JPH05288721A - Evaluating method of sample by photothermal displacement measurement - Google Patents

Evaluating method of sample by photothermal displacement measurement

Info

Publication number
JPH05288721A
JPH05288721A JP4090817A JP9081792A JPH05288721A JP H05288721 A JPH05288721 A JP H05288721A JP 4090817 A JP4090817 A JP 4090817A JP 9081792 A JP9081792 A JP 9081792A JP H05288721 A JPH05288721 A JP H05288721A
Authority
JP
Japan
Prior art keywords
sample
light
frequency
thermal expansion
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4090817A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takamatsu
弘行 高松
Hirobumi Imanaka
博文 今中
Shingo Suminoe
伸吾 住江
Yoshiro Nishimoto
善郎 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4090817A priority Critical patent/JPH05288721A/en
Publication of JPH05288721A publication Critical patent/JPH05288721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an evaluating apparatus of a sample by photothermal displacement measurement which enables measurement of true thermal expansion vibration without being affected by disturbance such as a change in the reflectance of the sample due to a change in the temperature of the sample, a change in plasma density, etc. CONSTITUTION:An interference light of a reflected light (beam 1) on a sample 3 of a radiant light for excitation and measurement applied onto the sample 3 by an He-Ne laser 1 with the radiant light (beam 2) is detected by a photoelectric converter 4. At this time, detected data are made a beat wave E corresponding to a periodic difference Fb by giving the periodic difference between the beam 1 and the beam 2, while the beam 1 is made a periodic light intensity-modulated by a frequency F. By an oscillator 10 and a phase shifter 9, a sine wave R0 having the same phase as the beat wave E and a sine wave R being different in a phase of 90 deg. from the sine wave R0 are generated. A ratio S1 between frequency F components extracted by lock-in amplifiers 13 and 14 out of values obtained by multiplying the beat wave E by the sine waves R0 and R by multipliers 7 and 12 is determined by a divider 15. Based on this ratio S1, thermal expansion vibration of the sample 3 is measured. According to the constitution stated above, evaluation of the sample can be executed with high precision without being affected by disturbance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料に周期的に強度変調
した励起光を照射し,これにより生じる試料表面の熱膨
張振動を測定して試料の欠陥等を評価する試料評価方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample evaluation method for irradiating a sample with excitation light whose intensity is modulated periodically and measuring the thermal expansion vibration of the sample surface caused by the excitation light to evaluate defects and the like of the sample.

【0002】[0002]

【従来の技術】試料に周期的に強度変調した励起光を照
射すると,試料はこの光の吸収により発熱し,これによ
り熱膨張する。照射光は周期的に強度変調しているた
め,発熱による試料の温度変化は周期的となり,試料は
熱膨張をおこす。これらの熱応答を計測することにより
試料を評価する手法は光音響計測技術として知られてい
る。図3はマイケルソン型レーザ光干渉法により試料の
熱膨張振動を計測する手法を示したものである(Mirand
a,APPLID OPTICS Vo122,No18,P2882(1983))。ここに
61は被測定試料,62は試料に熱膨張振動を与えるた
めの励起光源であり,チョッパー63により励起光源6
2からの光を強度変調し,試料61に照射する。この熱
膨張振動をレーザ光干渉法により計測する。そのために
測定用レーザ64からの光を半透鏡65で二分し,一方
を試料の熱膨張測定点に,他方を空間的に固定した鏡6
6に照射させ,これらからの反射光を干渉させ光電変換
器67で受光する。光電変換器67からの電気出力Eは
次式で表される。 E=C1 +C2 ・cos(P(t)+Φ)…(1′) ここで,C1 ,C2 及びΦは試料61や干渉計の構成や
光電変換係数等に依存する定数,P(t)は励起光照射
による熱膨張振動による試料の表面変位による位相変化
であり,この計測により試料の熱膨張振動(位相Φ及び
振幅L)を計測し,試料の熱弾性的性質を評価する。図
4は反射率計測法に基づく手法である(特開昭61−2
046)。励起レーザ30からの光を変調器32に周期
的に強度変調し試料22に照射し,試料に周期的温度変
化を与える。この温度変化が試料に光反射率の変化をも
たらす。この反射率の変化を検出するために測定用レー
ザ50を,試料の温度変化計測点(本図においては励起
レーザ照射点と同位置)にミラー36を通して照射し,
その反射光を光検出器56で検出する。この出力から信
号処理回路58により,反射率の変化を求める。
2. Description of the Related Art When a sample is irradiated with excitation light whose intensity is modulated periodically, the sample absorbs this light to generate heat, which causes thermal expansion. Since the irradiation light is intensity-modulated periodically, the temperature change of the sample due to heat generation becomes periodic and the sample undergoes thermal expansion. A method of evaluating a sample by measuring these thermal responses is known as a photoacoustic measurement technique. Figure 3 shows a method for measuring thermal expansion vibration of a sample by Michelson type laser light interferometry (Mirand
a, APPLID OPTICS Vo122, No18, P2882 (1983)). Here, 61 is a sample to be measured, 62 is an excitation light source for giving thermal expansion vibration to the sample, and the excitation light source 6 is supplied by the chopper 63.
The light from 2 is intensity-modulated and irradiated on the sample 61. This thermal expansion vibration is measured by laser light interferometry. Therefore, the light from the measuring laser 64 is divided into two by a semi-transparent mirror 65, one of which is a measurement point of thermal expansion of the sample and the other of which is a spatially fixed mirror 6.
6 is irradiated, and the reflected light from these is made to interfere and is received by the photoelectric converter 67. The electric output E from the photoelectric converter 67 is represented by the following equation. E = C 1 + C 2 · cos (P (t) + Φ) (1 ′) where C 1 , C 2 and Φ are constants that depend on the configuration of the sample 61 or the interferometer, the photoelectric conversion coefficient, and the like, P ( t) is the phase change due to the surface displacement of the sample due to the thermal expansion vibration due to the excitation light irradiation, and the thermal expansion vibration (phase Φ and amplitude L) of the sample is measured by this measurement to evaluate the thermoelastic properties of the sample. FIG. 4 shows a method based on the reflectance measuring method (Japanese Patent Laid-Open No. 61-2).
046). Light from the excitation laser 30 is periodically intensity-modulated by the modulator 32 and is irradiated on the sample 22, and a periodic temperature change is given to the sample. This temperature change causes a change in the light reflectance of the sample. In order to detect this change in reflectance, a measurement laser 50 is applied to a sample temperature change measurement point (the same position as the excitation laser irradiation point in this figure) through the mirror 36,
The reflected light is detected by the photodetector 56. From this output, the signal processing circuit 58 determines the change in reflectance.

【0003】[0003]

【発明が解決しようとする課題】前者のマイケルソン型
レーザ光干渉により試料の熱膨張を計測する手法では,
前記(1′)式における定数C1 ,C2 及びΦの変化が
外乱として測定精度を低下させる。例えば励起光照射に
よる試料の温度変化およびプラズマ(電子,ホール)密
度の変化(半導体試料の場合)により試料の反射率が変
化する場合がある。この場合,干渉光の信号は反射率変
化に伴う外乱信号を含んでいることになり,干渉光の信
号から真の熱膨張信号を計測できない。また,後者の反
射率計測法に基づく手法は,試料の温度変化,プラズマ
密度変化の計測であるため,試料の熱膨張率等の弾性的
性質を得ることができない。また熱拡散膨張内の情報し
か得られないため,試料深部を評価できないという欠点
がある。更に基本的に温度変化にたいして,反射率が変
化する試料しか適用できない。従って本発明が目的とす
るところは,試料の温度変化,プラズマ密度の変化等に
よる試料の反射率の変化といった外乱の影響を受けず,
試料の真の熱膨張振動を計測することのできる光熱変位
計測による試料評価方法を提供することである。
In the former method of measuring thermal expansion of a sample by Michelson type laser light interference,
Changes in the constants C 1 , C 2 and Φ in the equation (1 ′) cause disturbances and reduce the measurement accuracy. For example, the reflectance of the sample may change due to the temperature change of the sample due to the irradiation of excitation light and the change of plasma (electron, hole) density (in the case of a semiconductor sample). In this case, the signal of the interference light includes the disturbance signal due to the change in reflectance, and the true thermal expansion signal cannot be measured from the signal of the interference light. Also, the latter method based on the reflectance measurement method cannot measure elastic properties such as the coefficient of thermal expansion of the sample because it measures changes in temperature and plasma density of the sample. In addition, since only information on thermal diffusion expansion can be obtained, there is the disadvantage that the deep part of the sample cannot be evaluated. Furthermore, basically, only the sample whose reflectance changes with respect to temperature change can be applied. Therefore, the object of the present invention is that it is not affected by disturbance such as a change in sample reflectance due to a change in sample temperature or plasma density.
It is to provide a sample evaluation method by photothermal displacement measurement capable of measuring the true thermal expansion vibration of a sample.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,試料に励起光を照射すると共に,上記試料
に照射される測定用の放射光の該試料での反射光と該放
射光との干渉光を検出し,上記干渉光の検出データに基
づいて上記試料の熱膨張振動を計測する光熱変位計測に
よる試料評価方法において,上記放射光と反射光との間
で所定の周期差を与えて上記検出データを該周期差に対
応するビート波となすと共に,上記励起光を所定周波数
で強度変調した周期光となし,上記ビート波に対して所
定の位相をなす正弦波と該正弦波に対して90°位相の
異なる正弦波とを上記ビート波にそれぞれ乗じた値の上
記所定周波数の成分の比に基づいて上記試料の熱膨張振
動を計測することを特徴とする光熱変位計測による試料
評価方法として構成されている。上記励起光は上記試料
に照射される測定用の放射光を所定周波数で強度変調し
た周期光とすることができる。又,上記励起光は,上記
測定用の放射光とは別の光源から発せられたものとする
こともできる。更に,上記所定周波数の成分の比をその
基本周波数成分の比とすることもできる。更に,上記所
定周波数の成分の比をその基本周波数の2倍の周波数成
分の比とすることもできる。更に,上記所定の位相を上
記ビート波に対して同位相とすることもできる。
In order to achieve the above-mentioned object, the present invention irradiates a sample with excitation light, and at the same time, the reflected light of the radiated light for measurement applied to the sample and the radiated light for measurement. In a sample evaluation method by photothermal displacement measurement, which detects interference light with light and measures thermal expansion vibration of the sample based on the detection data of the interference light, a predetermined cycle difference between the emitted light and the reflected light. To form the detection data into a beat wave corresponding to the period difference and form the excitation light into a periodic light intensity-modulated at a predetermined frequency, and form a sine wave and a sine wave having a predetermined phase with respect to the beat wave. According to the photothermal displacement measurement, the thermal expansion vibration of the sample is measured based on the ratio of the component of the predetermined frequency of the value obtained by multiplying the sine wave having a 90 ° phase difference with respect to the wave and the beat wave. As a sample evaluation method It is. The excitation light may be periodic light obtained by intensity-modulating the measurement emission light with which the sample is irradiated at a predetermined frequency. Further, the excitation light may be emitted from a light source different from the radiation light for measurement. Further, the ratio of the components of the above-mentioned predetermined frequency can be used as the ratio of its fundamental frequency components. Furthermore, the ratio of the component of the above-mentioned predetermined frequency can be set to the ratio of the frequency component twice the fundamental frequency. Further, the predetermined phase may be the same as the beat wave.

【0005】[0005]

【作用】本発明によれば,試料に励起光を照射すると共
に,上記試料に照射される測定用の放射光の該試料での
反射光と該放射光との干渉光を検出し,上記干渉光の検
出データに基づいて上記試料の熱膨張振動を計測するに
際して,上記放射光と反射光との間で所定の周期差を与
えることにより上記検出データが該周期差に対応するビ
ート波となると共に,上記励起光を所定周波数で強度変
調することにより該励起光が所定周波数の周期光とな
る。上記ビート波に対して所定の位相をなす正弦波と該
正弦波に対して90°位相の異なる正弦波とを上記ビー
ト波にそれぞれ乗じた値の上記所定周波数の成分の比に
基づいて上記試料の熱膨張振動が計測される。上記励起
光を,上記試料に照射される測定用の放射光を所定周波
数で強度変調した周期光とすることにより,励起光源と
放射光源とが一体化される。又,上記励起光を上記測定
用の放射光とは別の光源から発せられるものとすること
もできる。更に,上記所定周波数の成分の比をその基本
周波数成分の比とすることにより,外乱成分を除去する
ことができる。更に,上記所定周波数の成分の比をその
基本周波数の2倍の周波数成分の比とすることによって
も,外乱成分を除去することができる。更に,上記所定
の位相を上記ビート波に対して同位相とすることによ
り,該ビート波に含まれる熱膨張振動成分が強調され
る。その結果,試料の温度変化,プラズマ密度の変化等
による試料の反射率の変化といった外乱の影響を受け
ず,試料の真の熱膨張振動を計測することができる。
According to the present invention, the sample is irradiated with the excitation light, and the interference light between the reflected light from the sample and the emitted light for measurement applied to the sample is detected to detect the interference. When measuring the thermal expansion vibration of the sample based on the detection data of light, by giving a predetermined period difference between the emitted light and the reflected light, the detection data becomes a beat wave corresponding to the period difference. At the same time, the excitation light is intensity-modulated at a predetermined frequency so that the excitation light becomes periodic light having a predetermined frequency. The sample based on the ratio of the component of the predetermined frequency of the value obtained by multiplying the beat wave by a sine wave having a predetermined phase with respect to the beat wave and a sine wave having a 90 ° phase difference from the sine wave. The thermal expansion vibration of is measured. The excitation light and the emission light source are integrated by using the excitation light as periodic light in which the intensity of the measurement emission light with which the sample is irradiated is modulated at a predetermined frequency. Further, the excitation light may be emitted from a light source different from the emission light for measurement. Further, the disturbance component can be removed by setting the ratio of the components of the predetermined frequency as the ratio of the fundamental frequency components. Further, the disturbance component can also be removed by setting the ratio of the components of the above-mentioned predetermined frequency to the ratio of the frequency components twice the fundamental frequency. Further, by making the predetermined phase the same as the beat wave, the thermal expansion vibration component contained in the beat wave is emphasized. As a result, the true thermal expansion vibration of the sample can be measured without being affected by disturbance such as a change in sample reflectance due to a change in sample temperature or plasma density.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る光熱変位計測による
試料評価装置Oの概略構成を示す全体回路図,図2は試
料の内部欠陥を検出する手法の概念図である。本実施例
に係る試料評価方法は,基本的には前記図3の従来例と
同様のレーザ光干渉法により試料の熱膨張振動を計測す
るものである。しかし,本実施例では測定用放射光と試
料での反射光との間で所定の周期差を与えると共に励起
光を所定周波数で強度変調し,上記放射光と反射光の干
渉光から上記所定周波数の成分を抽出処理することによ
り外乱要素を除去した点で従来例と異なる。以下,本実
施例においては主として上記従来例と異なる部分につい
て説明し,従来例と同様の部分については既述のとうり
であるので,その詳細説明は省略する。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. Here, FIG. 1 is an overall circuit diagram showing a schematic configuration of a sample evaluation apparatus O by photothermal displacement measurement according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of a method for detecting an internal defect of a sample. The sample evaluation method according to the present embodiment basically measures the thermal expansion vibration of the sample by the same laser light interference method as in the conventional example of FIG. However, in this embodiment, a predetermined period difference is provided between the measurement radiated light and the reflected light from the sample, and the excitation light is intensity-modulated at a predetermined frequency. This is different from the conventional example in that the disturbance element is removed by extracting the component of. Hereinafter, in the present embodiment, the parts different from the above-mentioned conventional example will be mainly described, and the same parts as the conventional example are as described above, and therefore detailed description thereof will be omitted.

【0007】図1に示す如く本実施例に係る試料評価装
置Oでは,励起光源でありかつ測定用の放射光源でもあ
るHe−Neレーザ1からの出射光を半透過鏡HM1に
よりビーム1およびビーム2に二分する。そして,音響
光学変調器2によりビーム1の光の振動周波数をFbシ
フトすると共に,光強度を周波数Fで強度変調する。こ
の光をレンズL1で集光し,試料3に照射する。試料3
はこの光照射により加熱され,熱膨張をおこす。この熱
膨張をレーザ光干渉法で計測する。次にこの装置Oによ
る計測原理について述べる。ビーム1の試料3からの反
射光は,半透鏡HM2で反射させ,半透鏡HM3でビー
ム2(光の振動周波数はビーム1とFb異なる)と干渉
させる。この干渉光を光電変換器4で受光する。光電変
換器4からの出力をフィルタ5を通した後の信号(ビー
ト波信号)Eは次式で表される。 E=A(t)・cos(2πFbt+P(t)+Φ) …(1) ここで,A(t)はビーム1の強度変調度合いおよび試
料,干渉光学系等に依存する関数,P(t)はビーム1
による試料の熱膨張振動によるビーム1の位相変化,Φ
はP(t)が零(振動が無い)ときのビーム1,ビーム
2間の光路長差による位相差である。P(t)は例えば
試料が励起光により正弦波振動(振幅L,周波数F,位
相q)しているとき,次式で表される。 P(t)=(4π/λ)・L・sin(2πFt+q)(λは光の波長) …(2)
As shown in FIG. 1, in the sample evaluation apparatus O according to the present embodiment, the emitted light from the He-Ne laser 1 which is both an excitation light source and a radiation source for measurement is beam 1 and beam by a semitransparent mirror HM1. Divide into two. Then, the vibration frequency of the light of the beam 1 is shifted by Fb by the acousto-optic modulator 2, and the light intensity is intensity-modulated by the frequency F. This light is condensed by the lens L1 and irradiated on the sample 3. Sample 3
Is heated by this light irradiation and causes thermal expansion. This thermal expansion is measured by laser light interferometry. Next, the measurement principle of the device O will be described. The reflected light of the beam 1 from the sample 3 is reflected by the semi-transparent mirror HM2 and interferes with the beam 2 (the vibration frequency of the light is different from that of the beam 1 by Fb) by the semi-transparent mirror HM3. The interference light is received by the photoelectric converter 4. The signal (beat wave signal) E after the output from the photoelectric converter 4 has passed through the filter 5 is represented by the following equation. E = A (t) · cos (2πFbt + P (t) + Φ) (1) where A (t) is a function depending on the intensity modulation degree of the beam 1 and the sample, the interference optical system, and P (t) is Beam 1
Phase change of beam 1 due to thermal expansion vibration of sample due to
Is the phase difference due to the optical path length difference between the beam 1 and the beam 2 when P (t) is zero (no vibration). P (t) is expressed by the following equation, for example, when the sample vibrates sinusoidally (amplitude L, frequency F, phase q) by the excitation light. P (t) = (4π / λ) · L · sin (2πFt + q) (λ is the wavelength of light) (2)

【0008】周波数F,Fb成分を含む信号Eを検波器
11に通した後に,乗算器12により発振器10からの
周波数Fbの正弦波信号Roに乗算して信号V1とす
る。信号V1はこの乗算により周波数Fb成分がとり除
かれており,次式で表される。 V1=K1 ・A(t)・cos(2πFt)(K1 は定数) …(3) 次に,信号Eのビート波に対して,位相が90°異なる
信号Rを生成する。即ち,発振器10からの周波数Fb
なる正弦波信号に,低域通過フィルタ8による位相検出
および位相シフタ9による位相補正を加えて信号Rを生
成する。信号Rは次式で表される。 R=K・sin(2πFbt+Φ) (Kは定数) …(4) この信号Rを乗算器7により信号Eと乗算して信号V1
と同様に周波数成分Fbをとり除き,信号V2とする。
信号V2はLがλに比べて十分小さいとき,次式で表さ
れる。 V2=K2 ・A(t)・(4π/λ)・L・sin(2πFt+q) (K2 は定数) …(5) だだし,信号V1,V2は高周波帯である周波数2Fb
帯の信号成分を例えば図示しないフィルタにより取り除
いている。次に,ロックインアンプ13,14により信
号V1の周波数F成分(Vf1)および信号V2の周波
数F成分(Vf2)を抽出する。信号Vf1およびVf
2は次式で表される。 Vf1=A(t) …(6) Vf2=C・A(t)・(2π/λ)・L …(7) (Cは定数) そして,除算器15により信号Vf2と信号Vf1との
比S1を算出する。比S1は次式で表される。 S1=C・(2π/λ)・L …(8) 比S1には,上記(1)式における係数A(t)を含ん
でいない。以上のようにして求めた比S1から,前述の
従来例での問題点で示した試料の温度変化,プラズマ密
度の変化等による試料の反射率の変化といった外乱の影
響を受けず,試料3の真の熱膨張振動を計測することが
できる。その結果,高精度で試料の評価を行うことがで
きる。又,上記実施例では,信号Rを信号Eと同位相と
している。このため,両信号R,E間で位相を変えた場
合に比べて信号Eに含まれる熱膨張振動成分であるLが
強調され,上記外乱の影響を受けなくなる。従って,熱
膨張振動の計測精度を一層向上させることができる。更
に,上記実施例では励起光源と測定用の放射光源とを一
体化しているが,別々の光源を設けても良い。更に,上
記信号V1,V2共,高周波帯である周波数2Fb成分
を例えば図示しないフィルタにより取り除いて,周波数
F成分を抽出しているが,逆に周波数2Fb成分を残し
てこれを抽出しても良い。更に,図2に示す如く,試料
3の表面に熱膨張振動を誘起するレーザ光(励起光)を
照射し,熱膨張振動による熱弾性波を試料3の背面ある
いは照射点から離れた位置で検出しても良い。この場
合,検出される振動には,弾性波伝搬中の情報(弾性的
特性)を含んでおり,試料3の内部の欠陥等を検出する
ことができる(図3の従来例では,励起光の拡散長内の
情報しか得られないため,このような評価はできな
い)。尚,上記実施例では,励起用兼測定用レーザとし
てHe−Neレーザ1を用いたが,色素レーザ等波長可
変光源を用いれば,試料3の分光的評価が可能となる。
尚,上記実施例ではビーム1,2を空間に放射している
が,実使用に際してはこれらのビーム1,2を光ファイ
バで導光し,干渉させる光学系としても何ら支障はな
い。
After passing the signal E containing the frequency F and Fb components through the detector 11, the multiplier 12 multiplies the sine wave signal Ro of the frequency Fb from the oscillator 10 to obtain the signal V1. The signal V1 has the frequency Fb component removed by this multiplication, and is represented by the following equation. V1 = K 1 · A (t) · cos (2πFt) (K 1 is a constant) (3) Next, a signal R having a phase difference of 90 ° with respect to the beat wave of the signal E is generated. That is, the frequency Fb from the oscillator 10
Then, the signal R is generated by applying the phase detection by the low pass filter 8 and the phase correction by the phase shifter 9 to the sine wave signal. The signal R is expressed by the following equation. R = K · sin (2πFbt + Φ) (K is a constant) (4) This signal R is multiplied by the signal E by the multiplier 7 to obtain the signal V1.
Similarly, the frequency component Fb is removed and the signal V2 is obtained.
The signal V2 is expressed by the following equation when L is sufficiently smaller than λ. V2 = K 2 · A (t) · (4π / λ) · L · sin (2πFt + q) (K 2 is a constant) (5) However, the signals V1 and V2 are frequency 2Fb which is a high frequency band.
The band signal component is removed by, for example, a filter (not shown). Next, the lock-in amplifiers 13 and 14 extract the frequency F component (Vf1) of the signal V1 and the frequency F component (Vf2) of the signal V2. Signals Vf1 and Vf
2 is represented by the following equation. Vf1 = A (t) (6) Vf2 = C · A (t) · (2π / λ) · L (7) (C is a constant) Then, the divider 15 causes the ratio S1 between the signal Vf2 and the signal Vf1. To calculate. The ratio S1 is expressed by the following equation. S1 = C · (2π / λ) · L (8) The ratio S1 does not include the coefficient A (t) in the above equation (1). From the ratio S1 obtained as described above, the influence of the disturbance such as the change of the sample reflectance due to the temperature change of the sample and the change of the plasma density, which are shown in the problems in the above-mentioned conventional example, is not affected, and True thermal expansion vibration can be measured. As a result, the sample can be evaluated with high accuracy. In the above embodiment, the signal R has the same phase as the signal E. Therefore, as compared with the case where the phase is changed between the two signals R and E, the thermal expansion vibration component L included in the signal E is emphasized and is not affected by the disturbance. Therefore, the measurement accuracy of the thermal expansion vibration can be further improved. Further, although the excitation light source and the measurement radiation light source are integrated in the above embodiment, separate light sources may be provided. Further, the frequency F component is extracted by removing the frequency 2Fb component, which is a high frequency band, from both the signals V1 and V2 by, for example, a filter (not shown), but conversely, the frequency 2Fb component may be left and extracted. .. Further, as shown in FIG. 2, the surface of the sample 3 is irradiated with laser light (excitation light) that induces thermal expansion vibration, and thermoelastic waves due to the thermal expansion vibration are detected at the back surface of the sample 3 or at a position away from the irradiation point. You may. In this case, the detected vibration contains the information (elastic characteristic) during the propagation of the elastic wave, and the defect inside the sample 3 can be detected (in the conventional example of FIG. 3, the excitation light Such an evaluation cannot be made because only information within the diffusion length can be obtained). Although the He-Ne laser 1 is used as the excitation / measurement laser in the above embodiment, the sample 3 can be spectrally evaluated by using the wavelength variable light source such as the dye laser.
In the above embodiment, the beams 1 and 2 are radiated into the space, but in actual use, there is no problem with an optical system in which the beams 1 and 2 are guided by an optical fiber and interfere with each other.

【0009】[0009]

【発明の効果】本発明に係る光熱変位計測による試料評
価方法は,上記したように構成されているため,試料の
温度変化,プラズマ密度の変化等による試料の反射率の
変化といった外乱の影響を受けず,真の熱膨張振動を計
測することができる。その結果,高精度で試料の評価を
行うことができる。
Since the sample evaluation method by photothermal displacement measurement according to the present invention is configured as described above, the influence of disturbance such as the change of the sample reflectance due to the temperature change of the sample, the change of the plasma density, etc. It is possible to measure the true thermal expansion vibration without receiving it. As a result, the sample can be evaluated with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る光熱変位計測による
試料評価装置Oの概略構成を示す全体回路図。
FIG. 1 is an overall circuit diagram showing a schematic configuration of a sample evaluation apparatus O by photothermal displacement measurement according to an embodiment of the present invention.

【図2】 試料の内部欠陥を検出する手法の概念図。FIG. 2 is a conceptual diagram of a method of detecting an internal defect of a sample.

【図3】 従来のマイケルソン型レーザ干渉法により試
料の熱膨張振動を計測する手法を示す説明図。
FIG. 3 is an explanatory diagram showing a method for measuring thermal expansion vibration of a sample by a conventional Michelson laser interferometry.

【図4】 従来の反射率計測法に基づく手法を示す説明
図。
FIG. 4 is an explanatory diagram showing a method based on a conventional reflectance measuring method.

【符号の説明】[Explanation of symbols]

1…He−Neレーザ(励起用兼測定用レーザ) 2…音響光学変調器 3…試料 4…光電変換器 7,12…乗算器 9…位相シフタ 10…発振器 11…検波器 13,14…ロックインアンプ 15…除算器 1 ... He-Ne laser (excitation and measurement laser) 2 ... Acousto-optical modulator 3 ... Sample 4 ... Photoelectric converter 7, 12 ... Multiplier 9 ... Phase shifter 10 ... Oscillator 11 ... Detector 13, 14 ... Lock In-amp 15 ... Divider

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料に励起光を照射すると共に,上記試
料に照射される測定用の放射光の該試料での反射光と該
放射光との干渉光を検出し,上記干渉光の検出データに
基づいて上記試料の熱膨張振動を計測する光熱変位計測
による試料評価方法において,上記放射光と反射光との
間で所定の周期差を与えて上記検出データを該周期差に
対応するビート波となすと共に,上記励起光を所定周波
数で強度変調した周期光となし,上記ビート波に対して
所定の位相をなす正弦波と該正弦波に対して90°位相
の異なる正弦波とを上記ビート波にそれぞれ乗じた値の
上記所定周波数の成分の比に基づいて上記試料の熱膨張
振動を計測することを特徴とする光熱変位計測による試
料評価方法。
1. The detection data of the interference light is obtained by irradiating the sample with excitation light and detecting interference light between the reflection light of the sample and the emission light for measurement with which the sample is irradiated. In the sample evaluation method by photothermal displacement measurement for measuring the thermal expansion vibration of the sample based on the above, a predetermined cycle difference is given between the emitted light and the reflected light, and the detection data is converted into a beat wave corresponding to the cycle difference. And the excitation light is intensity-modulated at a predetermined frequency to form a periodic light, and a sine wave having a predetermined phase with respect to the beat wave and a sine wave having a 90 ° phase difference with respect to the sine wave are beat. A sample evaluation method by photothermal displacement measurement, characterized in that the thermal expansion vibration of the sample is measured based on the ratio of the component of the predetermined frequency of the value multiplied by each wave.
【請求項2】 上記励起光が,上記試料に照射される測
定用の放射光を所定周波数で強度変調した周期光である
請求項1記載の光熱変位計測による試料評価方法。
2. The sample evaluation method by photothermal displacement measurement according to claim 1, wherein the excitation light is periodic light obtained by intensity-modulating the measurement radiated light with which the sample is irradiated at a predetermined frequency.
【請求項3】 上記励起光が,上記測定用の放射光とは
別の光源から発せられる請求項1記載の光熱変位計測に
よる試料評価方法。
3. The sample evaluation method by photothermal displacement measurement according to claim 1, wherein the excitation light is emitted from a light source different from the emission light for measurement.
【請求項4】 上記所定周波数の成分の比が,その基本
周波数成分の比である請求項1,2又は3記載の光熱変
位計測による試料評価方法。
4. The sample evaluation method by photothermal displacement measurement according to claim 1, wherein the ratio of the components of the predetermined frequency is the ratio of the fundamental frequency components thereof.
【請求項5】 上記所定周波数の成分の比が,その基本
周波数の2倍の周波数成分の比である請求項1,2又は
3記載の光熱変位計測による試料評価方法。
5. The sample evaluation method by photothermal displacement measurement according to claim 1, wherein the ratio of the components of the predetermined frequency is a ratio of frequency components twice the fundamental frequency.
【請求項6】 上記所定の位相が上記ビート波に対して
同位相である請求項1,2又は3記載の光熱変位計測に
よる試料評価方法。
6. The sample evaluation method by photothermal displacement measurement according to claim 1, wherein the predetermined phase is in phase with the beat wave.
JP4090817A 1992-04-10 1992-04-10 Evaluating method of sample by photothermal displacement measurement Pending JPH05288721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4090817A JPH05288721A (en) 1992-04-10 1992-04-10 Evaluating method of sample by photothermal displacement measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4090817A JPH05288721A (en) 1992-04-10 1992-04-10 Evaluating method of sample by photothermal displacement measurement

Publications (1)

Publication Number Publication Date
JPH05288721A true JPH05288721A (en) 1993-11-02

Family

ID=14009153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090817A Pending JPH05288721A (en) 1992-04-10 1992-04-10 Evaluating method of sample by photothermal displacement measurement

Country Status (1)

Country Link
JP (1) JPH05288721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017389A (en) * 2005-07-11 2007-01-25 Yamatake Corp Flow detection device
JP2007170960A (en) * 2005-12-21 2007-07-05 Kobe Steel Ltd Apparatus and method for measuring thermoelastic property
JP2019164010A (en) * 2018-03-19 2019-09-26 株式会社東芝 Optical inspection apparatus, semiconductor element, and optical inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017389A (en) * 2005-07-11 2007-01-25 Yamatake Corp Flow detection device
JP2007170960A (en) * 2005-12-21 2007-07-05 Kobe Steel Ltd Apparatus and method for measuring thermoelastic property
JP4496164B2 (en) * 2005-12-21 2010-07-07 株式会社神戸製鋼所 Thermoelastic property measuring device, thermoelastic property measuring method
JP2019164010A (en) * 2018-03-19 2019-09-26 株式会社東芝 Optical inspection apparatus, semiconductor element, and optical inspection method

Similar Documents

Publication Publication Date Title
JP3273501B2 (en) Apparatus and method for measuring variation in refractive index of gas in measurement path
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
US7646486B2 (en) Modulated reflectance measurement system using UV probe
US5298970A (en) Sample evaluating method by using thermal expansion displacement
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JPH05288721A (en) Evaluating method of sample by photothermal displacement measurement
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP4119385B2 (en) Photothermal conversion measuring device
JPH05288720A (en) Evaluating method of sample by ultrasonic vibration measurement
US6295131B1 (en) Interference detecting system for use in interferometer
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
JP2006317325A (en) Apparatus for measuring photothermal conversion
KR0168444B1 (en) Sample evaluating method by using thermal expansion displacement
JPH05288698A (en) Evaluation of specimen by means of optical thermal displacement measurement
JP2923779B1 (en) Optical interference device for ultrasonic detection
US5805282A (en) Method and apparatus for coherence observation by interference noise
JP2735368B2 (en) Sample evaluation method using thermal expansion vibration
JPH04273048A (en) Sample evaluation using thermal expansion vibration
Chen et al. New technique of photodisplacement imaging using one laser for both excitation and detection
JP2672758B2 (en) Sample thermoelasticity evaluation device
EP0920599A1 (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
JPH11190670A (en) Surface temperature measuring device and surface temperature measuring method
JPH0617864B2 (en) Sample evaluation method using thermal expansion vibration