JP2007170960A - Apparatus and method for measuring thermoelastic property - Google Patents

Apparatus and method for measuring thermoelastic property Download PDF

Info

Publication number
JP2007170960A
JP2007170960A JP2005368442A JP2005368442A JP2007170960A JP 2007170960 A JP2007170960 A JP 2007170960A JP 2005368442 A JP2005368442 A JP 2005368442A JP 2005368442 A JP2005368442 A JP 2005368442A JP 2007170960 A JP2007170960 A JP 2007170960A
Authority
JP
Japan
Prior art keywords
sample
thin film
metal thin
light
thermoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005368442A
Other languages
Japanese (ja)
Other versions
JP4496164B2 (en
Inventor
Hiroyuki Takamatsu
弘行 高松
Aya Miyake
綾 三宅
Masahito Amanaka
将人 甘中
Shugo Miyake
修吾 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP2005368442A priority Critical patent/JP4496164B2/en
Publication of JP2007170960A publication Critical patent/JP2007170960A/en
Application granted granted Critical
Publication of JP4496164B2 publication Critical patent/JP4496164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly sensitively measure the thermoelastic properties of samples to be measured without processing the samples. <P>SOLUTION: Pulse light L0 irradiates a sample 1 to generate elastic waves. A metal thin film 11 is arranged in such a way that a coupling agent 2 for transmitting the elastic waves generated in the sample 1 may be filled between the sample 1 and the metal thin film 11. Measuring light (a leaser beam) irradiates the surface of the metal thin film 11 to generate surface plasmon resonance, and elastic waves are generated in the sample 1 by irradiation with pulse light L0 to detect the intensity of reflected light L2 of the measuring light L1 to the metal thin film 11 by a photodetector 6. The irradiation angle θ of the measuring light L1 is adjusted on the basis of detection results of the reflected light L2 into a condition which enables the highly sensitive measurement of the thermoelastic properties of the surface of the metal thin film 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測定対象である試料について弾性波が生じた場合の特性変化を測定する熱弾性特性測定装置及び熱弾性特性測定方法に関するものである。   The present invention relates to a thermoelastic characteristic measuring apparatus and a thermoelastic characteristic measuring method for measuring a characteristic change when an elastic wave is generated in a sample to be measured.

近年、半導体デバイスや電子情報の記録メディアの集積度が益々向上し、また、その動作速度が益々高速化する中、そのデバイス等におけるサブマイクロメートルからナノメートルの単位の高い空間分解能で熱特性(熱物性)を測定し、その測定結果に基づいて発熱対策や熱設計を行うことが非常に重要となっている。
例えば、高密度光記録デバイスはレーザ光により記録層が加熱されるが、その記録層の温度上昇は、記録層、多層薄膜及び基板等の各薄膜材料の熱特性に依存する。このため、高密度光記録デバイスについて高精度の熱設計を行うためには、それを構成する薄膜材料各々の微小領域の熱特性(熱物性)を測定することが不可欠である。また、発熱によって熱膨張する薄膜が、熱応力によって剥離する可能性を評価する上でも、薄膜材料の微小領域の熱特性を測定することは重要である。その他、Si基板とその表層膜との密着度を評価するために行われるSOIウェハの表面近傍の欠陥検出や、半導体レーザ、高周波パワーデバイス、DVD記録膜等の熱負荷が高い薄膜デバイスの熱解析、応力解析、欠陥検出及び膜の密着度評価や、光学的に不透明な金属膜の膜圧測定等のアプリケーションにおいても、薄膜材料の微小域における熱特性を測定することは重要である。
これに対し、特許文献1には、試料に加熱用のレーザ光と他の測温用のレーザ光とを照射し、測温用のレーザ光の反射光の強度を検出することにより、試料の温度変化を測定する微小領域熱物性測定装置が示されている。また、特許文献1には、反射光の変化(反射率の変化)の検出感度を高めるために、試料の表面に金属薄膜を形成させることも示されている。
特開2000−121585号公報
In recent years, the integration density of semiconductor devices and electronic information recording media has been further improved, and the operating speed has been increased, so that the thermal characteristics of such devices with high spatial resolution from submicrometers to nanometers ( It is very important to measure thermophysical properties and to take measures against heat generation and thermal design based on the measurement results.
For example, in a high-density optical recording device, the recording layer is heated by laser light, and the temperature rise of the recording layer depends on the thermal characteristics of each thin film material such as the recording layer, the multilayer thin film, and the substrate. For this reason, in order to perform high-accuracy thermal design for high-density optical recording devices, it is indispensable to measure the thermal characteristics (thermophysical properties) of the microregions of each thin film material constituting the high-density optical recording device. In addition, it is important to measure the thermal characteristics of a minute region of the thin film material in order to evaluate the possibility that the thin film that thermally expands due to heat generation is peeled off due to thermal stress. In addition, defect detection near the surface of an SOI wafer, which is performed to evaluate the degree of adhesion between the Si substrate and its surface film, and thermal analysis of thin film devices with high thermal loads such as semiconductor lasers, high frequency power devices, DVD recording films, etc. In applications such as stress analysis, defect detection, film adhesion evaluation, and film pressure measurement of an optically opaque metal film, it is important to measure thermal characteristics in a microscopic region of a thin film material.
In contrast, Patent Document 1 irradiates a sample with a laser beam for heating and another laser beam for temperature measurement, and detects the intensity of the reflected light of the laser beam for temperature measurement. A micro-region thermophysical property measuring apparatus for measuring a temperature change is shown. Patent Document 1 also shows that a metal thin film is formed on the surface of a sample in order to increase detection sensitivity of reflected light change (reflectance change).
JP 2000-121585 A

しかしながら、試料の温度変化に起因する反射率の変化、特に微小領域での反射率の変化は非常に微小であることが多く、特許文献1に示されるように、試料の温度変化をその試料の反射率の変化(測温用のレーザ光の反射光の強度変化)として検出する場合、検出感度が悪いという問題点があった。これに対し、特許文献1に示されるように、試料の反射率変化の感度を上げるために、試料表面に金属薄膜を形成させる加工を施す場合、試料ごとに金属薄膜を形成させる加工が手間であるという問題点もあった。さらに、金属薄膜が形成された試料はもはや製品として用いることはできないため、良品と不良品とを分ける検査等には採用できないという問題点もあった。
従って、本発明は上記事情に鑑みてなされたものであり、その目的とするところは、測定対象とする試料に加工を施すことなく、試料の熱特性を高感度で測定できる熱弾性特性測定装置及び熱弾性特性測定方法を提供することにある。
However, the change in reflectance caused by the temperature change of the sample, particularly the change in reflectance in a minute region is often very small. When detecting as a change in reflectivity (change in intensity of reflected light of laser light for temperature measurement), there is a problem that detection sensitivity is poor. On the other hand, as shown in Patent Document 1, when processing to form a metal thin film on the sample surface is performed in order to increase the sensitivity of the change in reflectance of the sample, the processing to form the metal thin film for each sample is troublesome. There was also a problem that there was. Furthermore, since the sample on which the metal thin film is formed can no longer be used as a product, there is a problem that it cannot be used for an inspection or the like that separates a good product from a defective product.
Therefore, the present invention has been made in view of the above circumstances, and its object is to provide a thermoelastic property measuring apparatus capable of measuring the thermal properties of a sample with high sensitivity without processing the sample to be measured. And providing a thermoelastic property measuring method.

上記目的を達成するために本発明は、半導体や記録メディア等の所定の試料について弾性波が生じた場合の特性変化、即ち、熱弾性特性を測定する熱弾性特性測定装置或いはその方法に適用されるものであり、その特徴は、前記試料との間にその試料に生じる弾性波を伝搬する弾性波伝搬媒体が充填された状態で金属薄膜が配置され、所定の測定光照射手段によりその金属薄膜の表面に所定の測定光を照射して表面プラズモン共鳴を生じさせるとともに、所定の弾性波生成手段によって前記試料に弾性波を生じさせ、所定の反射光検出手段により前記測定光の前記金属薄膜に対する反射光の強度を検出するように構成されていることである。
これにより、試料が弾性波によって加熱されるとともに、前記弾性波伝搬媒体の屈折率が変化する結果、その媒体に接する金属薄膜の表面プラズモン共鳴の状態が変化し、これにより金属薄膜の反射率、即ち、前記反射光の強度が大きく変化する。また、弾性波による試料の加熱状態の変化と前記弾性波伝搬媒体の屈折率変化及び金属薄膜の反射率変化(即ち、前記反射光の強度変化)との間には相関関係がある。従って、上記構成によれば、試料の弾性波による微小な加熱状態の変化(熱特性)を、前記反射光の強度変化として高感度で測定できる。しかも、測定対象とする試料に加工を施すことを要さない。
In order to achieve the above object, the present invention is applied to a thermoelastic characteristic measuring apparatus or method for measuring a change in characteristics when an elastic wave is generated on a predetermined sample such as a semiconductor or a recording medium, that is, a thermoelastic characteristic. The characteristic is that a metal thin film is arranged between the sample and an elastic wave propagation medium that propagates an elastic wave generated in the sample, and the metal thin film is irradiated by a predetermined measuring light irradiation means. The surface of the sample is irradiated with a predetermined measurement light to cause surface plasmon resonance, an elastic wave is generated in the sample by a predetermined elastic wave generation means, and the measurement light is applied to the metal thin film by a predetermined reflected light detection means. It is configured to detect the intensity of the reflected light.
As a result, the sample is heated by the elastic wave, and the refractive index of the elastic wave propagation medium changes. As a result, the surface plasmon resonance state of the metal thin film in contact with the medium changes, thereby the reflectance of the metal thin film, That is, the intensity of the reflected light changes greatly. Further, there is a correlation between the change in the heating state of the sample due to the elastic wave, the change in the refractive index of the elastic wave propagation medium, and the change in the reflectance of the metal thin film (that is, the change in the intensity of the reflected light). Therefore, according to the above configuration, a minute change in the heating state (thermal characteristic) due to the elastic wave of the sample can be measured with high sensitivity as the intensity change of the reflected light. Moreover, it is not necessary to process the sample to be measured.

ここで、前記弾性波生成手段としては、パルス変調や正弦波変調等による強度変調を施したレーザ光を前記試料に照射する手段が考えられる。これにより、圧電素子を試料に接触させる等の手段に比べ、ごく微小な領域に高い精度でかつ非接触で弾性波を発生させることができ好適である。
また、前記反射光検出手段の検出結果に基づいて前記測定光の前記金属薄膜に対する照射角度(入射角度)を調節する測定光照射角度調節手段や、同検出結果に基づいて前記測定光の波長を調節する測定光波長調節手段を(これらの一方又は両方を)設けた構成が望ましい。
これにより、金属薄膜の表面に生じさせる表面プラズモン共鳴の状態を、熱弾性特性を高感度で測定できる状態に調節することが可能となる。
また、前記金属薄膜を保持する具体的な構成として、前記測定光及び前記反射光を透過させつつ前記金属薄膜を保持するプリズム等の金属薄膜保持手段を設けることが考えられる。
なお、前記弾性波伝搬媒体としては、液状若しくはゲル状の非圧縮性流体(例えば、水、アルコール、油等)が考えられる。
Here, as the elastic wave generating means, means for irradiating the sample with laser light subjected to intensity modulation by pulse modulation, sinusoidal modulation or the like can be considered. Accordingly, it is preferable that an elastic wave can be generated in a very small area with high accuracy and in a non-contact manner as compared with a means for bringing a piezoelectric element into contact with a sample.
Further, the measurement light irradiation angle adjusting means for adjusting the irradiation angle (incident angle) of the measurement light to the metal thin film based on the detection result of the reflected light detection means, and the wavelength of the measurement light based on the detection result A configuration in which measuring light wavelength adjusting means for adjusting (one or both of them) is provided is desirable.
As a result, it is possible to adjust the surface plasmon resonance state generated on the surface of the metal thin film so that the thermoelastic characteristics can be measured with high sensitivity.
In addition, as a specific configuration for holding the metal thin film, it is conceivable to provide metal thin film holding means such as a prism that holds the metal thin film while transmitting the measurement light and the reflected light.
The elastic wave propagation medium may be a liquid or gel incompressible fluid (for example, water, alcohol, oil, etc.).

本発明によれば、試料が弾性波によって加熱されるとともに、その弾性波が金属薄膜に伝搬することにより、金属薄膜の表面プラズモン共鳴の状態が変化し、その金属薄膜に照射した測定光の反射光強度が大きく変化する。その結果、試料の弾性波による微小な加熱状態の変化(熱特性)を、前記反射光の強度変化として高感度で測定できる。しかも、測定対象とする試料ごとに金属薄膜を形成させるという加工の手間を要さず、さらに、熱弾性特性の測定専用の試料を別途用意する必要がないため、良品と不良品とを分ける検査等の幅広い分野への適用が可能となる。   According to the present invention, the sample is heated by the elastic wave, and the elastic wave propagates to the metal thin film, thereby changing the surface plasmon resonance state of the metal thin film, and reflecting the measurement light irradiated to the metal thin film. The light intensity changes greatly. As a result, a minute change in the heating state (thermal characteristics) due to the elastic wave of the sample can be measured with high sensitivity as the intensity change of the reflected light. In addition, there is no need for processing to form a metal thin film for each sample to be measured, and there is no need to prepare a separate sample dedicated to measuring thermoelastic properties. Can be applied to a wide range of fields.

以下添付図面を参照しながら、本発明の実施の形態について説明し、本発明の理解に供する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
ここに、図1は本発明の実施形態に係る熱弾性特性測定装置Xの概略構成を表す図、図2は熱弾性特性測定装置Xにおけるパルス光の照射方式の第1実施例を表す図、図3は熱弾性特性測定装置Xにおけるパルス光の照射方式の第2実施例を表す図、図4は表面プラズモン共鳴状態の金属薄膜における測定光の入射角と反射率との関係を表すグラフ、図5は熱弾性特性測定装置Xによる測定手順を表すフローチャートである。
Embodiments of the present invention will be described below with reference to the accompanying drawings for understanding of the present invention. In addition, the following embodiment is an example which actualized this invention, Comprising: It is not the thing of the character which limits the technical scope of this invention.
FIG. 1 is a diagram showing a schematic configuration of a thermoelastic property measuring apparatus X according to an embodiment of the present invention. FIG. 2 is a diagram showing a first example of a pulsed light irradiation method in the thermoelastic property measuring apparatus X. FIG. 3 is a diagram showing a second embodiment of the pulsed light irradiation method in the thermoelastic property measuring apparatus X, and FIG. 4 is a graph showing the relationship between the incident angle and the reflectance of the measuring light in the metal thin film in the surface plasmon resonance state, FIG. 5 is a flowchart showing a measurement procedure by the thermoelastic property measuring apparatus X.

本発明の実施形態に係る熱弾性特性測定装置Xは、測定対象である試料1に弾性波を生じさせ、その弾性波が生じた場合の試料1の特性変化を測定する装置である。
以下、図1を参照しつつ、熱弾性特性測定装置Xの構成について説明する。
図1に示すように、熱弾性特性測定装置Xは、プリズム3、測定光レーザ4、測定光反射ミラー5及びその方向調節装置5a、光検出器6、レンズ7、信号処理装置8、コンピュータ9、パルスレーザ10、金属薄膜11及びパルス光反射ミラー12等を備えて構成されている。
プリズム3は、その下面に金属薄膜11が形成されており、その金属薄膜11の保持部材として機能するものである。金属薄膜11は、例えば厚さ50nm程度の薄膜であり、真空蒸着等によりプリズム3の下面に保持されている。その材質としては、金や銀等が望ましい。
また、プリズム3の下面の金属薄膜11は、試料1との間に、後述する測定光L1の照射によってその試料1に生じる弾性波を伝搬する媒体であるカップリング材2(弾性波伝搬媒体の一例)が充填された状態で配置される。このカップリング材2は、液状若しくはゲル状の非圧縮性流体(例えば、水、アルコール、油等)である。
ここで、カップリング材2は、スポイド等により試料1の表面に垂らして金属薄膜11と試料1との間に滞留させてもよく、或いは水等の粘性の低いカップリング材2を金属薄膜11と試料1との間に流して流動させてもよい。
The thermoelastic characteristic measuring apparatus X according to the embodiment of the present invention is an apparatus that generates an elastic wave in the sample 1 to be measured and measures the characteristic change of the sample 1 when the elastic wave is generated.
Hereinafter, the configuration of the thermoelastic property measuring apparatus X will be described with reference to FIG.
As shown in FIG. 1, the thermoelastic characteristic measuring device X includes a prism 3, a measuring light laser 4, a measuring light reflecting mirror 5 and its direction adjusting device 5a, a photodetector 6, a lens 7, a signal processing device 8, and a computer 9. And a pulse laser 10, a metal thin film 11, a pulsed light reflecting mirror 12, and the like.
The prism 3 has a metal thin film 11 formed on the lower surface thereof, and functions as a holding member for the metal thin film 11. The metal thin film 11 is a thin film having a thickness of about 50 nm, for example, and is held on the lower surface of the prism 3 by vacuum deposition or the like. The material is preferably gold or silver.
Further, the metal thin film 11 on the lower surface of the prism 3 is coupled to the sample 1 with a coupling material 2 (a medium of an elastic wave propagation medium) that propagates an elastic wave generated in the sample 1 by irradiation with the measurement light L1 described later. 1 example) is filled. The coupling material 2 is a liquid or gel incompressible fluid (for example, water, alcohol, oil, etc.).
Here, the coupling material 2 may be hung on the surface of the sample 1 by a spoid or the like and stay between the metal thin film 11 and the sample 1, or the coupling material 2 having a low viscosity such as water may be used as the metal thin film 11. And may flow between the sample 1 and the sample 1.

測定光レーザ4は、所定の波長のレーザ光(レーザビーム)である測定光L1をプリズム3の下面に形成された金属薄膜11の表面(プリズム3側の面)に照射するものであり、これにより、金属薄膜11の表面に表面プラズモン共鳴を生じさせる(測定光照射手段の一例)。
表面プラズモン共鳴とは、金属薄膜11の表面の電子波と、その表面に所定の照射角度(入射角度)で照射された光(測定光L1)とがカップリングを起こす現象をいい、この表面プラズモン共鳴が生じている状態では、照射光の反射率が著しく低下する。この表面プラズモン共鳴の発生条件は、金属薄膜11の材質や厚み、照射光(測定光L1)の照射角度及び波長、金属薄膜11に接するカップリング材2の屈折率(或いは誘電率といっても等価である)の各条件の組合せによって定まる。本実施形態では、金属薄膜11の厚み及び測定光L1の波長が一定であるものとする。このため、測定光L1の照射角度及びカップリング材2の屈折率によって表面プラズモン共鳴の発生状態が定まり、その結果、測定光L1の反射率が定まる。
ここで、熱弾性特性測定装置Xでは、測定光L1を試料1に向けて変向する測定光反射ミラー5が、方向調節装置5aによりその向き(即ち、測定光L1の試料1に対する照射角度)が調節可能に支持されている。この方向調節装置5aによって測定光Lの試料1に対する照射角度を調節することにより、金属薄膜11における表面プラズモン共鳴の発生状態を調節できる。
The measurement light laser 4 irradiates the surface of the metal thin film 11 formed on the lower surface of the prism 3 (the surface on the prism 3 side) with the measurement light L1 that is a laser beam (laser beam) having a predetermined wavelength. Thus, surface plasmon resonance is generated on the surface of the metal thin film 11 (an example of measurement light irradiation means).
The surface plasmon resonance is a phenomenon in which an electron wave on the surface of the metal thin film 11 and light (measurement light L1) irradiated on the surface at a predetermined irradiation angle (incident angle) cause coupling. In the state where resonance occurs, the reflectance of the irradiated light is significantly reduced. The conditions for generating this surface plasmon resonance are the material and thickness of the metal thin film 11, the irradiation angle and wavelength of the irradiation light (measurement light L1), and the refractive index (or dielectric constant) of the coupling material 2 in contact with the metal thin film 11. It is determined by the combination of each condition. In the present embodiment, it is assumed that the thickness of the metal thin film 11 and the wavelength of the measurement light L1 are constant. For this reason, the generation state of the surface plasmon resonance is determined by the irradiation angle of the measurement light L1 and the refractive index of the coupling material 2, and as a result, the reflectance of the measurement light L1 is determined.
Here, in the thermoelastic characteristic measuring device X, the measuring light reflecting mirror 5 that changes the measuring light L1 toward the sample 1 is directed by the direction adjusting device 5a (that is, the irradiation angle of the measuring light L1 with respect to the sample 1). Is supported in an adjustable manner. The state of surface plasmon resonance in the metal thin film 11 can be adjusted by adjusting the irradiation angle of the measurement light L with respect to the sample 1 by the direction adjusting device 5a.

図1に示すように、測定光L1は、プリズム3内にその一の側面(図1に向かって左側の傾斜面)からその面に対して垂直或いはほぼ垂直の方向に入射し、下面の金属薄膜11に反射した反射光L2は、プリズム3外へ他の側面(図1に向かって右側の傾斜面)からその面に対して垂直或いはほぼ垂直の方向に出射する。このように、プリズム3は、測定光L1及び反射光L2を透過させつつ金属薄膜11を保持する(金属薄膜保持手段の一例)。なお、金属薄膜11の保持手段は、必ずしもプリズム3でなくても、測定光L1及びその反射光L2をほとんど損失なく透過させつつ金属薄膜11を保持できるガラス等により構成される他の部材であってもかまわない。
パルスレーザ10は、例えばパルス幅が10ps(ピコsec)程度の短パルスのレーザ光L0を出力するものであり、そのパルス光L0が試料2の背面(金属薄膜11の配置側と反対側の面)に照射され、試料1に弾性波を生じさせる機能を果たす(弾性波生成手段の一例)。図1に示す例では、パルス光反射ミラー12によりパルス光L0が変向されて試料1の背面に照射されている。
なお、ここでは、試料1に弾性波を生じさせる手段として、パルス光L0(パルス変調したレーザ光)を試料1に照射するパルスレーザ10を設けているが、この他、例えば正弦波の強度変調を施したレーザ光を出力するレーザ光出力装置等、強度変調したレーザ光を試料1に照射する他の手段を採用することも考えられる。
As shown in FIG. 1, the measurement light L1 enters the prism 3 from one side surface (the inclined surface on the left side in FIG. 1) in a direction perpendicular or substantially perpendicular to the surface, and the lower surface metal. The reflected light L2 reflected by the thin film 11 is emitted from the other side surface (the inclined surface on the right side in FIG. 1) to the outside of the prism 3 in a direction perpendicular or substantially perpendicular to the surface. Thus, the prism 3 holds the metal thin film 11 while transmitting the measurement light L1 and the reflected light L2 (an example of a metal thin film holding unit). The holding means for the metal thin film 11 is not necessarily the prism 3, but is another member made of glass or the like that can hold the metal thin film 11 while allowing the measurement light L1 and the reflected light L2 to pass therethrough with almost no loss. It doesn't matter.
The pulse laser 10 outputs a short pulse laser beam L0 having a pulse width of about 10 ps (picoseconds), for example, and the pulse beam L0 is the back surface of the sample 2 (the surface opposite to the arrangement side of the metal thin film 11). ) To generate an elastic wave in the sample 1 (an example of an elastic wave generating means). In the example shown in FIG. 1, the pulsed light L <b> 0 is redirected by the pulsed light reflecting mirror 12 and applied to the back surface of the sample 1.
Here, a pulse laser 10 that irradiates the sample 1 with pulsed light L0 (pulse-modulated laser light) is provided as means for generating an elastic wave in the sample 1, but in addition to this, for example, intensity modulation of a sine wave It is also conceivable to employ other means for irradiating the sample 1 with intensity-modulated laser light, such as a laser light output device that outputs laser light subjected to.

光検出器6は、測定光L1が金属薄膜11の表面に対して反射した反射光L2の強度を電気信号(電圧)に変換することによって検出するものであり(反射光検出手段の一例)、例えば、フォトダイオード等によって構成されている。なお、反射光L2は、レンズ7により集光されて光検出器6に入射される。
信号処理装置8は、光検出器8により検出された反射光L2の検出信号(強度信号)に対し、増幅処理やノイズ除去のためのフィルタリング処理等の信号処理を施すものである。この信号処理装置8により処理後の反射光検出信号は、コンピュータ9に取り込まれる。
コンピュータ9は、所定の制御プログラムを実行することにより、反射光検出信号を取り込んでハードディスク等の記憶装置に記録するとともに、パルスレーザ10によるパルス光L0の出力タイミングの制御及び方向調節装置5aの制御(即ち、測定光L1の試料1に対する照射角度の制御)、並びに反射光検出信号についての各種演算処理を行うものである。
ここで、図1には示していないが、測定光L1及びパルス光L0の軌道に対する試料1の相対位置を移動させる移動機構を設ければなお好適である。この移動機構により位置を移動させつつ測定を行うことにより、試料1の部位ごとの特性を容易に測定して特性分布を得ることができる。この場合の移動機構としては、例えば、試料1のエッジ部をロボットアーム等により把持することによって試料1を移動させるものや、或いはパルス光L0を透過させる透明なガラス等の材料からなる試料台に試料1を載置させ、その試料台を移動させるもの等が考えられる。
The photodetector 6 detects the measurement light L1 by converting the intensity of the reflected light L2 reflected from the surface of the metal thin film 11 into an electric signal (voltage) (an example of reflected light detection means). For example, it is configured by a photodiode or the like. The reflected light L2 is collected by the lens 7 and is incident on the photodetector 6.
The signal processing device 8 performs signal processing such as amplification processing and filtering processing for noise removal on the detection signal (intensity signal) of the reflected light L2 detected by the photodetector 8. The reflected light detection signal processed by the signal processing device 8 is taken into the computer 9.
By executing a predetermined control program, the computer 9 captures the reflected light detection signal and records it in a storage device such as a hard disk, and controls the output timing of the pulsed light L0 by the pulse laser 10 and controls the direction adjusting device 5a. (In other words, the control of the irradiation angle of the measurement light L1 with respect to the sample 1) and various calculation processes for the reflected light detection signal are performed.
Here, although not shown in FIG. 1, it is more preferable to provide a moving mechanism for moving the relative position of the sample 1 with respect to the trajectories of the measuring light L1 and the pulsed light L0. By performing measurement while moving the position by this moving mechanism, it is possible to easily measure the characteristics of each part of the sample 1 and obtain the characteristic distribution. As a moving mechanism in this case, for example, a sample stage made of a material such as a transparent glass that transmits the pulsed light L0 or a material that moves the sample 1 by holding the edge portion of the sample 1 with a robot arm or the like is used. It is conceivable to place the sample 1 and move the sample stage.

図4は、表面プラズモン共鳴状態にある厚み50nmの金属薄膜11における測定光L1の照射角度θ(入射角)と反射率との関係を表すグラフである。
また、図4におけるグラフg1、g2及びg3の各々は、カップリング材2である水の屈折率が、所定の基準屈折率(=n0)であるとき(g1)、その基準屈折率に対して10-4分だけ変化した屈折率(=n0(1+10E−4))であるとき(g2)、及びその基準屈折率に対して10-3分だけ変化した屈折率(=n0(1+10E−3))であるとき(g3)のグラフを表す。
図4からわかるように、表面プラズモン共鳴状態にある金属薄膜11の反射率は、測定光L1の照射角度θが所定の角度(図4の例では、71.0°〜71.5°の間)である場合にほぼ0(ゼロ)に近い最低の状態となり、その前後の角度における変化が急峻となる。
また、カップリング材2の屈折率がわずか10-3分だけ変化しただけで、測定光L1の照射角度θに対する反射率の特性が、照射角度θについて0.1°程度シフトした状態となる。このように、カップリング材2の屈折率の微小な変化によって金属薄膜11における表面プラズモン共鳴の状態が変化し、金属薄膜11の反射率(即ち、反射光L2の強度)が大きく変化する。
例えば、図4のグラフの測定条件において、測定光L1の照射角度θが70.5°に設定されている場合、カップリング材2の屈折率が基準屈折率(=n0)である場合の反射率R1に対し、同屈折率が10-3分だけ変化したときの反射率R2は、約1.28倍にもなる(R2/R1≒1.28)。即ち、反射光L2の強度が約1.28倍に変化する。これにより、試料1の弾性波による微小な加熱状態の変化(熱特性)を、反射光L2の強度変化として高感度で測定できる。
FIG. 4 is a graph showing the relationship between the irradiation angle θ (incident angle) of the measurement light L1 and the reflectance in the metal thin film 11 having a thickness of 50 nm in a surface plasmon resonance state.
Further, each of the graphs g1, g2, and g3 in FIG. 4 shows that when the refractive index of water as the coupling material 2 is a predetermined reference refractive index (= n0) (g1), When the refractive index is changed by 10 −4 minutes (= n0 (1 + 10E−4)) (g2), and the refractive index changed by 10 −3 minutes with respect to the reference refractive index (= n0 (1 + 10E−3)) ) Represents the graph of (g3).
As can be seen from FIG. 4, the reflectance of the metal thin film 11 in the surface plasmon resonance state is such that the irradiation angle θ of the measurement light L1 is a predetermined angle (in the example of FIG. 4, between 71.0 ° and 71.5 °). ), The minimum state is almost 0 (zero), and the change in the angle before and after that becomes steep.
Further, the reflectance characteristic with respect to the irradiation angle θ of the measuring light L1 is shifted by about 0.1 ° with respect to the irradiation angle θ only by changing the refractive index of the coupling material 2 by only 10 −3 . As described above, the state of surface plasmon resonance in the metal thin film 11 is changed by a minute change in the refractive index of the coupling material 2, and the reflectance of the metal thin film 11 (that is, the intensity of the reflected light L2) is greatly changed.
For example, in the measurement conditions of the graph of FIG. 4, when the irradiation angle θ of the measurement light L1 is set to 70.5 °, the reflection when the refractive index of the coupling material 2 is the reference refractive index (= n0). The reflectance R2 when the refractive index changes by 10 −3 minutes with respect to the index R1 is about 1.28 times (R2 / R1≈1.28). That is, the intensity of the reflected light L2 changes about 1.28 times. Thereby, the minute change (thermal characteristic) of the heating state by the elastic wave of the sample 1 can be measured with high sensitivity as the intensity change of the reflected light L2.

次に、図5に示すフローチャートを参照しつつ、熱弾性特性測定装置Xによる熱弾性特性の測定手順について説明する。
測定手順は、大別して測定光L1の照射角度を調整するための調整工程(S1〜S5)と、測定光L1の照射角度が調整された状態で試料1を測定する測定工程(S6〜S10)とに分けられ、事前に調整工程が行われた上で、1回又は複数回の測定工程が行われる。なお、以下に示すS1、S2、…は、処理手順(ステップ)の識別符号を表す。
<調整工程:ステップS1〜S5>
調整工程では、まず、測定光レーザ4による測定光の出力が開始される(S1)。
次に、コンピュータ9により方向調節装置5aを制御して測定光L1の試料1に対する照射角度(以下、照射角度θという)を設定し(S2)、そのときの反射光L2の強度を光検出器6及び信号処理装置8を通じて検出するとともに、検出結果をコンピュータ9によりその記憶装置(ハードディスク等)に記録する(S3)という処理が、コンピュータ9により照射角度θの設定が所定の角度範囲について終了したと判別(S4)されるまで繰り返される。
このステップS2〜S4の処理により、図4のグラフにおける縦軸(反射率)が反射光L2の強度に置き換わった対応関係である、照射角度θと反射光L2の強度との対応関係を表す情報(以下、照射角・反射光強度対応情報という)がコンピュータ9の記憶手段に記録される。
そして、コンピュータ9により、前記照射角・反射光強度対応情報に基づいて、高い測定感度が得られる設定照射角度θ0が決定され、さらに、コンピュータ9が方向調節装置5aを制御することにより、照射角度θがその決定された設定照射角度θ0となるように調節される(S5)。
このように、方向調節装置5a及びこれを制御するコンピュータ9により、光検出器6による反射光Lの強度の検出結果に基づいて、測定光L1の金属薄膜11に対する照射角度θが調節される(S2〜S5:測定光照射角度調節手段の一例)。
例えば、照射角度θの単位変化幅に対する反射光L2の強度変化幅が最も大きくなるときの照射角度θが設定照射角度θ0とされる。これにより、試料1の加熱状態変化に対する反射光L2の強度変化が大きくなるように調整でき、高い測定感度を確保することができる。
以上の調整工程は、例えば、測定対象とする試料1ごと、或いはその試料1の種類(材質や形状等)ごと等に行われる。
また、ステップS1〜S5の終了後、不図示の後処理(測定光レーザ4の停止処理等)が行われた後に当該調整工程が終了する。
Next, a procedure for measuring thermoelastic properties by the thermoelastic property measuring apparatus X will be described with reference to the flowchart shown in FIG.
The measurement procedure is roughly divided into an adjustment step (S1 to S5) for adjusting the irradiation angle of the measurement light L1, and a measurement step (S6 to S10) for measuring the sample 1 in a state where the irradiation angle of the measurement light L1 is adjusted. After the adjustment process is performed in advance, one or a plurality of measurement processes are performed. S1, S2,... Shown below represent identification codes of processing procedures (steps).
<Adjustment process: Steps S1 to S5>
In the adjustment step, first, output of measurement light by the measurement light laser 4 is started (S1).
Next, the direction adjustment device 5a is controlled by the computer 9 to set the irradiation angle of the measurement light L1 with respect to the sample 1 (hereinafter referred to as irradiation angle θ) (S2), and the intensity of the reflected light L2 at that time is detected by a photodetector. 6 and the signal processing device 8 and the process of recording the detection result in the storage device (hard disk or the like) by the computer 9 (S3) is completed by the computer 9 for setting the irradiation angle θ for a predetermined angle range. Is repeated (S4).
Information representing the correspondence relationship between the irradiation angle θ and the intensity of the reflected light L2, which is a correspondence relationship in which the vertical axis (reflectance) in the graph of FIG. 4 is replaced with the intensity of the reflected light L2 by the processing of steps S2 to S4. (Hereinafter referred to as irradiation angle / reflected light intensity correspondence information) is recorded in the storage means of the computer 9.
Then, the computer 9 determines a set irradiation angle θ 0 at which a high measurement sensitivity is obtained based on the irradiation angle / reflected light intensity correspondence information, and further, the computer 9 controls the direction adjusting device 5a to thereby perform irradiation. The angle θ is adjusted to be the determined set irradiation angle θ 0 (S5).
As described above, the irradiation angle θ of the measurement light L1 with respect to the metal thin film 11 is adjusted by the direction adjusting device 5a and the computer 9 controlling the same based on the detection result of the intensity of the reflected light L by the photodetector 6 ( S2 to S5: an example of measuring light irradiation angle adjusting means).
For example, the irradiation angle θ when the intensity change width of the reflected light L2 with respect to the unit change width of the irradiation angle θ is the largest is the set irradiation angle θ 0 . Thereby, it can adjust so that the intensity | strength change of the reflected light L2 with respect to the heating state change of the sample 1 may become large, and can ensure a high measurement sensitivity.
The above adjustment process is performed, for example, for each sample 1 to be measured or for each type (material, shape, etc.) of the sample 1.
In addition, after completion of steps S1 to S5, after the post-processing (not shown) (processing for stopping the measuring light laser 4 or the like) is performed, the adjustment process is finished.

<測定工程:ステップS6〜S11>
調整工程の終了後、まず、測定工程では、照射角度θがステップS5で設定された設定照射角度θ0に保持(固定)された状態で、測定光レーザ4による測定光の出力が開始される(S6)。これにより、金属薄膜11の表面に測定光L1が照射され、金属薄膜11に表面プラズモン共鳴が生じる(測定光照射工程の一例)。
次に、コンピュータ9がパルスレーザ10を制御することにより、パルス光L0の出力条件(パルス幅や照射時間等)の設定(S7)及びその設定条件でのパルス光の出力(試料1に対する照射)(S9)が行われるとともに、パルス光の照射前後に渡る反射光L2の強度が、光検出器6及び信号処理装置8を通じて検出されるとともに、検出結果がコンピュータ9によりその記憶装置に記録される(S8、S10:反射光検出工程の一例)。このとき、パルス光L0の出力タイミング(出力状態の時間軸)と反射光L2の強度の検出タイミング(検出値の時間軸)との対応関係を表す情報や、パルス光の出力条件に関する情報も併せて記録される。
ステップS9の処理により、測定光L1が照射されている試料1に弾性波が生じ(弾性波生成工程の一例)。
このステップS7〜S10の処理が、コンピュータ9により所定の測定終了条件が成立したと判別(S11)されるまで繰り返され、その測定終了条件が成立した際に、不図示の後処理(測定光レーザ4の停止処理等)が行われた後に測定工程が終了する。
<Measurement process: Steps S6 to S11>
After the adjustment process is finished, first, in the measurement process, the measurement light laser 4 starts outputting measurement light with the irradiation angle θ held (fixed) at the set irradiation angle θ 0 set in step S5. (S6). Thereby, the measurement light L1 is irradiated on the surface of the metal thin film 11, and surface plasmon resonance occurs in the metal thin film 11 (an example of a measurement light irradiation process).
Next, the computer 9 controls the pulse laser 10 to set the output conditions (pulse width, irradiation time, etc.) of the pulsed light L0 (S7) and output the pulsed light under the set conditions (irradiation to the sample 1). (S9) is performed, and the intensity of the reflected light L2 before and after the irradiation of the pulsed light is detected through the photodetector 6 and the signal processing device 8, and the detection result is recorded in the storage device by the computer 9. (S8, S10: An example of a reflected light detection process). At this time, information indicating the correspondence between the output timing of the pulsed light L0 (the time axis of the output state) and the detection timing of the intensity of the reflected light L2 (the time axis of the detected value) and information on the output conditions of the pulsed light are also included. Recorded.
By the process of step S9, an elastic wave is generated in the sample 1 irradiated with the measurement light L1 (an example of an elastic wave generation process).
The processes in steps S7 to S10 are repeated until the computer 9 determines that a predetermined measurement end condition is satisfied (S11). When the measurement end condition is satisfied, post-processing (measurement light laser) (not shown) is performed. The measurement process is finished after the stop process 4) is performed.

以上に示した測定を行うことにより、試料1がパルス光L0の照射により生じた弾性波によって加熱されるとともに、その弾性波が金属薄膜11に伝搬することにより、金属薄膜11の表面プラズモン共鳴の状態が変化し、その金属薄膜11に照射した測定光の反射光L2の強度が大きく変化する。
その結果、試料1の弾性波による微小な加熱状態の変化(熱特性)を、反射光L2の強度変化として高感度で測定できる。しかも、測定対象とする試料1ごとに金属薄膜11を形成させるという加工の手間を要しない。
また、表面プラズモン共鳴が生じている状況下では、金属薄膜11の反射率は、その表層の数十nm程度の深さの部分の応力(屈折率)の変化に対して敏感であることから、熱弾性特性測定装置Xは、超短波長(例えば、数十nmの波長)の弾性波の検出に極めて有効である。
なお、ステップS7〜S10の処理により得られた測定データは、測定後にコンピュータ9により解析され、これにより試料1の熱弾性特性の評価がなされる。
例えば、パルス光L0の照射前後の反射光L2の強度の変化量、パルス光L0の出力時点から反射光L2の強度が変化するまでの時間(弾性波の試料1への到達時間に相当)、反射光L2の強度の周波数特性等が解析され、その解析結果に基づいて試料1の熱特性が評価される。より具体的には、当該熱弾性特性測定装置Xにより、熱特性が既知の基準試料についてステップS1〜S11の手順で測定してその測定データを記録しておき、その基準試料の測定データと、測定対象とする試料1の測定データとの比較によって試料1の熱特性が評価される。
By performing the measurement described above, the sample 1 is heated by the elastic wave generated by the irradiation of the pulsed light L0, and the elastic wave propagates to the metal thin film 11, thereby causing surface plasmon resonance of the metal thin film 11. A state changes and the intensity | strength of the reflected light L2 of the measurement light irradiated to the metal thin film 11 changes a lot.
As a result, a minute change in the heating state (thermal characteristics) due to the elastic wave of the sample 1 can be measured with high sensitivity as the intensity change of the reflected light L2. In addition, there is no need for processing for forming the metal thin film 11 for each sample 1 to be measured.
Further, under the situation where surface plasmon resonance occurs, the reflectance of the metal thin film 11 is sensitive to a change in stress (refractive index) at a depth of about several tens of nanometers on the surface layer. The thermoelastic characteristic measuring apparatus X is extremely effective for detecting an elastic wave having an ultrashort wavelength (for example, a wavelength of several tens of nm).
Note that the measurement data obtained by the processing in steps S7 to S10 is analyzed by the computer 9 after the measurement, whereby the thermoelastic characteristics of the sample 1 are evaluated.
For example, the amount of change in the intensity of the reflected light L2 before and after irradiation with the pulsed light L0, the time from when the pulsed light L0 is output until the intensity of the reflected light L2 changes (corresponding to the arrival time of the elastic wave to the sample 1), The frequency characteristic of the intensity of the reflected light L2 is analyzed, and the thermal characteristic of the sample 1 is evaluated based on the analysis result. More specifically, with the thermoelastic property measuring apparatus X, the measurement data of the reference sample whose thermal properties are already known is measured and recorded in accordance with the procedures of steps S1 to S11, the measurement data of the reference sample, The thermal characteristics of the sample 1 are evaluated by comparison with the measurement data of the sample 1 to be measured.

ところで、図1には、パルス光L0を試料1の背面側から照射する例について示したが、これに限るものではない。
図2は、パルス光L0が、試料2のおもて面(金属薄膜11が配置された側の面)における、金属薄膜11に対する測定光L1の照射部近傍に照射され、これにより試料1に弾性波を生じさせるパルス光の照射方式(第1実施例)を表したものである。この第1実施例では、金属薄膜11にパルス光L0を通過させる微小な孔11aが形成され、パルス光L0がプリズム3を透過して試料1に照射される。
また、図3は、パルス光L0が、試料2のおもて面における、金属薄膜11に対する測定光L1の照射部から少し離れた部分に照射され、これにより試料1に弾性波を生じさせるパルス光の照射方式(第2実施例)を表したものである。この第2実施例では、主として試料1の表層に生じて伝搬される弾性波(表面波)の影響が反射光L2の強度に反映され、試料1の表層部分の熱弾性特性を選択的に測定することが可能である。
このような図2及び図3に示すパルス光の照射方式を採用することも、本発明の実施形態の一例である。
FIG. 1 shows an example in which the pulsed light L0 is irradiated from the back side of the sample 1. However, the present invention is not limited to this.
In FIG. 2, the pulsed light L0 is irradiated on the front surface of the sample 2 (the surface on the side where the metal thin film 11 is disposed) in the vicinity of the irradiation portion of the measurement light L1 with respect to the metal thin film 11, thereby 2 shows a pulsed light irradiation method (first embodiment) for generating an elastic wave. In the first embodiment, a minute hole 11a that allows the pulsed light L0 to pass through is formed in the metal thin film 11, and the pulsed light L0 passes through the prism 3 and is irradiated onto the sample 1.
Further, FIG. 3 shows a pulse in which the pulsed light L0 is irradiated on a part of the front surface of the sample 2 slightly away from the irradiation part of the measuring light L1 on the metal thin film 11, thereby generating an elastic wave in the sample 1. This shows a light irradiation method (second embodiment). In the second embodiment, the influence of the elastic wave (surface wave) generated and propagated mainly on the surface layer of the sample 1 is reflected in the intensity of the reflected light L2, and the thermoelastic characteristics of the surface layer portion of the sample 1 are selectively measured. Is possible.
Employing the pulsed light irradiation method shown in FIGS. 2 and 3 is an example of the embodiment of the present invention.

また、前述した実施形態では、光検出器6による反射光L2の検出結果に基づいて、測定光L1の試料1に対する照射角度θを調節する(S2〜S5)例を示したが、これ以外の構成も考えられる。
例えば、方向調節装置5aの代わりに、或いはそれに加えて、測定光レーザ4により出力される測定光L1の波長を調節可能とする波長調節装置を設け、コンピュータ9がその波長調節装置を制御することにより、光検出器6による反射光L2の検出結果に基づいて、測定光L1の波長を調節する構成とすることも考えられる(測定光波長調節手段の一例)。なお、反射光L2の検出強度に基づいて、測定光L1の照射角度θ及び波長のいずれか一方の調節、或いは両方の調節を行うことが考えられる。
このような構成によっても、試料1の加熱状態変化に対する反射光L2の強度変化が大きくなるように調整でき、高い測定感度を確保することができる。
In the above-described embodiment, the example in which the irradiation angle θ of the measurement light L1 with respect to the sample 1 is adjusted based on the detection result of the reflected light L2 by the photodetector 6 (S2 to S5) has been described. Configuration is also conceivable.
For example, instead of or in addition to the direction adjusting device 5a, a wavelength adjusting device that can adjust the wavelength of the measuring light L1 output from the measuring light laser 4 is provided, and the computer 9 controls the wavelength adjusting device. Therefore, it is also conceivable to adjust the wavelength of the measurement light L1 based on the detection result of the reflected light L2 by the photodetector 6 (an example of measurement light wavelength adjusting means). Note that it is conceivable to adjust one or both of the irradiation angle θ and the wavelength of the measurement light L1 based on the detected intensity of the reflected light L2.
Even with such a configuration, the intensity change of the reflected light L2 with respect to the heating state change of the sample 1 can be adjusted to be large, and high measurement sensitivity can be ensured.

本発明は、弾性波により加熱された試料の熱特性を測定する熱弾性特性測定装置或いはその方法に利用可能である。     INDUSTRIAL APPLICABILITY The present invention can be used for a thermoelastic property measuring apparatus or method for measuring the thermal properties of a sample heated by elastic waves.

本発明の実施形態に係る熱弾性特性測定装置Xの概略構成を表す図。The figure showing the schematic structure of the thermoelastic property measuring apparatus X which concerns on embodiment of this invention. 熱弾性特性測定装置Xにおけるパルス光の照射方式の第1実施例を表す図。The figure showing 1st Example of the irradiation system of the pulsed light in the thermoelastic characteristic measuring apparatus X. FIG. 熱弾性特性測定装置Xにおけるパルス光の照射方式の第2実施例を表す図。The figure showing 2nd Example of the irradiation system of the pulsed light in the thermoelastic characteristic measuring apparatus X. FIG. 表面プラズモン共鳴状態の金属薄膜における測定光の入射角と反射率との関係を表すグラフ。The graph showing the relationship between the incident angle of the measurement light and the reflectance in the metal thin film in a surface plasmon resonance state. 熱弾性特性測定装置Xによる測定手順を表すフローチャート。The flowchart showing the measurement procedure by the thermoelastic characteristic measuring apparatus X.

符号の説明Explanation of symbols

X :熱弾性特性測定装置
1 :試料
2 :カップリング材
3 :プリズム
4 :測定光レーザ
5 :測定光反射ミラー
5a :方向調節装置
6 :光検出器
7 :レンズ
8 :信号処理装置
9 :コンピュータ
10 :パルスレーザ
11 :金属薄膜
12 :パルス光反射ミラー
S1、S2、… :処理手順(ステップ)
X: Thermoelastic characteristic measuring device 1: Sample 2: Coupling material 3: Prism 4: Measuring light laser 5: Measuring light reflecting mirror 5a: Direction adjusting device 6: Photo detector 7: Lens 8: Signal processing device 9: Computer 10: Pulse laser 11: Metal thin film 12: Pulsed light reflecting mirrors S1, S2,...: Processing procedure (step)

Claims (9)

所定の試料について弾性波が生じた場合の特性変化を測定する熱弾性特性測定装置であって、
前記試料との間に該試料に生じる弾性波を伝搬する弾性波伝搬媒体が充填された状態で配置される金属薄膜と、
前記金属薄膜の表面に所定の測定光を照射して表面プラズモン共鳴を生じさせる測定光照射手段と、
前記試料に弾性波を生じさせる弾性波生成手段と、
前記測定光の前記金属薄膜に対する反射光の強度を検出する反射光検出手段と、
を具備してなることを特徴とする熱弾性特性測定装置。
A thermoelastic property measuring apparatus for measuring a characteristic change when an elastic wave is generated for a predetermined sample,
A metal thin film disposed in a state filled with an elastic wave propagation medium that propagates an elastic wave generated in the sample between the sample and the sample;
Measuring light irradiation means for generating surface plasmon resonance by irradiating the surface of the metal thin film with a predetermined measuring light,
Elastic wave generating means for generating elastic waves in the sample;
Reflected light detection means for detecting the intensity of reflected light of the measurement light with respect to the metal thin film;
A thermoelastic property measuring apparatus comprising:
前記弾性波生成手段が、強度変調したレーザ光を前記試料に照射する手段である請求項1に記載の熱弾性特性測定装置。   2. The thermoelastic characteristic measuring apparatus according to claim 1, wherein the elastic wave generating means is means for irradiating the sample with intensity-modulated laser light. 前記弾性波生成手段が、パルス変調したレーザ光を前記試料に照射する手段である請求項2に記載の熱弾性特性測定装置。   The thermoelastic characteristic measuring apparatus according to claim 2, wherein the elastic wave generating means is means for irradiating the sample with pulse-modulated laser light. 前記反射光検出手段の検出結果に基づいて前記測定光の前記金属薄膜に対する照射角度を調節する測定光照射角度調節手段を具備してなる請求項1〜3のいずれかに記載の熱弾性特性測定装置。   The thermoelastic characteristic measurement according to any one of claims 1 to 3, further comprising measurement light irradiation angle adjusting means for adjusting an irradiation angle of the measurement light to the metal thin film based on a detection result of the reflected light detection means. apparatus. 前記反射光検出手段の検出結果に基づいて前記測定光の波長を調節する測定光波長調節手段を具備してなる請求項1〜4のいずれかに記載の熱弾性特性測定装置。   The thermoelastic characteristic measuring apparatus according to any one of claims 1 to 4, further comprising measurement light wavelength adjusting means for adjusting a wavelength of the measurement light based on a detection result of the reflected light detection means. 前記測定光及び前記反射光を透過させつつ前記金属薄膜を保持する金属薄膜保持手段を具備してなる請求項1〜5のいずれかに記載の熱弾性特性測定装置。   The thermoelastic characteristic measuring apparatus according to claim 1, further comprising a metal thin film holding unit that holds the metal thin film while transmitting the measurement light and the reflected light. 前記金属薄膜保持手段がプリズムである請求項6に記載の熱弾性特性測定装置。   The thermoelastic property measuring apparatus according to claim 6, wherein the metal thin film holding means is a prism. 前記弾性波伝搬媒体が、液状若しくはゲル状の非圧縮性流体である請求項1〜7のいずれかに記載の熱弾性特性測定装置。   The thermoelastic property measuring apparatus according to claim 1, wherein the elastic wave propagation medium is a liquid or gel-like incompressible fluid. 所定の試料について弾性波が生じることによる特性変化を測定する熱弾性特性測定方法であって、
前記試料との間に該試料に生じる弾性波を伝搬する弾性波伝搬媒体が充填された状態で配置される金属薄膜の表面に、所定の測定光を照射して表面プラズモン共鳴を生じさせる測定光照射工程と、
前記測定光が照射されている前記試料に弾性波を生じさせる弾性波生成工程と、
前記測定光の前記金属薄膜に対する反射光の強度を検出する反射光検出工程と、
を有してなることを特徴とする熱弾性特性測定方法。
A thermoelastic property measurement method for measuring a property change caused by the generation of elastic waves for a predetermined sample,
Measurement light that causes surface plasmon resonance by irradiating the surface of a metal thin film arranged with an elastic wave propagation medium that propagates elastic waves generated in the sample between the sample and a predetermined measurement light Irradiation process;
An elastic wave generating step for generating an elastic wave in the sample irradiated with the measurement light;
A reflected light detection step of detecting the intensity of reflected light of the measurement light with respect to the metal thin film;
A thermoelastic property measurement method comprising:
JP2005368442A 2005-12-21 2005-12-21 Thermoelastic property measuring device, thermoelastic property measuring method Expired - Fee Related JP4496164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005368442A JP4496164B2 (en) 2005-12-21 2005-12-21 Thermoelastic property measuring device, thermoelastic property measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368442A JP4496164B2 (en) 2005-12-21 2005-12-21 Thermoelastic property measuring device, thermoelastic property measuring method

Publications (2)

Publication Number Publication Date
JP2007170960A true JP2007170960A (en) 2007-07-05
JP4496164B2 JP4496164B2 (en) 2010-07-07

Family

ID=38297717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368442A Expired - Fee Related JP4496164B2 (en) 2005-12-21 2005-12-21 Thermoelastic property measuring device, thermoelastic property measuring method

Country Status (1)

Country Link
JP (1) JP4496164B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533737A (en) * 2009-07-16 2012-12-27 ケーエルエー−テンカー・コーポレーション Optical defect amplification for improved sensitivity on patterned layers.
JP2016148521A (en) * 2015-02-10 2016-08-18 株式会社リコー Optical sensor and image forming apparatus
JP2017519214A (en) * 2014-06-16 2017-07-13 ディアモンテク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングDiamontech Gmbh Non-invasive substance analysis
CN109900738A (en) * 2019-03-29 2019-06-18 中北大学 Device and method based on high power laser heating material
CN110544563A (en) * 2019-07-23 2019-12-06 华南理工大学 Flexible transparent copper circuit and preparation method and application thereof
CN111795802A (en) * 2020-06-18 2020-10-20 中国科学院合肥物质科学研究院 Device and method for measuring angle characteristic of light beam sampler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242616A (en) * 1990-02-21 1991-10-29 Ricoh Co Ltd Light source device for optical scanning and optical scanner
JPH05288721A (en) * 1992-04-10 1993-11-02 Kobe Steel Ltd Evaluating method of sample by photothermal displacement measurement
JP2000121585A (en) * 1998-10-13 2000-04-28 Agency Of Ind Science & Technol Measuring apparatus for thermophysical property in very small region
JP2003177090A (en) * 2001-12-11 2003-06-27 Fuji Photo Film Co Ltd Sensor utilizing total reflection attenuation
JP2004361256A (en) * 2003-06-05 2004-12-24 Aisin Seiki Co Ltd Surface plasmon resonance sensor and surface plasmon resonance measuring apparatus
JP2005315677A (en) * 2004-04-28 2005-11-10 Canon Inc Detector and detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242616A (en) * 1990-02-21 1991-10-29 Ricoh Co Ltd Light source device for optical scanning and optical scanner
JPH05288721A (en) * 1992-04-10 1993-11-02 Kobe Steel Ltd Evaluating method of sample by photothermal displacement measurement
JP2000121585A (en) * 1998-10-13 2000-04-28 Agency Of Ind Science & Technol Measuring apparatus for thermophysical property in very small region
JP2003177090A (en) * 2001-12-11 2003-06-27 Fuji Photo Film Co Ltd Sensor utilizing total reflection attenuation
JP2004361256A (en) * 2003-06-05 2004-12-24 Aisin Seiki Co Ltd Surface plasmon resonance sensor and surface plasmon resonance measuring apparatus
JP2005315677A (en) * 2004-04-28 2005-11-10 Canon Inc Detector and detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533737A (en) * 2009-07-16 2012-12-27 ケーエルエー−テンカー・コーポレーション Optical defect amplification for improved sensitivity on patterned layers.
JP2017519214A (en) * 2014-06-16 2017-07-13 ディアモンテク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングDiamontech Gmbh Non-invasive substance analysis
JP2016148521A (en) * 2015-02-10 2016-08-18 株式会社リコー Optical sensor and image forming apparatus
CN109900738A (en) * 2019-03-29 2019-06-18 中北大学 Device and method based on high power laser heating material
CN109900738B (en) * 2019-03-29 2021-05-11 中北大学 Device and method for heating material based on high-power laser
CN110544563A (en) * 2019-07-23 2019-12-06 华南理工大学 Flexible transparent copper circuit and preparation method and application thereof
CN111795802A (en) * 2020-06-18 2020-10-20 中国科学院合肥物质科学研究院 Device and method for measuring angle characteristic of light beam sampler
CN111795802B (en) * 2020-06-18 2022-02-15 中国科学院合肥物质科学研究院 Device and method for measuring angle characteristic of light beam sampler

Also Published As

Publication number Publication date
JP4496164B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP5406729B2 (en) Improved high-resolution acoustic microscope
EP1044362B1 (en) Improved method and apparatus for film-thickness measurements
US8622612B2 (en) Method and apparatus for determining the thermal expansion of a material
JP4496164B2 (en) Thermoelastic property measuring device, thermoelastic property measuring method
JP5274862B2 (en) Temperature measuring apparatus and temperature measuring method
US20060272418A1 (en) Opto-acoustic methods and apparatus for perfoming high resolution acoustic imaging and other sample probing and modification operations
US7050178B2 (en) Method and apparatus for increasing signal to noise ratio in a photoacoustic film thickness measurement system
JP2007260900A (en) Nanometer contact detection method and apparatus for precision machining
US20150198526A1 (en) Differential detection for surface plasmon resonance sensor and method
JP6530062B2 (en) Method and system for inspecting transparent wafers for electronics, optics or optoelectronics
JP2008537781A5 (en)
JP2006510019A (en) Method and apparatus for measuring thin film thickness by transient thermal reflectivity
CN114608456A (en) Measuring system and measuring method
JP5600374B2 (en) Terahertz spectrometer
JP2006084392A (en) Online crystal grain diameter measuring device, and measuring method using laser ultrasonic wave
JP2003075128A (en) Thickness measuring device of material and its method using focal length of optical fiber lens
JP2005127982A (en) Optical fiber probe using potential difference, and optical recording and regenerating device using the same
JP2006524813A (en) Thin film evaluation method
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
JPH1038856A (en) Light absorptance measuring instrument and measuring method
JP4109088B2 (en) Measuring method and measuring device
JP2005091119A (en) Method and analyzer for analyzing thermal physical property in micro area
KR100900477B1 (en) Apparatus of thickness variation and measuring method using the same
González-Colsa et al. Gradient-free temperature control over micrometric areas for thermoplasmonic applications in micro-and nano-devices
Wu et al. Single-beam photothermal microscopy: a new diagnostic tool for optical materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees