JP4305582B2 - 冷却塔のオゾン殺菌装置 - Google Patents
冷却塔のオゾン殺菌装置 Download PDFInfo
- Publication number
- JP4305582B2 JP4305582B2 JP35076998A JP35076998A JP4305582B2 JP 4305582 B2 JP4305582 B2 JP 4305582B2 JP 35076998 A JP35076998 A JP 35076998A JP 35076998 A JP35076998 A JP 35076998A JP 4305582 B2 JP4305582 B2 JP 4305582B2
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- water
- pipe system
- cooling tower
- return pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【発明の属する技術の利用分野】
本発明は、上部の散水トレーから散水され冷却されて下部の水槽に集められて冷却水として循環されて使用される冷却塔の用水をオゾンで殺菌する冷却塔のオゾン殺菌装置に関し、特にレジオネラ菌の殺菌を十分に且つ効率的に行う技術に関する。
【0002】
【従来の技術】
冷却塔では用水の温度が高く、空気中の有機物が溶解し易いために、特に夏場を中心として微生物が繁殖し易い。又、直射日光も当たるので藻の発生がしばしば見られる。更に、このような環境ではレジオネラ菌が増殖する。このレジオネラ菌は、人が呼吸器に吸引すると特有の疾病を引き起こすことがあり、人体に対して重大な悪影響を及ぼす。そのため、レジオネラ菌については、厚生省生活衛生局監修の「レジオネラ菌防止指針」や日本冷凍空調工業会の冷凍空調機器用水質ガイドラインにおいて、100ml当たり100CFU(Colony Formation Unit)以下と規定されている。
【0003】
一方、一般的なオゾン殺菌システムでは、1cc中の生菌数を10〜103 CFU程度にする処理を行う。例えば、上水道では一般細菌数が100CFU/ml以下、又前記ガイドラインではスライム障害に対する細菌数が103 CFU/ml以下、という基準になっている。そして、オゾンを用いて冷却塔の殺菌処理を行った例は従来でも幾らかあるが、これらの装置も上記と同程度の殺菌処理を目的としたものであった。従って、このような数値とは二桁〜三桁も違うレジオネラ菌の殺菌という点では、従来の装置や方法でオゾンを使用しても目的とする殺菌効果を上げることはできない。
【0004】
又、冷却塔をオゾン処理する場合、通常、オゾン発生装置を一定の出力で運転し、運転時間を自動的に変えることによってオゾン処理能力を調整するようにしていた。しかしながら、レジオネラ菌の場合、生菌数を極めて厳しく規制する必要があるため、このような大まかな運転方法ではその目的を達成することができない。
【0005】
冷却塔では、外気温度が上昇する7月中頃から9月中頃までの約2カ月の間が最もオゾン殺菌が必要な時期になる。即ち、この時期には、冷却塔の水温が30℃〜35℃になり、レジオネラ菌を含み微生物が繁殖し易く、又、強い日射を受けて藻類の発生も著しくなる。一方、10月以後になると、急激に水温が低下し、レジオネラ菌を含む微生物や藻類の繁殖も少なくなり、且つ水温の低下に対応してオゾンの水への溶解度が高くなり、更に溶存オゾンの自己分解性も低下するので、オゾンの要求される複数の要因が何れも減少し、その結果オゾン供給量が過剰になりやすい。更に、このような時期には、空調用の冷却塔においてその下部水槽に水を溜めた状態で冷却水ポンプが停止されることがよくあり、そのようなときにもオゾン処理システムを作動させると、下部水槽全体の水のオゾン濃度が高くなり過ぎる。
【0006】
従って、オゾン濃度を高くすれば、殺菌や藻の繁殖防止にはよいが、冷却塔の装置各部や配管に対しては、オゾンによる劣化が進行するという問題が生ずる。又、装置の運転及び保守費用も高くなる。ところが、従来では、レジオネラ菌を確実に殺菌・消滅させると共にオゾン濃度が不必要に過剰になることを防止できる装置はなかった。
【0007】
【発明が解決しようとする課題】
オゾン濃度を適正範囲に維持しつつレジオネラ菌を確実に殺菌するには、水槽内の溶存オゾンを検出してこれを一定にする制御方式も考えられるが、微量のオゾン検出は測定精度上問題があり、又装置のメンテナンスに時間がかかり、更にそのような検出計器が高価であるためにオゾン発生装置がコスト高になるという問題がある。そこで本発明は、従来技術に於ける上記問題を解決し、冷却塔の用水中のレジオネラ菌を人体に対して悪影響のない程度以下まで確実に殺菌できると共に、オゾンの過剰供給を防止し、運転や維持費用の低減された冷却塔のオゾン殺菌装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、請求項1の発明は、主循環系から戻されて上部の散水トレーから散水され冷却されて下部の水槽に集められて該水槽から取り出されて前記主循環系で冷却水として循環されて使用される冷却塔の用水をオゾンで殺菌する冷却塔のオゾン殺菌装置において、前記水槽又は前記主循環系から前記用水の一部分を取り出す取水管系と、該取水管系から前記水槽及び前記散水トレーにそれぞれ接続された下部戻し管系及び上部戻し管系と、高濃度のオゾンガスを発生させるオゾン発生装置を備え前記オゾンガスを前記下部戻し管系又は前記上部戻し管系のうちの少なくとも何れかに供給可能なオゾン供給系と、前記下部戻し管系と前記上部戻し管系との間で用水の流れを切り換え可能な切換手段と、前記用水の温度を検出する温度検出手段と、該温度検出手段で検出された前記用水の温度に対応して前記オゾンガスの量を制御する制御手段と、を有することを特徴とする。
【0009】
請求項2の発明は、上記に加えて、前記主循環系に流れ検知手段を設け、前記制御手段は前記流れ検知手段が流れの停止状態を検知すると前記オゾン発生装置を間欠運転する間欠運転部を有することを特徴とする。
【0010】
【発明の実施の形態】
図1は本発明を適用した冷却塔のオゾン殺菌装置の全体構成の一例を示し、図2はその水槽部分の構造例を示す。
冷却塔のオゾン殺菌装置は、上部の散水トレー11から散水され冷却されて下部の水槽12に集められ冷却水として循環されて使用される冷却塔1の用水をオゾンで殺菌する装置であり、用水の一部分を取り出す取水管系2、この管系から水槽12又は散水トレー11にそれぞれ接続された下部戻し管系3又は上部戻し管系4のうちの少なくとも何れかの戻し管系として本例では両方の下部戻し管系3及び上部戻し管系4、オゾン発生装置5を備えたオゾン供給系6、温度検出手段としての温度センサ7、制御手段としてのコントローラ8、等を有する。なお、例えばレジオネラ菌の発生の比較的少ない地域等に設置される冷却塔では、下部戻し管系3又は上部戻し管系4のうちの何れかのみに戻し管系を設けてもよい場合がある。
【0011】
冷却塔1は、上記散水トレー11及び水槽12と共に、散水トレーの水を噴射させる多数のノズル部11a、水の接触する部分の表面積を拡大するように充填物が設けられた蒸発部13、蒸発部を通過する水を蒸発させてその潜熱で用水を冷却するように外気を吸入して排出するファン14、図2にも示すように水槽12内に本例では左右にそれぞれ5個所に分散された排出口15aを備え下部戻し管系3に接続された水槽内管系15、水槽12から冷却された水を取り出して空調機やその他の諸装置の冷却水として利用し循環させて再び散水トレー11に戻す主循環系16、17、等を備えている。符号18及び19は用水利用側に設けられた主循環ポンプ及び熱交換器である。但し、他の構造の冷却塔に対しても本発明を適用できることは勿論である。
【0012】
取水管系2は、本例では、水槽12内の用水をその底部からストレーナ21を介してオゾン溶解ポンプ22によって取り出すように構成されている。但し、この系を主循環系16又は17から導設するようにしてもよい。下部及び上部戻し管系3、4には、取水された用水をこれらの何れか又は両方に戻せるように、分岐された用水の流れを切り換えられる切換手段として電磁弁31及び41が設けられている。
【0013】
オゾン供給系6は、前記電磁弁31及び41の開閉によってオゾンを下部戻し管系3又は上部戻し管系4のうちの少なくとも何れかに供給可能なように、前記オゾン発生装置5、取水管系2の構成部分でもある前記オゾン溶解ポンプ22、オゾン吸入混合用のエゼクタ61等によって構成されている。
【0014】
オゾン発生装置5は、固体高分子電解質膜を用いた電解式のもので、図示しない気液分離タンクを含む電解セル部51及び供給される交流電源を直流に変換して電解セル部に流す直流電源発生部52を備えている。直流電源発生部52には、リモート出力制御端子52aを備えた電流制御部分が設けられていて、外からの信号によって電解セル部51に流す電流値を変えることにより、これに比例したオゾンガス量を発生できるようになっている。
【0015】
そして本例では、オゾン発生装置5の定格である100%出力時即ち電流値が100%で200Aのときに、200〜250g/Nm3 の高濃度のオゾンガスを例えば100%の48g/h 発生させている。これにより、用水の一部分が下部戻し管系3又は上部戻し管系4からそれぞれ水槽12又は散水トレー11の少なくとも何れかに戻されたときに戻された方の水槽又は散水トレーの何れかに残留オゾンが存在するようにオゾンを供給することができる。
【0016】
この場合、200g/Nm3 以上の高濃度オゾンガスを発生させれば、分岐系のオゾン濃度が高くなり、少ない水量であっても溶解オゾンの総量を多くすることができる。その結果、主循環水に対する分岐水の割合を減らし、冷却塔の性能に対する分岐水の影響を軽微にすると共に、分岐系を小型化することができる。又、本例の如く水槽内管系15を設けると、水槽12内に戻されたオゾン水を水槽内に分散させて導入し、内部の水と良く混合させ、オゾンの効果を水槽内に均一的に発生させることができる。この場合、図2に示す如く排出口15aが蒸発部13から落下する水の端に位置するように水槽内管系15を設ければ、水槽壁面や水槽内の水全体にオゾン効果を行き渡らせることができる。
【0017】
なお、オゾン発生装置のオゾン発生量及びオゾン濃度は、冷却塔の大きさ、それに対応した主循環系及び分岐系の流量及び比率、有機物等の量に関連するオゾン消費量やオゾンの自己分解の程度、多量の用水を貯留している下部水槽12内における戻りオゾン水と貯留水との混合の良否、等の諸条件から実際の冷却塔システムに適合するように定められる。
【0018】
温度センサ7は、本例では取水管系2に設けられ用水の温度を検出している。但し、温度センサ7を水槽12に直接に又は主循環ラインに設ける等、他の位置に設けてもよいことは勿論である。コントローラ8は、温度センサ7で検出された用水温度に対応してオゾン発生装置5で発生させるオゾン量を制御する。即ち、例えば図3に示す如く、オゾン発生装置5の電流値従って出力を、最大である100%に対して、センサ7で検出した温度が15℃以下、15℃〜35℃、及び35℃以上のときのそれぞれに対して、一定値50%、50%から100%まで温度に比例した値、及び一定値100%にする。そのために、前記50%に相当する4mVから前記100%に相当する20mVまでの制御用電圧信号をオゾン発生装置5の電流調整部分の前記リモート出力制御端子52aに与える。
【0019】
以上のような冷却塔のオゾン殺菌装置は次のような運転される。
オゾン発生装置5及びオゾン溶解ポンプ22を運転すると共に、本例では電磁弁31/41を図示しないタイマーによって4時間毎に開閉切換している。ポンプ22は、冷却用の主循環水の2〜5%程度の水を流す容量になっていて、分岐系にはこの程度の水が循環している。オゾン発生装置5が運転され、このときの温度センサ7の検出温度が35℃以上であれば、コントローラ8はオゾン発生装置5のリモート出力制御端子52aに最大の20mVの信号電圧を発信し、冷却条件によって異なるが200g/Nm3 以上の高濃度オゾンガスを最大の45g/h 発生させ、これをエゼクタ61に吸入させる。これにより、分岐水を2〜3%の高濃度のオゾン水にして、分岐水中のレジオネラ菌を殺菌すると共に、未反応又は未分解部分によって溶存オゾンの残留した水にすることができる。
【0020】
この分岐水は、電磁弁31又は41の開閉に応じて、下部の水槽12又は上部の散水トレー11に戻され、その中の水中に分散される。下部水槽12には広い範囲から水が落下し内部の貯留水量も多いが、前述の如く水槽内管系15によって排水口15aが分散されているので、分岐水を内部の水と良く混合させ、分岐水中に溶存しているオゾンに水槽内においても均一的な殺菌作用をさせることができる。散水トレーでは水量が少ないので更に十分な殺菌効果が生ずる。
【0021】
水槽では、オゾンが菌類や藻類と反応したり自己分解して更に消耗されるが、高濃度オゾンを最大量供給することにより、水槽内でも10〜40ppb という極めて微量であるがオゾンを残留させることができる。これにより、水槽部分におけるレジオネラ菌の殺菌効果を確保することができる。なお、残留オゾンの検出精度の問題はあるが、水槽内の溶存オゾンが丁度0になるときでも、レジオネラ菌の殺菌効果は得られる。又、水槽内の用水が主循環系に供給されてその過程で完全にオゾンが分解しても、散水トレー11にもオゾン水を供給するので、この部分や蒸発部13等における十分な殺菌効果を得ることができる。その結果、冷却塔の用水全体として、レジオネラ菌をほぼ完全に殺菌することができる。
【0022】
発明者等は、本発明を適用したオゾン殺菌装置を使用して実際の冷却塔で実験し、次のような結果を得た。
冷却塔の冷却能力 3.36×106 kcal/h
循環水量 420,000 kg/h
分岐水量 16,000 kg/h (約4%)
オゾン発生装置のオゾン発生量 48 g/h
オゾン濃度 200 g/Nm3
分岐水中の溶存オゾン 2〜3 ppm
上下部戻し管系3/4 の切換時間 4 時間毎
下部水槽内残留溶存オゾン 10 〜40 ppb
100ml 当たりのレジオネラ菌の数
オゾン処理前 2.6×104 CFU /100ml
オゾン処理1日後 0 CFU /100ml
以上の如く、本発明を適用して35℃以上の高温時にオゾン発生装置5を100%の出力で運転することにより、レジオネラ菌を完全に殺菌できることが実証された。
【0023】
分岐管方式によれば、オゾンの殺菌力によって通常分岐水を十分殺菌できる。例えば、分岐水を100CFU/100ml以下にすることは容易である。そして、例えば5〜20%程度の分岐水がこのように殺菌されていくとすれば、数時間後には、主流を含む全体の用水が100CFU/100ml以下になるものと推定される。しかしながら、発明者等の上記とは別の実験によれば、特に夏期において水温が35℃近くまで上昇すると、主流の配管の管壁や熱交換器等を含む管系の内面で微生物が急速に増殖するため、上記の1/10程度、即ち10〜100CFU/1ml程度にすることはできるが、それ以下のレベルにするのは極めて難しいことが判明した。
【0024】
しかしながら、本例の冷却塔のオゾン殺菌装置によれば、上記実験結果に示す如く、
▲1▼ 200g/Nm3 以上という高濃度のオゾンガスを発生させ、このオゾンによって取水管系2の分岐水を高濃度のオゾン水にし、分岐水中のレジオネラ菌を完全に殺菌すること、
▲2▼ 分岐水中に2〜3ppmの溶存オゾンが残留するようにし、このような溶存オゾンを含む分岐水を主流の約4%の水量にして水槽12及び上部散水トレー11に交互に導入すること、
▲3▼ 水槽12には分岐水を多数の排出口15aから分散させて導入し、用水の主流を成す内部の水や主循環水及び壁面等に均一にオゾンによる殺菌作用を発揮させると共に、このような作用を確保するために水槽内でも10〜40ppbという極めて微量ではあるが溶存オゾンを残存させること、
▲4▼ 水槽12と切り換えて散水トレー11にも分岐オゾン水を導入し、主流による殺菌効果が及び難く藻の発生しやすい散水トレー11部分や蒸発部13を構成する充填層部分等にも直接殺菌効果を及ぼすこと、
等から成る必要且つ十分な総合的オゾン処理操作を行うことにより、初めて確実且つほぼ完全にレジオネラ菌を殺菌することができる。
【0025】
なお、本例では高濃度オゾンガスにより分岐水中の溶存オゾン濃度を2〜3%にして分岐水量を主流の約4%という少ない量にしているが、無声放電式のオゾン発生装置を使用する場合等には、分岐水中の溶存オゾン濃度が0.4〜0.5%になるため、分岐水量を多くして主流の約20%にする。その結果、水槽内の水に微小溶存オゾンを残留させ、同様のレジオネラ菌殺菌効果を上げることができる。
【0026】
以上のような高温時の運転状態から、外気温度の低下によって用水温度が例えば30℃に低下したときには、温度センサ7がこれを検出し、図3に示す如くコントローラ8はオゾン発生装置の出力を87.5%にして、オゾン発生量をこれに対応した量にする。その結果、分岐系のオゾン水濃度は前記2〜3%からこの出力比に相当する分だけ低下し、水槽12内では溶存オゾンが検出されないようになる。
【0027】
しかし、このときには、用水温度が30℃になってレジオネラ菌の数もほぼ1桁低下していること、この出力でも水槽12内で溶存オゾンによるレジオネラ菌の殺菌作用は生じていること、分岐水では強い殺菌作用が発揮されレジオネラ菌は完全に殺菌されること、等の理由から、オゾン発生装置の出力を低下させてもレジオネラ菌をほぼ完全に殺菌することができる。一方、このようにオゾン発生装置の出力を下げて用水中のオゾン水濃度を下げることにより、電力消費が減少し運転時の省エネが図られると共に、冷却塔本体や用水循環系の材料のオゾンによる劣化が防止され、運転費用や保守費用を低減させることができる。
【0028】
用水温度が更に低下して25℃程度になると、通常レジオネラ菌は余り検出されなくなる。しかし、人体に対するレジオネラ菌の悪影響を確実に防止するため、本例ではオゾン発生装置を75%程度の出力で運転し、レジオネラ菌の殺菌作用を保持しつつ、オゾン発生装置の運転及び保守費用を更に低減させるようにしている。用水温度が15℃以下になると、レジオネラ菌は全く検出されないので、オゾン発生装置を停止させることも考えられるが、低温環境にも適した微生物や藻類もあり、これらの増殖によるスライム障害の発生を確実に防止するため、コントローラ8はオゾン発生装置の出力が50%になるように制御する。その結果、冷却塔を良好な条件に維持しつつ、その運転及び保守費用の一層の低減を図ることができる。
【0029】
以上のような用水温度の変化とレジオネラ菌との関係については、次のような実測結果が得られている:
上記におけるオゾン処理後の数値は、本例の装置によるオゾン発生装置の出力制御のときと同様の運転をしたときのデータである。この結果によれば、本発明を適用すべき要因及びそのときの本発明適用の効果が明白である。
【0030】
図4は本発明を適用した冷却塔のオゾン殺菌装置の他の例を示す。
本例では、循環されるラインである主循環系16に流れ検知手段であるフロースイッチ9を設けると共に、コントローラ8に間欠運転部8aを設けている。これにより、間欠運転部8aは、フロースイッチ9が主循環系16の流れの停止状態を検出してオフになると、オゾン発生装置5を間欠運転するように制御する。即ち、図示しないタイマーを有し、オゾン発生装置5に設けられている発停スイッチを備えた発停部53を制御し、1日に1〜2時間程度オゾン発生装置を運転し、他の時間では運転を停止する。
【0031】
例えば冷却塔の用水が空調用の冷却水として使用されるときには、気温の低い冬場等において空調機の冷水ポンプが停止されたり、冷水ポンプは運転されていても主循環ポンプ18を運転せず冷却塔1を使用しない場合がある。このようなときでもオゾン発生装置5を連続で運転すれば、水槽12内の水が高濃度にオゾン水化され、2〜3ppm にも到達して過剰オゾン状態になる。その結果、冷却塔の装置各部や配管のオゾンによる劣化が促進される。又、オゾン発生装置を無駄に運転することになり、省エネに反すると共に装置の運転及び維持費用も高くなる。一方、冬場の低温時であっても、オゾン発生装置を完全に停止させると微生物の増殖が避けられない。このような場合に、本例の如くオゾン発生装置5を間欠運転すれば、以上のすべての問題が解決される。
【0032】
更に、工場やビルの空調設備では、夏期休暇時等にある程度長い日数の間運転を停止されることがある。このようなときでも、特に水温の高い夏場でもあるためオゾン発生装置の運転を完全に停止できないことは勿論であるが、連続運転による過剰オゾンの問題も無視できない。ここで本例の間欠運転装置が極めて有効になる。
【0033】
ところで、前記の如く、水温の低い冬場では運転時のオゾン発生装置の出力が自動的に50%になり、一方、水温の高い夏期休暇時等では100%になる。従って、冬でも夏でも同じ間欠運転時間を設定することにより、間欠運転時にも水温差に対応した装置の出力制御が行われ、オゾン濃度の過不足のない良好な運転状態が自動的に維持される。そして、このように自動的にオゾン発生装置の出力及び運転時間を変更できるようにすれば、運転操作の煩雑性が回避されて省力化が図られると共に、人による誤操作も回避され、装置の良好な運転性や安全性を高めることができる。
【0034】
【発明の効果】
以上の如く本発明によれば、請求項1の発明においては、用水の一部分を取り出す取水管系とこれから水槽に接続された下部戻し管系と取水管系から散水トレーに接続された上部戻し管系とを設けるので、冷却に使用する用水の主循環系に対してその一部分を取水して水槽もしくは散水トレー又はこれらの双方に戻す分岐系を形成することができる。
【0035】
そして、高濃度のオゾンガスを発生させるオゾン発生装置を備え発生させたオゾンガスを下部戻し管系又は上部戻し管系のうちの少なくとも何れかに供給可能なオゾン供給系を設けるので、オゾンガスの発生量を多くしたときには水槽又は散水トレー内の水中にオゾンを残留させることができる。そして、オゾン供給系から例えば交互に下部及び上部分岐系にオゾンを供給し、分岐系内のレジオネラ菌を直接殺菌すると共に、水槽及び散水トレーの水中の残留溶存オゾンにより、それらの部分のレジオネラ菌を殺菌することができる。
【0036】
又、用水の温度を検出する温度検出手段と、これで検出された用水の温度に対応してオゾンガスの量を制御する制御手段を設けるので、自動的に温度の高いときにはオゾンガス量を多くし温度の低いときには少なくすることができる。ここで、用水温度が高いときにはレジオネラ菌の増殖が多くなるが、前記の如く、高濃度でオゾンガス発生量を多くして分岐系の水を高濃度のオゾン水にし、水槽及び散水トレーの両方へオゾン水を供給して用水循環系でのオゾンの消滅及び蒸発部での気散によるオゾンの消滅を補い、又、これらに残留オゾンを存在させるように高濃度オゾンガスを多く供給してこれらの部分での殺菌効果を確保できるようにするので、これらの各構成及び作用の相乗的効果の発生により、用水の全体においてレジオネラ菌の数を確実に100CFU/100ml程度以下という人体に対して悪影響を及ぼさない極めて少ない値にすることができる。
【0037】
一方、用水温度が低下すると、レジオネラ菌を含む微生物や藻類の繁殖も少なくなり、且つ水温の低下に対応して水に対するオゾンの溶解度が高くなり、更に水中の溶存オゾンの自己分解作用も低下し、オゾンを必要とする複数の要因の何れもが減少するので、このようなときには、温度検出手段で検出した低い温度に対応して制御手段が発生オゾン量を少なくするように制御するので、レジオネラ菌の殺菌効果を維持しつつ、過剰なオゾン供給を防止し、電力消費量を減らして運転コストを下げ、又、オゾンによる装置の劣化促進を阻止して保守費用の低減を図ることができる。
【0038】
請求項2の発明においては、用水の循環ラインに流れ検知手段を設け、これが流れの停止状態を検知すると、オゾン発生装置を間欠運転する間欠運転部を制御手段に設けるので、低温時等で冷却塔を使用しないときにオゾン発生装置を適正な時間間隔で間欠運転することにより、水槽水の高濃度オゾン水化の回避による装置各部や配管のオゾンによる劣化促進の防止し、オゾン発生装置の不必要な運転の回避よる運転費用及び及び維持費用の一層の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明を適用した冷却塔のオゾン殺菌装置の構成例を示す説明図である。
【図2】(a)及び(b)はそれぞれ上記装置の冷却塔の水槽部分の斜視図及び部分正面図である。
【図3】用水温度に対応して制御すべきオゾン発生装置の電流又は出力の比率を示す曲線図である。
【図4】本発明を適用した冷却塔のオゾン殺菌装置の他の構成例を示す説明図である。
【符号の説明】
1 冷却塔
2 取水管系
3 下部戻し管系
4 上部戻し管系
5 オゾン発生装置
6 オゾン供給系
7 温度センサ(温度検出手段)
8 コントローラ(制御手段)
8a 間欠運転部
9 フロースイッチ(流れ検知手段)
11 散水トレー
12 水槽
Claims (2)
- 主循環系から戻されて上部の散水トレーから散水され冷却されて下部の水槽に集められて該水槽から取り出されて前記主循環系で冷却水として循環されて使用される冷却塔の用水をオゾンで殺菌する冷却塔のオゾン殺菌装置において、
前記水槽又は前記主循環系から前記用水の一部分を取り出す取水管系と、
該取水管系から前記水槽及び前記散水トレーにそれぞれ接続された下部戻し管系及び上部戻し管系と、
高濃度のオゾンガスを発生させるオゾン発生装置を備え前記オゾンガスを前記下部戻し管系又は前記上部戻し管系のうちの少なくとも何れかに供給可能なオゾン供給系と、
前記下部戻し管系と前記上部戻し管系との間で用水の流れを切り換え可能な切換手段と、
前記用水の温度を検出する温度検出手段と、
該温度検出手段で検出された前記用水の温度に対応して前記オゾンガスの量を制御する制御手段と、
を有することを特徴とする冷却塔のオゾン殺菌装置。 - 前記主循環系に流れ検知手段を設け、
前記制御手段は前記流れ検知手段が流れの停止状態を検知すると前記オゾン発生装置を間欠運転する間欠運転部を有することを特徴とする請求項1に記載の冷却塔のオゾン殺菌装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35076998A JP4305582B2 (ja) | 1998-11-24 | 1998-11-24 | 冷却塔のオゾン殺菌装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35076998A JP4305582B2 (ja) | 1998-11-24 | 1998-11-24 | 冷却塔のオゾン殺菌装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000157985A JP2000157985A (ja) | 2000-06-13 |
JP4305582B2 true JP4305582B2 (ja) | 2009-07-29 |
Family
ID=18412749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35076998A Expired - Fee Related JP4305582B2 (ja) | 1998-11-24 | 1998-11-24 | 冷却塔のオゾン殺菌装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4305582B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPR620701A0 (en) * | 2001-07-06 | 2001-08-02 | Ozone Manufacturing Pty Ltd | Evaporative cooler purifier |
US6596160B2 (en) * | 2001-11-27 | 2003-07-22 | Minshiou Lee | Periodic ozone treatment system for a showering tower type water cooling system |
EP1325889A1 (en) * | 2002-01-02 | 2003-07-09 | Minshiou Lee | Ozonization system for disinfection in spray tower cooling systems |
KR20030085755A (ko) * | 2002-05-01 | 2003-11-07 | 차승식 | 물공기 냉각 공조기의 수처리 기구 |
KR100687619B1 (ko) * | 2005-10-14 | 2007-02-27 | (주)국제비엠에스 | 수산 자유기를 이용한 냉각탑 순환수의 살균 및 청관과 이물질 제거를 위한 장치 |
JP5984622B2 (ja) * | 2012-10-23 | 2016-09-06 | 日本アクア株式会社 | 水洗装置 |
JP6045473B2 (ja) * | 2013-10-28 | 2016-12-14 | 多田電機株式会社 | 冷却塔のオゾン殺菌装置及びオゾン殺菌方法 |
JP6369271B2 (ja) * | 2014-10-02 | 2018-08-08 | 三菱電機株式会社 | 液体殺菌装置及び浴槽水殺菌システム |
JP6521519B2 (ja) * | 2015-08-26 | 2019-05-29 | 森永乳業株式会社 | 電解生成物混合装置、バラスト水処理装置、船舶、吸引混合装置および電解生成物混合方法 |
JP6689474B1 (ja) * | 2019-10-17 | 2020-04-28 | 三菱電機株式会社 | 水処理システムおよび水処理方法 |
JP7337294B1 (ja) * | 2022-06-17 | 2023-09-01 | 三菱電機株式会社 | オゾン供給システム、制御方法および制御プログラム |
-
1998
- 1998-11-24 JP JP35076998A patent/JP4305582B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000157985A (ja) | 2000-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5824243A (en) | Water ozonating system | |
US6106731A (en) | System and method for ozonating water for animal houses | |
JP4305582B2 (ja) | 冷却塔のオゾン殺菌装置 | |
JP4878826B2 (ja) | 空気除菌装置 | |
JPH11504562A (ja) | 浄水システム | |
KR960001392B1 (ko) | 개선된 수처리 시스템 | |
KR20120082982A (ko) | 실내 공기 유동이 있는 실내 공간의 공기 살균 시스템 및 그 방법 | |
GB2348945A (en) | Control of micro-organisms in hot water supply systems | |
US6716340B2 (en) | Water treatment system | |
JP6076591B2 (ja) | 加湿および殺菌可能な空調システムと加湿および殺菌可能な空調方法 | |
US7794606B2 (en) | Modular flameless waste treatment method | |
CA3008418C (en) | Ultraviolet light water treatment unit for high flow rate systems | |
JP2001062458A (ja) | 殺菌水製造装置 | |
US4177143A (en) | Elimination of strainer fouling in recirculating cooling water systems | |
KR101938121B1 (ko) | 차아염소산 나트륨을 이용한 돈사 내,외부 및 주변 악취 제거겸 살균소독 시스템 | |
JP6755084B2 (ja) | 水冷式変電所のレジオネラ属菌対策システム、被冷却体冷却システム、レジオネラ属菌対策方法および被冷却体冷却方法 | |
KR200373329Y1 (ko) | 냉온풍이 발생되는 공기 소독 정화 장치 | |
JP3392754B2 (ja) | 冷却塔のオゾン殺菌装置 | |
JPH10182325A (ja) | 次亜塩素酸ナトリウムの殺菌力増強装置 | |
US6919032B2 (en) | Distribution/retention plate for minimizing off-gassing | |
CN208617599U (zh) | 一种具有循环供水消毒的内镜无菌纯化水一体化装置 | |
US20090039030A1 (en) | Antimicrobial water treatment system and method | |
JPH05196259A (ja) | 換気システム又は空調システムで空気を処理する方法及びこの方法を実施するための装置 | |
JP3339196B2 (ja) | 殺菌用濃縮遊離塩素水生成システムの洗浄方法 | |
JPH1119665A (ja) | 活性水製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090209 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090209 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090401 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090421 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150515 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |