JPH0727746A - Method for evaluating specimen with photothermal displacement measurement - Google Patents

Method for evaluating specimen with photothermal displacement measurement

Info

Publication number
JPH0727746A
JPH0727746A JP5172948A JP17294893A JPH0727746A JP H0727746 A JPH0727746 A JP H0727746A JP 5172948 A JP5172948 A JP 5172948A JP 17294893 A JP17294893 A JP 17294893A JP H0727746 A JPH0727746 A JP H0727746A
Authority
JP
Japan
Prior art keywords
light
sample
specimen
another
photothermal displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5172948A
Other languages
Japanese (ja)
Other versions
JP3029757B2 (en
Inventor
Hiroyuki Takamatsu
弘行 高松
Shingo Suminoe
伸吾 住江
Tsutomu Morimoto
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5172948A priority Critical patent/JP3029757B2/en
Publication of JPH0727746A publication Critical patent/JPH0727746A/en
Application granted granted Critical
Publication of JP3029757B2 publication Critical patent/JP3029757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To exactly measure true thermal expansion oscillation of a specimen on the basis of the phase of interference light by irradiating the specimen with two intensity-modulated light beams of different frequencies and allowing the reflection light from the specimen to interfere with the other beam. CONSTITUTION:A light emitted from a laser 1 is divided into a beam 1 and another beam 2 by a polarized light beam splitter 4. The frequency of the beam 1 is shifted by an acoustic optical modulator 3 and its intensity is modulated. After the beams 1, 2 are combined by the splitter 4 and the beam diameter is widened by a beam expander 5, light is collected by a lens 6 and directed to a specimen 7. The light reflected from the specimen 7 is reflected by a beam splitter 8 and the beam 1 is allowed to interfere with the beam 2 by a polarizing plate 9. Interference light is received by a photoelectric convertor 10, its output passes through a filter 11 and a signal is obtained. On the other hand, the light reflected by the splitter 8 before irradiation of the specimen 7 is allowed to interfere with another polarizing plate 12, the interference light is received by another photoelectric convertor 13, its output passes through another filter 14 and another signal is obtained. The signal is mixed by mixers 16, 17, calculated by a subtracter 20 and a phase change caused by photothermal displacement is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料に周期的に強度変調
した励起光を照射し,これにより生じる試料表面の熱膨
張振動を測定して試料の欠陥等を評価する試料評価方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample evaluation method for irradiating a sample with excitation light whose intensity is modulated periodically and measuring thermal expansion vibration of the sample surface caused by the excitation light to evaluate defects and the like of the sample.

【0002】[0002]

【従来の技術】試料に周期的に強度変調した光(励起
光)を照射すると,試料はこの光の吸収により発熱し,
これにより熱膨張する。照射光は周期的に強度変調して
いるため,発熱による試料の温度変化は周期的となり,
試料は熱膨張をおこす。これらの熱応答を計測すること
により試料を評価する手法は光音響計測技術として知ら
れている。図3はマイケルソン型レーザ光干渉法により
試料の熱膨張振動を計測する手法を示したものである
(Miranda,APPLID OPTICS Vo122,No18,P2882(198
3))。ここに61は被測定試料,62は試料に熱膨張
振動を与えるための励起光源であり,チョッパ63によ
り励起光源62からの光を強度変調し,試料61に照射
する。この熱膨張振動(光熱変位)をレーザ光干渉法に
より計測する。そのために測定用レーザ64からの光を
半透鏡65で二分し,一方を試料の熱膨張測定点に,他
方を空間的に固定した鏡66に照射し,これらからの反
射光を干渉させ光電変換器67で受光する。光電変換器
67からの電気出力Eは次式で表される。 E=C1 +C2 ・cos(P(t)+Φ)…(1′) ここで,C1 ,C2 及びΦは試料61や干渉計の構成や
光電変換係数等に依存する定数,P(t)は励起光照射
による熱膨張振動による試料の表面変位に併う位相変化
であり,この計測により試料の熱膨張振動(位相Φ及び
振幅L)を計測し,試料の熱弾性的性質を評価する。図
4は反射率計測法に基づく手法である(特開昭61−2
046号公報)。励起レーザ30からの光を変調器32
により周期的に強度変調して試料31に照射し,試料3
1に周期的温度変化を与える。この温度変化が試料31
に光反射率の変化をもたらす。この反射率の変化を検出
するために測定用レーザ50を,試料31の温度変化計
測点(本図においては励起レーザ照射点と同位置)にミ
ラー36を通して照射し,その反射光を光検出器56で
検出する。この出力から信号処理回路58により,反射
率の変化を求め,試料31を評価する。
2. Description of the Related Art When a sample is irradiated with light whose intensity is modulated periodically (excitation light), the sample heats up by absorbing this light,
This causes thermal expansion. Since the irradiation light is intensity-modulated periodically, the temperature change of the sample due to heat generation becomes periodic,
The sample undergoes thermal expansion. A method of evaluating a sample by measuring these thermal responses is known as a photoacoustic measurement technique. Figure 3 shows the method of measuring thermal expansion vibration of a sample by Michelson type laser light interferometry (Miranda, APPLID OPTICS Vo122, No18, P2882 (198)
3)). Here, 61 is a sample to be measured, and 62 is an excitation light source for applying thermal expansion vibration to the sample. The chopper 63 modulates the intensity of the light from the excitation light source 62 and irradiates the sample 61. This thermal expansion vibration (photothermal displacement) is measured by laser light interferometry. Therefore, the light from the measuring laser 64 is divided into two by a semi-transparent mirror 65, and one of them is applied to the sample thermal expansion measurement point and the other is applied to a spatially fixed mirror 66, and the reflected light from these is interfered to perform photoelectric conversion. The light is received by the device 67. The electric output E from the photoelectric converter 67 is expressed by the following equation. E = C 1 + C 2 · cos (P (t) + Φ) (1 ′) where C 1 , C 2 and Φ are constants that depend on the configuration of the sample 61 and the interferometer, the photoelectric conversion coefficient, and the like, P ( t) is the phase change accompanying the surface displacement of the sample due to the thermal expansion vibration due to the excitation light irradiation. By this measurement, the thermal expansion vibration (phase Φ and amplitude L) of the sample is measured, and the thermoelastic properties of the sample are evaluated. To do. FIG. 4 shows a method based on the reflectance measurement method (Japanese Patent Laid-Open No. 61-2).
046 publication). The light from the pump laser 30 is modulated by the modulator 32.
The intensity of the sample 31 is periodically modulated by
1 is given a cyclic temperature change. This temperature change is sample 31
Bring about a change in light reflectance. In order to detect this change in reflectance, a measurement laser 50 is applied to the temperature change measurement point of the sample 31 (the same position as the excitation laser irradiation point in this figure) through the mirror 36, and the reflected light is applied to the photodetector. Detect at 56. From this output, the signal processing circuit 58 obtains a change in reflectance to evaluate the sample 31.

【0003】[0003]

【発明が解決しようとする課題】前者のマイケルソン型
レーザ光干渉により試料の熱膨張を計測する手法では,
試料61上における励起光の照射位置と測定光の照射位
置との間にずれを生じる可能性があり,これが測定値に
変化をもたらし,測定誤差となって熱膨張振動を高精度
に測定することができない。また,前記(1′)式にお
ける定数C1 ,C 2 及びΦの変化が外乱として測定精度
を低下させる。例えば励起光照射による試料の温度変化
およびプラズマ(電子,ホール)密度の変化(半導体試
料の場合)により試料の反射率が変化する場合がある。
この場合,干渉光の信号は反射率変化に伴う外乱信号を
含んでいることになり,干渉光の信号から真の熱膨張信
号を計測できない。他方,後者の反射率計測法に基づく
手法は,試料の温度変化,プラズマ密度変化の計測であ
るため,試料の熱膨張率等の弾性的性質を得ることがで
きない。更に前記手法の場合と同様,試料31上におけ
る励起光の照射位置と測定光の照射位置との間にずれを
生じる可能性があり,これが測定値に変化をもたらし,
測定誤差となって熱膨張振動を高精度に計測することが
できない。従って本発明が目的とするところは,励起光
の照射位置と測定光の照射位置のずれによる影響や,試
料の温度変化,プラズマ密度の変化等による試料の反射
率の変化といった外乱の影響を受けず,試料の真の熱膨
張振動を正確に計測することのできる光熱変位計測によ
る試料評価方法を提供することである。
[Problems to be Solved by the Invention] The former Michelson type
In the method of measuring the thermal expansion of the sample by laser light interference,
Irradiation position of excitation light and irradiation position of measurement light on sample 61
There is a possibility that there will be a gap between the
Highly accurate thermal expansion vibration due to change and measurement error
Can not be measured. In addition, in the above formula (1 ')
The constant C1, C 2And Φ changes as disturbance and measurement accuracy
Lower. For example, the temperature change of the sample due to irradiation of excitation light
And changes in plasma (electron, hole) density (semiconductor test
The reflectance of the sample may change depending on the material).
In this case, the interference light signal is the disturbance signal due to the reflectance change.
Therefore, the true thermal expansion signal is detected from the interference light signal.
I can't measure the number. On the other hand, based on the latter reflectance measurement method
The method is to measure the temperature change of the sample and the plasma density change.
Therefore, elastic properties such as the coefficient of thermal expansion of the sample can be obtained.
I can't come. Furthermore, as in the case of the above method, place it on the sample 31.
Between the excitation light irradiation position and the measurement light irradiation position
Can occur, which causes changes in the measured values,
It is a measurement error and can measure the thermal expansion vibration with high accuracy.
Can not. Therefore, the purpose of the present invention is to
The influence of the deviation between the irradiation position of
Reflection of sample due to temperature change of material, change of plasma density, etc.
The true thermal expansion of the sample is not affected by the disturbance such as the change of the coefficient.
By the photothermal displacement measurement that can accurately measure the tension vibration
It is to provide a sample evaluation method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,試料に光を照射し,それによる試料の光熱
変位を計測することにより試料を評価する方法におい
て,上記試料に強度変調した異なる振動周波数の2つの
光を照射して上記試料からの反射光を干渉させ,この干
渉光の位相に基づいて上記試料を評価することとした光
熱変位計測による試料評価方法として構成されている。
In order to achieve the above object, the present invention provides a method for evaluating a sample by irradiating the sample with light and measuring the photothermal displacement of the sample by the light modulation. It is configured as a sample evaluation method by photothermal displacement measurement in which two lights of different vibration frequencies are irradiated to cause interference of reflected light from the sample, and the sample is evaluated based on the phase of the interference light. .

【0005】[0005]

【作用】本発明によれば,例えば第2の光に対して相対
的に強度変調された振動周波数の第1の光を励起光とし
て試料に照射し該試料に光熱変位(熱膨張振動)を誘起
させると共に,同じく上記試料に上記第2の光を照射し
て上記第1の光と上記第2の光の上記試料からの反射光
を干渉させ,この干渉光の位相に基づいて上記試料を評
価する。即ち,上記第1の光による反射光の位相変化に
基づいて光熱変位が検出される。尚この場合,第1,第
2の光の照射位置に係る位置ずれ量が問題となることは
ない。
According to the present invention, for example, the first light having the vibration frequency whose intensity is relatively modulated with respect to the second light is irradiated to the sample as the excitation light, and the sample undergoes photothermal displacement (thermal expansion vibration). At the same time as inducing the light, the sample is also irradiated with the second light to cause the reflected light of the first light and the reflected light of the second light from the sample to interfere with each other, and the sample is measured based on the phase of the interference light. evaluate. That is, the photothermal displacement is detected based on the phase change of the reflected light due to the first light. In this case, the amount of positional deviation related to the irradiation positions of the first and second lights does not pose a problem.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る光熱変位計測による
試料評価装置の概略構成を示す全体回路図,図2は他の
実施例に係る部分回路図である。本実施例に係る試料評
価方法では,図1に示す如く,試料7に強度変調された
例えば振動周波数F1 の第1の光(ビーム1)を励起光
として照射し試料7に光熱変位(熱膨張振動)を誘起さ
せると共に,同じく上記試料7に強度変調されていない
例えば振動周波数F2 の第2の光(ビーム2)を照射し
て上記ビーム1と上記ビーム2の上記試料7からの反射
光を干渉させ,この干渉光の位相に基づいて上記試料7
を評価する。次に,同図に示す試料評価装置による計測
原理について述べる。まず,He−Neレーザ1からの
出射光(振動周波数:F2 )を偏光ビームスプリッタ2
でビーム1およびビーム2に二分する。その一方(ビー
ム1)を音響光学変調器3で光の振動周波数をFb (ビ
ート波の周波数に相当)シフトしてF 1 (従ってFb
1 −F2 )とすると共に強度変調する。これらのビー
ム1,2をビームスプリッタ4で合わせてビームエキス
パンダ5でビーム径を拡大して後,レンズ6で集光し,
試料7に照射する。尚この場合,ビーム1とビーム2の
試料7上での照射位置が僅かに異なる(例えば1mm以
下)ように,これらのビームの光軸がビームスプリッタ
4で調整されている。これらのビーム1,2の試料7か
らの反射光をビームスプリッタ8で反射さた,偏光板9
でビーム2とビーム1とを干渉させる。この干渉光を光
電変換器10で受光する。光電変換器10からの出力を
フィルタ11に通した後の信号(ビート波信号)Eは次
式で表される。 E=A(t)・cos(2πFb t+P(t)+Φ) …(1) ここで,A(t)はビーム1,2の強度および試料,干
渉光学系等に依存する関数,P(t)は励起光(ビーム
1)による試料表面の熱膨張変位(光熱変位)によるビ
ーム1,2間の位相変化,ΦはP(t)が零(振動が無
い)のときのビーム1,ビーム2間の光路長差による位
相差である。P(t)は試料が励起光によりL(t)な
る表面変位が生じたとき次式で表される。 P(t)=(4π/λ)・L(t) (λは光の波長) …(2)
Embodiments of the present invention will now be described with reference to the accompanying drawings.
Examples will be described to provide an understanding of the present invention. In addition,
The following example is an example embodying the present invention.
It does not limit the technical scope of Ming. here
In addition, FIG. 1 shows a photothermal displacement measurement according to an embodiment of the present invention.
An overall circuit diagram showing a schematic configuration of the sample evaluation device, FIG.
It is a partial circuit diagram concerning an example. Sample evaluation according to this example
In the valuation method, as shown in FIG.
For example, the vibration frequency F1Excitation light of the first light (beam 1) of
As a result, photothermal displacement (thermal expansion vibration) is induced in sample 7.
In addition, the sample 7 is not intensity-modulated.
For example, the vibration frequency F2Irradiate the second light (beam 2) of
Reflection of the beam 1 and the beam 2 from the sample 7
The light is made to interfere, and the sample 7
Evaluate. Next, measurement by the sample evaluation device shown in the same figure
The principle will be described. First, from the He-Ne laser 1
Emitted light (vibration frequency: F2) Is the polarization beam splitter 2
Is divided into beam 1 and beam 2 by. On the other hand (Bee
The vibration frequency of light is set to F by the acousto-optic modulator 3b(Bi
Equivalent to the frequency of the radio wave) 1(Hence Fb=
F1-F2) With intensity modulation. These bees
Beam extractor by combining beams 1 and 2 with beam splitter 4
After expanding the beam diameter with the panda 5, focus it with the lens 6,
Irradiate the sample 7. In this case, beam 1 and beam 2
The irradiation position on the sample 7 is slightly different (for example, 1 mm or more).
As shown below), the optical axes of these beams are beam splitters.
Adjusted in 4. Sample 7 of these beams 1 and 2
A polarizing plate 9 in which the reflected light from the above is reflected by the beam splitter 8.
The beam 2 and the beam 1 are caused to interfere with each other. This interference light
The light is received by the electric converter 10. The output from the photoelectric converter 10
The signal (beat wave signal) E after passing through the filter 11 is
It is represented by a formula. E = A (t) · cos (2πFbt + P (t) + Φ) (1) where A (t) is the intensity of the beams 1 and 2 and the sample,
P (t) is the excitation light (beam
By the thermal expansion displacement (photothermal displacement) of the sample surface due to 1)
Phase change between dome 1 and 2, Φ has zero P (t) (no vibration)
Position) due to the difference in optical path length between beam 1 and beam 2
It is a phase difference. P (t) means that the sample is not L (t) due to the excitation light.
When the surface displacement occurs, it is expressed by the following equation. P (t) = (4π / λ) · L (t) (λ is the wavelength of light) (2)

【0007】他方,ビーム1とビーム2の試料7に照射
される前にビームスプリッタ8で反射された光を偏光板
12で干渉させ,この干渉光を光電変換器13で受光す
る。光電変換器13からの出力をフィルタ14に通した
後の信号(ビート波信号)Er は次式で表される。 Er =B(t)・cos(2πFb t+Φ) …(3) ここで,B(t)はビーム1,2の強度及び干渉光学系
等に依存する関数である。次にEの位相を検出するため
に,Eのビート波に対して位相が90°異なる信号R1
と同相の信号R2 を,Er を位相シフタ15で位相調整
することにより生成する。これらは次式で表される。 R1 =K(t)・sin(2πFb t+Φ) R2 =K(t)・cos(2πFb t+Φ) …(4) ここでK(t)はビーム1,ビーム2の強度および干渉
光学系等に依存する関数である。こられの信号とEをミ
キサ16,17でミキシングし,フィルタ18,19で
周波数2Fb 帯を除去した後信号V1 ,V2 を得る。L
(t)がλに比べて十分小さいとき,信号V1 ,V2
次式が表される。 V1 =K1 (t)・P(t) V2 =K1 (t) …(5) ここで,K1 (t)はK(t)及びA(t)の関数であ
る。このようにして得られた信号V1 とV2 の比を除算
器20にて算出することにより,光熱変位による位相変
化P(t)を得ることができる。
On the other hand, the light reflected by the beam splitter 8 before being irradiated onto the sample 7 of the beam 1 and the beam 2 interferes with the polarizing plate 12, and the interference light is received by the photoelectric converter 13. The signal (beat wave signal) E r after passing the output from the photoelectric converter 13 through the filter 14 is represented by the following equation. E r = B (t) · cos (2πF b t + Φ) (3) Here, B (t) is a function that depends on the intensities of the beams 1 and 2 and the interference optical system. Next, in order to detect the phase of E, a signal R 1 whose phase is different from the beat wave of E by 90 °
A signal R 2 in phase with is generated by adjusting the phase of E r by the phase shifter 15. These are expressed by the following equations. R 1 = K (t) · sin (2πF b t + Φ) R 2 = K (t) · cos (2πF b t + Φ) (4) where K (t) is the intensity of the beam 1 and the beam 2 and the interference optical system. Is a function that depends on etc. These signals and E are mixed by mixers 16 and 17, and after removing the frequency 2F b band by filters 18 and 19, signals V 1 and V 2 are obtained. L
When (t) is sufficiently smaller than λ, the signals V 1 and V 2 are expressed by the following equations. V 1 = K 1 (t) · P (t) V 2 = K 1 (t) (5) where K 1 (t) is a function of K (t) and A (t). By calculating the ratio of the signals V 1 and V 2 thus obtained by the divider 20, the phase change P (t) due to the photothermal displacement can be obtained.

【0008】尚,本実施例では,光熱変位を変調された
周波数で周期的に誘起させているため,光熱変位の振幅
の検出にはロックインアンプ21を用いている。以上の
ように,本実施例においては強度変調されたビーム1が
励起光として試料7に光熱変位を誘起させると共に、こ
の反射光の位相変化から光熱変位を検出している。即
ち,励起光と測定光とは同一であることから,試料7上
における励起光の照射位置と測定光の照射位置とにずれ
が生じるという不都合はない。更に本実施例において
は,上述の如く試料7からの反射光の位相変化から光熱
変位を計測するため,試料7の反射率変化,ビーム1,
2の強度変化等の影響を受けずに試料7の真の光熱変位
を計測することができる。その結果,高精度で試料の評
価を行うことができる。また,これは励起光の照射によ
り熱弾性波を計測するため,試料7の熱弾性的性質をも
評価することができる。更に,上記実施例に加えて,図
2に示す如く,試料7に照射するビーム1として,He
−Neレーザ1からの出射光を音響光学変調器3で振動
周波数をFbシフトするとともに強度変調して得られる
回折光(1次回折光)を,またビーム2として非回折光
(0次光)をそれぞれ適用するようにしても良い。これ
により,ビーム1による光熱変位に加えてビーム2によ
る光熱変位がビーム1のそれと逆位相で生じることか
ら,これらの熱膨張(光熱変位)による位相差変化P
(t)が増加する。その結果,光熱変位を高感度(高い
信号レベル)で測定することが可能となる。尚,上記実
施例では,He−Neレーザ1を用いたが,色素レーザ
等波長可変光源を用いれば,試料7の分光的評価が可能
となる。
In this embodiment, since the photothermal displacement is periodically induced at the modulated frequency, the lock-in amplifier 21 is used to detect the amplitude of the photothermal displacement. As described above, in this embodiment, the intensity-modulated beam 1 induces photothermal displacement in the sample 7 as excitation light, and the photothermal displacement is detected from the phase change of this reflected light. That is, since the excitation light and the measurement light are the same, there is no inconvenience that the excitation light irradiation position and the measurement light irradiation position on the sample 7 are displaced. Further, in this embodiment, since the photothermal displacement is measured from the phase change of the reflected light from the sample 7 as described above, the reflectance change of the sample 7, the beam 1,
The true photothermal displacement of the sample 7 can be measured without being affected by the intensity change of 2 and the like. As a result, the sample can be evaluated with high accuracy. Further, since this measures thermoelastic waves by irradiation with excitation light, the thermoelastic properties of the sample 7 can also be evaluated. Further, in addition to the above-mentioned embodiment, as shown in FIG.
-Diffracted light (first-order diffracted light) obtained by shifting the vibration frequency of the emitted light from the Ne laser 1 by the acousto-optic modulator 3 and intensity-modulating it, and non-diffracted light (0th-order light) as the beam 2. You may make it apply to each. As a result, in addition to the photothermal displacement due to the beam 1, the photothermal displacement due to the beam 2 occurs in a phase opposite to that of the beam 1, so that the phase difference change P due to the thermal expansion (photothermal displacement)
(T) increases. As a result, photothermal displacement can be measured with high sensitivity (high signal level). Although the He-Ne laser 1 is used in the above-described embodiment, the spectroscopic evaluation of the sample 7 can be performed by using the wavelength variable light source such as the dye laser.

【0009】[0009]

【発明の効果】本発明に係る光熱変位計測による試料評
価方法は,上記したように構成されているため,従来技
術の場合のように励起光の照射位置と測定光の照射位置
とがずれるといった問題を生じることはなく,また,試
料の温度変化,プラズマ密度の変化等による試料の反射
率の変化といった外乱の影響も受けず,真の熱膨張振動
を計測することができる。その結果,高精度で試料の評
価を行うことができる。
Since the sample evaluation method by photothermal displacement measurement according to the present invention is configured as described above, the irradiation position of excitation light and the irradiation position of measurement light are different from each other as in the case of the prior art. There is no problem, and the true thermal expansion vibration can be measured without being affected by disturbances such as changes in sample reflectance due to changes in sample temperature and plasma density. As a result, the sample can be evaluated with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る光熱変位計測による
試料評価装置の概略構成を示す全体回路図。
FIG. 1 is an overall circuit diagram showing a schematic configuration of a sample evaluation apparatus by photothermal displacement measurement according to an embodiment of the present invention.

【図2】 他の実施例に係る部分回路図。FIG. 2 is a partial circuit diagram according to another embodiment.

【図3】 従来のマイケルソン型レーザ干渉法により試
料の熱膨張振動を計測する手法を示す説明図。
FIG. 3 is an explanatory diagram showing a method of measuring thermal expansion vibration of a sample by a conventional Michelson laser interferometry.

【図4】 従来の反射率計測法に基づく手法を示す説明
図。
FIG. 4 is an explanatory diagram showing a method based on a conventional reflectance measuring method.

【符号の説明】[Explanation of symbols]

1…He−Neレーザ 2…偏光ビームスプリッタ 3…音響光学変調器 4,8…ビームスプリッタ 5…ビームエキスパンダ 6…レンズ 7…試料 9,12…偏光板 10,13…光電変換器 11,14,18,19…フィルタ 15…位相シフタ 16,17…ミキサ 20…除算器 21…ロックインアンプ DESCRIPTION OF SYMBOLS 1 ... He-Ne laser 2 ... Polarization beam splitter 3 ... Acousto-optic modulator 4,8 ... Beam splitter 5 ... Beam expander 6 ... Lens 7 ... Sample 9,12 ... Polarizing plate 10,13 ... Photoelectric converter 11,14 , 18, 19 ... Filter 15 ... Phase shifter 16, 17 ... Mixer 20 ... Divider 21 ... Lock-in amplifier

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 25/72 Y 6928−2J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G01N 25/72 Y 6928-2J

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料に光を照射し,それによる試料の光
熱変位を計測することにより試料を評価する方法におい
て,光の振動周波数が異なる2つの光の内少なくとも1
つを強度変調し,それぞれを上記試料の異なる位置に照
射し,上記試料からの反射光を干渉させ,この干渉光の
位相に基づいて上記試料を評価することとした光熱変位
計測による試料評価方法。
1. A method for evaluating a sample by irradiating the sample with light and measuring the photothermal displacement of the sample thereby, at least one of two lights having different vibration frequencies.
Of two samples by intensity modulation, irradiating different positions on the sample, causing interference of reflected light from the sample, and evaluating the sample based on the phase of the interference light. .
【請求項2】 上記2つの光の強度変調を逆位相とした
請求項1記載の光熱変位計測による試料評価方法。
2. The sample evaluation method by photothermal displacement measurement according to claim 1, wherein the intensity modulations of the two lights have opposite phases.
【請求項3】 上記試料に照射される前の上記2つの光
を分岐して干渉させ,この干渉光の位相を上記試料を評
価するに際しての基準とする請求項1又は2記載の光熱
変位計測による試料評価方法。
3. The photothermal displacement measurement according to claim 1, wherein the two lights before being irradiated onto the sample are branched and interfered with each other, and the phase of the interference light is used as a reference when evaluating the sample. Evaluation method of samples.
JP5172948A 1993-07-13 1993-07-13 Sample evaluation method by photothermal displacement measurement Expired - Fee Related JP3029757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5172948A JP3029757B2 (en) 1993-07-13 1993-07-13 Sample evaluation method by photothermal displacement measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5172948A JP3029757B2 (en) 1993-07-13 1993-07-13 Sample evaluation method by photothermal displacement measurement

Publications (2)

Publication Number Publication Date
JPH0727746A true JPH0727746A (en) 1995-01-31
JP3029757B2 JP3029757B2 (en) 2000-04-04

Family

ID=15951328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5172948A Expired - Fee Related JP3029757B2 (en) 1993-07-13 1993-07-13 Sample evaluation method by photothermal displacement measurement

Country Status (1)

Country Link
JP (1) JP3029757B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766298A2 (en) * 1995-09-27 1997-04-02 Shin-Etsu Handotai Co., Ltd. Method of and apparatus for determining residual damage to wafer edges
US5619326A (en) * 1994-03-25 1997-04-08 Kabushiki Kaisha Kobe Seiko Sho Method of sample valuation based on the measurement of photothermal displacement
JP2002523739A (en) * 1998-08-20 2002-07-30 シーメンス アクチエンゲゼルシヤフト Heat wave measurement method
JP2006343325A (en) * 2005-05-12 2006-12-21 Kobe Steel Ltd Device and method for measuring thermophysical property
KR100817615B1 (en) * 2005-09-20 2008-03-31 한국원자력연구원 Laser-induced ultrasonic apparatus for measuring defects of substance and the implemented method thereof
WO2011105499A1 (en) * 2010-02-26 2011-09-01 三菱重工業株式会社 Laser ultrasonic flaw detector
JP2011209295A (en) * 2005-05-12 2011-10-20 Kobe Steel Ltd Apparatus and method for measuring thermophysical property
CN110132898A (en) * 2019-06-10 2019-08-16 中国航空工业集团公司北京长城计量测试技术研究所 Using the elasticity modulus of materials measuring system of interferometry supporting beam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980520A (en) * 2012-12-04 2013-03-20 中国航空工业集团公司北京长城计量测试技术研究所 Double-pulse digital speckle transient measuring device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619326A (en) * 1994-03-25 1997-04-08 Kabushiki Kaisha Kobe Seiko Sho Method of sample valuation based on the measurement of photothermal displacement
EP0766298A2 (en) * 1995-09-27 1997-04-02 Shin-Etsu Handotai Co., Ltd. Method of and apparatus for determining residual damage to wafer edges
EP0766298A3 (en) * 1995-09-27 1998-09-16 Shin-Etsu Handotai Co., Ltd. Method of and apparatus for determining residual damage to wafer edges
JP2002523739A (en) * 1998-08-20 2002-07-30 シーメンス アクチエンゲゼルシヤフト Heat wave measurement method
JP2006343325A (en) * 2005-05-12 2006-12-21 Kobe Steel Ltd Device and method for measuring thermophysical property
JP2011209295A (en) * 2005-05-12 2011-10-20 Kobe Steel Ltd Apparatus and method for measuring thermophysical property
KR100817615B1 (en) * 2005-09-20 2008-03-31 한국원자력연구원 Laser-induced ultrasonic apparatus for measuring defects of substance and the implemented method thereof
WO2011105499A1 (en) * 2010-02-26 2011-09-01 三菱重工業株式会社 Laser ultrasonic flaw detector
JP2011179928A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd Laser ultrasonic flaw detection device
US8978478B2 (en) 2010-02-26 2015-03-17 Mitsubishi Heavy Industries, Ltd. Laser ultrasonic flaw detection apparatus
CN110132898A (en) * 2019-06-10 2019-08-16 中国航空工业集团公司北京长城计量测试技术研究所 Using the elasticity modulus of materials measuring system of interferometry supporting beam

Also Published As

Publication number Publication date
JP3029757B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
US7397596B2 (en) Surface and subsurface detection sensor
US4480916A (en) Phase-modulated polarizing interferometer
US7286239B2 (en) Laser scanner with amplitude and phase detection
JPH0727746A (en) Method for evaluating specimen with photothermal displacement measurement
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
JP4119385B2 (en) Photothermal conversion measuring device
JP3340792B2 (en) Microstructure measuring device
JP2923779B1 (en) Optical interference device for ultrasonic detection
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
JPH05288721A (en) Evaluating method of sample by photothermal displacement measurement
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
JPH05288720A (en) Evaluating method of sample by ultrasonic vibration measurement
JPH0921752A (en) Method for measuring photothermal displacement
WO2006125162A2 (en) Surface and subsurface detection sensor
JPH04273048A (en) Sample evaluation using thermal expansion vibration
JPH07280744A (en) Specimen evaluation method by thermo-optical displacement measurement
JP2886755B2 (en) Microstructure measuring device
SU1763884A1 (en) Method for thickness measuring of optically transparent objects
JPH0545140A (en) Method and device for measuring radius of curvature
JP2004156946A (en) Thin film evaluation device
JP2672758B2 (en) Sample thermoelasticity evaluation device
JPH0734371Y2 (en) Laser ultrasonic flaw detector
CN113984894A (en) Laser ultrasonic nondestructive testing device and method based on double wave mixing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees