JP4314167B2 - 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置 - Google Patents

磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置 Download PDF

Info

Publication number
JP4314167B2
JP4314167B2 JP2004220512A JP2004220512A JP4314167B2 JP 4314167 B2 JP4314167 B2 JP 4314167B2 JP 2004220512 A JP2004220512 A JP 2004220512A JP 2004220512 A JP2004220512 A JP 2004220512A JP 4314167 B2 JP4314167 B2 JP 4314167B2
Authority
JP
Japan
Prior art keywords
layer
magnetization
magnetic
film
free layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004220512A
Other languages
English (en)
Other versions
JP2006041266A (ja
Inventor
裕美 湯浅
英明 福澤
仁志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004220512A priority Critical patent/JP4314167B2/ja
Publication of JP2006041266A publication Critical patent/JP2006041266A/ja
Application granted granted Critical
Publication of JP4314167B2 publication Critical patent/JP4314167B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置に関する。
近年、磁気抵抗効果素子(Magnetoresistive effect element)の開発が進められている。特に、巨大磁気抵抗効果(Giant Magnetoresistive Effect:GMR)を示す磁気抵抗効果膜の開発に伴って、それを適用した磁気デバイス、特に磁気ヘッドとして使用される磁気抵抗効果ヘッド(MRヘッド)の性能は飛躍的に向上している。
上述したGMR膜としては、強磁性層/非磁性層/強磁性層のサンドイッチ構造膜で大きな磁気抵抗効果が得られるスピンバルブ膜(Spin valve膜)が知られている。スピンバルブ膜は、2つの強磁性層間に非磁性層(スペーサ層や中間層等と称する)を介在させた構造を有する。一方の強磁性層(磁化固着層やピン層等と称する)に交換バイアス磁界を印加して磁化を固定すると共に、他方の強磁性層(磁化自由層やフリー層等と称する)を信号磁界等の外部磁場で磁化反転させ、磁化固着層と磁化自由層との磁化方向の相対的な角度を変化させることによって、大きな磁気抵抗効果を得ることができる。
MR素子においては、磁気抵抗効果膜の膜面垂直方向にセンス電流を通電する、いわゆるCPP(Current Perpendicular to Plane)型素子が提案されている。スピンバルブ型MR素子においても、CPP構造を適用することでMR変化率の向上が期待されており、CIP(Current in Plane)構造の10倍程度のMR変化率が得られたことが報告されている。また、CPP型のMR素子はトンネル効果を利用したTMR素子等に比べて抵抗が低いというような利点も有している。
また、強磁性金属同士を原子オーダーで接合させた部分(ポイントコンタクト)において、伝導が量子化されることが報告されている(非特許文献1参照)。これは非常に大きな抵抗変化率が得られる可能性があることを示しており、3000%というような非常に大きな抵抗変化率が得られたことが報告されている(非特許文献2参照)。この抵抗変化率の起源には諸説があるが、一つにはコンダクタンスの量子化が関与していると考えられている。ポイントコンタクトを金属で構成した場合、伝導を量子化させるためには数原子個分から数nm程度の大きさのコンタクトが必要であり、実際にそのような極小のコンタクト部分でのみ大きな抵抗変化率が観測されている。
上述した強磁性体同士のポイントコンタクトに基づく抵抗変化率はあくまでも実験的に得られているにすぎず、MRヘッドに応用するためには実用的なデバイス構造でポイントコンタクトを実現することが不可欠となる。例えば、強磁性金属同士のポイントコンタクト構造を実現する手段としては、リソグラフィ技術等の半導体プロセスを適用して微細な孔を明け、この微細孔を利用して強磁性金属同士をコンタクトさせることが考えられる。
さらに、特許文献1には強磁性体同士のポイントコンタクトを利用する磁気抵抗効果素子として、磁化固着層と磁化自由層との間に配置した絶縁層に最大幅が20nm以下の孔を設け、この孔内に強磁性体を充填して磁気微小接点を形成した磁気抵抗効果素子が記載されている。ここでは、絶縁層に針等で微小孔を明け、この孔内を含めて絶縁層上に強磁性体を堆積している。
Phys. Rev. Let. 82 2923 (1999) Phys. Rev. B, 66 020403R (2002) 特開2003-204095号公報
強磁性体同士のポイントコンタクト構造を実用的なデバイスに応用するにあたって、上述したリソグラフィ技術では加工サイズに限界があり、コンダクタンスの量子化に基づく物理現象を再現性よく得ることは非常に困難である。また、特許文献1では針等を用いて開けた孔内を含めて絶縁層上に強磁性体を堆積しているため、強磁性層(磁化固着層や磁化自由層)と磁気微小接点とは同一の強磁性体で構成される。このような構造の磁気抵抗効果素子において、強磁性層に強磁性金属を適用した場合には、上記したようにコンダクタンスの量子化に基づく物理現象を再現性よく引き出すことは難しい。
強磁性層に磁性半導体等を適用した場合には、素子抵抗が大幅に上昇してS/N比が悪化するという問題がある。すなわち、磁気微小接点は伝導が量子化されれば抵抗が下がるが、それ以外の強磁性層部分(磁化固着層や磁化自由層)では材料固有の比抵抗がそのまま反映される。例えば、厚さ2nmの磁化固着層と磁化自由層を共に比抵抗が1×10-2Ω・mの磁性半導体で構成した場合、単位面積あたりの抵抗RAは40Ω・μm2となり、磁化固着層と磁化自由層が共に比抵抗1×10-7Ω・mの磁性金属である場合のRA=0.4mΩ・μm2を大幅に上回ってしまう。このように、素子抵抗が高抵抗化するとS/N比が悪化することから、磁気再生ヘッドとしては実用に供することができない。
本発明は、強磁性体同士のポイントコンタクトに基づく巨大な抵抗変化率を実用的なデバイス構造で再現性よく得ることを可能にすると共に、磁気再生ヘッド等として利用する際に不可欠となる素子抵抗の低減を実現した磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置を提供することを目的としている。
本発明の磁気抵抗効果素子は、磁化方向が実質的に一方向に固着された強磁性金属膜を有する磁化固着層と、磁化方向が外部磁界に対応して変化する強磁性金属膜を有する磁化自由層と、前記磁化固着層と前記磁化自由層との間に介在された絶縁層と、前記絶縁層内に前記磁化固着層と前記磁化自由層とを接続するように配置され、磁気モーメントを有する、Mn−Sb、As−Mn、Cr−As、(Ga,Mn)−As、(Ga,Cr)−As、(Ga,Mn)−N、(Ga,Cr)−N、(Zn,Fe)−O、(Zn,Mn)−O、および(Zn,Co)−Oから選ばれる少なくとも1種の半導体化合物からなる導通部とを有する中間層と、前記磁化固着層、前記中間層および前記磁化自由層の膜面に対して垂直方向にセンス電流を通電するように設けられた一対の電極とを具備することを特徴としている。
本発明の磁気ヘッドは、上記した本発明の磁気抵抗効果素子を具備することを特徴としている。本発明の磁気再生装置は、本発明の磁気ヘッドを具備し、前記磁気ヘッドで磁気記録媒体に磁気的に記録された情報を読み出すことを特徴としている。
本発明の磁気抵抗効果素子においては、磁化固着層と磁化自由層との間を接続する導通部を、比較的大きなサイズでコンダクタンスの量子化が発現する材料、すなわち磁気モーメントを有する半導体化合物で構成している。これによって、実用的な技術で作製し得る大きさの導通部を適用した上で、磁化固着層と磁化自由層との間の伝導を量子化することができるため、実用的なデバイス構造並びにデバイス製造技術で巨大な磁気抵抗効果を示す磁気抵抗効果素子を提供することが可能となる。さらに、磁化固着層と磁化自由層には強磁性金属膜を適用しているため、磁気再生ヘッド等として利用する際に不可欠となる素子抵抗の低減を実現することができる。
以下、本発明を実施するための形態について、図面を参照して説明する。図1は本発明の一実施形態による磁気抵抗効果素子の構造を模式的に示す断面図である。図1に示す磁気抵抗効果素子1は、スピンバルブ構造を有する磁気抵抗効果膜2と、このスピンバルブ型磁気抵抗効果膜2の膜面に対して垂直方向にセンス電流を通電するように設けられた一対の電極3、4とから主として構成されている。スピンバルブ型磁気抵抗効果膜2は、磁気抵抗効果素子1の実用性を高めるものである。
スピンバルブ型磁気抵抗効果膜2は、磁化固着層5/中間層6/磁化自由層7構造の積層膜を有している。すなわち、下部電極3上には下地層8を介してPt−Mn合金、Ir−Mn合金等からなる反強磁性層9が形成されている。反強磁性層9上には磁化固着層5となる強磁性金属膜が形成されている。この強磁性金属膜は反強磁性層9からの交換バイアス磁界で磁化方向が実質的に一方向に固着されており、これにより強磁性金属膜は磁化固着層5として機能する。
磁化固着層5は図1に示した単層構造の強磁性膜に限らず、積層構造を有していてもよい。図2はRu等からなる磁化反平行結合層10の両側に強磁性金属膜11、12を配置した積層膜からなる磁化固着層5を示している。この構造では強磁性金属膜11が反強磁性層9によって磁化方向が一方向に固着されており、さらに強磁性金属膜11、12は磁化反平行結合層10を介して磁化が反平行状態で結合している。磁化固着層5を構成する強磁性金属膜には、例えばFe、Co、Ni、これら元素同士の合金、あるいはこれら元素を主成分とする合金等の強磁性金属材料が適用される。
磁化固着層5上には中間層6を介して磁化自由層7として機能する強磁性金属膜が形成されている。この強磁性金属膜は磁化方向が信号磁界等の外部磁界に対応して変化するものであり、これにより磁化自由層7として機能する。磁化自由層7を構成する強磁性金属膜には磁化固着層5と同様に、例えばFe、Co、Ni、これら元素同士の合金、あるいはこれら元素を主成分とする合金等の強磁性金属材料が使用される。また、磁化自由層7の構造も単層構造に限らず、強磁性金属膜を含む積層構造を適用することができる。いずれにしても、実用的な素子抵抗を実現する上で、磁化固着層5および磁化自由層7は強磁性金属材料で構成するものとする。
磁化固着層5および磁化自由層7の膜厚は特に限定されるものではないが、例えば10nm以下とすることが好ましい。なお、図1および図2では下層側に磁化固着層5を配置したスピンバルブ型磁気抵抗効果膜2を示したが、磁化固着層5と磁化自由層7の位置は逆であってもよい。すなわち、下層側に磁化固着層5を配置し、その上に中間層6を介して磁化固着層7を配置した膜構造を適用することも可能である。このような強磁性金属膜を有する磁化固着層5および磁化自由層7は、膜面垂直方向に流すセンス電流に対して低い素子抵抗を実現するものであり、これにより磁気抵抗効果素子1を磁気再生ヘッド等に適用した際の実用性、すなわち優れたS/N比等を得ることが可能となる。
上述した磁化固着層5と磁化自由層7との間に介在された中間層6は、絶縁部13と導通部14とで構成されている。絶縁部13は中間層6の全体形状を構成するものであり、磁化固着層5と磁化自由層7との間に層状に配置されている。このような層状の絶縁部(絶縁層)13内には、磁化固着層5と磁化自由層7とを接続するように少なくとも1つの導通部14が配置されている。絶縁部(絶縁層)13には電気伝導特性が絶縁性である金属酸化物、金属炭化物、金属窒化物等が用いられる。このような化合物の具体例としては、Al、Ta、Cr、Hf、Mg、Cu、Ca、Ba、Sr、Zr、Li、Ti、Nb、Mo、Si、Y、希土類元素等の酸化物、炭化物、窒化物が挙げられる。
絶縁部13内に配置された導通部14は、磁化固着層5と磁化自由層7との間のポイントコンタクトを実現するものである。このポイントコンタクトは量子化された伝導を実現するものであることが好ましい。導通部14を金属で構成した場合、前述したようにコンダクタンスの量子化を発現させるためにはポイントコンタクトの大きさを数nm以下にする必要があり、そのような導通部14を精度よく作製することは難しい。そこで、この実施形態の磁気抵抗効果素子1においては、比較的大きなサイズでコンダクタンスの量子化が発現する材料、すなわち磁気モーメントを有する半金属化合物や半導体化合物で導通部14を構成している。
図3に示すように、金属Mの場合にはコンダクタンスの量子化が発現する大きさDは数nm以下であるのに対して(図3(a)参照)、半金属SMの場合には数10nm以下の大きさ(図3(b)参照)、また半導体SCの場合には数μm以下の大きさ(図3(c)参照)でコンダクタンスの量子化が発現する。従って、磁気モーメントを有する半金属化合物や半導体化合物で導通部14を形成することによって、実用的に作製し得る大きさDの導通部14で磁化固着層5と磁化自由層7との間の伝導を量子化することが可能となる。
具体的には、磁気モーメントを有する半金属化合物で導通部14を形成する場合、導通部14の大きさ(最大幅)は20nm以下とすることができる。また、磁気モーメントを有する半導体化合物で導通部14を形成する場合、導通部14の大きさ(最大幅)は1μm以下とすることができる。なお、これら導通部14の大きさの最小値は特に限定されるものではないが、後述する各種方法で安定的に作製することが可能な大きさを考慮すると、導通部14の大きさは5nm以上とすることが好ましい。
このように、磁化固着層5と磁化自由層7との間を、磁気モーメントを有する半金属化合物または半導体化合物で形成した導通部14で接続することによって、例えば導通部14の大きさが10nm以上であっても伝導を量子化することができる。すなわち、実用的な大きさの導通部14を適用した上で、磁化固着層5と磁化自由層7との間の伝導を量子化することができる。言い換えると、磁化固着層5と磁化自由層7との間の伝導を、実用的なデバイス構造並びにデバイス製造技術で量子化することが可能となる。このような量子化された導通部14によれば、磁化固着層5と磁化自由層7との磁化方向の変化に基づく磁気抵抗効果に新たな物理現象、すなわち伝導の量子化に基づく物理現象が加味されることから、巨大な磁気抵抗効果を得ることが可能となる。
上述した磁化固着層5と磁化自由層7との間を接続する導通部14の個数は少ない方がよく、理想的には1個であることが望ましい。ただし、量子化された導通部14を再現性よく得るという観点からは、複数個の導通部14を絶縁部13内に配置することが好ましい。すなわち、導通部14を複数個とすることで磁気抵抗効果素子1の抵抗変化率自体は低下するものの、量子化が不完全な導通部14が生じたとしても、複数個のうちのいずれかの導通部14が量子化することで大きな抵抗変化率を安定して得ることができる。
ここで、導通部14を構成する材料は半金属化合物および半導体化合物のいずれであってもよいが、伝導の量子化の再現性という点からは半金属化合物を適用することが好ましい。また、半導体は抵抗が大きいものの、伝導が量子化することで導通部14の抵抗が下がれば問題はない。ただし、量子化が不完全だった場合には、半金属は抵抗値が半導体より低いので、使いやすいという利点がある。このような点からも、導通部14は磁気モーメントを有する半金属化合物で形成することが好ましい。
具体的には、室温における半導体の抵抗値はおおよそ数百μΩ・mから数百MΩ・mであるのに対し、半金属では数μΩ・mから数百μΩ・mと小さい。ちなみに金属は数十nΩ・mから数μΩ・mである。中間層6の厚さが1nmとした場合の単位面積当りの抵抗RA(素子自体の抵抗Rと素子面積Aとの積)を見積ると以下のようになる。この実施形態の磁気抵抗効果素子1では導通部14に電流が集中して流れるので、素子1の抵抗はほとんど導通部14の抵抗値で決まると言える。半導体では抵抗RAが数十mΩ・μm2から数百GΩ・μm2となり、導通部14の二次元的な大きさが10nm×10nm角であった場合、それだけで素子抵抗は数百Ω以上となる。一方、半金属の場合には上記した素子抵抗が上限となり、実際にはこれよりも低い素子抵抗となる。従って、量子化が不完全だった場合を考慮すると、導通部14は半金属化合物で形成することが好ましい。
中間層6を構成する絶縁部13中に配置する導通部14は、磁気モーメントを有する半金属化合物や半導体化合物で形成されている。磁気モーメントを有する半金属化合物としては、例えばFe−Si系化合物、Co−Mn−Si系化合物、Mn−Si系化合物、Cr−Si系化合物、Co−Si系化合物等が挙げられる。磁気モーメントを有する半導体化合物としては、例えばMn−Sb系化合物、As−Mn系化合物、Cr−As系化合物、(Ga,Mn)−As系化合物、(Ga,Cr)−As系化合物、(Ga,Mn)−N系化合物、(Ga,Cr)−N系化合物、(Zn,Fe)−O系化合物、(Zn,Mn)−O系化合物、(Zn,Co)−O系化合物等が挙げられる。
上述した半金属化合物のうち、Fe3Si、Fe5Si3、Co2MnSiは室温以上でも強磁性を示す半金属化合物である。これらはキュリー点がそれぞれ550℃、100℃、712℃で、室温での磁気モーメントがFe3Si中では2.4μB、1.2μB、Fe5Si3中では1.05μB、1.55μB、Co2MnSi中ではCo=0.75μB、Mn=3.57μBと求められている。金属とは異なり、半金属は大きさが10nm以上であっても量子化するため、大きな磁気抵抗変化量を安定して得ることができる。なお、上記した化合物組成から多少ずれたものであっても、磁化固着層5と磁化自由層7が強磁性であるため、導通部14にも強磁性が誘起され、大きな磁気抵抗変化量が期待できる。
MnSiや(Co100-xMnx50Si50(30≦x≦80)は、室温以下で強磁性を示す半金属である。キュリー点が室温以下であることから、キュリー常磁性となっているが、これも強磁性体である磁化固着層5と磁化自由層7と接触しているために、導通部14にも強磁性を誘起される。従って、大きな磁気抵抗変化量を得ることができる。なお、上記した化合物も組成が多少ずれていても、磁化固着層5と磁化自由層7により強磁性が誘起され、大きな磁気抵抗変化量を示すことが期待される。特に、Mn−Siは下記のように多彩な磁性を示すことから、磁気モーメントを持ちやすい材料系である。
Mn3Si、Mn5Si3、MnSi1.72は、それぞれ低温で磁気モーメントを持ち、スクリュー磁性、反強磁性、メタ磁性を示す半金属である。低温で磁気モーメントを持つことから、これらも磁化固着層5と磁化自由層7とに挟まれることによって、導通部14にも強磁性が誘起される。従って、大きな磁気抵抗変化量を得ることができる。なお、これらの化合物も組成が多少ずれていても、強磁性が誘起されて大きな磁気抵抗変化量を示すことが期待される。CrSi、FeSi、CoSiは、低温でも磁気秩序を持たないが、磁気モーメントが存在するキュリー常磁性体の半金属である。これらも磁化固着層5と磁化自由層7とに挟まれることで磁気秩序が生じ、大きな磁気抵抗変化量を得ることができる。また、これらの化合物も組成が多少ずれていても同様な効果が期待できる。
また、磁気モーメントを有する半導体化合物のうち、MnSb、AsMn、CrAs等はハーフメタリックな強磁性を示すと理論予測されている半導体である。ハーフメタルとは、フェルミレベルにアップスピン電子は状態を持つが、ダウンスピン電子は状態を持たない、つまりアップスピンだけが伝導するという材料であり、大きな磁気抵抗変化量を示す物質である。このような材料を導通部14に用いると、上述した伝導の量子化に基づく巨大な磁気抵抗効果のみならず、アップスピンのみを伝導させる効果も得られることから、さらに大きな磁気抵抗変化量を示すことになる。
上述したように、導通部14を構成する材料としては、強磁性を示す半金属や半導体、また室温下で磁気モーメントを有する半金属や半導体に限らず、低温で磁気モーメントを持つ半金属や半導体、さらには低温でも磁気秩序を持たないが、磁気モーメントが存在する半金属や半導体等も使用することができる。このように、導通部14の構成材料には磁気モーメントを有する種々の半金属化合物または半導体化合物を適用することができ、上述した材料系に限定されるものではない。
絶縁部13と導通部14とで構成された中間層6の膜厚は、微細な導通部14の形成性、また導通部14による量子化されたポイントコンタクトの形成性等を高める上で、例えば5nm以下とすることが好ましい。中間層6の膜厚はさらに3nm以下とすることがより好ましい。なお、絶縁材料(絶縁部13)による一様な膜の形成性等を考慮すると、中間層6の膜厚は1nm以上とすることが好ましい。なお、中間層6は導通部14が磁化固着層5および磁化自由層7と接していればよく、例えば図4、図5、図6に示すように絶縁部13の上下に拡張されていてもよい。図4は絶縁部13の上側に拡張された導通部14Aが存在する状態を示している。図5は絶縁部13の下側に拡張された導通部14Bが存在する状態、図6は絶縁部13の上下に拡張された導通部14A、14Bがそれぞれ存在する状態を示している。
上述したような導通部14を有する中間層6は、例えば通常のリソグラフィ技術を適用したり、また針による穴明け技術、熱処理等による凝集現象を利用して作製することができる。図7はリソグラフィ技術を適用した中間層6の形成工程の一例を示している。まず、磁化固着層5上に絶縁部13となる絶縁層15を形成した後、絶縁層15上にリソグラフィ技術でレジストパターン16を作製する(図7(a))。次いで、絶縁層15のレジスト16で覆われた以外の部分を、例えばRIE(Reactive Ion Etching)でエッチング除去し、導通部14となるコンタクトホール17を形成する(図7(b))。
次に、コンタクトホール17内に導通部14の形成材料、すなわち磁気モーメントを有する半金属化合物または半導体化合物を堆積させる(図7(c))。続いてレジスト16を除去することによって、絶縁部13内に磁気モーメントを有する半金属化合物または半導体化合物からなる導通部14を配置した中間層6が得られる(図7(d))。この後、中間層6上に磁化自由層7を形成することによって、スピンバルブ構造の積層膜が得られる(図7(e))。
導通部14となるコンタクトホール17は、図8に示すようにリフトオフ法を適用して形成することもできる。すなわち、磁化固着層5上にリソグラフィ技術でレジストパターン16を作製する(図8(a))。次いで、絶縁部13となる絶縁層15を形成した後(図8(b))、レジスト16を除去する(図8(c))。このようにして、絶縁層15にコンタクトホール17を形成した後、導通部14となる磁気モーメントを有する半金属化合物または半導体化合物の堆積(図8(d))と、磁化自由層7の成膜を順に実施することによって、スピンバルブ構造の積層膜が得られる(図8(e))。なお、図8では導通部14の形成材料が絶縁部13の上側に拡張しているが、上述したように導通部14が磁化固着層5および磁化自由層7と接していれば特に問題ない。
絶縁層15に対するコンタクトホール17の形成は、例えば針状のものを用いて行うこともできる。すなわち、磁化固着層5上に絶縁層15を形成する(図9(a))。次いで、例えばSTMの針やテンプレートを絶縁層15に押し付けてコンタクトホール17を形成する(図9(b))。また、針を絶縁層15に近付けて大きな電流を流してコンタクトホール17を形成してもよい。この後、導通部14の堆積(図9(c))と磁化自由層7の成膜(図9(d))を順に実施する。
さらに、コンタクトホール17の形成には、絶縁層の熱処理による凝集、またイオンビームやプラズマ等による凝集を適用することもできる。例えば、絶縁層の元となる層(Si、Al等)を堆積した後、加熱して凝集させて海島状とし、それを酸化等によって絶縁層とする。また、加熱の代わりにイオンビームやプラズマ等のエネルギーを絶縁層あるいは絶縁層の元となる層の表面に与えて、海島状とする方法を適用してもよい。これらの方法でコンタクトホール17を形成した後、導通部の堆積と磁化自由層の成膜を順に実施することによって、図9(d)に示したようにスピンバルブ構造の積層膜が得られる。
上述した中間層6上には磁化自由層7が配置されており、さらにその上には保護層18を介して上部電極4が配置されている。磁化固着層5/中間層6/磁化自由層7構造の積層膜を有するスピンバルブ型磁気抵抗効果膜2には、その上下に設けられた下部および上部電極3、4から膜面垂直方向にセンス電流が通電される。磁気抵抗効果素子1は、磁化自由層7の磁化方向を信号磁界等の外部磁界で変化させ、その際の磁化固着層5との相対的な磁化方向に基づいて磁気抵抗効果を発現させるものである。
このような磁気抵抗効果素子1において、磁化固着層5と磁化自由層7とを接続する導通部14は、比較的大きなサイズでもコンダクタンスの量子化が発現する材料、すなわち磁気モーメントを有する半金属化合物や半導体化合物で構成されているため、量子化されたポイントコンタクトを再現性よく得ることができる。従って、スピンバルブ型磁気抵抗効果膜2の膜面垂直方向に流すセンス電流に対して、伝導の量子化等に基づく巨大な磁気抵抗効果を安定して発現させることが可能となる。さらに、磁化固着層5および磁化自由層7は強磁性金属膜で構成しているため、実用的な素子抵抗を得ることができる。
上述した実施形態の磁気抵抗効果素子1は、従来の磁気抵抗効果素子と同様に磁気ヘッド等の構成素子として使用される。磁気抵抗効果素子1を用いた磁気ヘッドは、磁気記録媒体に磁気的に記録された情報の読み出しに使用される。このような磁気ヘッドを用いて、種々の磁気再生装置が構成される。また、磁気抵抗効果素子1は磁気ヘッドに限らず、磁気メモリ等の磁気記憶装置等の構成素子としても利用可能である。
次に、本発明の具体的な実施例およびその評価結果について述べる。
実施例1
この実施例1では図2に構造を示した磁気抵抗効果素子1を作製した。すなわち、図2に構造を示した磁気抵抗効果素子1において、スピンバルブ型磁気抵抗効果膜2の下地層8に膜厚5nmのTa膜と膜厚2nmのNiFeCr合金膜の積層膜を適用し、この下地層8上に反強磁性層9として膜厚15nmのPtMn合金膜を形成した。さらに、その上に磁化固着層5として膜厚2nmのCo90Fe10合金膜11と膜厚1nmのRu膜10と膜厚2nmのCo90Fe10合金膜12を順に形成した。
次に、磁化固着層5上に絶縁部13と導通部14とを有する中間層6を形成した。絶縁部13にはSiO2を適用し、導通部14にはFe3Siを適用した。また、中間層6は図7に示した製造工程を適用して作製した。導通部14の大きさは20nm×20nm、また導通部14の個数は1個とした。すなわち、Fe3Siからなる導通部14は厚さ2nmのSiO2層内に20nm×20nmの大きさで1個配置した。この後、中間層6上に磁化自由層7として膜厚1nmのCo90Fe10合金膜と膜厚3nmのNi80Fe20合金膜を順に形成し、さらにその上に保護層18として膜厚1nmのCu膜、膜厚5nmのTa膜、膜厚10nmのRu膜を順に形成した。
上述した積層膜(スピンバルブ型磁気抵抗効果膜2)を1μm×1μmのサイズにリソグラフィでパターニングすると共に、その上下に電極を配置した。このようにして得た磁気抵抗効果素子のMR変化率を測定したところ、100%という大きな値を示した。また、素子抵抗は0.3Ω・μm2であった。
実施例2〜33
上述した実施例1において、絶縁部13の構成材料、導通部14の構成材料、大きさおよび個数を、表1に示した条件に変更する以外は、実施例1と同一条件でそれぞれスピンバルブ型磁気抵抗効果膜2を作製した。中間層の形成工程はいずれも実施例1と同様とした。このようにして得た積層膜を実施例1と同一の素子サイズにパターニングして磁気抵抗効果素子を作製した。これら磁気抵抗効果素子のMR変化率を測定した。それらの結果を表1に併せて示す。
Figure 0004314167
表1から明らかなように、各実施例の磁気抵抗効果素子ではいずれも大きなMR変化率が得られていることが分かる。なお、図7に示した中間層の形成工程以外に、図8や図9に示した形成工程、また凝集を利用した形成工程を適用した場合にも、同様な結果が得られた。また、導通部の個数や大きさを制御したところ、実施例1〜24では数nmから100nmまで試行しても同様の効果が得られたが、伝導を再現性よく量子化するためには導通部の大きさを20nm×20nm以下とすることが望ましい。実施例25〜33では1μm×1μmの大きさで同様の効果が得られたが、結晶性等が低下すると抵抗変化率が減少した。従って、導通部の大きさは500nm×500nm以下、さらに100nm×100nm以下とすることが望ましい。また、磁化固着層および磁化自由層を構成する強磁性金属膜にFe50Co50、Fe、Fe−Co−Ni合金等を使用した場合にも同様の効果が得られる。
本発明の一実施形態による磁気抵抗効果素子の構造を模式的に示す断面図である。 図1に示す磁気抵抗効果素子の変形例を示す断面図である。 金属、半金属および半導体における伝導が量子化され始める大きさを説明するための図である。 図1に示す磁気抵抗効果素子における中間層の一変形例を示す断面図である。 図1に示す磁気抵抗効果素子における中間層の他の変形例を示す断面図である。 図1に示す磁気抵抗効果素子における中間層のさらに他の変形例を示す断面図である。 図1に示す磁気抵抗効果素子におけるスピンバルブ型磁気抵抗効果膜の要部製造工程の一例を示す断面図である。 図1に示す磁気抵抗効果素子におけるスピンバルブ型磁気抵抗効果膜の要部製造工程の他の例を示す断面図である。 図1に示す磁気抵抗効果素子におけるスピンバルブ型磁気抵抗効果膜の要部製造工程のさらに他の例を示す断面図である。
符号の説明
1…磁気抵抗効果素子、2…スピンバルブ型磁気抵抗効果膜、3,4…電極、5…磁化固着層、6…中間層、7…磁化自由層、13…絶縁部、14…導通部。

Claims (3)

  1. 磁化方向が実質的に一方向に固着された強磁性金属膜を有する磁化固着層と、
    磁化方向が外部磁界に対応して変化する強磁性金属膜を有する磁化自由層と、
    前記磁化固着層と前記磁化自由層との間に介在された絶縁層と、前記絶縁層内に前記磁化固着層と前記磁化自由層とを接続するように配置され、磁気モーメントを有する、Mn−Sb、As−Mn、Cr−As、(Ga,Mn)−As、(Ga,Cr)−As、(Ga,Mn)−N、(Ga,Cr)−N、(Zn,Fe)−O、(Zn,Mn)−O、および(Zn,Co)−Oから選ばれる少なくとも1種の半導体化合物からなる導通部とを有する中間層と、
    前記磁化固着層、前記中間層および前記磁化自由層の膜面に対して垂直方向にセンス電流を通電するように設けられた一対の電極と
    を具備することを特徴とする磁気抵抗効果素子。
  2. 請求項1記載の磁気抵抗効果素子を具備することを特徴とする磁気ヘッド。
  3. 請求項2記載の磁気ヘッドを具備し、前記磁気ヘッドで磁気記録媒体に磁気的に記録された情報を読み出すことを特徴とする磁気再生装置。
JP2004220512A 2004-07-28 2004-07-28 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置 Expired - Fee Related JP4314167B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004220512A JP4314167B2 (ja) 2004-07-28 2004-07-28 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004220512A JP4314167B2 (ja) 2004-07-28 2004-07-28 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置

Publications (2)

Publication Number Publication Date
JP2006041266A JP2006041266A (ja) 2006-02-09
JP4314167B2 true JP4314167B2 (ja) 2009-08-12

Family

ID=35905927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220512A Expired - Fee Related JP4314167B2 (ja) 2004-07-28 2004-07-28 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置

Country Status (1)

Country Link
JP (1) JP4314167B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299880A (ja) 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法
JP5044157B2 (ja) * 2006-07-11 2012-10-10 株式会社東芝 磁気抵抗効果素子,磁気ヘッド,および磁気再生装置
JP2008085220A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド、および磁気再生装置
JP5039006B2 (ja) 2008-09-26 2012-10-03 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
WO2011013249A1 (ja) * 2009-07-31 2011-02-03 株式会社 東芝 磁気抵抗効果素子
CN112767979B (zh) * 2020-12-28 2023-10-27 西安交通大学 一种磁多层膜结构及自旋转移矩磁随机存储器

Also Published As

Publication number Publication date
JP2006041266A (ja) 2006-02-09

Similar Documents

Publication Publication Date Title
CN108292703B (zh) 自旋流磁化反转元件、磁阻效应元件及磁存储器
JP3625199B2 (ja) 磁気抵抗素子
JP3565268B2 (ja) 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
JP4582488B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP4385156B2 (ja) Ccp−cpp型巨大磁気抵抗素子
KR100249976B1 (ko) 자기저항 효과 소자 및 그 제조 방법
US8189302B2 (en) Magnetic field sensor with graphene sense layer and ferromagnetic biasing layer below the sense layer
US7522390B2 (en) Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
US7515387B2 (en) Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
US6775109B2 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
KR100643067B1 (ko) Cpp 스핀 밸브 소자
JP4237171B2 (ja) 磁気抵抗効果素子および薄膜磁気ヘッド
Grünberg Layered magnetic structures: facts, figures, future
JP2000057527A (ja) スピンバルブ型薄膜素子
JP3697369B2 (ja) 磁気素子、磁気メモリ装置、磁気抵抗効果ヘッド、磁気ヘッドジンバルアッセンブリ、及び磁気記録システム
CN108701721B (zh) 自旋流磁化反转元件及其制造方法、磁阻效应元件、磁存储器
JP4061590B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP3181525B2 (ja) スピンバルブ型薄膜素子及び前記スピンバルブ型薄膜素子を用いた薄膜磁気ヘッド
JP2005228998A (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
CN112349832B (zh) 磁阻效应元件以及惠斯勒合金
JP4314167B2 (ja) 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気再生装置
JP2003229614A (ja) 磁性材料、この磁性材料を用いた磁気抵抗効果素子、およびこの磁気抵抗効果素子を用いた磁気デバイス
JP3520192B2 (ja) 磁気素子とそれを用いた磁気部品および電子部品
JP2005109242A (ja) 磁気抵抗効果素子及び磁気ヘッド
JP3831573B2 (ja) スピンバルブ型薄膜素子の製造方法及びこのスピンバルブ型薄膜素子を用いた薄膜磁気ヘッドの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees