JP4299797B2 - Photothermal conversion measuring device - Google Patents

Photothermal conversion measuring device Download PDF

Info

Publication number
JP4299797B2
JP4299797B2 JP2005056249A JP2005056249A JP4299797B2 JP 4299797 B2 JP4299797 B2 JP 4299797B2 JP 2005056249 A JP2005056249 A JP 2005056249A JP 2005056249 A JP2005056249 A JP 2005056249A JP 4299797 B2 JP4299797 B2 JP 4299797B2
Authority
JP
Japan
Prior art keywords
sample
sample cell
excitation light
photothermal conversion
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005056249A
Other languages
Japanese (ja)
Other versions
JP2006242635A (en
Inventor
将人 甘中
弘行 高松
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005056249A priority Critical patent/JP4299797B2/en
Priority to EP06101473A priority patent/EP1691189A3/en
Priority to US11/350,954 priority patent/US7522287B2/en
Publication of JP2006242635A publication Critical patent/JP2006242635A/en
Application granted granted Critical
Publication of JP4299797B2 publication Critical patent/JP4299797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Description

本発明は,所定の試料セルに収容される試料に励起光を照射し,励起した前記試料に生じる光熱効果に基づいて前記試料の特性変化を測定する光熱変換測定装置に関するものであり,特に前記試料セルの前記試料以外の部分からの発熱を極力防止し,これにより高精度な分析結果を得ることが可能な光熱変換測定装置に関するものである。 The present invention relates to a photothermal conversion measuring apparatus that irradiates a sample contained in a predetermined sample cell with excitation light and measures a change in the characteristics of the sample based on a photothermal effect generated in the excited sample, the heat generated from the portion other than the sample in the sample cell to prevent as much as possible, it is relates to the photothermal conversion measuring equipment capable Thereby obtaining highly accurate analysis results.

近年,マイクロ流路中の微量生体分子検出の高速,高感度化のニーズに対して,in-situ分析技術として特許文献1等に示される光熱変換測定による高感度の分析法が提案されている。そのような光熱変換測定による分析は,例えばクロマトグラフィにおける測定物質の分離後おいて,微量となる分子の検出などに対して有効であることが知られており,更なる高速化,高感度化を目指して様々な改良が提案されている。
尚,分析対象の試料に励起光を照射すると,前記試料は前記励起光の吸収により発熱する。この現象は光熱変換と呼ばれる。前記光熱変換測定とは,このような光熱変換に基づく前記試料の特性変化を測定することであり,そのような測定を行う装置が光熱変換測定装置である。
In recent years, in response to the need for high-speed and high-sensitivity detection of trace biomolecules in microchannels, high-sensitivity analysis methods based on photothermal conversion measurement have been proposed as in-situ analysis techniques, such as Patent Document 1 . Such analysis by photothermal conversion measurement is known to be effective for detecting, for example, a trace amount of molecules after separation of a measurement substance in chromatography, for example. Various improvements have been proposed for this purpose.
When the sample to be analyzed is irradiated with excitation light, the sample generates heat due to absorption of the excitation light. This phenomenon is called photothermal conversion. The photothermal conversion measurement is to measure a change in characteristics of the sample based on such photothermal conversion, and the apparatus that performs such measurement is a photothermal conversion measurement apparatus.

図1は,そのような光熱変換測定装置の概略構成図である。以下,図1を参照しつつ,従来例における光熱変換測定装置について説明する。
図1に示されるように,従来例における光熱変換測定装置X0は,励起光光源1,チョッパ2,ダイクロイックミラー3,レンズ4,測定光光源6,1/2波長板7,ビームスプリッタ8,音響光学変調機9,10,ミラー11,12,PBS13,14,ミラー15,1/4波長板16,18,光検出器17,反射ミラー19,偏光板20,信号処理装置21等を有しており,所定位置に分析対象の試料が収容された試料セル5が配置される。尚,前記試料セル5は所定の容器とその容器内に満たされた溶媒とからなるものであり,分析対象の試料を前記容器に収容するものである。
前記励起光光源1(例えば,波長533nm,出力100mWのレーザ(YAG倍波))より励起光Eが照射される。前記励起光Eは,前記チョッパ2により所定の周期の断続光に変換される。また,前記励起光Eはダイクロイックミラー3により反射され,レンズ4を通過して前記試料セル5に照射される。前記試料セル5中の試料が前記励起光Eを吸収して発熱し(光熱効果),その熱は前記溶媒に吸収される。これにより,前記試料セル5の屈折率が変化する。
FIG. 1 is a schematic configuration diagram of such a photothermal conversion measuring apparatus. Hereinafter, a conventional photothermal conversion measuring device will be described with reference to FIG.
As shown in FIG. 1, the photothermal conversion measuring device X0 in the conventional example includes an excitation light source 1, a chopper 2, a dichroic mirror 3, a lens 4, a measurement light source 6, a half-wave plate 7, a beam splitter 8, an acoustic wave Optical modulators 9 and 10, mirrors 11 and 12, PBS 13 and 14, mirror 15, quarter-wave plates 16 and 18, photodetector 17, reflection mirror 19, polarizing plate 20, signal processing device 21, etc. Thus, a sample cell 5 in which a sample to be analyzed is accommodated is disposed at a predetermined position. The sample cell 5 is composed of a predetermined container and a solvent filled in the container, and accommodates the sample to be analyzed in the container.
Excitation light E is emitted from the excitation light source 1 (for example, a laser having a wavelength of 533 nm and an output of 100 mW (YAG harmonic)). The excitation light E is converted into intermittent light having a predetermined cycle by the chopper 2. The excitation light E is reflected by the dichroic mirror 3, passes through the lens 4, and is irradiated on the sample cell 5. The sample in the sample cell 5 absorbs the excitation light E and generates heat (photothermal effect), and the heat is absorbed by the solvent. As a result, the refractive index of the sample cell 5 changes.

一方,前記試料セル5の屈折率変化を測定するための測定光Mが,前記測定光光源6(例えば,出力1mWのHe−Neレーザ)より出力される。前記測定光Mは,1/2波長板7で偏波面が調節され,ビームスプリッタ8により互いに直交する2つの偏波M1,M2に分割される。
各偏波M1,M2は音響光学変調機9,10に入力され,周波数変換される。このとき,前記偏波M1,前記偏波M2各々の周波数は異なるようになされ,例えば30Mhz等の周波数差が生じる。また,前記偏波M1,前記偏波M2は前記ミラー11,12により反射され,前記PBS13により合成される。
尚,合成された偏波のうちの前記偏波M2は,前記PBS14を通過(透過)してミラー15に反射され,再度前記PBS14に入射する。また,前記偏波M2は前記PBS14と前記ミラー15との間に配置されている1/4波長板16を往復通過することにより,その偏波面が90°回転される。前記偏波M2は前記PBS14により,光検出器17に向けて反射される。
On the other hand, the measurement light M for measuring the refractive index change of the sample cell 5 is output from the measurement light source 6 (for example, a He-Ne laser having an output of 1 mW). The measurement light M has its plane of polarization adjusted by the half-wave plate 7 and is split by the beam splitter 8 into two polarizations M1 and M2 orthogonal to each other.
Each polarization M1, M2 is input to acousto-optic modulators 9, 10 and is frequency-converted. At this time, the polarization M1 and the polarization M2 have different frequencies, and a frequency difference of, for example, 30 Mhz is generated. The polarization M1 and the polarization M2 are reflected by the mirrors 11 and 12, and are combined by the PBS 13.
Of the synthesized polarized waves, the polarized wave M2 passes (transmits) through the PBS 14, is reflected by the mirror 15, and is incident on the PBS 14 again. The polarization plane M2 is reciprocally passed through a quarter-wave plate 16 disposed between the PBS 14 and the mirror 15, so that the plane of polarization is rotated by 90 °. The polarized wave M2 is reflected toward the photodetector 17 by the PBS.

一方,前記偏波M1は,前期PBS14により反射され,1/4波長板18,前記ダイクロイックミラー3,前記レンズ4を通過して前記試料セル5に照射される。この場合,前記偏波M1と前記励起光の前記試料セル5における照射箇所は同一にされる。
前記偏波M1は,前記試料セル5を通過後に反射ミラー19で反射され,前記試料セルに入射するときの光路を遡って前記PBS14へ戻る。前記偏波M1は,前記1/4波長板18を往復通過しているため,偏波面が90°回転しており,前記PBS14を通過して前記偏波M2と合流し,前記光検出器17に向かう。
尚,前記PBS14と前記光検出器17との間には偏光板20が配置されており,該偏光板20において前記偏波M1と前記偏波M2とは,それぞれ測定光,参照光として互いに干渉する。
前記光検出器17はそれらの干渉光を検出し,その強度に応じた電気信号が前記信号処理装置21に入力される。
前記干渉光の強度は,前記偏波M1(測定光)が前記試料セル5を通過する際の位相変化に依存しており,従って前記干渉光の強度の測定結果に基づいて,前記偏波M1(測定光)の位相変化,ひいては前記試料セル5に満たされている溶媒の屈折率変化が求められる。
特開2004−301520号公報
On the other hand, the polarized wave M1 is reflected by the PBS 14 in the previous period, passes through the quarter-wave plate 18, the dichroic mirror 3, and the lens 4 and is applied to the sample cell 5. In this case, the irradiation location of the polarized light M1 and the excitation light in the sample cell 5 is the same.
The polarized wave M1 is reflected by the reflection mirror 19 after passing through the sample cell 5, and returns to the PBS 14 along the optical path when entering the sample cell. Since the polarization M1 passes back and forth through the quarter-wave plate 18, the plane of polarization is rotated by 90 °, passes through the PBS 14, joins the polarization M2, and the photodetector 17 Head for.
A polarizing plate 20 is disposed between the PBS 14 and the photodetector 17, and the polarization M1 and the polarization M2 interfere with each other as measurement light and reference light, respectively. To do.
The photodetector 17 detects the interference light, and an electric signal corresponding to the intensity is input to the signal processing device 21.
The intensity of the interference light depends on the phase change when the polarized light M1 (measurement light) passes through the sample cell 5. Therefore, based on the measurement result of the intensity of the interference light, the polarization M1 The phase change of (measurement light), and hence the refractive index change of the solvent filled in the sample cell 5 is obtained.
JP 2004-301520 A

上述のような光熱変換測定による試料の分析では,分析精度(或いは,分析感度)の向上は,試料薬の低減や試料濃縮処理の簡素化など,分析コスト低減,分析効率化の面で重要である。そのためには,前記試料からの発熱のみを高精度で測定する必要がある。
しかしながら,上述の従来例では,励起光光源1より照射された励起光Eは,試料セルのうちの試料以外の部分,例えば,前記試料セルの容器部材や封入された溶媒にも照射される。従って,前記励起光の波長帯が前記容器部材や溶媒の吸収波長帯を含む場合には,前記励起光の一部が前記容器部材や溶媒に吸収され,前記容器部材,溶媒に発熱が生じる。
図2には,測定対象の試料(a),容器部材(b),溶媒(c)各々の吸収波数帯(波数は波長の逆数)の一例を示すグラフである。尚,図2(a)に示される例では,前記試料(アマニ油の場合)の吸収波数帯は1400〜1470(cm-1)及び1710〜1770(cm-1)周辺にピークを有する。一方,図2(b)に示されるように,容器部材の吸収波数帯は〜1100(cm-1)に渡って広がっているものであるとき,前記励起光が〜1100(cm-1)以下の成分を有する場合には,前記容器部材が前記励起光の一部を吸収し,これにより発熱する。また,図2(c)に示されるように,前記溶媒(クロロホルムの場合)の吸収波数帯は1400〜1550(cm-1)に渡って広がっており,前記励起光がこれらの波数帯(それに相当する波長帯)の成分を有する場合にはやはり発熱が生じる。
このような発熱により,上述の信号処理装置21に入力される電気信号は,それらの試料以外の部分の発熱による背景信号を含むものとなっており,前記試料部分のみの発熱を正確に測定する際の妨げとなっていた。即ち,前記励起光の成分のうち,前記試料の吸収波長帯(波数帯)以外の成分(例えば,上述の例では,〜1100,1470〜1550(cm-1)の波数帯成分等)は,極力除去された状態で前記試料に照射するのが望ましい。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,試料セルにおける容器部材及び封入される溶媒による発熱を極力防止することにより,高精度で試料分析を行うことが可能な光熱変換測定装置,光熱変換測定方法を提供することにある。
In the analysis of samples by photothermal conversion measurement as described above, improvement in analysis accuracy (or analysis sensitivity) is important in terms of reducing analysis costs and improving analysis efficiency, such as reducing sample drugs and simplifying sample concentration. is there. For this purpose, it is necessary to measure only the heat generated from the sample with high accuracy.
However, in the above-described conventional example, the excitation light E irradiated from the excitation light source 1 is also irradiated to portions other than the sample in the sample cell, for example, the container member of the sample cell and the sealed solvent. Therefore, when the wavelength band of the excitation light includes the absorption wavelength band of the container member and the solvent, a part of the excitation light is absorbed by the container member and the solvent, and heat is generated in the container member and the solvent.
FIG. 2 is a graph showing an example of absorption wave number bands (wave number is the reciprocal of wavelength) of each of the sample (a), the container member (b), and the solvent (c) to be measured. In the example shown in FIG. 2A, the absorption wave number bands of the sample (in the case of linseed oil) have peaks around 1400 to 1470 (cm −1 ) and 1710 to 1770 (cm −1 ). On the other hand, as shown in FIG. 2 (b), when the absorption waveband of the container member extends over ˜1100 (cm −1 ), the excitation light is ˜1100 (cm −1 ) or less. The container member absorbs a part of the excitation light and generates heat. In addition, as shown in FIG. 2 (c), the absorption wave number band of the solvent (in the case of chloroform) is spread over 1400 to 1550 (cm −1 ), and the excitation light is reflected in these wave number bands (to it). In the case of having a component in the corresponding wavelength band), heat is also generated.
Due to such heat generation, the electric signal input to the signal processing device 21 includes a background signal due to heat generation of portions other than the sample, and the heat generation of only the sample portion is accurately measured. It was a hindrance. That is, among the components of the excitation light, components other than the absorption wavelength band (wave number band) of the sample (for example, in the above example, wave number band components of ˜1100, 1470 to 1550 (cm −1 ), etc.) are: It is desirable to irradiate the sample in a state where it is removed as much as possible.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to perform sample analysis with high accuracy by preventing heat generation due to the container member and the encapsulated solvent in the sample cell as much as possible. An object is to provide a photothermal conversion measuring device and a photothermal conversion measuring method capable of performing the above.

上記目的を達成するために本発明は,所定の試料セルに収容され励起光が照射された液体試料の光熱効果により生じる前記試料の屈折率変化を,前記試料に照射された測定光の位相変化に基づいて測定する光熱変換測定装置であって,前記励起光の光源と前記試料セルとの間に,前記試料に照射される励起光から前記試料セルにおける主な光の吸収波長帯の成分を除去もしくは減衰させるフィルタ手段が配置され,前記励起光と前記測定光とが,前記試料に対して異なる方向から照射されてなる光熱変換測定装置において,前記フィルタ手段が,前記試料セル内に前記試料と共に封入される前記試料の溶媒である封入剤を収容する封入剤用容器を具備するものであることを特徴とする光熱変換測定装置である。
これにより,前記試料セルに収容された前記試料以外の部分が前記励起光を吸収することが極力防止されるため,前記試料の特性変化の測定精度が向上される。尚,前記フィルタは前記吸収波長帯の成分を十分に減衰若しくは除去できるように,前記励起光の入射方向に対して十分な厚みを持たせておくことが望ましい。前記フィルタとしては,バンドパスフィルタ,シャープカットフィルタ等の波長選択性を有するフィルタを用いればよい。
ここで,前記フィルタは前記試料セルと同一物質からなる試料セル部材を有することも考えられ,極端な話,前記試料を収容しない状態の試料セル(但し,十分な厚みのもの)を用いてもよい。これにより,前記試料セルの吸収波長帯の成分が前記フィルタにより確実に除去若しくは減衰される。尚,完全に試料セルと同一部材を用いる必要は無く,前記試料セルの主な吸収波長帯成分を有するような,前記試料セルの物質と類似の物質があれば,そちらを用いても構わない。
前記のように,前記フィルタが前記試料と共に前記試料セルに封入される封入剤(溶媒等と考えられる)を収容する容器を用い,前記封入剤を封入しておくことが考えられる。これにより,前記試料セルの容器部材だけではなく,それに封入される封入剤の吸収波長帯の成分を除去若しくは減衰させることが可能である。更に,前記試料セル部材により前記容器を形成することが考えられ,例えば前記試料セルに前記封入剤を満たした物を前記フィルタとして用いればよい。
例えば,キセノンランプを励起光の光源として用い,ガラスの試料セルに色素物質(可視光領域を吸収)の水溶液を封入する場合には,前記励起光の紫外成分の前記ガラスによる吸収,赤外成分の水による吸収が考えられるが,この場合には,水を満たしたガラス容器を前記フィルタとして用いる等とすればよい
In order to achieve the above object, the present invention provides a change in the refractive index of the sample caused by the photothermal effect of a liquid sample housed in a predetermined sample cell and irradiated with excitation light, and a change in phase of measurement light irradiated on the sample. A light-to-heat conversion measuring device for measuring a light absorption wavelength band component of the main light in the sample cell from the excitation light irradiated on the sample between the excitation light source and the sample cell. is arranged a filter means for removing or attenuating, and the excitation light and the measurement light is, in the light heat conversion measuring instrument ing is irradiated from different directions with respect to said sample, said filter means, in said sample cell It is a photothermal conversion measuring apparatus characterized by comprising an encapsulant container that contains an encapsulant that is a solvent of the sample enclosed with the sample .
This prevents the portion other than the sample contained in the sample cell from absorbing the excitation light as much as possible, thereby improving the measurement accuracy of the characteristic change of the sample. In addition, it is desirable that the filter has a sufficient thickness with respect to the incident direction of the excitation light so that the component in the absorption wavelength band can be sufficiently attenuated or removed. As the filter, a filter having wavelength selectivity such as a band pass filter or a sharp cut filter may be used.
Here, it is conceivable that the filter has a sample cell member made of the same material as the sample cell. In an extreme case, a sample cell that does not contain the sample (though having a sufficient thickness) may be used. Good. Thereby, the absorption wavelength band component of the sample cell is reliably removed or attenuated by the filter. In addition, it is not necessary to use the same member as the sample cell completely, and if there is a material similar to the material of the sample cell that has the main absorption wavelength band component of the sample cell, it may be used. .
As described above, it is conceivable that the filter encloses the encapsulant using a container that contains the encapsulant (considered as a solvent or the like) encapsulated in the sample cell together with the sample. Thereby, it is possible to remove or attenuate not only the container member of the sample cell but also the component in the absorption wavelength band of the encapsulant sealed therein. Furthermore, it is conceivable that the container is formed by the sample cell member. For example, a material in which the sample cell is filled with the encapsulant may be used as the filter.
For example, when a xenon lamp is used as a light source for excitation light and an aqueous solution of a dye substance (absorbing visible light region) is sealed in a glass sample cell, the ultraviolet component of the excitation light is absorbed by the glass, and the infrared component. In this case, a glass container filled with water may be used as the filter .

本発明によれば,試料セルに収容された試料に照射される励起光のうち,前記試料セル及びそれに封入される封入剤(溶媒等)の吸収波長帯の成分が除去若しくは減衰されるので,前記試料以外の部材による発熱を極力防止することが可能であり,前記試料の特性変化の測定精度が向上される。   According to the present invention, the components in the absorption wavelength band of the sample cell and the encapsulant (solvent, etc.) enclosed in the excitation light irradiated to the sample accommodated in the sample cell are removed or attenuated. Heat generation by a member other than the sample can be prevented as much as possible, and the measurement accuracy of the characteristic change of the sample is improved.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は従来例における光熱変換測定装置の概略構成図,図2は試料,容器部材,溶媒各々の吸収波長帯を示すグラフ,図3は本発明の第1の実施形態に係る光熱変換測定装置の概略構成図,図4は本発明の第1の実施形態に係る光熱変換測定装置の特徴部の概略図,図5は本発明の第2の実施形態に係る光熱変換測定装置の特徴部の概略図,図6は本発明の第3の実施形態に係る光熱変換測定装置の特徴部の概略図,図7は本発明の第4の実施形態に係る光熱変換測定装置の特徴部の概略図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of a conventional photothermal conversion measuring device, FIG. 2 is a graph showing absorption wavelength bands of a sample, a container member, and a solvent, and FIG. 4 is a schematic configuration diagram of the conversion measurement device, FIG. 4 is a schematic diagram of the characteristic part of the photothermal conversion measurement device according to the first embodiment of the present invention, and FIG. 5 is a diagram of the photothermal conversion measurement device according to the second embodiment of the present invention. FIG. 6 is a schematic diagram of the characteristic part, FIG. 6 is a schematic diagram of the characteristic part of the photothermal conversion measuring device according to the third embodiment of the present invention, and FIG. 7 is a characteristic part of the photothermal conversion measuring device according to the fourth embodiment of the present invention. FIG.

(1)本発明の第1の実施形態に係る光熱変換測定装置の概略について。
以下,図3を参照しつつ,本発明の実施形態に係る光熱変換測定装置について説明する。図3に示されるように,本発明の実施形態に係る光熱変換測定装置X1は,FT干渉励起光源101,ミラー102〜104,凹面ミラー105,フィルタ部106,ミラー107,測定干渉光学系108,FT計算信号処理部109等を有する。
また,前記光熱変換測定装置X1の前記凹面ミラー105により励起光Eが集光される箇所に,試料を収容する試料セル5が設置される。尚,前述したように,前記試料セル5は容器とその容器内に満たされた溶媒(封入剤の一例)とからなるものであり,測定(分析)対象の試料が前記容器内に収容されている。
前記FT干渉励起光源101から励起光Eが照射される。前記励起光Eは,前記ミラー102〜104に反射されつつ,また前記フィルタ部106を透過する(前記フィルタ部106が本実施形態の特徴点であり,これについては後に詳述する)。前記ミラー102〜104は前記FT干渉励起光源101により駆動制御がなされており,具体的には,前記試料セル5に前記励起光Eを導光する状態とそうでない状態とを所定の周期に基づいて切り替える制御がなされる。また,前記励起光Eは凹面ミラー105により集光されつつ前記試料セル5に入射される。
(1) About the outline of the photothermal conversion measuring apparatus which concerns on the 1st Embodiment of this invention.
Hereinafter, the photothermal conversion measuring apparatus according to the embodiment of the present invention will be described with reference to FIG. As shown in FIG. 3, the photothermal conversion measurement device X1 according to the embodiment of the present invention includes an FT interference excitation light source 101, mirrors 102 to 104, a concave mirror 105, a filter unit 106, a mirror 107, a measurement interference optical system 108, An FT calculation signal processing unit 109 and the like are included.
Further, a sample cell 5 for storing a sample is installed at a location where the excitation light E is condensed by the concave mirror 105 of the photothermal conversion measuring device X1. As described above, the sample cell 5 is composed of a container and a solvent (an example of an encapsulant) filled in the container, and a sample to be measured (analyzed) is contained in the container. Yes.
Excitation light E is emitted from the FT interference excitation light source 101. The excitation light E is reflected by the mirrors 102 to 104 and passes through the filter unit 106 (the filter unit 106 is a feature of this embodiment, which will be described in detail later). The mirrors 102 to 104 are driven and controlled by the FT interference excitation light source 101. Specifically, the state in which the excitation light E is guided to the sample cell 5 and the state in which the excitation light E is not guided are based on a predetermined period. Are controlled. The excitation light E is incident on the sample cell 5 while being condensed by the concave mirror 105.

一方,前記試料セル5には測定光M(偏波M1)が前記測定干渉光学系108により照射されている(尚,前記測定干渉光学系108は,図1における測定光光源6,1/2波長板7,ビームスプリッタ8,音響光学変調機9,10,ミラー11,12,PBS13,14,ミラー15,1/4波長板16,18,光検出器17,反射ミラー19,偏光板20等に相当する要素を含んでいる)。前記測定光M(偏波M1)は,前記ミラー107で反射され,前記試料セル105を再び通過して前記測定干渉光学系108に検出される。
前記励起光Eの照射による,前記試料セル5に収容された試料の発熱は,従来例の説明で示した測定光(前記偏波M1)と参照光との干渉光として前記測定干渉光学系108により検出される。また,その検出結果に基づく出力レベルの干渉光強度信号が,前記測定干渉光学系108より前記FT計算信号処理部109に入力される。また,前記FT干渉励起光源101から前記ミラー102を駆動する駆動情報を表すミラー駆動情報信号が前記FT計算信号処理部109に入力される。
前記FT計算信号処理部109は,前記干渉光強度信号の前記ミラー駆動情報信号に対する信号処理(FT計算処理)を施し,前記励起光の波長を表すデータを得る。
尚,前記励起光Eの波長帯が前記試料セル5における前記容器部材や溶媒の吸収波長帯を含む場合には,前記励起光Eの一部が前記容器部材や溶媒に吸収され,前記容器部材,溶媒に発熱が生じる。これらの発熱は,前記干渉光強度信号に対する背景信号となり,前記試料の分析精度を低下させるものである。従って,当該光熱変換測定装置X1では,それらの吸収波長帯の成分を除去するフィルタ部106が設けられている。
On the other hand, the sample cell 5 is irradiated with the measurement light M (polarized wave M1) by the measurement interference optical system 108 (note that the measurement interference optical system 108 includes the measurement light sources 6, 1/2 in FIG. Wave plate 7, beam splitter 8, acousto-optic modulators 9, 10, mirrors 11, 12, PBS 13, 14, mirror 15, quarter wave plates 16, 18, photodetector 17, reflection mirror 19, polarizing plate 20, etc. Is included). The measurement light M (polarized light M1) is reflected by the mirror 107, passes through the sample cell 105 again, and is detected by the measurement interference optical system 108.
Heat generation of the sample housed in the sample cell 5 due to the irradiation of the excitation light E is the measurement interference optical system 108 as interference light between the measurement light (the polarization M1) and the reference light described in the description of the conventional example. Is detected. Further, an interference light intensity signal at an output level based on the detection result is input from the measurement interference optical system 108 to the FT calculation signal processing unit 109. Further, a mirror drive information signal representing drive information for driving the mirror 102 from the FT interference excitation light source 101 is input to the FT calculation signal processing unit 109.
The FT calculation signal processing unit 109 performs signal processing (FT calculation processing) on the mirror drive information signal of the interference light intensity signal to obtain data representing the wavelength of the excitation light.
When the wavelength band of the excitation light E includes the absorption wavelength band of the container member and the solvent in the sample cell 5, a part of the excitation light E is absorbed by the container member and the solvent, and the container member , The solvent generates heat. Such heat generation becomes a background signal with respect to the interference light intensity signal, and decreases the analysis accuracy of the sample. Therefore, the photothermal conversion measuring device X1 is provided with a filter unit 106 that removes components in the absorption wavelength band.

(2)本発明の実施形態に係る光熱変換測定装置の有するフィルタの各種様態について。
図4は,本発明の第1の実施形態に係る光熱変換測定装置の特徴部の概略図である。図4に示されるように,当該光熱変換測定装置X1は,前記FT干渉励起光光源101により照射される前記励起光Eが前記試料セル5に向かう光路上に,前記フィルタ106部を有する点を特徴とするものである。以下,前記フィルタ106部について詳述する(尚,図4〜図7において前記ミラー102〜105等は不図示となっている)。
前記フィルタ部106は,フィルタ110a及び2枚のレンズ111a,111b等からなる。前記フィルタ110aは,前記試料を収容している前記試料セル5に照射される前記励起光Eのうちの, 前記試料セル5の容器(試料セル部材)及び溶媒(封入剤の一例)における主な光の吸収波長帯の成分を減衰させ,除去するものであり,バンドパスフィルタやシャープカットフィルタ等の波長選択性を有するフィルタが用いられる。
前記試料,前記容器,前記溶媒の吸収波数帯(波数は波長の逆数)が図2のグラフに示されるような場合,例えば前記フィルタ110aは前記励起光Eから〜1100,1470〜1550(cm-1)の成分を除去するものが用いられる。これにより,前記試料以外の,前記容器,溶媒等が前記励起光Eを吸収して発熱することが極力防止されるので,前記試料の分析の精度が向上される。
尚,前記レンズ111a,111bは,前記励起光Eが前記フィルタ110aを通過する際の前記励起光Eの径を拡大する目的で設けられている。これらのレンズにより,前記励起光Eが前記フィルタ110aを通過する際の密度が小さくなり,前記フィルタ110aによる上記の吸収波長帯の成分の除去効率が高められる。
(2) Various aspects of the filter of the photothermal conversion measuring device according to the embodiment of the present invention.
FIG. 4 is a schematic view of the characteristic part of the photothermal conversion measuring device according to the first embodiment of the present invention. As shown in FIG. 4, the photothermal conversion measurement device X1 has a point that the excitation light E irradiated by the FT interference excitation light source 101 has the filter 106 part on the optical path toward the sample cell 5. It is a feature. Hereinafter, the filter 106 will be described in detail (note that the mirrors 102 to 105 are not shown in FIGS. 4 to 7).
The filter unit 106 includes a filter 110a and two lenses 111a and 111b. Of the excitation light E irradiated to the sample cell 5 containing the sample, the filter 110a is mainly used in the container (sample cell member) and the solvent (an example of an encapsulant) of the sample cell 5. A filter having wavelength selectivity, such as a band pass filter or a sharp cut filter, is used to attenuate and remove components in the light absorption wavelength band.
Said sample, said container, when the absorption wave number band of the solvent (the reciprocal of the wavenumber wavelength) as shown in the graph of FIG. 2, for example, the filter 110a is ~1100,1470~1550 from the excitation light E (cm - What removes the component of 1 ) is used. This prevents the vessel, solvent, etc. other than the sample from absorbing the excitation light E and generating heat as much as possible, so that the accuracy of analysis of the sample is improved.
The lenses 111a and 111b are provided for the purpose of enlarging the diameter of the excitation light E when the excitation light E passes through the filter 110a. With these lenses, the density when the excitation light E passes through the filter 110a is reduced, and the removal efficiency of the components in the absorption wavelength band by the filter 110a is increased.

前記励起光Eが前記試料の吸収波長帯,及び前記試料セル部材の吸収波長帯の成分を有しており,前記試料セル5の容器に封入される前記溶媒の吸収波長帯の成分が小さい場合には,前記励起光Eの前記試料セル部材の吸収波長帯の成分のみを除去するものとしてもよい。
そのような場合に対応するように,前記試料セル部材の吸収波長帯の成分を除去するフィルタを設けたものが,以下に説明する本発明の第2の実施形態に係る光熱変換測定装置である。
図5は本発明の第2の実施形態に係る光熱変換測定装置の特徴部周辺の概略構成図である。以下,図5を参照しつつ,本発明の第2の実施形態に係る光熱変換測定装置の特徴について説明する。
図5に示されるように,本発明の第2の実施形態に係る光熱変換測定装置は,前記試料セル5における容器部材と同一の物質からなる試料セル部材をフィルタ110bとして用いた点にある。前記試料セル部材からなる前記フィルタ110bを通過する際に,前記励起光Eから前記試料セル部材の吸収波長帯の成分が除去される。これにより,前記試料セル5のうちの容器部分の発熱が防止される。
尚,前記試料セル部材からなる前記フィルタ110bは,前記試料セル部材の吸収波長帯の成分の除去を確実にするべく,十分な厚み(励起光Eの入射方向の厚み)を持たせるのが望ましい。
尚,前記フィルタ110bとして完全に前記試料セル部材と同一の物質を用いなければならないわけではなく,吸収波長帯が前記試料セル部材と類似する(容器(試料セル部材)における主な光の吸収波長帯の成分を有する)ような類似物質からなる部材(試料セル類似部材)を用いても良い。その場合,前記類似物質として,測定対象の前記試料の吸収波長帯までも含まないような物質を選択する必要がある。
When the excitation light E has components of the absorption wavelength band of the sample and the absorption wavelength band of the sample cell member, and the component of the absorption wavelength band of the solvent sealed in the container of the sample cell 5 is small Alternatively, only the component in the absorption wavelength band of the sample cell member of the excitation light E may be removed.
In order to cope with such a case, a photothermal conversion measuring apparatus according to a second embodiment of the present invention described below is provided with a filter for removing the component of the absorption wavelength band of the sample cell member. .
FIG. 5 is a schematic configuration diagram around the characteristic part of the photothermal conversion measuring device according to the second embodiment of the present invention. Hereinafter, the features of the photothermal conversion measurement device according to the second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 5, the photothermal conversion measurement apparatus according to the second embodiment of the present invention is that a sample cell member made of the same material as the container member in the sample cell 5 is used as the filter 110b. When passing through the filter 110b made of the sample cell member, components in the absorption wavelength band of the sample cell member are removed from the excitation light E. This prevents heat generation in the container portion of the sample cell 5.
The filter 110b made of the sample cell member preferably has a sufficient thickness (thickness in the incident direction of the excitation light E) in order to ensure removal of components in the absorption wavelength band of the sample cell member. .
The filter 110b does not have to use the same material as the sample cell member completely, and the absorption wavelength band is similar to that of the sample cell member (main light absorption wavelength in the container (sample cell member)). A member (sample cell-like member) made of a similar material such as having a band component may be used. In that case, it is necessary to select a substance that does not include even the absorption wavelength band of the sample to be measured as the similar substance.

前記励起光Eが前記試料の吸収波長帯,及び前記試料セルに前記試料と共に封入される溶媒(封入剤の一例)のみの吸収波長帯の成分を有する場合には,前記励起光Eの前記溶媒の吸収波長帯の成分のみを除去するものとしてもよい。
そのような場合に対応するように,前記溶媒を収容する溶媒用容器(封入剤容器の一例)を有するフィルタを設けたものが,以下に説明する本発明の第3の実施形態に係る光熱変換測定装置である。
図6は本発明の第3の実施形態に係る光熱変換測定装置の特徴部周辺の概略構成図である。以下,図6を参照しつつ,本発明の第3の実施形態に係る光熱変換測定装置の特徴について説明する。
図6に示されるように,本発明の第3の実施形態に係る光熱変換測定装置は,前記試料セル5に封入される溶媒を収容する溶媒用容器(封入剤容器の一例)が形成されたフィルタ110cを用いた点にある。このような,前記フィルタ110cを通過する際に,前記励起光Eから前記溶媒の吸収波長帯の成分が除去され,これにより,前記試料セル5のうちの溶媒部分の発熱が防止される。
When the excitation light E has components of the absorption wavelength band of the sample and an absorption wavelength band of only a solvent (an example of an encapsulating agent) enclosed with the sample in the sample cell, the solvent of the excitation light E Only the component in the absorption wavelength band may be removed.
In order to cope with such a case, a filter provided with a solvent container (an example of an encapsulant container) that contains the solvent is provided as a photothermal conversion according to a third embodiment of the present invention described below. It is a measuring device.
FIG. 6 is a schematic configuration diagram around the characteristic part of the photothermal conversion measuring device according to the third embodiment of the present invention. Hereinafter, the features of the photothermal conversion measurement device according to the third embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 6, the photothermal conversion measurement device according to the third embodiment of the present invention has a solvent container (an example of an encapsulant container) that contains the solvent sealed in the sample cell 5. The filter 110c is used. When passing through the filter 110c, the component of the absorption wavelength band of the solvent is removed from the excitation light E, thereby preventing the solvent portion of the sample cell 5 from generating heat.

前記励起光Eが前記試料の吸収波長帯に加え,前記溶媒(封入剤の一例)の吸収波長帯,前記容器部材の吸収波長帯の成分を有する場合には,前記溶媒用容器(封入剤容器の一例)を前記試料セルの容器部材と同一物質の試料セル部材により形成することが考えられる。
また,図7に示されるように(第4の実施形態),上述の第2の実施形態により用いられた前記フィルタ110b(試料セル部材からなるフィルタ)と前記溶媒が封入された前記フィルタ110cとを直列的に前記励起光Eの光路に配置することも考えられる。
When the excitation light E has components in the absorption wavelength band of the solvent (an example of an encapsulant) and the absorption wavelength band of the container member in addition to the absorption wavelength band of the sample, the container for the solvent (encapsulant container) It is conceivable that the sample cell member is made of the same material as the container member of the sample cell.
Further, as shown in FIG. 7 (fourth embodiment), the filter 110b (a filter made of a sample cell member) used in the second embodiment described above and the filter 110c in which the solvent is sealed are used. May be arranged in the optical path of the excitation light E in series.

従来例における光熱変換測定装置の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus in a prior art example. 試料,容器部材,溶媒各々の吸収波長帯の一例を示すグラフ。The graph which shows an example of the absorption wavelength range of a sample, a container member, and each solvent. 本発明の第1の実施形態に係る光熱変換測定装置の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光熱変換測定装置の特徴部の概略図。Schematic of the characteristic part of the photothermal conversion measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光熱変換測定装置の特徴部の概略図。Schematic of the characteristic part of the photothermal conversion measuring apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光熱変換測定装置の特徴部の概略図。Schematic of the characteristic part of the photothermal conversion measuring apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る光熱変換測定装置の特徴部の概略図。Schematic of the characteristic part of the photothermal conversion measuring apparatus which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

X0…従来例における光熱変換測定装置
X1…本発明の実施形態に係る光熱変換測定装置
1…励起光光源
2…チョッパ
3…ダイクロイックミラー
4…レンズ
5…試料セル
6…測定光光源
7…1/2波長板
8…ビームスプリッタ
9,10…音響光学変調機
11,12,15…ミラー
13,14…PBS
16,18…1/4波長板
17…光検出器
19…反射ミラー
20…偏光板
21…信号処理装置
101…FT干渉励起光源
102〜104…ミラー
105…凹面ミラー
106…フィルタ部
107…ミラー
108…測定干渉光学系
109…FT計算信号処理部
110…フィルタ
111…レンズ
X0: Photothermal conversion measurement device X1 in the conventional example ... Photothermal conversion measurement device 1 according to the embodiment of the present invention ... Excitation light source 2 ... Chopper 3 ... Dichroic mirror 4 ... Lens 5 ... Sample cell 6 ... Measurement light source 7 ... 1 / Two-wavelength plate 8 ... beam splitters 9, 10 ... acousto-optic modulators 11, 12, 15 ... mirrors 13, 14 ... PBS
Reference numerals 16, 18, ¼ wavelength plate 17, photodetector 19, reflection mirror 20, polarizing plate 21, signal processing device 101, FT interference excitation light sources 102 to 104, mirror 105, concave mirror 106, filter unit 107, mirror 108 ... Measurement interference optical system 109 ... FT calculation signal processing unit 110 ... Filter 111 ... Lens

Claims (3)

所定の試料セルに収容され励起光が照射された液体試料の光熱効果により生じる前記試料の屈折率変化を,前記試料に照射された測定光の位相変化に基づいて測定する光熱変換測定装置であって,
前記励起光の光源と前記試料セルとの間に,前記試料に照射される励起光から前記試料セルにおける主な光の吸収波長帯の成分を除去もしくは減衰させるフィルタ手段が配置され,
前記励起光と前記測定光とが,前記試料に対して異なる方向から照射されてなる光熱変換測定装置において,
前記フィルタ手段が,前記試料セル内に前記試料と共に封入される前記試料の溶媒である封入剤を収容する封入剤容器を具備するものであることを特徴とする光熱変換測定装置。
A photothermal conversion measurement device that measures a change in the refractive index of the sample caused by the photothermal effect of a liquid sample accommodated in a predetermined sample cell and irradiated with excitation light based on the phase change of the measurement light irradiated on the sample. And
Between the excitation light source and the sample cell, filter means for removing or attenuating a main light absorption wavelength band component in the sample cell from the excitation light irradiated on the sample is disposed,
In said excitation light and the measurement light, light heat conversion measuring instrument ing is irradiated from different directions with respect to the sample,
The photothermal conversion measuring apparatus characterized in that the filter means includes an encapsulant container that contains an encapsulant that is a solvent of the sample enclosed in the sample cell together with the sample .
試料セル部材により,前記封入剤容器が形成されてなる請求項1に記載の光熱変換測定装置。 The photothermal conversion measuring apparatus according to claim 1 , wherein the encapsulant container is formed by a sample cell member . 所定の試料セルに収容され励起光が照射された試料の光熱効果により生じる前記試料の屈折率変化を,前記試料に照射された測定光の位相変化に基づいて測定する光熱変換測定装置であって,
前記励起光の光源と前記試料セルとの間に,前記試料に照射される励起光から前記試料セルにおける主な光の吸収波長帯の成分を除去もしくは減衰させるフィルタ手段が配置され,
前記フィルタ手段が,前記試料セル内に前記試料と共に封入される封入剤を収容する封入剤用容器であって,前記試料セル部材と同じ材質で構成される封入剤用容器を具備するものであることを特徴とする光熱変換測定装置。
A photothermal conversion measuring apparatus for measuring a change in refractive index of a sample caused by a photothermal effect of a sample housed in a predetermined sample cell and irradiated with excitation light based on a phase change of measurement light irradiated on the sample. ,
Between the excitation light source and the sample cell, filter means for removing or attenuating a main light absorption wavelength band component in the sample cell from the excitation light irradiated on the sample is disposed,
The filter means is an encapsulant container for containing an encapsulant enclosed with the sample in the sample cell, and includes an encapsulant container made of the same material as the sample cell member. A photothermal conversion measuring device.
JP2005056249A 2005-02-14 2005-03-01 Photothermal conversion measuring device Expired - Fee Related JP4299797B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005056249A JP4299797B2 (en) 2005-03-01 2005-03-01 Photothermal conversion measuring device
EP06101473A EP1691189A3 (en) 2005-02-14 2006-02-09 Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
US11/350,954 US7522287B2 (en) 2005-02-14 2006-02-10 Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056249A JP4299797B2 (en) 2005-03-01 2005-03-01 Photothermal conversion measuring device

Publications (2)

Publication Number Publication Date
JP2006242635A JP2006242635A (en) 2006-09-14
JP4299797B2 true JP4299797B2 (en) 2009-07-22

Family

ID=37049215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056249A Expired - Fee Related JP4299797B2 (en) 2005-02-14 2005-03-01 Photothermal conversion measuring device

Country Status (1)

Country Link
JP (1) JP4299797B2 (en)

Also Published As

Publication number Publication date
JP2006242635A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
JP6692103B2 (en) System and method for high contrast / near real time acquisition of terahertz images
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
US5926273A (en) Method of measuring the absorption spectra of solutions by laser induced photothermal displacement spectroscopy
JP4791752B2 (en) Near-field polarimeter
JP2007278768A (en) Microscope device
JP2010156544A (en) Terahertz light measuring device
US5469255A (en) Method and apparatus for spectrometric measurement of particulate surfaces
JP2008128942A (en) Device for measuring photothermal conversion
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
JP2005172774A (en) Method and apparatus for measuring physical properties based on catoptric characteristics
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
JP4299797B2 (en) Photothermal conversion measuring device
JP4439363B2 (en) Online crystal grain size measuring apparatus and measuring method using laser ultrasonic wave
JP2003522323A (en) Fluorescence emission measurement device
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP2006317325A (en) Apparatus for measuring photothermal conversion
JPH0727746A (en) Method for evaluating specimen with photothermal displacement measurement
JP2005257414A (en) Photothermal conversion measurement device, method and cell
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
JP4549292B2 (en) Photothermal conversion measuring device, photothermal conversion measuring method
JP3141105B2 (en) Sensor having slab optical waveguide using photothermal conversion method and detection method using photothermal conversion method
JP4116979B2 (en) Photothermal conversion measuring apparatus and method
JP4838012B2 (en) Photothermal conversion measuring device
KR20060011504A (en) Raman lidar receiving optical system for measuring the density of water vapor and liquid water simultaneously

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees