沈殿させるほうが、効率的である。
このため、本発明では安全な酸化剤として、酸化ニッケル(III) (Ni2O3・xH2O)を選定した。酸化ニッケル(III)は公知の技術によりニッケル溶液の電解酸化で合成したものでも良いし、ニッケル溶液を過マンガン酸塩などの他の強力な酸化剤で酸化して合成したものでも良い。
酸化ニッケル(III)でコバルトを酸化する場合は過剰量を用いる必要がある。
実施例で後述するようにpHを中性付近(pH5〜7)を維持しながらコバルトに対し2.5〜12.5倍当量の酸化ニッケル(III)を加えれば、液中Coは1〜2mg/L、時間を置いて熟成させれば<1mg/Lまで低下する。
pHを高くするとニッケルが沈殿しやすくなるためpHは5〜7の範囲、好ましくは5.5〜6にとどめる。
<Decobalt>
Cobalt in nickel sulfate is a divalent form and can be separated from nickel by solvent extraction, but in order to remove a trace amount of cobalt to a low concentration, the liquid containing nickel in a large excess is multistage. It is necessary to apply a solvent extraction step.
Instead, it is more efficient to oxidize and precipitate a small amount of cobalt into a trivalent form that can be easily precipitated by neutralization.
For this reason, nickel oxide (III) (Ni 2 O 3 .xH 2 O) was selected as a safe oxidizing agent in the present invention. Nickel (III) oxide may be synthesized by electrolytic oxidation of a nickel solution by a known technique, or may be synthesized by oxidizing a nickel solution with another strong oxidizing agent such as permanganate.
When cobalt is oxidized with nickel (III) oxide, it is necessary to use an excess amount.
As will be described later in the Examples, if 2.5 to 12.5 times equivalent of nickel oxide (III) is added to cobalt while maintaining the pH near neutral (pH 5 to 7), Co in the liquid is 1-2 mg / L, time Reduce to <1mg / L with aging.
When the pH is increased, nickel is likely to precipitate, so the pH is in the range of 5 to 7, preferably 5.5 to 6.

以上のようにして、粗製硫酸ニッケル溶液から主要な重金属不純物が1mg/L未満、コバルト以外の銅、ひ素、鉄、亜鉛については0.1mg/L以下まで除去したのち、ニッケル分を回収する。
この場合には、公知の方法に従い、精製した硫酸ニッケル液をそのまま濃度・pH調節して電解採取の原料液としても良いし、精製硫酸ニッケル液を中和して酸に溶解しやすい水酸化ニッケルや炭酸ニッケルを分離して、硫酸浴のニッケル電解で生じる酸濃度の増加した電解後液に追加してニッケル分を供給し電解工程に繰り返して金属ニッケルを製造することもできる。
As described above, after removing the main heavy metal impurities from the crude nickel sulfate solution to less than 1 mg / L and copper, arsenic, iron and zinc other than cobalt to 0.1 mg / L or less, the nickel content is recovered.
In this case, according to a known method, the purified nickel sulfate solution may be used as it is to adjust the concentration and pH to be used as a raw material solution for electrolytic collection. Alternatively, the purified nickel sulfate solution may be neutralized and easily dissolved in an acid. Alternatively, nickel carbonate can be separated and added to the post-electrolysis solution with increased acid concentration generated by nickel electrolysis in a sulfuric acid bath, and nickel can be supplied to repeat the electrolysis process to produce metallic nickel.

(実施例1)
本発明における粗製硫酸ニッケル溶液の硫化による精製成績を示す。
表1に示す粗製硫酸ニッケルを溶解しニッケル濃度100g/Lの液1Lを作った。この液の酸を25%NaOHで中和してpHを調節した後、濃度25%のNaSH水溶液を室温でゆっくりと加えた。
液pHを維持するため随時NaOHを追加した。pH3〜4の場合とpH4.5〜5の場合について比較した結果を表2に示す。
銅はORPが50mV (Ag-AgCl基準)以下に達した時点で分析下限まで低下した。ひ素は銅よりも低下しにくい。
pH3〜4ではNaSHを添加してもORPが低下しにくくひ素濃度も下がりにくかったが、pH4.5〜5ではNaSH添加量を増やすと−50〜−60mVで濃度が低下した。この処理液をろ過後分析した結果、Cu<1mg/L, As1mg/Lまで低減していた。

























(Example 1)
The refinement | purification result by the sulfidation of the crude nickel sulfate solution in this invention is shown.
Crude nickel sulfate shown in Table 1 was dissolved to prepare 1 L of a liquid having a nickel concentration of 100 g / L. After adjusting the pH by neutralizing the acid of this solution with 25% NaOH, an aqueous solution of NaSH having a concentration of 25% was slowly added at room temperature.
NaOH was added at any time to maintain the solution pH. Table 2 shows the results of comparison between pH 3-4 and pH 4.5-5.
Copper decreased to the lower limit of analysis when the ORP reached 50 mV (Ag-AgCl standard) or less. Arsenic is less likely to drop than copper.
At pH 3-4, even when NaSH was added, ORP was difficult to decrease, and the arsenic concentration was difficult to decrease, but at pH 4.5-5, the concentration decreased at −50 to −60 mV when the amount of NaSH added was increased. As a result of analyzing this treatment liquid after filtration, it was reduced to Cu <1 mg / L, As1 mg / L.

























(実施例2)
実施例1と同様にしてあらかじめ銅と一部のひ素を除去した粗製硫酸ニッケル液1Lを60℃に加温して液のpHを維持しながら空気を1L/minの速度で吹き込んだ。表3に示すように設定pH3〜4では時間が経っても鉄濃度は低下しない。pH4.5〜5.5ではORPが上昇して鉄濃度の低下とともにひ素も低下した。このpH5.5処理液をろ過後分析した結果、Fe,Asとも<1mg/Lまで低減していた。
(Example 2)
In the same manner as in Example 1, 1 L of a crude nickel sulfate solution from which copper and a part of arsenic had been removed in advance was heated to 60 ° C., and air was blown at a rate of 1 L / min while maintaining the pH of the solution. As shown in Table 3, at a set pH of 3 to 4, the iron concentration does not decrease over time. At pH 4.5-5.5, ORP increased and arsenic decreased with decreasing iron concentration. As a result of analyzing this pH 5.5 treated solution after filtration, both Fe and As were reduced to <1 mg / L.

(実施例3)
粗製硫酸ニッケルの液(Ni 100g/L)を濃度10v/oのアルキルりん酸エステル抽出剤(第八化学DP-8R、希釈剤ケロシン)とO/A比 1/2で振とうした。この際、適量の25% NaOHを添加して抽出後の平衡pHを調節した。
次いで有機相を分離し100g/L H2SO4 とO/A比 1/1で振とうして逆抽出した。結果を表4に示す。亜鉛は抽出平衡pH3〜3.5で顕著に抽出できた。このpH域では銅は一部だけが抽出された。
次に、実施例1および実施例2の方法に準じて処理した液を、濃度10v/oまたは20v/oのDP-8RとO/A比 1/5、平衡pH3〜3.5の条件で繰り返し抽出した。結果を表5に示す。抽出剤濃度が高いほどZnは抽出しやすい。水相の亜鉛濃度は二段ないし三段の抽出で1mg/L未満に低下した。
















(Example 3)
Crude nickel sulfate solution (Ni 100 g / L) was shaken with an alkyl phosphate ester extractant (8th chemical DP-8R, diluent kerosene) at a concentration of 10 v / o at an O / A ratio of 1/2. At this time, an appropriate amount of 25% NaOH was added to adjust the equilibrium pH after extraction.
The organic phase was then separated and back extracted with shaking at 100 g / L H2SO4 and O / A ratio 1/1. The results are shown in Table 4. Zinc could be extracted significantly at the extraction equilibrium pH 3-3.5. In this pH range, only a part of copper was extracted.
Next, a solution treated according to the method of Example 1 and Example 2 was repeatedly extracted under the conditions of DP-8R having a concentration of 10 v / o or 20 v / o, an O / A ratio of 1/5, and an equilibrium pH of 3 to 3.5. did. The results are shown in Table 5. The higher the extractant concentration, the easier it is to extract Zn. The zinc concentration in the aqueous phase decreased to less than 1 mg / L after two or three stages of extraction.
















(実施例4)
硫酸ニッケル水溶液(Ni 10g/L)にNaOHを加えてpH12、温度50℃に保ちながら当量の過マンガン酸カリウムを添加して次の反応により酸化ニッケル(III)のスラリーを合成した。
6NiSO4
+ 2KMnO4 + 10NaOH +4H2O→ 3(Ni2O3・3H2O) + 2MnO2+
K2SO4 + 5Na2SO4
このスラリーを粗製硫酸ニッケル液を精製して得たコバルト約40mg/Lを含有する液に加え60℃、pH6で保持した。液のORPは添加直後500〜550mVであるが徐々に300〜280mVまで低下した。
コバルトの酸化にはほぼ同重量のニッケルが必要であるが、図2に示すように小過剰量ではコバルトの低下は緩やかであり、最終的に1〜2mg/Lまで低下させるには2.5当量以上を加える必要があった。
酸化ニッケル(III)添加量を増やすと添加直後にコバルトは顕著に低下するがその後の濃度低下は緩やかで酸化ニッケル添加量がコバルトに対し2.5ないし12.5当量の範囲で効果があった。
(Example 4)
NaOH was added to an aqueous nickel sulfate solution (Ni 10 g / L) and an equivalent amount of potassium permanganate was added while maintaining the pH at 12 and the temperature of 50 ° C., and a nickel (III) oxide slurry was synthesized by the following reaction.
6NiSO4
+ 2KMnO4 + 10NaOH + 4H2O → 3 (Ni2O3 ・ 3H2O) + 2MnO2 +
K2SO4 + 5Na2SO4
This slurry was added to a solution containing about 40 mg / L of cobalt obtained by refining a crude nickel sulfate solution and maintained at 60 ° C. and pH 6. The ORP of the liquid was 500-550 mV immediately after the addition, but gradually decreased to 300-280 mV.
Although approximately the same weight of nickel is required for oxidation of cobalt, as shown in Fig. 2, with a small excess amount, the decrease in cobalt is gradual, and 2.5 equivalents or more are required to ultimately reduce to 1-2 mg / L. Needed to be added.
When the amount of nickel oxide (III) added was increased, cobalt decreased remarkably immediately after the addition, but the subsequent decrease in concentration was gradual, and the effect was effective when the amount of nickel oxide added was in the range of 2.5 to 12.5 equivalents to cobalt.

(実施例5)
実施例1から実施例4の各条件に従い、5Lの粗製硫酸ニッケル溶液を処理する試験を計3回実施した。最後に得られた精製液を炭酸ナトリウムおよび水酸化ナトリウムで中和して塩基性炭酸ニッケルを回収した。
この炭酸ニッケルを硫酸に溶解してNi濃度100g/L、pH5〜5.5の液とした。この液を使い、温度55℃、電流密度200A/m2で、カソード室とアノード室をテトロン系濾布で隔てた隔膜電解槽を用いて、ステンレスカソードを入れたカソード室に所定量(給液量に対しNiストリップ量約24g/L相当)で液を供給して同量の液をアノード室からオーバーフローさせながら電解を行った。24hごとにアノード室流出液を集めて前記の炭酸ニッケルを追加してニッケル濃度を保ちながら電解を繰り返した。
表6に示すようにスケールアップした試験では主要な不純物が<0.1mg/Lまで除去された硫酸ニッケル液が得られた。この液から回収した炭酸ニッケルを用いて上記の方法で製造した電着Ni中の不純物は表7に示したとおりであり、品位99.99%相当に達するものであった。




(Example 5)
According to each condition of Example 1 to Example 4, a test for treating 5 L of a crude nickel sulfate solution was performed three times in total. Finally, the purified solution obtained was neutralized with sodium carbonate and sodium hydroxide to recover basic nickel carbonate.
This nickel carbonate was dissolved in sulfuric acid to obtain a solution having a Ni concentration of 100 g / L and a pH of 5 to 5.5. Using this solution, using a diaphragm electrolyzer with a temperature of 55 ° C and a current density of 200 A / m2, with a cathode chamber and an anode chamber separated by a tetron filter cloth, a predetermined amount (amount of liquid supplied) is placed in the cathode chamber containing the stainless steel cathode. Electrolysis was performed while supplying the liquid at a Ni strip amount of about 24 g / L) and causing the same amount of liquid to overflow from the anode chamber. Every 24 hours, the anode chamber effluent was collected and the above nickel carbonate was added to repeat the electrolysis while maintaining the nickel concentration.
In the scaled-up test as shown in Table 6, a nickel sulfate solution from which major impurities were removed to <0.1 mg / L was obtained. Impurities in the electrodeposited Ni produced by the above method using nickel carbonate recovered from this solution are as shown in Table 7 and reached a quality equivalent to 99.99%.




本発明における処理プロセスフローを示す。The processing process flow in this invention is shown. 実施例4におけるコバルト除去効果を示す。The cobalt removal effect in Example 4 is shown.

Claims (5)

少量の銅、ひ素、鉄、亜鉛、コバルトを重金属不純物として含む粗製硫酸ニッケルを原料として、これを溶解した液を硫化して銅とひ素の一部を除き、空気酸化した後に、中和して鉄と残りのひ素を、有機リン酸エステル類を抽出剤として亜鉛を、コバルト除去のためコバルトに対し2.5〜12.5当量の酸化ニッケル(III)を添加してコバルトを酸化しpHを調節し、コバルトを処理液中に1-2mg/Lになるように沈殿除去し、液中のコバルト以外の銅、ひ素、鉄、亜鉛からなる不純物濃度を0.1mg/L未満まで低下させた液から中和により回収したニッケル原料を硫酸溶液とし、これを電解して品位99.99%以上の金属ニッケルを製造することを特徴とする、粗製硫酸ニッケルからの金属ニッケル製造方法。 Crude nickel sulfate containing a small amount of copper, arsenic, iron, zinc, and cobalt as heavy metal impurities is used as a raw material, and the dissolved solution is sulfided to remove some of copper and arsenic. Add iron and the remaining arsenic, zinc using organophosphates as the extractant, and add 2.5 to 12.5 equivalents of nickel (III) oxide to the cobalt to remove cobalt to oxidize cobalt and adjust the pH. Is neutralized from a solution in which the impurity concentration of copper, arsenic, iron, and zinc other than cobalt in the solution is reduced to less than 0.1 mg / L. A method for producing metallic nickel from crude nickel sulfate, wherein the recovered nickel raw material is made into a sulfuric acid solution and electrolyzed to produce metallic nickel having a quality of 99.99% or more. 請求項1において、処理対象とする粗製硫酸ニッケルが銅製錬工程から回収した不純物の品位が各0.5%未満の粗製硫酸ニッケルであることを特徴とする、粗製硫酸ニッケルからの金属ニッケル製造方法。 2. The method for producing metallic nickel from crude nickel sulfate according to claim 1, wherein the crude nickel sulfate to be treated is a crude nickel sulfate in which the grade of impurities recovered from the copper smelting process is less than 0.5% each. 請求項1において、硫化のために硫化アルカリまたは硫化水素を液の酸化還元電位が-50mV未満に達するまで加えることを特徴とする、粗製硫酸ニッケルからの金属ニッケル製造方法。 2. The method for producing metallic nickel from crude nickel sulfate according to claim 1, wherein alkali sulfide or hydrogen sulfide is added for sulfurization until the oxidation-reduction potential of the liquid reaches less than -50 mV. 請求項1において、空気酸化をpH4.5〜5.5、温度60〜70℃で行うことを特徴とする、粗製硫酸ニッケルからの金属ニッケル製造方法。 2. The method for producing metallic nickel from crude nickel sulfate according to claim 1, wherein the air oxidation is performed at a pH of 4.5 to 5.5 and a temperature of 60 to 70 ° C. 請求項1において、亜鉛抽出に有機リン酸エステルを抽出剤として用い、抽出時pH3-3.5として除去することを特徴とする、粗製硫酸ニッケルからの金属ニッケル製造方法。 2. The method for producing metallic nickel from crude nickel sulfate according to claim 1, wherein an organic phosphate is used as an extractant for zinc extraction and is removed at pH 3-3.5 during extraction.
JP2006098305A 2006-03-31 2006-03-31 Method for producing metallic nickel from crude nickel sulfate Expired - Fee Related JP4316582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098305A JP4316582B2 (en) 2006-03-31 2006-03-31 Method for producing metallic nickel from crude nickel sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098305A JP4316582B2 (en) 2006-03-31 2006-03-31 Method for producing metallic nickel from crude nickel sulfate

Publications (2)

Publication Number Publication Date
JP2007270291A JP2007270291A (en) 2007-10-18
JP4316582B2 true JP4316582B2 (en) 2009-08-19

Family

ID=38673388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098305A Expired - Fee Related JP4316582B2 (en) 2006-03-31 2006-03-31 Method for producing metallic nickel from crude nickel sulfate

Country Status (1)

Country Link
JP (1) JP4316582B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539851B2 (en) * 2010-12-28 2014-07-02 Jx日鉱日石金属株式会社 Method for preparing purified nickel solution, method for producing nickel metal, and method for producing nickel carbonate
CN103498169B (en) * 2013-09-27 2015-11-18 吉林吉恩镍业股份有限公司 A kind of reduction electrolytic nickel impurity sulphur preparing process
JP6052163B2 (en) * 2013-12-27 2016-12-27 住友金属鉱山株式会社 Method for producing nickel carbonate in electric nickel production process
CN103966627B (en) * 2014-04-30 2017-01-11 兰州金川新材料科技股份有限公司 Method for reducing content of impurity Fe in high-purity cobalt
CN104962949A (en) * 2015-06-09 2015-10-07 中国科学院兰州化学物理研究所 Method for removing copper in nickel electrolysis anode solution for purification
JP6772646B2 (en) * 2016-08-10 2020-10-21 住友金属鉱山株式会社 Nickel oxide fine powder and its manufacturing method
CN111170378A (en) * 2019-12-30 2020-05-19 东营方圆有色金属有限公司 Process method for refining battery-grade nickel sulfate from crude nickel sulfate
CN111533185A (en) * 2020-05-12 2020-08-14 中伟新材料股份有限公司 Method for removing arsenic element in nickel sulfate

Also Published As

Publication number Publication date
JP2007270291A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4316582B2 (en) Method for producing metallic nickel from crude nickel sulfate
CA2856341C (en) Method for producing high-purity nickel sulfate
RU2149195C1 (en) Method of hydrometallurgical recovery of nickel from nickel matte of two types
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
AU2012300756B2 (en) Method for recovering metals from material containing them
BG62180B1 (en) Chloride assisted hydrometallurgical extraction of nickel and cobalt from sulphide ores
EA014105B1 (en) Processing of nickel ore or concentrates with sodium chloride
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
EP3172348A1 (en) Recovery of zinc and manganese from pyrometallurgy sludge or residues
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP6816410B2 (en) Scandium recovery method
JP6233478B2 (en) Purification method of bismuth
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
CA2234989C (en) Production of high purity copper from primary or secondary sulfides
JP2013209267A (en) Method of manufacturing manganese sulfate
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP2007224400A (en) Method of recovering electrolytic iron from aqueous ferric chloride solution
JP2019081920A (en) Method for leaching mixed sulfide containing nickel and cobalt
JP2008127627A (en) Method for electrowinning copper
JP4506660B2 (en) Silver recovery method in wet copper smelting process
JP2000017347A (en) Production of high purity cobalt solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees