JP4116979B2 - Photothermal conversion measuring apparatus and method - Google Patents

Photothermal conversion measuring apparatus and method Download PDF

Info

Publication number
JP4116979B2
JP4116979B2 JP2004067984A JP2004067984A JP4116979B2 JP 4116979 B2 JP4116979 B2 JP 4116979B2 JP 2004067984 A JP2004067984 A JP 2004067984A JP 2004067984 A JP2004067984 A JP 2004067984A JP 4116979 B2 JP4116979 B2 JP 4116979B2
Authority
JP
Japan
Prior art keywords
light
sample
measurement
excitation
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004067984A
Other languages
Japanese (ja)
Other versions
JP2005257411A (en
Inventor
弘行 高松
将人 甘中
敏洋 釘宮
裕史 後藤
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004067984A priority Critical patent/JP4116979B2/en
Publication of JP2005257411A publication Critical patent/JP2005257411A/en
Application granted granted Critical
Publication of JP4116979B2 publication Critical patent/JP4116979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1712Thermal lens, mirage effect

Description

本発明は,試料の含有物質等を分析する際に用いられ,励起光を試料に照射したときの光熱効果により試料に生じる屈折率変化に基づく試料の特性変化を測定する光熱変換測定装置及びその方法に関するものである。   The present invention is a photothermal conversion measuring device that is used when analyzing a substance contained in a sample, and that measures a change in the characteristics of a sample based on a change in refractive index generated in the sample due to a photothermal effect when the sample is irradiated with excitation light, and its It is about the method.

各種試料の含有物質等の分析において,分析感度の向上は,試薬の量の低減や試料の濃縮処理の簡素化,分析の効率化及び低コスト化を図る上で重要である。
ところで,試料に励起光を照射すると,その照射部は励起光を吸収することにより発熱する。これを光熱効果といい,この発熱を測定することを光熱変換測定という。
従来,この光熱変換測定による試料の高感度分析法として,光熱効果により試料に形成される熱レンズ効果を用いた手法(以下,熱レンズ法という)があり,熱レンズ法による分析装置(光熱変換分光分析装置)が知られている(例えば,特許文献1参照。)。
図6は,特許文献1に示される熱レンズ法による試料の分析装置の構成図である(特許文献1の図1を引用)。図6に示されるように,励起光源10からの励起光Aは,チョッパ11で断続光に変換(即ち,周期的に強度変調)され,ビームエクスパンダ12,位置制御ミラー30,31,32,レンズ34及び顕微鏡35を介して試料40に照射される。これにより試料40は励起光Aを吸収して発熱し,その屈折率が変化する。
検出光源20からの検出光Bは,ビームエクスパンダ22を介して励起光Aと同軸経路となって位置制御ミラー31,32で反射し,更にレンズ34,顕微鏡35を介して試料40に照射される。そして,試料40を通過した検出光Cは,集光レンズ50により集光され,開口部51A(ピンホール)を通過して検出器53により受光され,その光強度が検出される。ここで,試料40の屈折率変化により検出光Bの試料40中の集光状態が変化するため,ピンホール51Aを通過して得られる検出光Cの強度は,試料40の屈折率の変化(即ち,試料の含有物質量等に応じた光吸収量)に応じて変化する。この検出光Cの強度変化を測定することにより,試料40の屈折率の変化を測定でき,その測定結果により試料40の含有物質の量等を評価することができる。
特開平10−232210号公報
In the analysis of substances contained in various samples, improvement of analysis sensitivity is important in order to reduce the amount of reagents, simplify the sample concentration process, increase the efficiency of analysis, and reduce costs.
By the way, when the sample is irradiated with excitation light, the irradiated portion generates heat by absorbing the excitation light. This is called the photothermal effect, and measuring this heat generation is called photothermal conversion measurement.
Conventionally, as a high-sensitivity analysis method of a sample by this photothermal conversion measurement, there is a method using the thermal lens effect formed on the sample by the photothermal effect (hereinafter referred to as the thermal lens method), and an analysis device (photothermal conversion) by the thermal lens method (A spectroscopic analyzer) is known (for example, refer to Patent Document 1).
FIG. 6 is a configuration diagram of a sample analyzer using the thermal lens method disclosed in Patent Document 1 (see FIG. 1 of Patent Document 1). As shown in FIG. 6, the excitation light A from the excitation light source 10 is converted into intermittent light (that is, intensity modulated periodically) by the chopper 11, and the beam expander 12, position control mirrors 30, 31, 32, The sample 40 is irradiated through the lens 34 and the microscope 35. As a result, the sample 40 absorbs the excitation light A and generates heat, and its refractive index changes.
The detection light B from the detection light source 20 becomes a coaxial path with the excitation light A via the beam expander 22 and is reflected by the position control mirrors 31 and 32, and further irradiated to the sample 40 via the lens 34 and the microscope 35. The Then, the detection light C that has passed through the sample 40 is condensed by the condenser lens 50, passes through the opening 51A (pinhole), is received by the detector 53, and its light intensity is detected. Here, since the condensing state of the detection light B in the sample 40 changes due to the change in the refractive index of the sample 40, the intensity of the detection light C obtained through the pinhole 51A is a change in the refractive index of the sample 40 ( That is, it varies according to the amount of light absorption according to the amount of substance contained in the sample. By measuring the intensity change of the detection light C, the change in the refractive index of the sample 40 can be measured, and the amount of the substance contained in the sample 40 can be evaluated based on the measurement result.
Japanese Patent Laid-Open No. 10-232210

前記熱レンズ法による試料の分析は,試料の発熱による屈折率変化を,測定光(検出光)の集光状態変化による光強度(検出信号の強度)の変化によって検出するものであり,この光強度(検出信号強度)の変化は,試料の屈折率変化だけでなく,検出器53(光電変換手段)の受光位置や測定光の強度及びその強度分布等にも依存する。このため,再現性良く(安定的に)試料を分析(屈折率変化を測定)することが難しいという問題点があった。
測定感度を高め,強い検出信号を受けることができれば,検出器53の受光位置等試料の屈折率変化以外の要因による影響が相対的に小さくなり,この問題を解消することができる。しかしながら,前記特許文献1に記載の発明にあっては,測定感度を高めるために,励起光Aの強度を増大させる,或いは試料通過後の測定光Cを通過させるピンホール51Aの径を小さくする必要があり,励起光Aの強度増大化は消費電力の増加,高コスト化を招き,ピンホール51Aの小口径化は検出器53での受光光量が減少することによるS/N比の低下や,これに伴う測定域の小径化によって測定時間の長時間化を招くという問題点があった。 さらに,一般に,試料はガラス等のセル(容器)に入れて測定されるが,このとき励起光は前記セルを通して試料に照射される。セルにおいて励起光が吸収された場合,励起光照射によってセル自体に温度変化が発生するため,セルの屈折率が変化する。このセルの屈折率の変化によっても,同セルを透過する測定光は偏向するため,分析結果に影響を及ぼす場合がある。特に,試料による前記励起光の吸収が微小である場合,前記セルの温度変化の影響を強く受け,試料の温度変化の測定精度が劣化するという問題点もあった。
本発明は上記事情に鑑みてなされたものであり,その目的とするところは,試料の光熱効果による特性変化を,安定的に高精度で測定でき,更に,消費電力の増加や高コスト化,S/N比の低下,測定時間の長時間化を防止しながら高感度かつ容易に測定できる光熱変換測定装置及びその方法を提供することにある。
In the analysis of the sample by the thermal lens method, the refractive index change due to the heat generation of the sample is detected by the change in the light intensity (detection signal intensity) due to the change in the focusing state of the measurement light (detection light). The change in intensity (detection signal intensity) depends not only on the change in the refractive index of the sample, but also on the light receiving position of the detector 53 (photoelectric conversion means), the intensity of measurement light, its intensity distribution, and the like. For this reason, there is a problem that it is difficult to analyze the sample (measure the refractive index change) with good reproducibility (stable).
If the measurement sensitivity can be increased and a strong detection signal can be received, the influence of factors other than the change in the refractive index of the sample such as the light receiving position of the detector 53 becomes relatively small, and this problem can be solved. However, in the invention described in Patent Document 1, in order to increase the measurement sensitivity, the intensity of the excitation light A is increased, or the diameter of the pinhole 51A through which the measurement light C after passing through the sample is reduced. Increasing the intensity of the excitation light A causes an increase in power consumption and cost, and reducing the diameter of the pinhole 51A reduces the S / N ratio due to a decrease in the amount of light received by the detector 53. As a result, there is a problem that the measurement time is prolonged due to the small diameter of the measurement area. Furthermore, in general, the sample is measured in a cell (container) such as glass, and at this time, the excitation light is irradiated to the sample through the cell. When the excitation light is absorbed in the cell, a temperature change occurs in the cell itself due to irradiation of the excitation light, so that the refractive index of the cell changes. Even with this change in the refractive index of the cell, the measurement light passing through the cell is deflected, which may affect the analysis result. In particular, when the excitation light absorption by the sample is very small, there is a problem that the measurement accuracy of the temperature change of the sample is deteriorated due to the strong influence of the temperature change of the cell.
The present invention has been made in view of the above circumstances, and the object of the present invention is to be able to stably and accurately measure changes in characteristics due to the photothermal effect of a sample, and to increase power consumption and cost. An object of the present invention is to provide a photothermal conversion measuring apparatus and method capable of easily measuring with high sensitivity while preventing a decrease in S / N ratio and a long measurement time.

上記目的を達成するために本発明は,試料の測定域を励起する励起光を照射する励起光照射手段と,前記励起光が照射された前記試料の測定域に測定光を照射する測定光照射手段とを具備し,前記励起光が照射された試料の光熱変化により生じる前記試料の特性変化を,前記試料の測定域に照射された前記測定光の変化に基づいて測定する光熱変換測定装置において,前記励起光照射手段が二以上の可干渉性励起レーザ光の交差により前記試料の測定域に干渉縞を生成させるものであり,前記励起光照射手段によって干渉縞が生成された前記測定域に前記測定光照射手段から照射された測定光を入射させることによって,前記励起光照射手段から照射された励起光と前記測定光照射手段から照射された測定光との光学的関係を,前記試料に照射された前記測定光からブラッグ条件を満たす反射光または回折光が発生するように設定すると共に,前記試料の特性変化を前記試料に照射された前記測定光から発生するブラッグ条件を満たす反射光または回折光の光強度から検出することを特徴とする光熱変換測定装置として構成される。
これによって,ブラッグ条件を満たす反射光または回折光を発生させるための励起光及び測定光の光学的関係を設定することができる。そして,ブラッグ条件を満たす反射光または回折光の光強度は極めて強く,この反射光または回折光の光強度から試料の特性変化を検出するため,高感度で再現性の良い検出結果を得ることが可能となる。
In order to achieve the above object, the present invention provides an excitation light irradiation means for irradiating excitation light for exciting a measurement region of a sample, and measurement light irradiation for irradiating measurement light to the measurement region of the sample irradiated with the excitation light. A photothermal conversion measuring apparatus for measuring a change in characteristics of the sample caused by a photothermal change of the sample irradiated with the excitation light based on a change in the measurement light irradiated on the measurement area of the sample. The excitation light irradiating means generates an interference fringe in the measurement area of the sample by the intersection of two or more coherent excitation laser beams. In the measurement area where the interference fringe is generated by the excitation light irradiating means, By making the measurement light emitted from the measurement light irradiation means incident , the optical relationship between the excitation light emitted from the excitation light irradiation means and the measurement light emitted from the measurement light irradiation means is applied to the sample. Light The reflected light or diffracted light satisfying the Bragg condition is generated from the measured light, and the reflected light or diffracted light satisfying the Bragg condition generated from the measured light irradiated on the sample is measured. It is configured as a photothermal conversion measuring device characterized by detecting from the light intensity of light.
Thus, the optical relationship between the excitation light and the measurement light for generating reflected light or diffracted light that satisfies the Bragg condition can be set. The Bragg intensity of satisfying the reflected or diffracted light is very strong, in order to detect a characteristic change in the sample from the intensity of the reflected light or diffracted light, to obtain a better detection result sensitive and reproducible Is possible.

さらに,前記励起光が周期的に強度変調された光であり,前記測定光の反射光あるいは回折光の強度変化を前記励起光の強度変調周期と同周期成分について測定するものであれば,前記強度変調周期と同じ周期で試料の測定部の特性が変化するので,同じ周期成分を有しないノイズの影響を除去して前記測定光の強度変化に起因する試料の特性変化のみを測定することができ,特性変化検出のS/N比が向上する。Furthermore, if the excitation light is light whose intensity is periodically modulated and the intensity change of the reflected light or diffracted light of the measurement light is measured for the same period component as the intensity modulation period of the excitation light, Since the characteristics of the measurement part of the sample change at the same period as the intensity modulation period, it is possible to measure only the characteristic change of the sample due to the intensity change of the measurement light by removing the influence of noise that does not have the same periodic component. This improves the S / N ratio for detecting the characteristic change.

また,本発明は,試料の測定域を励起する励起光を照射する励起光照射手段と,前記励起光が照射された前記試料の測定域に測定光を照射する測定光照射手段とを具備し,前記励起光が照射された試料の光熱変化により生じる前記試料の特性変化を,前記試料の測定域に照射された前記測定光の変化に基づいて測定する光熱変換測定装置において,前記励起光照射手段から照射された励起光と前記測定光照射手段から照射された測定光との光学的関係を,前記試料に照射された前記測定光からブラッグ条件を満たす反射光または回折光が発生するように設定すると共に,前記試料の特性変化を前記試料に照射された前記測定光から発生するブラッグ条件を満たす反射光または回折光の光強度から検出するものであり,前記励起光が周期的に強度変調された光であり,前記測定光の反射光あるいは回折光の強度変化を前記励起光の強度変調周期と同周期成分について測定してなることを特徴とする光熱変換測定装置として構成される。
これにより,前記強度変調周期と同じ周期で試料の測定部の特性が変化するので,同じ周期成分を有しないノイズの影響を除去して前記測定光の強度変化に起因する試料の特性変化のみを測定することができ,特性変化検出のS/N比が向上する。
The present invention also includes excitation light irradiating means for irradiating excitation light for exciting the measurement area of the sample, and measurement light irradiating means for irradiating measurement light to the measurement area of the sample irradiated with the excitation light. In the photothermal conversion measuring apparatus for measuring the change in the characteristics of the sample caused by the photothermal change of the sample irradiated with the excitation light based on the change in the measurement light irradiated on the measurement area of the sample, the excitation light irradiation Reflecting light or diffracted light that satisfies the Bragg condition is generated from the measurement light irradiated to the sample with respect to the optical relationship between the excitation light emitted from the means and the measurement light emitted from the measurement light irradiation means. And detecting the characteristic change of the sample from the light intensity of reflected light or diffracted light that satisfies the Bragg condition generated from the measurement light irradiated on the sample. A modulated light configured as photothermal conversion measuring instrument, characterized in that the change in intensity of reflected light or diffracted light of the measurement light formed by the measurement for the intensity modulation period and the periodic component of the excitation light.
As a result, the characteristic of the measurement part of the sample changes in the same period as the intensity modulation period, so that the influence of noise that does not have the same periodic component is removed, and only the characteristic change of the sample due to the intensity change of the measurement light is removed. Can be measured, and the S / N ratio of the characteristic change detection is improved.

また,本発明は,前記光熱変換測定装置により行われる光熱変換測定方法として捉えたものであってもよい。
即ち,試料の測定域を励起する励起光を照射すると共に,前記励起光が照射された前記試料の測定域に測定光を照射することによって,前記励起光が照射された試料の光熱変化により生じる前記試料の特性変化を,前記試料の測定域に照射された前記測定光の変化に基づいて測定する光熱変換測定方法において,前記励起光が二以上の可干渉性励起レーザ光であり,これら二以上の可干渉性励起レーザ光の交差により前記試料の測定域に干渉縞を生成させ,この干渉縞が生成された前記測定域に測定光を入射させることによって,記励起光と前記測定光との光学的関係を,前記試料に照射された前記測定光からブラッグ条件を満たす反射光または回折光が発生するように設定すると共に,前記試料の特性変化を前記試料に照射された前記測定光から発生するブラッグ条件を満たす反射光または回折光の光強度から検出することを特徴とする光熱変換測定方法である
Further, the present invention may be understood as a photothermal conversion measurement method performed by the photothermal conversion measurement device.
That is, by irradiating the measurement area of the sample irradiated with the excitation light and irradiating the measurement area of the sample irradiated with the excitation light, it is caused by the photothermal change of the sample irradiated with the excitation light. In the photothermal conversion measurement method for measuring the characteristic change of the sample based on the change of the measurement light irradiated on the measurement area of the sample, the excitation light is two or more coherent excitation laser beams. to generate interference fringes in the measurement region of the sample by the intersection of more coherent excitation laser light, by entering the measurement light to the measurement zone which the interference fringes are generated, before Ki励 Okoshiko before Symbol the optical relationship between measured constant light Prefecture, with the Bragg condition is satisfied reflected light or diffracted light from the measuring light applied to the sample is set to occur, which is irradiated with the characteristic change of said sample to said sample said Measurement A photothermal conversion measuring method characterized by detecting the light intensity of the Bragg condition is satisfied reflected light or diffracted light generated from light.

以上のように本発明によれば,測定光の極めて強い反射光または回折光を得ることができ,この反射光または回折光の強度変化から試料の微小な屈折率変化を感度よく検出することができ,かつ試料の特性変化以外の要因による測定結果への影響が相対的に小さくなり,再現性良く試料の分析を行なうことができる。
また,前記反射光または回折光は,試料内部から発生するため,励起光によるセルの特性変化の影響を受けることなく試料の特性変化を測定でき,より精度の高い測定が可能となる。
As described above, according to the present invention, extremely strong reflected light or diffracted light of measurement light can be obtained, and a minute change in the refractive index of the sample can be detected with high sensitivity from the intensity change of the reflected light or diffracted light. In addition, the influence on the measurement result due to factors other than the change in the characteristics of the sample becomes relatively small, and the sample can be analyzed with good reproducibility.
Further, since the reflected light or diffracted light is generated from the inside of the sample, it is possible to measure the characteristic change of the sample without being influenced by the characteristic change of the cell due to the excitation light, and it is possible to measure with higher accuracy.

以下,添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1の実施の形態に係る光熱変換測定装置の概略構成図,図2は干渉縞の構造を示す概略図,図3は前記第1の実施の形態におけるブラッグ条件が成立する場合をベクトルを用いて説明した概念図,図4は本発明の第2の実施の形態に係る光熱変換測定装置の概略構成図,図5は前記第2の実施の形態におけるブラッグ条件が成立する場合をベクトルを用いて説明した概念図である。
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic configuration diagram of a photothermal conversion measuring apparatus according to the first embodiment of the present invention, FIG. 2 is a schematic diagram showing a structure of interference fringes, and FIG. 3 is a Bragg in the first embodiment. FIG. 4 is a schematic diagram illustrating a photothermal conversion measuring device according to the second embodiment of the present invention, and FIG. 5 is a Bragg in the second embodiment. It is the conceptual diagram which demonstrated the case where conditions were satisfied using the vector.

〈実施の形態1〉 まず,図1の概略構成図を用いて本発明の第1の実施の形態に係る光熱変換測定装置の概略構成について説明する。
所定の励起光源1から出力された励起光(例えば,波長(λ0)523nm,出力100mWのレーザ(YAG倍波))は,レンズ系3によりビーム径が調整
される。レーザ光はその後,ミラー4によって反射された後,ハーフミラー5によって二分される。二分された励起光A,Bは,それぞれミラー6,7によって反射され,容器(セル)8を通過してセル内の試料9に照射される。ここで,前記ミラー6及び7の設置角度を調整し,前記励起光AとBとを試料9の内部にて交差させると,この交差部では前記励起光AとBとが干渉することにより,試料9内部の励起光交差部に図1に示されるような干渉縞が生成される。
励起光A,Bが照射された試料9が励起光A,Bを吸収して発熱し,その温度変化(上昇)によって試料9の屈折率は変化する(光熱効果)が,この屈折率変化の大きさは干渉縞に応じて空間的に変動することになる。
一方,測定光を出力するレーザ光源10から出力された測定光(例えば,波長(λ)633nm,出力1mWのHe−Neレーザ)は,ビームスプリッタ11を透過し,前記干渉縞が生成された励起光AとBとの交差部(測定部)に照射される。この測定光の試料に対する入射光の波数ベクトルをki,試料からの反射光もしくは回折光の波数ベクトルをkrとすると,kiは前記測定光の進行方向と同方向で大きさが2π/λのベクトル,krは前記測定光の反射光または回折光の進行方向と同方向で大きさが同じく2π/λのベクトルとして定義される。
次に,図2を用いて,この干渉縞の構造について説明する。
図2(a)ないし(c)に示すように励起光Aと励起光Bとを交差角θにて交差させた場合,この交差角θの二等分線Lと平行方向に干渉縞が生成される。ここで交差角とは,交差する二つの励起光がなす角度のうち,小さいほうをいい,図2(a)に示す例では,θ=θA+θB,図2(b)及び(c)に示す例では,θ=180°−(θA+θB)となる(但し,θA,θBは,励起光A,Bそれぞれの試料9の測定面に対する入射角)。また,θ=0°もしくはθ=90°の場合,干渉縞は生成されないため,0°<θ<90°である。
図2(a)に示すようにθ=θA+θBで定義され,かつθA=θBのとき前記干渉縞は試料9の測定面方向に対して水平に生成される。これは図1に示す本発明の第1の実施形態の場合に相当する。
図2(b)に示すようにθ=180°−(θA+θB)で定義され,かつθA=θBのとき前記干渉縞は試料9の測定面方向に対して垂直に生成され,これは図4に示す,後述する本発明の第2の実施形態の場合に相当する。
また,図2(c)に示すようにθA≠θBのとき,前記干渉縞は試料9の測定面方向に対して斜めに生成される。
この干渉縞の間隔Λは下式で表される。
Λ=λ0/(2n・sinθ) ・・・(1)
但し,λ0は励起光の波長,nは試料の屈折率,θは前記交差角である。
また,この干渉縞の格子ベクトルKは,干渉縞方向に対して垂直方向で,大きさ2π/Λで定義されるベクトルである。この格子ベクトルKが前記入射光波数ベクトルki及び前記反射光(回折光)波数ベクトルkrと間に次の(2)式の関係を満たす場合,m次ブラッグ条件が成立し,後述するように測定光の強い反射光若しくは回折光が発生する。
mK=ki−kr ・・・(2)
この測定光のm次ブラッグ条件を満たす反射光もしくは回折光の強度Iは,次式で表される。
I=P・Jm 2(2πΔn・T/λ) ・・・(3)
但し,Pは入射光(測定光)強度,Jmはm次ベッセル関数,Δnは屈折率変化,Tは周期構造の長さ(=Λ×干渉縞の数),λは入射光(測定光)の波長である。
この(3)式より,測定光のブラッグ条件を満たす反射光もしくは回折光の強度Iを測定することによって試料9の屈折率変化Δn(特性変化の一例)を測定できることが分かる。
<Embodiment 1> First, the schematic structure of the photothermal conversion measuring apparatus which concerns on the 1st Embodiment of this invention is demonstrated using the schematic block diagram of FIG.
The beam diameter of the excitation light (for example, laser (YAG multiple wave) having a wavelength (λ 0 ) of 523 nm and an output of 100 mW) output from a predetermined excitation light source 1 is adjusted by the lens system 3. Thereafter, the laser beam is reflected by the mirror 4 and then divided by the half mirror 5. The bisected excitation lights A and B are reflected by mirrors 6 and 7, respectively, pass through a container (cell) 8, and are irradiated onto a sample 9 in the cell. Here, when the installation angles of the mirrors 6 and 7 are adjusted and the excitation light A and B intersect within the sample 9, the excitation light A and B interfere with each other at the intersection, Interference fringes as shown in FIG. 1 are generated at the excitation light intersection in the sample 9.
The sample 9 irradiated with the excitation light A and B absorbs the excitation light A and B and generates heat, and the refractive index of the sample 9 changes (photothermal effect) due to the temperature change (rise). The size varies spatially according to the interference fringes.
On the other hand, the measurement light (for example, a He—Ne laser having a wavelength (λ) of 633 nm and an output of 1 mW) output from the laser light source 10 that outputs the measurement light passes through the beam splitter 11 and is excited with the interference fringes generated. The light is irradiated to the intersection (measurement unit) of light A and B. When the wave number vector of incident light with respect to the sample of the measurement light is ki and the wave number vector of reflected light or diffracted light from the sample is kr, ki is a vector having the same direction as the traveling direction of the measurement light and a magnitude of 2π / λ. , Kr are defined as vectors having the same direction as the traveling direction of the reflected light or diffracted light of the measuring light and the same magnitude of 2π / λ.
Next, the structure of the interference fringes will be described with reference to FIG.
As shown in FIGS. 2A to 2C, when the excitation light A and the excitation light B are crossed at an intersection angle θ, interference fringes are generated in a direction parallel to the bisector L of the intersection angle θ. Is done. Here, the crossing angle means the smaller one of the angles formed by two intersecting excitation lights. In the example shown in FIG. 2A, θ = θ A + θ B , FIGS. 2B and 2C. In the example shown in FIG. 5, θ = 180 ° − (θ A + θ B ) (where θ A and θ B are incident angles of the excitation light A and B with respect to the measurement surface of the sample 9). Further, when θ = 0 ° or θ = 90 °, no interference fringes are generated, and therefore 0 ° <θ <90 °.
As shown in FIG. 2A, when θ = θ A + θ B and θ A = θ B , the interference fringes are generated horizontally with respect to the measurement surface direction of the sample 9. This corresponds to the case of the first embodiment of the present invention shown in FIG.
As shown in FIG. 2B, θ = 180 ° − (θ A + θ B ), and when θ A = θ B , the interference fringes are generated perpendicularly to the measurement surface direction of the sample 9, This corresponds to the case of a second embodiment of the present invention described later shown in FIG.
Further, as shown in FIG. 2C, when θ A ≠ θ B , the interference fringes are generated obliquely with respect to the measurement surface direction of the sample 9.
The interval Λ of the interference fringes is expressed by the following equation.
Λ = λ 0 / (2n · sin θ) (1)
Where λ 0 is the wavelength of the excitation light, n is the refractive index of the sample, and θ is the crossing angle.
The interference fringe lattice vector K is a vector defined by a magnitude of 2π / Λ in the direction perpendicular to the interference fringe direction. When this grating vector K satisfies the relationship of the following equation (2) between the incident light wave number vector ki and the reflected light (diffracted light) wave vector kr, the m-order Bragg condition is satisfied, and measurement is performed as described later. Strong reflected light or diffracted light is generated.
mK = ki-kr (2)
The intensity I of the reflected or diffracted light that satisfies the mth order Bragg condition of the measurement light is expressed by the following equation.
I = P · J m 2 (2πΔn · T / λ) (3)
Where P is the incident light (measurement light) intensity, J m is the mth order Bessel function, Δn is the refractive index change, T is the length of the periodic structure (= Λ × number of interference fringes), and λ is the incident light (measurement light) ).
From this equation (3), it is understood that the refractive index change Δn (an example of characteristic change) of the sample 9 can be measured by measuring the intensity I of the reflected light or diffracted light that satisfies the Bragg condition of the measurement light.

ここで,前記(3)式を用いて,前記測定光のブラッグ条件を満たす反射光もしくは回折光の強度Iがブラッグ条件を満たさない反射光の強度と比べて高い点について説明する。
例えば,入射光(測定光)の強度P=1,屈折率変化Δn=1E−6,周期構造の長さT=100μm,入射光(測定光)の波長λ=523nmで,一次ブラッグ条件(m=1)の場合,これを(3)式に代入すると,I=3.6E−7となる。
一方,ブラッグ条件を満たさない反射光の屈折率変化に対する反射率Rsは,スネルの法則に従い,
Rs={Δn/(2n+Δn)}2 ・・・(4)
で表される。
今,上と同じ条件で,屈折率変化Δn=1E−6とし,屈折率nを仮に1.3とすると,(4)式よりRs=2.5E−13となる。
入射光(測定光)強度P=1であるため,ブラッグ条件を満たさない反射光の強度I´はI´=2.5E−13となる。
以上のように,ブラッグ条件を満たさない反射光の強度I´は,前記ブラッグ条件を満たす反射光若しくは回折光の強度Iの約1E−6倍と極めて低いことが分かる。すなわち,I´<<Iの関係が成り立ち,ブラッグ条件を満たす反射光若しくは回折光の強度が,ブラッグ条件を満たさない反射光の強度より極めて高いことが分かる。
Here, the point that the intensity I of the reflected light or diffracted light satisfying the Bragg condition of the measurement light is higher than the intensity of the reflected light not satisfying the Bragg condition will be described using the equation (3).
For example, the incident light (measurement light) intensity P = 1, refractive index change Δn = 1E−6, the length of the periodic structure T = 100 μm, the incident light (measurement light) wavelength λ = 523 nm, and the primary Bragg condition (m In the case of = 1), if this is substituted into the equation (3), I = 3.6E-7.
On the other hand, the reflectance Rs with respect to the refractive index change of the reflected light that does not satisfy the Bragg condition follows Snell's law.
Rs = {Δn / (2n + Δn)} 2 (4)
It is represented by
Now, assuming that the refractive index change Δn = 1E-6 and the refractive index n is 1.3 under the same conditions as above, Rs = 2.5E-13 is obtained from the equation (4).
Since the incident light (measurement light) intensity P = 1, the intensity I ′ of the reflected light that does not satisfy the Bragg condition is I ′ = 2.5E-13.
As described above, it can be seen that the intensity I ′ of the reflected light that does not satisfy the Bragg condition is as low as about 1E-6 times the intensity I of the reflected or diffracted light that satisfies the Bragg condition. That is, it can be seen that the relationship of I ′ << I holds, and the intensity of reflected light or diffracted light that satisfies the Bragg condition is extremely higher than the intensity of reflected light that does not satisfy the Bragg condition.

図1に示される実施形態の場合,試料9に対する励起光A,Bの入射角θAとθBが等しいため,干渉縞は試料9の測定面に対して水平方向に生成される。従って,格子ベクトルKの方向は,図3(a)に示されるように試料の測定面に対して垂直方向となり,また,交差角θはθ=θA+θBで表され,これを(1)式に代入してΛを求めることにより,ベクトルKの大きさ2π/Λも決まり,格子ベクトルKが定まる。
このような干渉縞が形成された試料9の測定部に照射される測定光は,前記試料9に照射された前記測定光からブラッグ条件を満たす反射光または回折光が発生するように,すなわち前記(2)式を満たすように,前記励起光との光学的関係が設定される。
図3(a)に示すように,この第1の実施形態の場合,kr=−kiとなり,測定光は正反射する。したがって,|K|=2|ki|であり,例えば,屈折率n=1.33で,m=1のとき,前記交差角を約55°に設定すれば干渉縞間隔Λは約240nmとなり,励起光の波長λ0=523nm,測定光の波長λ=633nmに設定することで,前記(2)式(一次ブラッグ条件)を満たす。
図1に示すように,このブラッグ条件を満たす反射光は,ビームスプリッタ11で反射して,同反射光の強度が光検出器12によって電気信号に変換され,該電気信号は信号処理13に入力される。信号処理13ではこの強度信号から屈折率変化Δnを測定する。
ここで光検出器12によって受光される前記ブラッグ条件を満たす反射光は,上述の通り,強度Iの極めて強い光であり,前記(3)式において屈折率変化Δnが微小であってもこれを感度良く測定することができる。また,光強度が高いため,試料9の光熱効果以外の要因(例えば,光検出器12の設置位置がずれたような場合)による測定結果への影響が相対的に小さくなり,再現性の良い測定を行なうことが可能となる。
さらに,この反射光は,主として周期的屈折率変化が生じている励起光の交差部から発生するため,試料容器(セル)8が励起光を吸収することによるセル8の特性変化の影響を受けることなく,試料9の特性変化の測定が可能であり,測定精度が向上する。
In the case of the embodiment shown in FIG. 1, since the incident angles θ A and θ B of the excitation lights A and B with respect to the sample 9 are equal, the interference fringes are generated in the horizontal direction with respect to the measurement surface of the sample 9. Accordingly, the direction of the lattice vector K is perpendicular to the measurement surface of the sample as shown in FIG. 3A, and the crossing angle θ is expressed by θ = θ A + θ B, which is expressed as (1 By substituting into the equation (1), Λ is determined, and the magnitude 2π / Λ of the vector K is also determined, and the lattice vector K is determined.
The measurement light applied to the measurement part of the sample 9 having such interference fringes is generated so that reflected light or diffracted light that satisfies the Bragg condition is generated from the measurement light applied to the sample 9, that is, The optical relationship with the excitation light is set so as to satisfy the expression (2).
As shown in FIG. 3A, in the case of the first embodiment, kr = −ki, and the measurement light is regularly reflected. Therefore, | K | = 2 | ki |, for example, when the refractive index n = 1.33 and m = 1, the interference fringe interval Λ is about 240 nm if the crossing angle is set to about 55 °. By setting the excitation light wavelength λ 0 = 523 nm and the measurement light wavelength λ = 633 nm, the expression (2) (primary Bragg condition) is satisfied.
As shown in FIG. 1, the reflected light satisfying this Bragg condition is reflected by the beam splitter 11, and the intensity of the reflected light is converted into an electric signal by the photodetector 12, and the electric signal is input to the signal processing 13. Is done. In the signal processing 13, the refractive index change Δn is measured from this intensity signal.
Here, the reflected light that satisfies the Bragg condition that is received by the photodetector 12 is light having an extremely strong intensity I as described above. Even if the refractive index change Δn is very small in the equation (3), this is reflected. It can measure with high sensitivity. Further, since the light intensity is high, the influence on the measurement result due to factors other than the photothermal effect of the sample 9 (for example, when the installation position of the photodetector 12 is shifted) becomes relatively small, and the reproducibility is good. Measurement can be performed.
Further, since this reflected light is generated mainly from the intersection of the excitation light in which the periodic refractive index change occurs, it is affected by the characteristic change of the cell 8 due to the sample container (cell) 8 absorbing the excitation light. Therefore, it is possible to measure the characteristic change of the sample 9, and the measurement accuracy is improved.

〈実施の形態2〉 続いて,図4および図5を用いて本発明の第2の実施の形態に係る光熱変換測定装置の概略構成について説明する。
所定の励起光減21から出力された励起光は,レンズ系3によりビーム径が調整され,これがハーフミラー24で二分される。二分された励起光のうち励起光Aは前記ハーフミラー24によって反射され,励起光Bはミラー25によって反射され,容器(セル)26を通過してセル内の試料27に照射される。ここで,前記ハーフミラー24及びミラー25の設置角度を調整し,前記励起光AとBとを試料27の内部にて交差させると,上述の実施形態1の場合と同様,この交差部では前記励起光AとBとが干渉することにより,図4に示されるような干渉縞が生成される。
この第2の実施形態の場合,上述のように,励起光AとBとの交差角θが180°−(θA+θB)であり,かつそれぞれの入射角θAとθBが等しいため,前記干渉縞は,入射角θの二等分線Lと平行に,すなわち図4に示すように試料27の測定面に対して垂直方向に生成される。
この場合の干渉縞間隔Λは前記(1)式によって求めることができる。
また,格子ベクトルKと測定光の入射光波数ベクトルkiと回折光波数ベクトルkrとが(2)式の関係を満たすよう,すなわち図5に示す関係になるように励起光と測定光の光学的関係を設定することによって,ブラッグ条件を満たす強い回折光を得ることができる。
このときの回折光強度Iは,同様に(3)式によって決まり,これを検出することで屈折率変化Δnを測定することが可能である。
このブラッグ条件を満たす強い回折光は,所定の位置に定められたミラー27によって反射され,光検出器28に導かれる。同回折光の強度が光検出器28によって電気信号に変換され,該電気信号は信号処理29に入力される。信号処理29ではこの強度信号から屈折率変化Δnを測定する。
光検出器28によって受光される前記ブラッグ条件を満たす回折光は,前記第1の実施形態の場合と同様に,強度Iの極めて強い光であるため,感度および再現性の良い測定が可能となる。また,セル26の特性変化の影響を受けずに精度の高い検査を行なうことができる点も同様である。
<Embodiment 2> Next, a schematic configuration of a photothermal conversion measuring apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG.
The beam diameter of the excitation light output from the predetermined excitation light reduction 21 is adjusted by the lens system 3 and is divided into two by the half mirror 24. Of the bisected excitation light, the excitation light A is reflected by the half mirror 24, and the excitation light B is reflected by the mirror 25, passes through a container (cell) 26, and is irradiated onto a sample 27 in the cell. Here, when the installation angles of the half mirror 24 and the mirror 25 are adjusted and the excitation lights A and B are crossed inside the sample 27, as in the case of Embodiment 1 described above, The interference fringes as shown in FIG. 4 are generated by the interference between the excitation lights A and B.
In the case of the second embodiment, as described above, the intersection angle θ between the pumping lights A and B is 180 ° − (θ A + θ B ), and the incident angles θ A and θ B are equal. The interference fringes are generated in parallel to the bisector L of the incident angle θ, that is, in the direction perpendicular to the measurement surface of the sample 27 as shown in FIG.
In this case, the interference fringe interval Λ can be obtained by the equation (1).
Further, the optical power of the excitation light and the measurement light is such that the grating vector K, the incident light wave number vector ki of the measurement light, and the diffracted light wave vector kr satisfy the relationship of the expression (2), that is, the relationship shown in FIG. By setting the relationship, strong diffracted light that satisfies the Bragg condition can be obtained.
The diffracted light intensity I at this time is similarly determined by the equation (3), and the refractive index change Δn can be measured by detecting this.
Strong diffracted light that satisfies this Bragg condition is reflected by a mirror 27 set at a predetermined position and guided to a photodetector 28. The intensity of the diffracted light is converted into an electric signal by the photodetector 28, and the electric signal is input to the signal processing 29. In the signal processing 29, the refractive index change Δn is measured from this intensity signal.
Diffracted light that satisfies the Bragg condition that is received by the photodetector 28 is light having an extremely high intensity I, as in the first embodiment, and therefore measurement with good sensitivity and reproducibility is possible. . The same is true in that a highly accurate inspection can be performed without being affected by the characteristic change of the cell 26.

図1または図4に示されるように,励起光源1または21から出力された励起光をチョッパ2または22によって周期的に強度変調し(周期f),信号処理13または29では,この励起光の変調周期fと同周期の信号成分を検出する構成としても良い。
これによって,周波数fの成分を有しないノイズの影響を除去しつつ,励起光照射による試料の特性変化を測定することができ,測定のS/N比が向上する。
As shown in FIG. 1 or FIG. 4, the excitation light output from the excitation light source 1 or 21 is periodically intensity-modulated by the chopper 2 or 22 (period f). In the signal processing 13 or 29, the excitation light The signal component having the same period as the modulation period f may be detected.
As a result, it is possible to measure the characteristic change of the sample due to the excitation light irradiation while removing the influence of noise having no frequency f component, and the S / N ratio of the measurement is improved.

前記第1及び第2の実施の形態においては,二つの励起光の入射角θAとθBが等しく,これによって干渉縞が試料の測定面に対して水平若しくは垂直方向に生成される場合についてのみ述べられているが,これ以外であっても良い。入射角θAとθBが等しいこと(θA=θB)がブラッグ条件成立のための必須要件とならないことは,前記(1)式,(2)式等から明らかである。
要するに前記(2)式を満たすよう,光学的関係を設定しておけば,ブラッグ条件を満たす強い反射光または回折光を得て,同様の結果を得ることができる。
尚,周期長が有限(前記干渉縞の数が有限)である限り,前記格子ベクトルKの大きさは有限の幅を持つ。従って,必ずしも前記実施の形態に記載の光学的関係が唯一絶対的な条件ではなく,適用レーザの条件や光学系の小型化等,装置構成機器の条件の面も踏まえた上で,最適な照射,受光条件を設定することが可能である。
In the first and second embodiments, the incident angles θ A and θ B of the two excitation lights are equal, and thereby interference fringes are generated in the horizontal or vertical direction with respect to the measurement surface of the sample. However, it may be other than this. It is clear from the above formulas (1) and (2) that the incident angles θ A and θ B are equal (θ A = θ B ) are not an essential requirement for establishing the Bragg condition.
In short, if the optical relationship is set so as to satisfy the expression (2), a strong reflected light or diffracted light satisfying the Bragg condition can be obtained, and the same result can be obtained.
As long as the period length is finite (the number of the interference fringes is finite), the size of the lattice vector K has a finite width. Therefore, the optical relationship described in the above embodiment is not necessarily the only absolute condition, and the optimum irradiation is performed in consideration of the conditions of the equipment components such as the applicable laser conditions and the miniaturization of the optical system. , Light receiving conditions can be set.

また,二つの励起光A及びBを干渉させることによって干渉縞が生成される場合についてのみ述べられているが,三つ以上の励起光を干渉させて干渉縞を生成しても良く,このような場合であっても本発明の範囲内である。
さらに,前記実施の形態及び実施例においては,一次ブラッグ条件(前記(2)式においてm=1)を満たす構成についてのみ述べられているが,高次ブラッグ条件(前記(2)式において,m>1)でを満たす構成あっても良く,このような場合であっても本発明の範囲内である。
Although only the case where interference fringes are generated by causing two excitation lights A and B to interfere with each other is described, interference fringes may be generated by interfering with three or more excitation lights. Even in such a case, it is within the scope of the present invention.
Furthermore, in the above-described embodiment and examples, only the configuration satisfying the primary Bragg condition (m = 1 in the equation (2)) has been described. However, in the high-order Bragg condition (in the equation (2), m > 1) may be satisfied, and such a case is within the scope of the present invention.

また,励起光及び/若しくは測定光をレンズにより収束する構成としても良い。レンズによって収束された前記励起光及び/若しくは測定光は,その強度密度が向上するため,測定の空間分解能が高まると共にS/N比が向上する。   Moreover, it is good also as a structure which converges excitation light and / or measurement light with a lens. Since the intensity density of the excitation light and / or measurement light converged by the lens is improved, the spatial resolution of measurement is increased and the S / N ratio is improved.

本発明の第1の実施の形態に係る光熱変換測定装置の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus which concerns on the 1st Embodiment of this invention. 励起光の交差部に形成される干渉縞の構造を示す概略図であって,(a)は干渉縞が試料の測定面に対して水平に生成される場合(第1の実施形態に相当),(b)は干渉縞が試料の測定面に対して垂直に生成される場合(第2の実施形態に相当),(c)は干渉縞が試料の測定面に対して斜めに生成される場合を示す。It is the schematic which shows the structure of the interference fringe formed in the cross | intersection part of excitation light, Comprising: (a) is a case where an interference fringe is produced | generated horizontally with respect to the measurement surface of a sample (equivalent to 1st Embodiment). , (B) shows the case where the interference fringes are generated perpendicular to the measurement surface of the sample (corresponding to the second embodiment), and (c) shows that the interference fringes are generated obliquely with respect to the measurement surface of the sample. Show the case. 本発明の第1の実施の形態においてブラッグ条件が成立する場合をベクトルを用いて示した概念図。The conceptual diagram which showed the case where the Bragg condition was materialized in the 1st Embodiment of this invention using the vector. 本発明の第2の実施の形態に係る光熱変換測定装置の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態においてブラッグ条件が成立する場合をベクトルを用いて示した概念図。The conceptual diagram which showed the case where the Bragg condition was materialized in the 2nd Embodiment of this invention using the vector. 従来の光熱変換測定装置(光熱変換分光分析装置)の概略構成図。The schematic block diagram of the conventional photothermal conversion measuring apparatus (photothermal conversion spectroscopy analyzer).

符号の説明Explanation of symbols

1,21…励起光源
2,22…チョッパ
3,23…レンズ
4,6,7,25,27…ミラー
5,24…ハーフミラー
8,26…セル
9,27…試料
10…測定光源
11…ビームスプリッタ
12,28…光検出器
13,29…信号処理装置
DESCRIPTION OF SYMBOLS 1,21 ... Excitation light source 2,22 ... Chopper 3,23 ... Lens 4,6,7,25,27 ... Mirror 5,24 ... Half mirror 8,26 ... Cell 9,27 ... Sample 10 ... Measurement light source 11 ... Beam Splitter 12, 28 ... Photodetector 13, 29 ... Signal processor

Claims (4)

試料の測定域を励起する励起光を照射する励起光照射手段と,前記励起光が照射された前記試料の測定域に測定光を照射する測定光照射手段とを具備し,前記励起光が照射された試料の光熱変化により生じる前記試料の特性変化を,前記試料の測定域に照射された前記測定光の変化に基づいて測定する光熱変換測定装置において,
前記励起光照射手段が二以上の可干渉性励起レーザ光の交差により前記試料の測定域に干渉縞を生成させるものであり,
前記励起光照射手段によって干渉縞が生成された前記測定域に前記測定光照射手段から照射された測定光を入射させることによって,前記励起光照射手段から照射された励起光と前記測定光照射手段から照射された測定光との光学的関係を,前記試料に照射された前記測定光からブラッグ条件を満たす反射光または回折光が発生するように設定すると共に,
前記試料の特性変化を前記試料に照射された前記測定光から発生するブラッグ条件を満たす反射光または回折光の光強度から検出することを特徴とする光熱変換測定装置。
Excitation light irradiation means for irradiating excitation light for exciting the measurement area of the sample, and measurement light irradiation means for irradiating measurement light to the measurement area of the sample irradiated with the excitation light. In a photothermal conversion measuring apparatus for measuring a change in the characteristics of the sample caused by a photothermal change of the measured sample based on a change in the measurement light irradiated to the measurement area of the sample,
The excitation light irradiation means generates interference fringes in the measurement region of the sample by the intersection of two or more coherent excitation laser beams;
By making the measurement light emitted from the measurement light irradiation means enter the measurement area where the interference fringes are generated by the excitation light irradiation means , the excitation light emitted from the excitation light irradiation means and the measurement light irradiation means The optical relationship with the measurement light emitted from the sample is set so that reflected light or diffracted light that satisfies the Bragg condition is generated from the measurement light emitted to the sample,
A photothermal conversion measurement apparatus, wherein a characteristic change of the sample is detected from a light intensity of reflected light or diffracted light that satisfies a Bragg condition generated from the measurement light irradiated on the sample.
前記励起光が周期的に強度変調された光であり,前記測定光の反射光あるいは回折光の強度変化を前記励起光の強度変調周期と同周期成分について測定してなる請求項1に記載の光熱変換測定装置。 The excitation light is periodically intensity-modulated light, according to claim 1, changes in the intensity of the reflected light or diffracted light of the measurement light formed by the measurement for the intensity modulation period and the periodic component of the excitation light Photothermal conversion measuring device. 試料の測定域を励起する励起光を照射する励起光照射手段と,前記励起光が照射された前記試料の測定域に測定光を照射する測定光照射手段とを具備し,前記励起光が照射された試料の光熱変化により生じる前記試料の特性変化を,前記試料の測定域に照射された前記測定光の変化に基づいて測定する光熱変換測定装置において,Excitation light irradiation means for irradiating excitation light for exciting the measurement area of the sample, and measurement light irradiation means for irradiating measurement light to the measurement area of the sample irradiated with the excitation light. In a photothermal conversion measuring apparatus for measuring a change in the characteristics of the sample caused by a photothermal change of the measured sample based on a change in the measurement light irradiated to the measurement area of the sample,
前記励起光照射手段から照射された励起光と前記測定光照射手段から照射された測定光との光学的関係を,前記試料に照射された前記測定光からブラッグ条件を満たす反射光または回折光が発生するように設定すると共に,The optical relationship between the excitation light emitted from the excitation light irradiating means and the measurement light emitted from the measurement light irradiating means indicates that the reflected light or diffracted light satisfying the Bragg condition satisfies the Bragg condition from the measurement light irradiated on the sample. Set it to occur,
前記試料の特性変化を前記試料に照射された前記測定光から発生するブラッグ条件を満たす反射光または回折光の光強度から検出するものであり,A change in characteristics of the sample is detected from the light intensity of reflected or diffracted light that satisfies the Bragg condition generated from the measurement light irradiated on the sample;
前記励起光が周期的に強度変調された光であり,前記測定光の反射光あるいは回折光の強度変化を前記励起光の強度変調周期と同周期成分について測定してなることを特徴とする光熱変換測定装置。The excitation light is light whose intensity is periodically modulated, and is obtained by measuring a change in intensity of reflected light or diffracted light of the measurement light with respect to a component having the same period as the intensity modulation period of the excitation light. Conversion measuring device.
試料の測定域を励起する励起光を照射すると共に,前記励起光が照射された前記試料の測定域に測定光を照射することによって,前記励起光が照射された試料の光熱変化により生じる前記試料の特性変化を,前記試料の測定域に照射された前記測定光の変化に基づいて測定する光熱変換測定方法において,
前記励起光が二以上の可干渉性励起レーザ光であり,これら二以上の可干渉性励起レーザ光の交差により前記試料の測定域に干渉縞を生成させ,この干渉縞が生成された前記測定域に測定光を入射させることによって,記励起光と前記測定光との光学的関係を,前記試料に照射された前記測定光からブラッグ条件を満たす反射光または回折光が発生するように設定すると共に,
前記試料の特性変化を前記試料に照射された前記測定光から発生するブラッグ条件を満たす反射光または回折光の光強度から検出することを特徴とする光熱変換測定方法。
The sample generated by photothermal change of the sample irradiated with the excitation light by irradiating the measurement light of the sample irradiated with the excitation light while irradiating the excitation light for exciting the measurement region of the sample In the photothermal conversion measurement method for measuring the change in characteristics of the sample based on the change in the measurement light applied to the measurement area of the sample,
The excitation light is two or more coherent excitation laser beams, and an interference fringe is generated in the measurement region of the sample by the intersection of the two or more coherent excitation laser beams, and the interference fringe is generated. by entering the measurement light pass, before Ki励 optical relationship Okoshiko before Kihaka constant light Prefecture, so that the Bragg condition is satisfied reflected light or diffracted light generated from the measuring light applied to the sample And set
A photothermal conversion measurement method, wherein a change in characteristics of the sample is detected from light intensity of reflected light or diffracted light that satisfies a Bragg condition generated from the measurement light irradiated on the sample.
JP2004067984A 2004-03-10 2004-03-10 Photothermal conversion measuring apparatus and method Expired - Fee Related JP4116979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067984A JP4116979B2 (en) 2004-03-10 2004-03-10 Photothermal conversion measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067984A JP4116979B2 (en) 2004-03-10 2004-03-10 Photothermal conversion measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2005257411A JP2005257411A (en) 2005-09-22
JP4116979B2 true JP4116979B2 (en) 2008-07-09

Family

ID=35083280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067984A Expired - Fee Related JP4116979B2 (en) 2004-03-10 2004-03-10 Photothermal conversion measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4116979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117589A (en) * 1995-09-18 1997-05-06 Samsung Electronics Co Ltd Automatic illuminator of washing machine and its control circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549292B2 (en) * 2005-12-27 2010-09-22 株式会社神戸製鋼所 Photothermal conversion measuring device, photothermal conversion measuring method
CN102175711B (en) * 2011-01-11 2013-03-27 华中科技大学 Measuring method and device for coefficients of thermal expansion
DE102011078885A1 (en) 2011-07-08 2013-01-10 Carl Zeiss Smt Gmbh Method and apparatus for determining absorption in a blank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117589A (en) * 1995-09-18 1997-05-06 Samsung Electronics Co Ltd Automatic illuminator of washing machine and its control circuit

Also Published As

Publication number Publication date
JP2005257411A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
JP5740316B2 (en) Method and device for measuring the focal length of a thermal lens
CN110927121B (en) Phase type SPR detection device and method based on white light interference spectrum
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
WO2000058712A1 (en) Isopotomer absorption spectral analyzer and its method
CN110927122B (en) Phase type SPR detection device and method based on interference spectrum
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
JP4116979B2 (en) Photothermal conversion measuring apparatus and method
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP4853255B2 (en) Gas analyzer
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP4119385B2 (en) Photothermal conversion measuring device
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JP5001226B2 (en) Photothermal conversion measuring device and method
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
US20040227941A1 (en) Particle size distribution analyzer
CA2997148C (en) Laser gas analyzer
JPS63308543A (en) Scattered light measuring apparatus
JP2006300661A (en) Interferometer and fourier spectral device
JP3787332B2 (en) Thermal lens absorption analyzer
JP4549292B2 (en) Photothermal conversion measuring device, photothermal conversion measuring method
JP3298800B2 (en) Return light blocking light source device, gas analyzer and return light blocking method
KR102340037B1 (en) Apparatus and method for identifying for traces gases
JP4290139B2 (en) Photothermal conversion measuring apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees