JP4315748B2 - 内視鏡装置 - Google Patents

内視鏡装置 Download PDF

Info

Publication number
JP4315748B2
JP4315748B2 JP2003193163A JP2003193163A JP4315748B2 JP 4315748 B2 JP4315748 B2 JP 4315748B2 JP 2003193163 A JP2003193163 A JP 2003193163A JP 2003193163 A JP2003193163 A JP 2003193163A JP 4315748 B2 JP4315748 B2 JP 4315748B2
Authority
JP
Japan
Prior art keywords
electronic shutter
correction coefficient
shutter speed
endoscope
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003193163A
Other languages
English (en)
Other versions
JP2005033282A (ja
Inventor
義典 高橋
克一 今泉
剛志 小澤
勇実 平尾
信行 道口
栄 竹端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003193163A priority Critical patent/JP4315748B2/ja
Publication of JP2005033282A publication Critical patent/JP2005033282A/ja
Application granted granted Critical
Publication of JP4315748B2 publication Critical patent/JP4315748B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は内視鏡装置、特に面順次光を照明光として利用する場合に適した内視鏡装置に関する。
【0002】
【従来の技術】
近年、照明光を照射し、体腔内の内視鏡画像を得る内視鏡装置が広く用いられている。この種の内視鏡装置では、光源手段からの照明光を体腔内にライトガイドなどを用いて導光して被写体を照射し、その戻り光を、固体撮像素子を用いた電子内視鏡にて撮像し、プロセッサにて信号処理することにより、観察モニタに内視鏡画像を表示して生体組織を観察できるようになっている。
【0003】
特に、面順次式の内視鏡装置の場合、光源手段で発光された可視光領域の白色光(以下、通常光)が、RGB等の回転フィルタを介することで面順次光として複数の色に分離されて被写体に照射され、その戻り光に基づく画像信号をプロセッサで同時化して画像処理することでカラー画像を得ている。
【0004】
画像信号の明るさ調整は、照明光絞り、電子シャッタ、プロセッサ装置の増幅回路、の少なくとも1つの手段によって行われ、撮像画像が明るすぎる場合には、固体撮像素子の撮像面に入射される光量が過剰であることから、光源手段に設けられた照明光絞りが、照明光量を制限するように動作し、それでも光量が過剰である場合には、電子シャッタにより固体撮像素子の電荷蓄積時間を短縮し、画像の明るさを調整するといった方法が採られている。
【0005】
図20は電子シャッタの説明図を示す。
図20(A)は面順次回転フィルタによる露光及び遮光期間を示し、電子シャッタ制御を行わない場合には、図20(B)のように露光期間が電荷蓄積時間Tとなり、またその場合の照明光強度は照明光絞り位置により変動する。
【0006】
一方、電子シャッタ制御を行う場合には、図20(C)のようになる。電子シャッタにより電荷蓄積時間の制御を行うため、図20(B)の斜線部の面積Sをx倍(0<x<1)にする、すなわち、電荷蓄積時間をx倍にするように電子シャッタを制御することにより、図20(C)の縦線部のように、撮像に寄与する照明光量、すなわち、画像信号の明るさをx倍にすることができる。
【0007】
【発明が解決しようとする課題】
しかしながら、面順次光を作り出すための回転フィルタは、ある程度の太さを有する照明光の光束に対して垂直に配設されており、露光期間と遮光期間とが交互に切り替わるよう回転駆動されているが、遮光期間から露光期間へ移行する場合、並びに露光期間から遮光期間へと移行する場合については、前記照明光の光束は、露光期間と遮光期間双方にまたがって存在するため、この間の照明光の強度は、時間とともに変動する。
【0008】
具体的には、図21(A)に示すように面順次回転フィルタにおける照明光の光束の中心位置で遮光及び露光期間を示した場合、露光期間における実際の照明光強度は図21(B)に示すように略台形状になる。
【0009】
つまり、遮光期間では全光束が遮光されているが、遮光期間から露光期間への移行期間Kaでは、全光束のうち、露光期間に存在する割合が時間とともに増加しき、その後徐々に照明光強度は増加する。
そして、全光束が露光期間に入る期間Kbでは照明光強度は一定値を保つ。
【0010】
その後、露光期間から遮光期間への移行期間Kcに入ると、全光束のうち、露光期間に存在する割合が時間とともに減少していくため、徐々に照明光強度は減少し、ついには、全光束が遮光される。
【0011】
回転フィルタが、RGBの3色の面順次光を作り出すフィルタであれば、各色につき、前記のような露光が行われる。露光期間における照明光量は、光束の一部が露光期間に入ってから、光束の全てが遮光されるまでの照明光強度の積分値であるから、図21(C)の斜線部に示す台形に近似された図形(以下、台形部分)の面積で表される。
【0012】
この場合、電子シャッタを用いて明るさ調整を行うにあたって、(信号電荷として取り出すのに利用する)照明光量を(全照明光量の)x倍(0<x<1)にするために、電子シャッタで単純に電荷蓄積時間をx倍にする方法では、図21(C)に示す斜線部の面積がx倍にはならないため、照明光量もx倍にはならない。
【0013】
したがって、RGB各色に対して、電子シャッタで電荷蓄積時間を一律にx倍に制御した場合、図21(B)の期間Kbでの高さ(照明光強度)や期間Ka、Kcでの照明光強度の傾きは各色で異なるため、照明光量は一律にx倍とはならず、しかも、電子シャッタ速度が変動すれば、各色の照明光量比が変動し、結果として撮像画像のカラーバランスも変動するといった問題があった。
【0014】
また、光源装置に設けられている照明光絞りの位置により、照明光の光束の大きさは変動する。それに伴い、図21(B)の期間Ka、Kcでの照明光強度の傾き、及び期間Kbの高さ(照明光強度)も変動する。したがって、台形部分の面積、並びに、台形部分の形状も変動する。
【0015】
しかし、従来技術における電子シャッタでの電荷蓄積時間の制御では、照明光絞りの位置変動に伴う、前記台形部分の面積変動、形状変動に対応していないため、面順次光の照明光量比が変動し、撮像画像のカラーバランスを一定に保つことができないといった問題もあった。
【0016】
また、照明光絞りは、図22のような形状のものを光路上に挿入して光束の太さを制限するものであるため、照明光絞りを通過した照明光の光束断面は円形にはならず、台形部分の面積、形状も変動し、照明光量比を一定に保つことができないといった問題もあった。
【0017】
また、内視鏡は、使用される部位(上部消化管、下部消化管、気管支等)により、さまざまな仕様のものが存在する。照明光を導光するためのライトガイドの本数、長さは、内視鏡の種類により異なるが、ライトガイドは、伝達特性に波長依存性を有することから、ライトガイドへの入射光と、ライトガイドからの出射光とでは、面順次光各色の照明光量比が異なる。
【0018】
また、照明光量は、ライトガイドの本数、長さにも依存するため、ライトガイドへの入射光の照明光量比が常に一定であっても、内視鏡の種類により、内視鏡先端部から出射される照明光の光量比は異なる。そのため、内視鏡の種類によって、内視鏡先端部からの出射光の照明光量比が異なり、固体撮像素子による撮像画像のカラーバランスが異なるといった問題もあった。
また、照明光絞り位置による光束の太さの変動と、内視鏡の種類といった、2つの要因により、撮像画像のカラーバランスが異なるといった問題もあった。
【0019】
また、光源手段に用いられている回転フィルタやフィルタターレットの光学フィルタ、照明光絞りの位置制御精度、内視鏡の対物光学系、光学フィルタ、ライトガイド端面の不整度合いや、固体撮像素子等には、個体差が存在するため、使用する装置の組み合わせによって、撮像画像のカラーバランスが異なるといった問題もあった。
【0020】
また、固体撮像素子として、素子内部に電荷増倍機構を有する高感度撮像素子を用いた内視鏡装置において、高感度撮像素子の増幅率は、素子への印加電圧の増加に伴い、指数関数的に増加するが、増幅率の大きい領域では、前記指数関数近似から外れて非線形な変化を示す傾向にある。
【0021】
そのため、面順次光の複数色間で異なる増幅率となるものの、前記指数関数に基づいて、増幅率比は一定に保つ、すなわち、カラーバランスを−定に保つ内規鏡装置において、増幅率の小さい領域では、設定した増幅率比を保つことができるが、一方で、増幅率の大きい領域では、設定した増幅率比から外れる傾向にあるため、カラーバランスが変動するといった問題もあった。
【0022】
本発明は、上記事情に鑑みてなされたものであって、面順次式の内視鏡装置において、照明光量を制御した場合においても、常にカラーバランスを一定に保つことができる内視鏡装置を提供することを目的とする。
さらには、素子内部に電荷増倍機構を有する固体撮像素子を用いた場合においても、カラーバランスを一定に保つことができる内視鏡装置を提供することを目的とする。
【0023】
【課題を解決するための手段】
本発明の第1の内視鏡装置は、体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
前記内視鏡は、
被検体を撮像するための前記固体撮像素子と、
当該内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した内視鏡側電子シャッタ速度補正係数格納手段と、
を備え、
前記光源装置は、
照明光量を制限するための照明光絞りと、
前記照明光絞りの位置を検出する絞り位置検出手段と、
当該光源装置固有の情報に基づいて得られた補正係数と、前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する補正係数とにより設定される第2の電子シャッタ速度補正係数を格納する光源装置側電子シャッタ速度補正係数格納手段と、
を備え、
前記画像処理手段は、
前記固体撮像素子を駆動する固体撮像素子駆動回路と、
前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
前記電子シャッタの速度を制御する電子シャッタ制御回路と、
を備え、
前記電子シャッタ制御回路は、前記制御部の制御下に前記内視鏡側電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記光源装置側電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
ことを特徴とする。
本発明の第2の内視鏡装置は、上記第1の内視鏡装置において、前記内視鏡固有の情報は、電子シャッタ速度に影響を及ぼす少なくとも当該内視鏡に配設されたライトガイド固有の情報を含み、当該内視鏡の製造時に測定された情報であることを特徴とする。
本発明の第3の内視鏡装置は、上記第1または第2の内視鏡装置において、前記光源装置固有の情報は、電子シャッタ速度に影響を及ぼす少なくとも当該光源装置に配設された光学フィルタ固有の情報を含み、当該光学装置の製造時に測定された情報であることを特徴とする。
本発明の第4の内視鏡装置は、体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
前記内視鏡は、
被検体を撮像するための前記固体撮像素子と、
当該内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した内視鏡側電子シャッタ速度補正係数格納手段と、
を備え、
前記光源装置は、
当該光源装置固有の情報に基づいて得られた第2の電子シャッタ速度補正係数を格納する光源装置側電子シャッタ速度補正係数格納手段と、
を備え、
前記画像処理手段は、
前記固体撮像素子を駆動する固体撮像素子駆動回路と、
前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
前記電子シャッタの速度を制御する電子シャッタ制御回路と、
を備え、
前記電子シャッタ制御回路は、前記制御部の制御下に前記内視鏡側電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記光源装置側電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
ことを特徴とする。
本発明の第5の内視鏡装置は、体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
前記内視鏡は、
被検体を撮像するための前記固体撮像素子と、
当該内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した内視鏡側電子シャッタ速度補正係数格納手段と、
を備え、
前記光源装置は、
照明光量を制限するための照明光絞りと、
前記照明光絞りの位置を検出する絞り位置検出手段と、
前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する補正係数により設定される第2の電子シャッタ速度補正係数を格納する光源装置側電子シャッタ速度補正係数格納手段と、
を備え、
前記画像処理手段は、
前記固体撮像素子を駆動する固体撮像素子駆動回路と、
前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
前記電子シャッタの速度を制御する電子シャッタ制御回路と、
を備え、
前記電子シャッタ制御回路は、前記制御部の制御下に前記内視鏡側電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記光源装置側電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
ことを特徴とする。
本発明の第6の内視鏡装置は、体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
被検体を撮像するための前記固体撮像素子と、
前記内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した第1の電子シャッタ速度補正係数格納手段と、
照明光量を制限するための照明光絞りと、
前記照明光絞りの位置を検出する絞り位置検出手段と、
前記光源装置固有の情報に基づいて得られた補正係数と、前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する補正係数とにより設定される第2の電子シャッタ速度補正係数を格納する第2の電子シャッタ速度補正係数格納手段と、
前記固体撮像素子を駆動する固体撮像素子駆動回路と、
前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
前記電子シャッタの速度を制御する電子シャッタ制御回路と、
を備え、
前記電子シャッタ制御回路は、前記制御部の制御下に前記第1の電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記第2の電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
ことを特徴とする。
本発明の第7の内視鏡装置は、体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
被検体を撮像するための前記固体撮像素子と、
照明光量を制限するための照明光絞りと、
前記照明光絞りの位置を検出する絞り位置検出手段と、
前記固体撮像素子を駆動する固体撮像素子駆動回路と、
前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
電子シャッタの速度を制御する電子シャッタ制御回路と、
を備え、
前記電子シャッタ制御回路は、前記制御部の制御下に、前記内視鏡または前記光源装置における少なくとも1つの固有情報であって予め設定された光学的情報に基づいて得られた第1の補正係数と、前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する第2の補正係数と、に基づいて前記電子シャッタ速度を設定し、
前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
ことを特徴とする。
【0024】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
(第1の実施の形態)
図1ないし図6は本発明の第1の実施の形態に係り、図1は第1の実施の形態を備えた内視鏡装置の全体構成を示し、図2は回転フィルタ板の構成を示し、図3は回転フィルタに取り付けたRGBフィルタの透過特性を示し、図4は照明光絞りと照明光強度との関係を示し、図5はカラーバランス補正回路の構成を示し、図6は電子シャッタの作用の説明図を示す。
【0025】
本実施の形態の目的は電子シャッタを用いて照明光量を所望の値に制御することにより、スコープの種類、スコープや光源装置の個体バラツキによらず、撮像画像のカラーバランスを常に一定に保つ撮像装置及び内視鏡装置を提供することを目的とする。
【0026】
まず、本実施の形態の構成を説明する。
図1に示すように本発明の第1の実施の形態を備えた内視鏡装置1は、体腔内に挿入され、体腔内を撮像するための電子内視鏡(以下、スコープと略記)2と、観察用の照明光を発生する光源装置3と、スコープ2で撮像された画像信号に対する信号処理を行うプロセッサ4と、内視鏡画像を表示する観察モニタ5とより構成される。
【0027】
スコープ2は、体腔内に挿入される細長の挿入部6と、この挿入部6の後端に設けられた操作部7とを有する。この挿入部6内には照明光を伝送するライトガイド8が挿通され、このライトガイド8の後端のライトガイドコネクタ9は光源装置3に着脱自在に接続され、光源装置3から供給される照明光を伝送し、挿入部6の先端部の照明窓に取り付けられた先端面からさらに照明レンズを経て体腔内の患部等の被写体10側を照明する。
【0028】
この先端部には、照明窓に隣接して観察窓が設けてあり、この観察窓には対物光学系11が取り付けてあり、その結像位置に照明された被写体10の光学像を結像する。この結像位置には固体撮像素子として例えばCCD12が配置されており、結像された光学像を光電変換する。
この対物光学系11とCCD12との間には、赤外カットフィルタなどの光学フィルタ13が配置されている。
【0029】
このCCD12は挿入部6内等に挿通された信号線を介してプロセッサ4と電気的に接続される。また、このスコープ2の操作部7等には、スコープ2の機種情報や電子シャッタ速度等が記憶されたスコープ情報記憶用素子15が設けてある。
【0030】
光源装置3は、光を照射するキセノンランプ等のランプ21と、このランプ21の照明光路上に設けられ、複数の光学フィルタをモータ22の駆動により切替可能なフィルタターレット23と、照明光量を制限するための照明光絞り24と、その位置を検出する絞り位置検出センサ25と、絞り位置毎に異なる電子シャッタ速度の補正係数を出力するための電子シャッタ速度補正係数格納メモリ26と、照明光を面順次光にするための回転フィルタ27と、この回転フィルタ27を回転駆動するためのモーク28と、スコープ2のライトガイド8の基端面(入射端面)に回転フィルタ27を経た面順次光を集光する集光レンズ29とを備えて構成される。
【0031】
回転フィルタ27は、図2に示すように円板状に構成され、中心を回転軸として、赤、緑、青の波長の光を透過するRフィルタ31a、Gフィルタ31b、Bフィルタ31cが配置されている。
【0032】
フィルタの分光特性は、図3に示すようになっており、回転フィルタ27の各フィルタが配置されている以外の部分は、光を遮光する部材により構成されている。
【0033】
プロセッサ4は、CCD12を駆動する駆動信号を発生するCCDドライバ32を有する。また、このプロセッサ4は、CCD12から出力された撮像信号に対する前処理を行うプリプロセス回路33と、A/D変換回路34と、カラーバランス補正回路35と、マルチプレクサ36と、同時化メモリ37a、37b、37cと、画像処理回路38と、D/A変換回路39a、39b,39cとの順に画像信号が流れるように構成されている。また、このプロセッサ4には、制御動作を行うCPU41、調光を行う調光信号を発生する調光回路42と、電子シャッタの速度を制御する電子シャッタ制御回路43とを備えている。
【0034】
本実施の形態では、スコープ2にはそのスコープ2に内蔵されたCCD12、CCD12に結像する光学系及びライトガイド8の固有の情報を記憶するスコープ情報記憶用素子15を備え、CPU41はその情報を読み出して電子シャッタ制御を行う電子シャッタ制御回路43に電子シャッタ速度を決定する情報として入力する。
【0035】
また、光源装置3には電子シャッタ速度を決定する場合の電子シャッタ速度補正係数を記憶した電子シャッタ速度補正係数用メモリ26を内蔵し、この電子シャッタ速度補正係数用メモリ26はランプ21の発光特性、光学フィルタ等の特性、(絞り24の位置検出するセンサ25により検出される)照明光量に対応した電子シャッタ速度の補正係数を記憶しており、この電子シャッタ速度補正係数用メモリ26から光源装置3の任意の照明光量の状態において、カラーバランスをさせるのに適した電子シャッタ速度の補正係数の情報を電子シャッタ制御回路43に入力する。
【0036】
そして、スコープ2側及び光源装置3からそれぞれ固有の情報が入力されることにより電子シャッタ制御回路43は、CCDドライバ32を介してCCD12における面順次の各色光に対する電荷蓄積時間を電子シャッタによりカラーバランスを保持できるように制御する。
【0037】
また、CCD12から出力される面順次の各色光のもとで撮像されたR、G、Bの信号に対して(CPU41のメモリ書換信号により)カラーバランス回路35により乗算する補正係数の値を選択制御して、常に一定のカラーバランスが保たれるように画像信号が生成されるようにする撮像装置を備えた内視鏡装置1にしている。
【0038】
次に本実施の形態の作用を説明する。
スコープ2を光源装置3並びにプロセッサ4に接続した状態で電源を投入すると、スコープ2のスコープ情報記憶用素子15より、スコープ2の機種情報と電子シャッタ速度とがプロセッサ4内のCPU41に読み出され、CPU41のレジスタ等に記憶(格納)され、必要とされる時に読み出して使用することができる状態に設定される。
【0039】
ここで、スコープ情報記憶用素子15より読み出される電子シャッタ速度とは、スコープ2に搭載されたライトガイド8の本数や長さ、結像する対物光学系11や光学フィルタ13、固体撮像素子としてのCCD12が、機種により異なること、また、同一機種でも個体差が存在することを考慮したうえで、スコープ2にて撮像される画像信号のカラーバランスが一定に保たれるよう、スコープ2の製造時に測定され、予め記憶された値である。
【0040】
尚、ライトガイド8の照明光の伝送特性(透過率ともいう)が照明光の波長帯域により異なることも考慮して、面順次光の各色に対してそれぞれ異なる電子シャッタ速度が設定される。
一方、光源装置3では、ランプ21から放射された照明光が、フィルタターレット23に設けられた光学フィルタを通過し、照明光絞り24によって適切な明るさとなるように照明光量が調節される。
【0041】
照明光絞り24と、照明光強度との関係は例えば図4のような関係になる。照明光絞り24の位置は、常時、絞り位置検出センサ25が検出し、検出した絞り位置情報を電子シャッタ速度補正係数格納メモリ26に出力し、電子シャッタ速度補正係数格納メモリ26に格納される。
【0042】
電子シャッタ速度補正係数格納メモリ26には、フィルタターレット23や回転フィルタ27に取り付けられた光学フィルタの分光特性のバラツキ、照明光絞り24の位置制御精度の個体差等、光源装置3の構成部品に含まれる個体差を考慮した補正係数が製造段階に測定され、予め記憶されている。
【0043】
絞り位置検出センサ25より入力された絞り位置を基に、照明光絞り24の位置に応じた電子シャッタ速度補正係数が電子シャッタ速度補正係数格納メモリ26より読み出され、プロセッサ4の電子シャッタ制御回路43に出力される。
【0044】
照明光絞り24を通過した照明光は、モータ28によって回転駆動される回転フィルタ27により、面順次光へと変換され、集光レンズ29によって、スコープ2のライトガイド8の入射端面に集光して照射され、ライトガイド8により伝送されその先端面から被写体10側に照射される。
【0045】
被写体10からの戻り光は、スコープ2の対物光学系11、光学フィルタ13を経てCCD12に結像され、光電変換される。そして、プロセッサ4のCCDドライバ32からの駆動信号の印加により、CCD12で光電変換された撮像信号が画像信号として、プロセッサ4のプリプロセス回路33に入力される。
【0046】
プロセッサ4に入力された画像信号は、このプリプロセス回路33でCDS(相関2重サンプリング)等の処理によりリセットノイズ等が除去されて画像信号成分が抽出される。
プリプロセス回路33から出力された信号は、A/D変換回路34によりアナログ信号からデジタル信号に変換され、カラーバランス補正回路35に入力される。
【0047】
このカラーバランス補正回路35は、ホワイトバランス回路と呼ばれることもある。カラーバランス補正回路35では、図5に示すように、3つのカラーバランス補正係数をそれぞれ記憶するための不揮発性メモリであるカラーバランス補正係数記憶メモリ45a、45b、45cと、カラーバランス補正係数を選択するセレクタ46と、乗算器47とから構成されている。
【0048】
カラーバランス補正係数記憶メモリ45a、45b、45cはRフィルタ31a、Gフィルタ31b、Bフィルタ31cがそれぞれ光路に挿入された状態で撮像された画像信号、つまりR、G、Bの各画像信号に対応するカラーバランス補正係数が格納されている。
【0049】
そして、CPU41から(同時化メモリ37a〜37cに書換を行う)メモリ書換信号により、カラーバランス補正係数記憶メモリ45a、45b、45cから格納されているカラーバランス補正係数を読み出す。なお、図5では第2の実施の形態における観察モード識別信号もカラーバランス補正係数記憶メモリ45a、45b、45cに入力される場合で示している(本実施の形態では観察モード識別信号は使用されない)。
【0050】
そして、セレクタ46は、Rフィルタ31aが光路に挿入されているタイミングではカラーバランス補正係数記憶メモリ45aを、Gフィルタ31bが光路に挿入されているタイミングではカラーバランス補正係数記憶メモリ45bを、Bフィルタ31cが光路に挿入されているタイミングではカラーバランス補正係数記憶メモリ45cをそれぞれ選択するようになっている。
【0051】
乗算器47では、入力される入力画像信号(具体的にはR、G、Bの画像信号)とセレクタ46で選択されたカラーバランス補正係数との乗算を行い出力する。各カラーバランス補正係数記憶メモリ45i(i=a〜c)には、CPU41で算出されるカラーバランス補正係数が予め書き込まれるようになっている。
【0052】
カラーバランス補正回路35から出力された画像信号は、マルチプレクサ36と、同時化メモリ37a、37b、37cにより面順次信号の同時化が行われる。
つまり、Rフィルタ31aを通したRの照明光の下で撮像されたRの画像信号は同時化メモリ37aに書き込まれ、Gフィルタ31aを通したGの照明光の下で撮像されたGの画像信号は同時化メモリ37bに書き込まれ、Bフィルタ31cを通したBの照明光の下で撮像されたBの画像信号は同時化メモリ37cに書き込まれる。そして、これらは同時に読み出されて同時化されたR、G、Bの画像信号が出力される。
【0053】
同時化された信号は、画像処理回路38に入力される。この画像処理回路38では、ガンマ補正処理、構造強調処理、色処理等が行われる。
画像処理回路38より出力された画像信号は、D/A変換回路39a、39b、39cにより再びアナログ信号に変換され、観察モニタ5上に、CCD12で撮像された画像がカラーで表示される。
【0054】
また、D/A変換回路39a、39b、39cの出力は図示しない符号化回路で符号化され、図示しないデジタルファイリング装置に記録されたり、図示しない写真撮影装置にて写真撮影で記録される。
【0055】
調光回路42では、カラーバランス補正回路35から出力された画像信号に基づき、画像が適正な明るさとなるように、光源装置3の照明光絞り24の位置を調整するための調光信号を出力する。調光信号は、光量不足の場合、照明光絞り24を開放する方向へ動作させ、逆に、光量過剰の場合は、照明光絞り24を閉じる方向へ動作させる。このようにして、常時適正な照明光量に自動調光(調節)される。
【0056】
電子シャッタ制御回路43では、各色において、CPU41に記憶されたスコープ2の電子シャッタ速度と、光源装置3の電子シャッタ速度補正係数格納メモリ26から出力された電子シャッタ速度補正係数とを乗算することにより、照明光絞り24の位置に応じて補正された電子シャッタ速度が導出され、導出された補正後の電子シャッタ速度がCCDドライバ32に伝送される。
【0057】
CCDドライバ32では、CCD12の駆動信号を生成、出力するとともに、入力された補正後の電子シャッタ速度を基に、電子シャッタ制御パルスを生成、出力する。
【0058】
電子シャッタは、図6に示すように、CCD12に蓄積された不要な電荷を掃き出しパルスP0により設定されたタイミングで掃き出させ、読み出しパルスP1によって読み出される信号電荷の電荷蓄積時間を制御するものであり、被写体10が動きのある場合でも色ずれの発生を抑制できるメリットもある。
【0059】
CCDドライバ32より出力される駆動信号、並びに電子シャッタ制御パルスにより、スコープ2の機種の違い、光源装置3やスコープ2の個体バラツキ、照明光絞り24の位置に関わらず、常に一定のカラーバランスを有した画像信号が生成される撮像装置を実現できるようにしている。
【0060】
尚、本実施の形態では、電子シャッタ速度を絞り位置に応じて変動させるものとしたが、電子シャッタを使用する場合は、照明光絞り24を開放位置、あるいは特定の位置に固定する形式でもよい。
また、電子シャッタは、調光回路42と連動して、明るさを制御するために用いる機能を付加してもよい。
【0061】
また、電子シャッタ速度の補正を、補正係数により行うのではなく、照明光絞り24の位置全てに対応した電子シャッタ速度を記憶したルックアップテーブルや、基準とする絞り位置からの変化量と、それに対応した電子シャッタ速度を全て記憶したルックアップテーブルに基づき行うものでもよい。
【0062】
また、スコープ情報記憶用素子15に記憶される容量には限りがあるため、スコープ情報記憶用素子15は、スコープ2の機種情報のみ記憶しておき、電子シャッタ速度等の情報は、プロセッサ4内に設けられた図示しない大容量メモリに記憶しておき、起動時にスコープ2の機種情報に基づいて設定値を読み出し、使用する形式でもよい。
【0063】
また、光源装置3の絞り位置制御精度や、光学フィルタに個体差が見られないような場合には、調光回路42から出力される調光信号を電子シャッタ制御回路34に入力し、調光信号に基づいて電子シャッタ速度の補正を行う形式にしてもでもよい。
【0064】
また、電子シャッタ速度補正係数格納メモリ26は、プロセッサ4内に設けられ、光源装置3の絞り位置検出センサ25から出力される絞り位置情報に基づき、適切な補正係数を読み出す形式でもよい。
また、光源装置3の回転フィルタ27に設けられた光学フィルタの個体バラツキ補正に関しては、電子シャッタではなく、ランプ21の光量を変化させるためのランプ駆動電流のデューティ比を調整することによって行う形式でもよい。
【0065】
本実施の形態は以下の効果を有する。
電子シャッタを用いて照明光量を所望の値に制御することにより、スコープ2の種類、スコープ2や光源装置3の個体バラツキによらず、撮像画像のカラーバランスを常に一定に保つことができる。
【0066】
(第2の実施の形態)
次に本発明の第2の実施の形態を説明する。本実施の形態の目的は、蛍光観察等のように微弱光を観察するときに、照明光絞り位置を開放、もしくは開放に近い位置に固定する場合においても、電子シャッタを用いて照明光量を所望の値に制御することにより、撮像画像のカラーバランスを常に一定に保ったまま、適切な明るさの画像を得ることができる撮像装置及び内視鏡装置を提供することである。
【0067】
まず、本実施の形態を備えた内視鏡装置1Bの構成を説明する。
第2の実施の形態は、第1の実施の形態と似ているため、異なる点を中心に述べる。
図7は第2の実施の形態を備えた内視鏡装置1Bの全体図である。
【0068】
この内視鏡装置1Bは、体腔内に挿入可能で撮像手段を内蔵したスコープ2Bと、このスコープ2Bのライトガイド8に照明光を供給する光源装置3Bと、スコープ2Bの撮像手段を駆動すると共に、撮像手段に対する信号処理を行うプロセッサ4Bと、撮像手段で撮像された画像をカラー表示する観察用モニタ5とから構成される。
【0069】
本実施の形態におけるスコープ2Bは、第1の実施の形態におけるスコープ2における対物光学系11、光学フィルタ13、通常観察用のCCD12の他にさらに対物光学系11b、光学フィルタ13b、蛍光観察用の高感度CCD12bを設けている。
【0070】
また、このスコープ2Bには、通常光観察用のCCD12、蛍光観察用の高感度CCD12bとを切り替えて駆動するリレースイッチ51a、及び両CCD12、12bによる撮像された信号を切り替えてプロセッサ4Bに出力させるためのリレースイッチ51bとが設けてある。
さらに、このスコープ2Bには、通常光観察と蛍光観察の観察モードを切り替える観察モード切替スイッチ52も設けてある。
【0071】
従って、このスコープ2Bは光源装置3Bから供給される照明光を先端面まで伝送するライトガイド8、前記照明光に基づく被写体10からの戻り光を受光する対物光学光学系11、11b、光学フィルタ13、13b、通常光観察用のCCD12、蛍光観察用の高感度CCD12b、CCD12または高感度CCD12bの駆動信号、並びに撮像後の画像信号(CCD出力信号)を切り替えるための、それぞれ複数個から成るリレースイッチ51a,51b、スコープ2Bの機種情報や、個体バラツキ、対応する観察モード情報等が記憶されたスコープ情報記憶用素子15、スイッチ操作により観察モードを切り替えるための観察モード切替スイッチ52によって構成される。
【0072】
また本実施の形態における光源装置3Bは、第1の実施の形態における光源装置3における回転フィルタ27の代わりにその内周側及び外周側にフィルタを設けた回転フィルタ27bを設け、この回転フィルタ27bを移動用モータ53にて移動可能にして内周側及び外周側の一方のフィルタを光路上に選択的に配置できるようにしている。
【0073】
また、この光源装置3Bでは電子シャッタ速度補正係数格納メモリ26の代わりに電子シャッタ速度記憶用素子55を設けた構成にしている。
より詳細に説明すると、光源装置3Bは、光を照射するキセノンランプ等のランプ21、ランプ21の照明光路上に設けられ、複数の光学フィルタをモータ22の駆動により切替可能なフィルタターレット23、照明光量を制限するための照明光絞り24、照明光絞り24の位置を検出するセンサ25、照明光を面順次光にするための回転フィルタ27b、この回転フィルタ27bを回転駆動するためのモータ28、回転フィルタ27bを照明光の光軸に対して垂直方向に移動するためのモータ53、スコープ2Bのライトガイド8の入射端面に回転フィルタ27bを介した面順次光を集光させる集光レンズ29、電子シャッタ速度を記憶するための電子シャッタ速度記憶用素子55と、を備えて構成される。
【0074】
回転フィルタ27bは、図8に示すように円板状に構成され、中心を回転軸とした2重構造となっており、外周には、通常光観察に用いられるための、赤、緑、青の波長の光を透過するRフィルタ31a、Gフィルタ31b、Bフィルタ31cが配置されている。
【0075】
内周には、蛍光観察に用いられるための、540〜560nmの狭帯域光を透過するG’フィルタ56a、395〜475nmの励起光を透過する励起フィルタ56b、600〜620nmの狭帯域光を透過するR’フィルタ56cが配置されている。
【0076】
内周、外周のフィルタの分光特性は、それぞれ、図3、図9に示すようになっており、回転フィルタ27bの各フィルタが配置されている以外の部分は、光を遮光する部材により構成されている、
フィルタターレット23と回転フィルタ27bとの組み合わせにより、蛍光観察時における照明波長は、励起波長395〜475nm、または395nm〜445nm、縁反射光540〜560nm、赤反射光600〜620nmとなる。なお、通常光観察時における照明波長の分光特性は図3と同じである。
【0077】
また、プロセッサ4Bは、第1の実施の形態に加えて、高感度CCDドライバ57、CCDセレクタ(図7では単にセレクタと略記)58を備えた構成となっている。そして、通常光観察時には、CPU4はCCDセレクタ58によりCCDドライバ32を、蛍光観察特には高感度CCD57を選択するように制御する。また、CPU41は観察モード切替スイッチ52により選択された観察モードに応じて観察モード識別信号を出力し、この観察モード識別信号によりCCDセレクタ58、カラーバランス回路35、同時化メモリ37a〜37c、画像処理回路38、調光回路42を制御する。
【0078】
本実施の形態は通常光観察で撮像(観察)できるようにすると共に、蛍光観察を選択して蛍光観察もできるようにすると共に、微弱な蛍光観察時には高感度CCD12bを用いて観察できるようにしている。また、蛍光観察時には、電子シャッタにより、適切な明るさの撮像画像を得ることができるようにしている。
【0079】
次に本実施の形態の作用を説明する。
本実施の形態で用いるスコープ2Bは、通常光観察と蛍光観察といった2つの観察モードに対応している。
【0080】
スコープ2Bを光源装置3B、並びにプロセッサ4Bに接続した伏態で電源を投入すると、内視鏡装置1Bは、通常光観察モードにて起動する。また、起動と同時に、スコープ2Bのスコープ情報記憶用素子15に格納された情報が読み出される。つまり、スコープ情報記憶用素子15から、スコープ2Bの機種情報や、個体バラツキ、対応する観察モード情報等が、プロセッサ4B内のCPU41に読み出され、記憶される。
【0081】
光源装置3Bでは、ランプ21から放射された照明光が、フィルタターレット23を通過する。フィルタターレット23は、観察モード毎に分光特性が異なる光学フィルタを有しており、観察モード識別信号により、選択された観察モードに対応する光学フィルタが照明光の光路上に移動するように、モータ22が回転駆動され、所定の位置でモータ22が停止し、フィルタターレット23が固定される。
【0082】
フィルタターレット23の光学フィルタを通過した照明光は、照明光絞り24によって適切な明るさとなるように照明光量が調節され、モータ28によって回転駆動される回転フィルタ27bにより、面順次光へと変換される。
モータ28は観察モードに応じて、回転周波数が異なり、蛍光観察では10Hz、その他の観察モードでは20Hzで駆動する。
【0083】
観察モード識別信号が蛍光観察であることを示す場合は、図示しない光源制御回路が回転フィルタ27bの回転周波数を10Hzに同期させるように相互に通信を行い、一方、蛍光観察以外の場合は、図示しない光源制御回路が回転フィルタ27bの回転周波数を20Hzに同期させるように相互に通信を行いながら動作する。
【0084】
また、モータ53は蛍光観察時には、図示しない光源制御回路からの信号に基づき、照明光の光路上に回転フィルタ27bの内周側がくるように駆動され、通常光観察の場合には、同じく図示しない光源制御回路からの信号に基づき、照明光の光路上に回転フィルタ27bの外周側が来るように駆動される。
【0085】
図7の例ではモータ28にラックが、モータ53にはピニオンが取り付けられ、モータ53を回転することにより、モータ28と共に回転フィルタ27bは図7の上下方向(実機では左右方向)に移動される。
【0086】
回転フィルタ27bを通過した照明光は、集光レンズ29によってスコープ2Bのライトガイド8の入射面に集光され、ライトガイド8により伝送されてその先端面から被写体10側に照射され、戻り光がCCD12または高感度CCD12bによって撮像される。
【0087】
観察モードを切り替える場合には、スコープ2Bに設けられた観察モード切替スイッチ52を押すことにより、観察モードの切替を指示する信号が生成され、プロセッサ4B内のCPU41に入力される。
【0088】
CPU41内では、観察モード切替信号が入力されたことを検知すると、スコープ2Bが対応する観察モード情報(本実施の形態では、通常光観察と蛍光観察)と、切替操作直前の観察モード(通常光観察(蛍光観察))と、対応する観察モードの優先順位情報(1:通常光観察、2:蛍光観察)を基に、切替後の観察モード(蛍光観察(通常光観察))を示す観察モード識別信号が出力される。
【0089】
CPU41より出力された観察モード識別信号は、プロセッサ4B内のCCDセレクタ58、カラーバランス補正回路35、同時化メモリ37a、37b、37c、画像処理回路38、調光回路42、電子シャッタ制御回路43と図示しない光源制御回路、並びに、スコープ2B内のリレースイッチ51a、51b、光源装置3Bの電子シャッタ速度記憶用素子55に伝送される。
【0090】
CCDセレクタ58では、観察モード識別信号に基づき、切替後の観察モードが蛍光観察か否かを判断する。蛍光観察では、照射した励起光に基づく被写体10(より具体的には生体組織)からの自家蛍光を観察するが、自家蛍光は非常に微弱な光であるため、高感度CCD12bを用いる。
【0091】
高感度CCD12bとしては、例えば、USP5、337、340に示されているように、素子外から制御パルスを入力することにより、素子内での信号の増幅率を制御できるCCDである。そのCCDでは、図10に示すように、素子内に配置されたCMD(Charge Multiplication Device)においてイオン化を利用した電荷の増倍が可能となっている。
【0092】
図10の場合には、受光することにより信号電荷の蓄積を行う受光エリア58と、この受光エリア58で蓄積された信号電荷が例えば奇数及び偶数の垂直転送部を経てそれぞれ接続された2列の水平転送チャンネル59と、この2列の水平転送チャンネル59にそれぞれ接続されたCMD付き転送チャンネル60と、このCMD付き転送チャンネル60を経て増倍された信号電荷が検出される電荷検出部61とを備えて高感度CCD12bが形成されている。
【0093】
CMD付き転送チャンネル60には高感度CCDドライバ57からの駆動信号に含まれるCMD印加電圧により信号電荷が倍増される。従って、高感度CCD12bの増幅率が増大される。この高感度CCD増幅率の情報は、高感度CCDドライバ57から電子シャッタ制御回路43に送られ、後述するように電子シャッタ速度の制御の際に利用される。
【0094】
なお、CMDは画素毎に配置して画素毎に増幅をすることも可能であり、転送チャンネルに配置して転送ライン毎に増幅することも可能である。また、最近では、制御パルスではなく、電圧値によってCMDを制御できるCCDも提案されている。
【0095】
CMDを用いたCCD12bでは、このCCD12bからの電荷の読み出し前に内部で増幅が行われるので、CCD12b外部で増幅を行うよりも読み出しノイズの影響が少なくなり、高いS/Nの画像が得られるというメリットがある。そのため、蛍光等、微弱光の撮像に適している。一方、通常光観察では、通常のCCD12が用いられる。
【0096】
切替後の観察モードが蛍光観察である場合は、高感度CCDドライバ57に対して駆動信号の生成を指示する信号が出力される、同時に、CCDドライバ32に対しては、駆動信号の生成を停止することを指示する信号が出力される。
【0097】
生成された駆動信号は、スコープ2Bのリレースイッチ51aを介して高感度CCD12bに送られ、駆動に用いられる。高感度CCD12bにより撮像された被写体の画像信号(CCD出力信号)は、リレースイッチ51bを介して、プロセッサ4Bに入力される。一方、切替後の観察モードが通常光観察である場合は、CCDドライバ32と高感度CCDドライバ57とが前記とは逆の動作をする。
尚、リレースイッチ51a、51bは、メカニカル式、電気式どちらでもよい。
【0098】
高感度CCD12bのCMD印加電圧値と増幅率との関係は、図11に示すように指数関数で近似され、CMD印加電圧値の増加に伴い、増幅率も増加する。蛍光観察時には、高感度CCD12bの駆動信号に含まれるCMD印加電圧値を増減させることで、高感度CCD12bの増幅率を増減させ、画像信号の明るさを一定に保つよう調節している。
【0099】
プロセッサ4Bに入力された画像信号は、プリプロセス回路33、A/D変換回路34、カラーバランス補正回路35を介して、マルチプレクサ36、調光回路42、電子シャッタ制御回路43に入力される。マルチプレクサ36の後段の信号処理は、第1の実施の形態と同様のため、ここでは省略する。
【0100】
調光回路42では、通常光観察の場合、カラーバランス補正回路35から出力された画像信号と、CPU41から出力された観察モード識別信号とから、選択された観察モード下で画像が適正な明るさとなるように、光源装置3Bの照明光絞り24を調整するための調光信号を出力する。
【0101】
調光信号は、光量不足の場合、照明光絞り24を開放する方向へ動作させ、逆に、光量過剰の場合は、照明光絞り24を閉じる方向へ動作させる。一方、蛍光観察の場合には、励起光強度を大きくして、生体組織からの戻り光である自家蛍光の強度を少しでも大きくするために、照明光絞り24は、開放、もしくは開放に近い位置で固定状態となるよう指示するための調光信号を出力する。
電子シャッタ制御回路43は、観察モード識別信号が通常光観察を表す場合は、特に動作しない。
【0102】
一方、観察モード識別信号が蛍光観察であることを示す場合、前記のように、照明光絞り24は開放、もしくは開放に近い位置で固定状態となるため、自家蛍光が微弱光とはいえ、被写体に近接した場合においては、被写体からの戻り光が過剰となり、高感度CCD12bの増幅率を最低の1倍とした場合においても、画像信号にハレーションを起こす場合がある。
したがって、この場合、電子シャッタにより露光期間中の電荷蓄積時間を短縮するための、電子シャッタ制御パルスを生成する。
【0103】
前述したように露光期間中の照明光量は、図21(C)の台形部分の面積で表されることから、電子シャッタにより固体撮像素子の蓄積電荷量を全露光期間中で電荷蓄積した場合のx倍としようとした場合、信号電荷の蓄積に寄与する(換言すると実際に撮像に用いられる)照明光量が全照明光量のx倍;(0<x<1)にしても、図20の場合とは異なり、電荷蓄積時間をx倍にしたとしても、その照明光量はx倍とはならない。
【0104】
この対策として、あらかじめ、面順次光各色について、図12(C)に示すように、台形部分の面積、すなわち全照明光量に対して(信号電荷に寄与する)照明光量をx倍にするための電子シャッタ速度を、光源装置3Bの製造時に測定しておき、光源装置3Bに設けられた電子シャッタ速度記憶用素子55に、色、倍率、電子シャッタ速度の3点を対応付けて記憶させておく。
【0105】
なお、図12(A)は面順次回転フィルタにおける照明光の光束の中心位置により遮光期間、露光期間、遮光期間を示し、図12(B)は図12(A)における露光期間における実際の照明光強度を示し、これを図12(C)に示すように台形で近似する。
【0106】
また、図12(C)に示すように全照明光量に対してそのx倍となる(信号電荷に寄与する)照明光量にする電子シャッタ制御パルスのタイミングTxの関係のデータを予め測定するなどして求めておく。
【0107】
そして、例えば0.8倍の電子シャッタに制御しようと場合には、図12(D)に示すように、図12(C)の0.8倍のタイミングT8の位置で掃き出しパルスP0を伴う電子シャッタ制御パルスを出力させ、タイミングT0の位置で読み出しパルスP1を出力させるように制御することにより、この掃き出しパルスP0以前の照明光量で撮像された信号電荷を掃き出させ、残りの図12(E)の斜線で示す照明光量の下で撮像された(つまり全照明光量の0.8倍の照明光量の下で撮像された)信号電荷を画像信号として得ることができるようになる。
【0108】
上記補正係数の事情を以下に補足説明する。
図7に示すようにランプ21→フィルタターレット23→照明光絞り24→回転フィルタ27bを介して照明光はライトガイド8に出射される。この場合
a.フィルタターレット23、回転フィルタ27bに用いられている光学フィルタは、分光特性に個体バラツキを有するため、ランプ21からの出射光が一定であったとしても、光源装置3B毎に出射光の分光特性にバラツキが生じる。なお、回転フィルタ27bでは、白色光をRGBの3色に分けるため、各色の照明光量の比率にもバラツキが生じる。また、
b.照明光絞り24の位置も、光源装置3Bの個体により差が生じる。
【0109】
c.上記a、bより、ランプ21からの出射光は、光源装置3B個体毎に照明光量、また、RGBの比率にバラツキを持つ。
これらを補正するために、仮に照明光絞り24の位置が10段階で制御される場合で具体的に説明する。
【0110】
(1)絞り位置の各段階で光量計等の測定機材を用いて予め光量を測定しておき、
(2)各段階の目標値へと補正するための補正係数を導出し、
(3)光源装置内の記憶用素子に補正係数を記憶させておく。
【0111】
上記(1)〜(3)の結果を図13(A)及び図13(B)の表に示す。図13(A)は2つの光源装置(図13では簡単化のため光源と略記)A及びBの場合に光量計で測定した光量値を示している。
【0112】
上記測定結果により、図13(B)に示すように目標値に補正するために補正係数を導出して、各光源装置内の記憶用素子55に記憶させておく。そして、
(4)プロセッサ4B内の電子シャッタ制御回路43に補正係数を伝送し、
(5)プロセッサ4B内の電子シャッタ制御回路43で上記バラツキを補正する電子シャッタ速度を出力する。
この結果、各絞り位置に応じて、光源装置間のバラツキに依存せず、カラーバランスを一定に保った画像を得ることができる。
【0113】
なお、ここで、色毎に倍率、電子シャッタ速度を別途記憶する理由は、以下の通りである。蛍光観察時には、回転フィルタ27bの回転周波数は一定(10Hz)、照明光絞り24は固定され、光束の大きさも一定であることから、回転フィルタ27bを通過する面順次光の台形部分の面積、すなわち照明光量は時間変動しない。
【0114】
しかしながら、面順次光各色で比較すると、回転フィルタ27bの光学フィルタの分光特性が異なるため、図21のKb部分の高さ(照明光強度)や、図21のKa、Kc部分の傾きも異なり、台形部分の面積、形状は各色で異なる。
そのため、電子シャッタにて電荷蓄積時間を一律にx倍としたとしても、全色の(実際の撮像に用いられる)照明光量が一律にx倍となるわけではない。
【0115】
結果として、撮像画像のカラーバランスが変動してしまうため、これを防止する目的で、電子シャッタ速度記憶用素子55には、色毎に倍率、電子シャッタ速変を別途記憶している。
そして、図12により説明したように、面順次光各色について、台形の全照明光量に対して(信号電荷に寄与する)照明光量がそのx倍となるような状態での画像を得られるようにしている。
【0116】
電子シャッタによる照明光量制御の具体的な作用は、図14に示すようになる。
最初のステップS1、続くステップS2及びS3において観察モードが蛍光観察か、高感度CCD12bの増幅率が1か、画像が目標値より明るいかの判断を行い、これら全てに該当しない場合には、電子シャッタによる照明光量制御を行わない。
【0117】
一方、これら全てに該当する場合には、ステップS4に進み、電荷蓄積時間の倍率演算を行う。そして、次のステップS5において、電子シャッタ制御回路43は、電子シャッタ速度記憶用素子55に倍率を出力し、次のステップS6において、電子シャッタ速度記憶用素子55から対応する電子シャッタ速度の情報を得る。
【0118】
そして、次のステップS7において、電子シャッタ制御回路43は各面順次の各色における電子シャッタ速度を算出して高感度CCDドライバ57に出力する。
【0119】
ステップS8に示すように高感度CCDドライバ57は電子シャッタ制御パルスを各面順次の各色の照射タイミングに合わせて高感度CCD12bに出力するようにしてこの処理を終了する。
【0120】
このように本実施の形態では観察モード識別信号が蛍光観察であり、高感度CCD12bの増幅率が1倍であり、カラーバランス補正回路35から入力される画像信号が目標値よりも明るいと判断した場合に限り、光源装置3B内に設けられた電子シャッタ速度記憶用素子55に、現フレームよりも低い倍率の電子シャッタ速度を出力するよう指示を出し、出力されてきた電子シャッタ速度を受け取る。
【0121】
なお、ここでは、全ての面順次光の電子シャッタ速度を受け取る。その後、入力された電子シャッタ速度を電子シャッタ制御パルスに変換して高感度CCDドライバ57に伝送し、各色の電子シャッタ制御パルスを、回転フィルタ27bの面順次光各色の照射タイミングにあわせて出力する。
【0122】
出力された電子シャッタ制御パルスは、リレースイッチ51aを経由して、高感度CCD12bに伝送され、電荷蓄積時間を制御するのに使用される。
尚、本実施の形態では、蛍光観察時の照明光絞り24の位置を固定としたが、電子シャッタと連動して画像信号の明るさ調整を行う形式でもよい。
【0123】
また、本実施の形態では、蛍光観察と通常光観察の切替について記載したが、赤外光観察モード(中心波長が940nm、805nm、805nmの3波長を使用)や狭帯域光観察モード(中心波長が415nm、540nm、610nmの3波長を使用)を含むシステムにて使用するようにしてもよい。
【0124】
また、スコープ2Bは、使用する部位(下部消化管、上部消化管、気管支等)に応じてスコープに許容される径が異なることから、本実施の形態のように2個のCCD12、12bを搭載したスコープ2Bだけでなく、1個のCCDのみ搭載したスコープでもよい。
【0125】
また、本実施の形態では、蛍光観察に高感度CCD12bを用いたが、他の観察モードに用いてもよい。
また、本実施の形態は高感度CCD12bの使用時に限るものではなく、CCD12の使用時に用いてもよい。
【0126】
図15は1つのCCD12を採用した場合における構成を示す。この内視鏡装置1Cは図7の内視鏡装置1Bにおいて、基本的に高感度CCD12b及びその駆動信号を生成する高感度CCDドライバ57を削除した構成にしている。また、図7では2つのCCD12、12bを切り替えるリレー51a、51bやCCDセレクタ58を備えているが、1つにしているので、これらを削除した構成にしている。
【0127】
この内視鏡装置1CではCCD12を通常光観察用と蛍光観察用とに用いるようにしている。
また、図16に示す内視鏡装置1Dでは図15において、CCD12の代わりに高感度CCD12bを採用して、通常光観察用と蛍光観察用とに用いるようにしている。
【0128】
図16の内視鏡装置1Dは、図15におけるCCD12及びCCDドライバ32の代わりに高感度CCD12b及び高感度CCDドライバ57を採用するようにしている。また、高感度CCDドライバ57は図7の場合と同様に高感度CCD12bの増幅率の情報を電子シャッタ制御回路43に出力するようにしている。
このように図15及び図16で示したように1つのCCDのみ搭載して、使用するようにしても良い。
【0129】
なお、スコープ情報記憶用素子15に記憶される容量には限りがあるため、スコープ情報記憶用素子15は、スコープ2の機種情報のみ記憶しておき、その他のスコープ情報は、プロセッサ4内に設けられた図示しない大容量メモリに記憶しておき、起動時にスコープ2の機種情報に基づき、設定値を読み出し、使用する形式でもよい。
【0130】
また、観察モード切替スイッチ52の設置場所は、前記スコープ2Bの操作部に限るものではなく、光源装置3Bやプロセッサ4Bの図示しないフロントパネル上に設けられたボタン、プロセッサ4Bに接続された図示しないフットスイッチやキーボードのキーでもよい。
【0131】
また、観察モード切替スイッチ52は、2つ以上存在する形式でもよいものとする。また、光源の絞り位置制御精度や、光学フィルタに個体差が見られないような場合、すなわち、光源装置3Bに個体差が見られない場合には、調光回路42から出力される調光信号を電子シャッタ制御回路43に入力し、調光信号に基づいて電子シャッタ速度の補正を行う形式でもよい。
【0132】
また、通常光観察時のハレーション防止対策として本実施の形態を用いてもよいものとする。また、前記電子シャッタによる明るさ調整は、1フレームで明るさを調整できるものでもよく、フィードバック系により、数フレームを用いて目標とする明るさに近づけるものでもよい。
【0133】
また、目標値に近づいた場合には、倍率をより細かく変動させ、目標値に近づけていく形式でもよい。
また、目標値は、フロントパネル上のスイッチ操作等により、使用者が任意に設定可能であるものとしてもよい。
また、電子シャッタ速度は、面順次光各色で共通としてもよいし、各色で異なる値としてもよい。
【0134】
また、光源装置3Bのランプ21は、使用時間が長くなるにつれ、光量が弱まっていくが、それに伴って、台形部分の面積、形状も変動するため、ランプ21の照明光量の使用時間における減衰率を補正係数として有しておき、使用時間に応じて電子シャッタ速度に補正を加える手段を付加してもよい。
【0135】
本実施の形態は以下の効果を有する。
蛍光観察等のように微弱光を観察するときに、絞り位置を開放、もしくは開放に近い位置に固定する場合においても、電子シャッタを用いて照明光量を所望の値に制御することにより、撮像画像のカラーバランスを常に一定に保ったまま、適切な明るさの画像を得ることができる。
【0136】
(第3の実施の形態)
次に本発明の第3の実施の形態を説明する。本実施の形態の目的は高感度撮像素子の増幅率制御により明るさ調整を行う撮像装置或いは内視鏡装置において、常にカラーバランスを一定に保った画像を得ることができる撮像装置及び内視鏡装置を提供することにある。
【0137】
まず、本実施の形態の構成を説明する。
本実施の形態は、第1、第2の実施の形態と似ているため、異なる点を中心に述べる。
図17は第3の実施の形態の内視鏡装置1Eの全体図を示す。
【0138】
この内視鏡装置1Eは、スコープ2Bと、このスコープ2Bのライトガイド8に照明光を供給する光源装置3Eと、スコープ2Bの撮像手段を駆動すると共に、撮像手段に対する信号処理を行うプロセッサ4Eと、撮像手段で撮像された画像をカラー表示する観察用モニタ5とから構成される。
【0139】
本実施の形態におけるスコープ2Bは第2の実施の形態と同じ構成である。 つまり、このスコープ2Bは、光源装置3Eから入射した照明光をスコープ2B先端まで伝送するライトガイド8、前記照明光に基づく被写体10からの戻り光を受光する対物光学系11、11b、光学フィルタ13、13b、CCD12、高感度CCD12b、スコープ2Bの機種情報や、高感度CCD12bのCMD印加電圧値−増幅率特性や、個体バラツキ、対応する観察モード情報等が記憶されたスコープ情報記憶用素子15、観察モードの切替を行うための観察モード切替スイッチ52等によって構成される。
【0140】
光源装置3Eは図7の光源装置3Bにおいて、センサ25及び電子シャッタ速度記憶用素子55を有しない構成である。
つまり、この光源装置3Eは、光を照射するキセノンランプ等のランプ21、ランプ21の照明光路上に設けられ、複数の光学フィルタをモータ22の駆動により切替可能なフィルタターレット23、照明光量を制限するための照明光絞り24、照明光を面順次光にするための回転フィルタ27b、回転フィルタ27bを回転駆動するためのモータ28、回転フィルタ27bを照明光の光軸に対して垂直方向に移動するためのモータ53、スコープ2Bのライトガイド8の入射面に回転フィルタ27bを介した面順次光を集光させる集光レンズ29と、を備えて構成される。
【0141】
また、プロセッサ4Eは、図7のプロセッサ4Bにおいて、さらに蛍光画像明るさ調整回路63及び増幅率比記憶用素子64とを設けた構成にしている。
具体的には、プロセッサ4Eは、プリプロセス回路33、A/D変換回路34、カラーバランス補正回路35、マルチプレクサ36、同時化メモリ37a、37b、37c、画像処理回路38、D/A変換回路39a、39b、39cの順に画像信号が流れるように構成されており、CPU41、CCDドライバ32、高感度CCDドライバ57、CCDセレクタ58、調光回路42、蛍光観察時の画像信号の明るさ調整を行うための、蛍光画像明るさ調整回路63、面順次光各色の高感度CCD12bの増幅率比を記憶した増幅率比記憶用素子64とを備えている。
【0142】
次に本実施の形態の作用を説明する。
本実施の形態で用いるスコープ2Bは、通常光観察と蛍光観察といった2つの観察モードに対応しているものとする。
スコープ2Bを光源装置3E、並びにプロセッサ4Eに接続した状態で電源を投入すると、内視鏡装置1Eは、通常光観察モードにて起動する。また、起動と同時に、スコープ2Bのスコープ情報記憶用素子15より、スコープ2Bの機種情報や、高感度CCD12bのCMD印加電圧値−増幅率特性や、個体バラツキ、対応する観察モード情報等が、プロセッサ4E内のCPU41に読み出され、記憶される。
【0143】
通常光観察モードの状態で観察モード切替スイッチ52を押すと、第2の実施の形態と同様の動作により、蛍光観察モードに切り替わり、光源装置3Eの照明光絞り24は、開放、もしくは開放に近い位置で固定される。
【0144】
蛍光画像明るさ調整回路63では、観察モード識別信号が蛍光観察モードを表し、カラーバランス補正回路35から出力された画像信号が、明るさ調整回路64において、目標とする明るさと比較して、暗いと判断された場合には、高感度CCDドライバ57に対し、高感度CCD12bの増幅率を増加させるために、CMD印加電圧値を大きくするよう指示を出す。
【0145】
逆に、明るすぎると判断された場合には、高感度CCDドライバ57に対し、高感度CCD12bの増幅率を減少させるために、CMD印加電圧値を小さくするように指示を出す。このことを数フレーム繰り返すことで、画像信号は適切な明るさとなる。
【0146】
ここで、高感度CCD12bのCMD印加電圧値−増幅率特性は、以下の式(1)、具体的には図18の実線で示す曲線Caに示すように、指数関数によって近似される。
【0147】
(増幅率)=A・exp(B・(CMD印加電圧値)) 式(1)
(A、BはCMDによって決まる定数)
式(1)に基づくと、回転フィルタ27bにより面順次化された色1、色2、色3の増幅率比は、CMD印加電圧値により制御することが可能であり、これは、照明光量比、すなわち、画像信号のカラーバランスを、CMD印加電圧値により制御できることを表す。
【0148】
例えば、色1、色2、色3といった面順次光のカラーバランスを、常に(色1):(色2):(色3)=1:2:1を保つようにするならば、増幅率比を常に(色1の増幅率):(色2の増幅率):(色3の増幅率)=1:2:1とすればよく、そのためには、CMD印加電圧値比を、常に(色1の印加電圧値):(色2の印加電圧値):(色3の印加電圧値)=X:X+C:X(Xは任意、C=log(e/B)を満たす定数)を満たすようすればよい。
【0149】
しかしながら、高感度CCD12bのCMD印加電圧値−増幅率特性は、指数関数で完全に近似できるわけではなく、特に、増幅率の大きい、すなわち、CMD印加電圧値の高い領域においては、図18の点線で示す曲線Cbに示すように、指数関数から外れた特性を示す場合もある。
【0150】
したがって、式(1)に基づいてCMD印加電圧値の比を調整する場合には、増幅率の大きい色(前記例では、色2)が、増幅率の低い色(前記例では、色1、色3)よりも指数関数近似から外れやすく、増幅率比、照明光量比が異なり、結果として、高感度CCD12bで撮像される画像信号のカラーバランスが変動する。
【0151】
この現象は、高感度CCD12bの増幅率が、全ての色において低い場合には問題ないが、増幅率が高い状態、すなわち、蛍光観察のように、暗い被写体を撮像する状況下では、顕著に現われる。これを防止するために、以下の作用が行われる。
【0152】
高感度CCDドライバ57からは、現時点におけるCMD印加電圧値を表す信号がCPU41に出力される。一方、内視鏡装置1Eの起動時には、前記のようにスコープ2Bのスコープ情報記憶用素子15から、高感度CCD12bの実際のCMD印加電圧値−増幅率特性(図18の曲線Cb)が読み出されて、CPU41に記憶されている。
【0153】
これは、スコープ2Bの製造時に、高感度CCD12bの個体バラツキを考慮して測定されたものであり、複数のCMD印加電圧値と、それに対応した増幅率とがスコープ情報記憶用素子15にあらかじめ記憶されたものである。
【0154】
CPU41では、図19のステップS11に示すように、回転フィルタ27による現在の照明光の色を表す色識別信号と、前記現時点のCMD印加電圧値と、前記CMD印加電圧値−増幅率特性と、の3つのデータから、現時点における面順次光全色の増幅率を導出する。
これにより、各色の増幅率、並びに、面順次光の増幅率比(以下、増幅率比A)が求まる。
【0155】
また、プロセッサ4Eの増幅率比記憶用素子64には、あらかじめ目標とする高感度CCD12bの増幅率比(以下、増幅率比B)が記億されており、観察モード識別信号が蛍光観察を表す場合にのみ、増幅率比BがCPU41へ出力される。
CPU41は、ステップS12に示すように増幅率比Aと増幅率比Bとの比較を行う。
【0156】
そして、増幅率比Aと増幅率比Bが一致している場合には、ステップS13に示すようにCMD印加電圧値による増幅率比の補正は行わず、画像明るさ調整回路63に対しては、高感度CCD12bのCMD印加電圧値の増減による明るさ調整を行うよう指示するための信号を出力する。
【0157】
一方、増幅率比Aと増幅率比Bとの両者が一致しない湯合には、ステップS14に示すようにCPU41は、蛍光画像明るさ調整回路63に対し、高感度CCD12bのCMD印加電圧値の増減による明るさ調整をしない(つまり停止の)指示の信号を出力する。
【0158】
その後、ステップS15に示すように増幅率比Aを増幅率比Bに近づけるために、(実際のCMD印加電圧値−増幅率特性の)増幅比率から外れた色の増幅率を調整するための新たなCMD印加電圧値を、CMD印加電圧値−増幅率特性から導出する。
そしてステップS16に示すように、高感度CCDドライバ57に補正後のCMD印加電圧値を出力する。
【0159】
高感度CCDドライバ57は、受け取った、補正後のCMD印加電圧値を高感度CCD12bに出力し、カラーバランスの補正された画像信号が得られるようになる。その他の作用は、第2の実施の形態と同じである。
【0160】
尚、本実施の形態では、蛍光観察時の照明光絞り24の位置を固定としたが、高感度CCD12bの印加電圧値の調整と連動して画像信号の明るさ調整を行う形式でもよい。
【0161】
また、本実施の形態では、蛍光観察と通常光観察の切替について記載したが、赤外光観察モード(中心波長が940nm、805nm、805nmの3波長を使用)や狭帯域光観察モード(中心波長が415nm、540nm、610nmの3波長を使用)を含むシステムに使用してもよい。
【0162】
また、スコープ2Bは、使用する部位(下部消化管、上部消化管、気管支等)に応じてスコープに許容される径が異なることから、本実施の形態のように2個のCCDを搭載したスコープだけでなく、1個のCCDのみ搭載したスコープでもよい。
また、本実施の形態は高感度CCD12bの使用時に限るものではなく、CCD12の使用時に用いてもよい。
【0163】
また、本実施の形態では、蛍光観察に高感度CCD12bを用いたが、他の観察モードに用いてもよいものとする。また、スコープ情報記憶用素子15に記憶される容量には限りがあるため、スコープ情報記憶用素子15は、スコープ2Bの機種情報のみ記憶しておき、その他のスコープ情報は、プロセッサ4E内に設けられた図示しない大容量メモリに記憶しておき、起動時にスコープ毎の設定を読み出し、使用する形式でもよい。
【0164】
また、観察モード切替スイッチ52の設置場所は、前記スコープ2Bの操作部7に限るものではなく、光源装置3Eやプロセッサ4Eの図示しないフロントパネル上に設けられたボタン、プロセッサ4Eに接続された図示しないフットスイッチやキーボードのキーでもよい。
【0165】
また、観察モード切替スイッチ52は、2つ以上存在する形式でもよい。また、前記蛍光画像明るさ調整回路63は、1フレームで明るさを調整できるものでもよく、フィードバック系により、数フレームを用いて目標とする明るさに近づけるものでもよい。
【0166】
また、目標値は、フロントパネル上のスイッチ操作等により、使用者が任意に設定可能であるものとしてもよいものとする。また、増幅率比記憶用素子64に記憶された増幅率比は、使用者が任意に設定できるものでもよく、また、あらかじめ複数パターンの目標値を記憶しておき、それを選択できる形式でもよい。
【0167】
また、近接した状況下では、第2の実施の形態の動作を示す機能を付加してもよい。また、増幅率比調整を、CMD印加電圧値を補正することで行うものとはせず、第2の実施の形態のように、電子シャッタを用いて補正するものでもよい。
【0168】
本実施の形態は以下の効果を有する。
高感度撮像素子の増幅率制御により明るさ調整を行う内視鏡装置において、常にカラーバランスを一定に保った画像を得ることができる。
【0169】
[付記]
1.生体内に挿入可能な細長の挿入部を備えた内視鏡と、
被写体を照射するための面順次光を発生する光源手段と、
前記内視鏡の先端部に設けられ、被写体に照射された光に基づく光信号を受光する固体撮像素子と、
前記固体撮像素子からの出力信号を信号処理する信号処理手段と、
前記固体撮像素子の電荷蓄積時間を制御するための電子シャッタ制御手段と、前記光源手段による照明光量を所望の値に制御するための電子シャッタ速度を記憶した電子シャッタ速度記憶手段と、
を備えたことを特徴とする内視鏡装置。
【0170】
2.前記固体撮像素子は、素子内部に電荷増倍機構を有する高感度撮像素子であることを特徴とする付記1記載の内視鏡装置。
3.前記電子シャッタ速度記憶手段は、前記光源手段に設けられた記憶用素子であることを特徴とする付記1または2記載の内視鏡装置。
4.前記電子シャッタ速度記憶手段は、前記内視鏡に設けられたスコープ情報記憶用素子であることを特徴とする付記1ないし3のいずれかに記載の内視鏡装置。
【0171】
【発明の効果】
以上説明したように本発明によれば、光源手段、内視鏡、固体撮像素子の少なくとも1つを起因としたカラーバランスのバラツキを補正することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を備えた内視鏡装置の全体構成図。
【図2】回転フィルタ板の構成図。
【図3】RGBフィルタの透過特性に関する説明図。
【図4】照明光絞りと照明光強度との関係の説明図。
【図5】カラーバランス補正回路の説明図。
【図6】電子シャッタの作用の説明図。
【図7】本発明の第2の実施の形態を備えた内視鏡装置の全体構成図。
【図8】回転フィルタの構成図。
【図9】蛍光観察用フィルタの透過特性に関する説明図。
【図10】高感度CCDの構成の説明図。
【図11】高感度CCDのCMD印加電圧値−増幅率特性の説明図。
【図12】照明光量と電荷蓄積時間との関係の説明図。
【図13】
【図14】第2の実施の形態におけるCPUの動作を表す説明図。
【図15】第1変形例を備えた内視鏡装置の全体構成図。
【図16】第2変形例を備えた内視鏡装置の全体構成図。
【図17】本発明の第3の実施の形態を備えた内視鏡装置の全体構成図。
【図18】高感度CCDのCMD印加電庄値−増幅率特性の理論値と実測値の説明図。
【図19】CPUの動作を表す説明図。
【図20】露光期間における照明光量と電荷蓄積時間の説明図。
【図21】露光期間における照明光強度の変化の説明図。
【図22】照明光絞りの構成図。
【符号の説明】
1…内視鏡装置
2…電子内視鏡(スコープ)
3…光源装置
4…プロセッサ
5…観察モニタ
6…挿入部
7…操作部
8…ライトガイド
10…被写体
11…対物光学系
12…CCD
15…スコープ情報記憶用素子
21…ランプ
24…照明光絞り
25…絞り位置センサ
26…電子シャッタ速度補正用メモリ
27…回転フィルタ
29…集光レンズ
31a…Rフィルタ
31b…Gフィルタ
31c…Bフィルタ
32…CCDドライバ
33…プリプロセス回路
35…カラーバランス回路
37a、37b、37c…同時化メモリ
38…画像処理回路
41…CPU
42…調光回路
43…電子シャッタ制御回路

Claims (7)

  1. 体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
    前記内視鏡は、
    被検体を撮像するための前記固体撮像素子と、
    当該内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した内視鏡側電子シャッタ速度補正係数格納手段と、
    を備え、
    前記光源装置は、
    照明光量を制限するための照明光絞りと、
    前記照明光絞りの位置を検出する絞り位置検出手段と、
    当該光源装置固有の情報に基づいて得られた補正係数と、前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する補正係数とにより設定される第2の電子シャッタ速度補正係数を格納する光源装置側電子シャッタ速度補正係数格納手段と、
    を備え、
    前記画像処理手段は、
    前記固体撮像素子を駆動する固体撮像素子駆動回路と、
    前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
    前記電子シャッタの速度を制御する電子シャッタ制御回路と、
    を備え、
    前記電子シャッタ制御回路は、前記制御部の制御下に前記内視鏡側電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記光源装置側電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
    前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
    ことを特徴とする内視鏡装置。
  2. 前記内視鏡固有の情報は、電子シャッタ速度に影響を及ぼす少なくとも当該内視鏡に配設されたライトガイド固有の情報を含み、当該内視鏡の製造時に測定された情報であることを特徴とする請求項1に記載の内視鏡装置。
  3. 前記光源装置固有の情報は、電子シャッタ速度に影響を及ぼす少なくとも当該光源装置に配設された光学フィルタ固有の情報を含み、当該光学装置の製造時に測定された情報であることを特徴とする請求項1または2に記載の内視鏡装置。
  4. 体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
    前記内視鏡は、
    被検体を撮像するための前記固体撮像素子と、
    当該内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した内視鏡側電子シャッタ速度補正係数格納手段と、
    を備え、
    前記光源装置は、
    当該光源装置固有の情報に基づいて得られた第2の電子シャッタ速度補正係数を格納する光源装置側電子シャッタ速度補正係数格納手段と、
    を備え、
    前記画像処理手段は、
    前記固体撮像素子を駆動する固体撮像素子駆動回路と、
    前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
    前記電子シャッタの速度を制御する電子シャッタ制御回路と、
    を備え、
    前記電子シャッタ制御回路は、前記制御部の制御下に前記内視鏡側電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記光源装置側電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
    前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
    ことを特徴とする内視鏡装置。
  5. 体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
    前記内視鏡は、
    被検体を撮像するための前記固体撮像素子と、
    当該内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した内視鏡側電子シャッタ速度補正係数格納手段と、
    を備え、
    前記光源装置は、
    照明光量を制限するための照明光絞りと、
    前記照明光絞りの位置を検出する絞り位置検出手段と、
    前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する補正係数により設定される第2の電子シャッタ速度補正係数を格納する光源装置側電子シャッタ速度補正係数格納手段と、
    を備え、
    前記画像処理手段は、
    前記固体撮像素子を駆動する固体撮像素子駆動回路と、
    前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
    前記電子シャッタの速度を制御する電子シャッタ制御回路と、
    を備え、
    前記電子シャッタ制御回路は、前記制御部の制御下に前記内視鏡側電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記光源装置側電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
    前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
    ことを特徴とする内視鏡装置。
  6. 体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
    被検体を撮像するための前記固体撮像素子と、
    前記内視鏡固有の情報に基づいて得られた第1の電子シャッタ速度補正係数を格納した第1の電子シャッタ速度補正係数格納手段と、
    照明光量を制限するための照明光絞りと、
    前記照明光絞りの位置を検出する絞り位置検出手段と、
    前記光源装置固有の情報に基づいて得られた補正係数と、前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する補正係数とにより設定される第2の電子シャッタ速度補正係数を格納する第2の電子シャッタ速度補正係数格納手段と、
    前記固体撮像素子を駆動する固体撮像素子駆動回路と、
    前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
    前記電子シャッタの速度を制御する電子シャッタ制御回路と、
    を備え、
    前記電子シャッタ制御回路は、前記制御部の制御下に前記第1の電子シャッタ速度補正係数格納手段から入力した前記第1の電子シャッタ速度補正係数と、前記第2の電子シャッタ速度補正係数格納手段から入力した前記第2の電子シャッタ速度補正係数とに基づいて電子シャッタ速度を設定し、
    前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
    ことを特徴とする内視鏡装置。
  7. 体腔内に挿入され被検体を撮像するための固体撮像素子を備える内視鏡と、観察用の照明光を発生する光源装置と、前記内視鏡で撮像した画像信号に対する信号処理を行う画像処理手段と、を備える内視鏡装置において、
    被検体を撮像するための前記固体撮像素子と、
    照明光量を制限するための照明光絞りと、
    前記照明光絞りの位置を検出する絞り位置検出手段と、
    前記固体撮像素子を駆動する固体撮像素子駆動回路と、
    前記固体撮像素子において撮像した画像信号に対する信号処理制御を行う制御部と、
    電子シャッタの速度を制御する電子シャッタ制御回路と、
    を備え、
    前記電子シャッタ制御回路は、前記制御部の制御下に、前記内視鏡または前記光源装置における少なくとも1つの固有情報であって予め設定された光学的情報に基づいて得られた第1の補正係数と、前記絞り位置検出手段により検出された前記照明光絞りの位置に対応して変化する第2の補正係数と、に基づいて前記電子シャッタ速度を設定し、
    前記固体撮像素子駆動回路は、前記電子シャッタ制御回路において設定された当該補正後の電子シャッタ速度に基づいて電子シャッタ制御パルスを生成する
    ことを特徴とする内視鏡装置。
JP2003193163A 2003-07-07 2003-07-07 内視鏡装置 Expired - Fee Related JP4315748B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193163A JP4315748B2 (ja) 2003-07-07 2003-07-07 内視鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193163A JP4315748B2 (ja) 2003-07-07 2003-07-07 内視鏡装置

Publications (2)

Publication Number Publication Date
JP2005033282A JP2005033282A (ja) 2005-02-03
JP4315748B2 true JP4315748B2 (ja) 2009-08-19

Family

ID=34204733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193163A Expired - Fee Related JP4315748B2 (ja) 2003-07-07 2003-07-07 内視鏡装置

Country Status (1)

Country Link
JP (1) JP4315748B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173120B2 (ja) 2005-05-23 2013-03-27 オリンパスメディカルシステムズ株式会社 内視鏡装置
CN100428783C (zh) * 2005-06-01 2008-10-22 索尼株式会社 图像处理装置、液晶显示装置和色彩校正方法
JP4873949B2 (ja) * 2005-12-26 2012-02-08 Hoya株式会社 電子内視鏡装置
JP5164473B2 (ja) * 2007-08-10 2013-03-21 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5863439B2 (ja) * 2011-12-21 2016-02-16 Hoya株式会社 内視鏡装置
JP5623469B2 (ja) * 2012-07-06 2014-11-12 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡用制御プログラム
JP5623470B2 (ja) * 2012-07-06 2014-11-12 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡用制御プログラム
JP6362073B2 (ja) * 2014-03-10 2018-07-25 キヤノン株式会社 照明装置、照明制御方法および撮像装置
CA2968691A1 (en) * 2014-11-25 2016-06-02 Samsung Pay, Inc. Modulation of display imagery for barcode simulation
WO2017072838A1 (ja) * 2015-10-26 2017-05-04 オリンパス株式会社 光走査型観察装置および光走査型観察装置の制御方法
WO2017072837A1 (ja) * 2015-10-26 2017-05-04 オリンパス株式会社 光走査型内視鏡装置および光走査型内視鏡装置の制御方法
JP6797925B2 (ja) * 2016-08-25 2020-12-09 Hoya株式会社 電子内視鏡用プロセッサ及び電子内視鏡システム
JP2017087078A (ja) * 2017-02-28 2017-05-25 富士フイルム株式会社 内視鏡装置
JP7117894B2 (ja) * 2018-05-10 2022-08-15 株式会社エビデント 内視鏡装置、内視鏡装置における照明光学系の切り替え方法、プログラム、および記録媒体

Also Published As

Publication number Publication date
JP2005033282A (ja) 2005-02-03

Similar Documents

Publication Publication Date Title
US6960165B2 (en) Endoscope with a single image pick-up element for fluorescent and normal-light images
JP4009560B2 (ja) 内視鏡装置及び信号処理装置
JP4772235B2 (ja) 内視鏡装置
JP4855586B2 (ja) 内視鏡装置
JP5534997B2 (ja) 電子内視鏡システム
JP3813961B2 (ja) 内視鏡用信号処理装置
EP1491133B1 (en) Endoscope apparatus and method for obtaining properly dimmed observation images
JP5372356B2 (ja) 内視鏡装置及び内視鏡装置の作動方法
JP5214853B2 (ja) 内視鏡装置
JP3583731B2 (ja) 内視鏡装置および光源装置
JP4315748B2 (ja) 内視鏡装置
JP2005131129A (ja) 撮像装置及び内視鏡装置
JP2002085342A (ja) 内視鏡装置
US6932762B2 (en) Endoscope having red component cut filter
JP4679013B2 (ja) 内視鏡用画像処理装置
JP4663448B2 (ja) 内視鏡用信号処理装置及び電子内視鏡装置の作動方法
JP2006116153A (ja) 内視鏡用画像処理装置及び内視鏡装置
JP2005312551A (ja) 内視鏡装置
JP4504040B2 (ja) 内視鏡装置
JP3894761B2 (ja) 内視鏡装置
JP4439245B2 (ja) 電子内視鏡装置
JP2006223481A (ja) 内視鏡用画像処理装置、及び内視鏡装置
JP2003102675A (ja) 光学的変倍機構を備えた電子内視鏡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R151 Written notification of patent or utility model registration

Ref document number: 4315748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees