JP5600374B2 - Terahertz spectrometer - Google Patents

Terahertz spectrometer Download PDF

Info

Publication number
JP5600374B2
JP5600374B2 JP2007329926A JP2007329926A JP5600374B2 JP 5600374 B2 JP5600374 B2 JP 5600374B2 JP 2007329926 A JP2007329926 A JP 2007329926A JP 2007329926 A JP2007329926 A JP 2007329926A JP 5600374 B2 JP5600374 B2 JP 5600374B2
Authority
JP
Japan
Prior art keywords
terahertz
light
optical path
path length
hemispherical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007329926A
Other languages
Japanese (ja)
Other versions
JP2009150811A (en
Inventor
一城 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Nikon Corp
Original Assignee
Tochigi Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Nikon Corp filed Critical Tochigi Nikon Corp
Priority to JP2007329926A priority Critical patent/JP5600374B2/en
Publication of JP2009150811A publication Critical patent/JP2009150811A/en
Application granted granted Critical
Publication of JP5600374B2 publication Critical patent/JP5600374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明はテラヘルツ分光装置に関する。   The present invention relates to a terahertz spectrometer.

従来、テラヘルツパルス光(周波数がおおよそ0.1THzから10THzまでの範囲の電磁波)を用いた分光装置が知られている。   Conventionally, a spectroscopic device using terahertz pulse light (an electromagnetic wave having a frequency in a range of approximately 0.1 THz to 10 THz) is known.

この種の分光装置として、例えばテラヘルツパルス光を試料に照射してその試料を透過したテラヘルツパルス光の振幅と位相とを検出する透過測定光学系と、テラヘルツパルス光を試料に照射してその試料で反射したテラヘルツパルス光の振幅と位相とを検出する反射測定光学系とを1つの装置として構成したものがある(下記公報参照)。
特開2004−191302号公報
As this type of spectroscopic device, for example, a transmission measurement optical system that detects the amplitude and phase of terahertz pulse light that has been irradiated to the sample and transmitted through the sample, and the sample that has been irradiated with terahertz pulse light. The reflection measurement optical system that detects the amplitude and phase of the terahertz pulse light reflected at 1 is configured as one apparatus (see the following publication).
JP 2004-191302 A

ところが、分光装置が設置されている環境の温度変化等によって分光装置内の温度が変化すると、分光装置に使用している光学素子(シリコンレンズ等)の屈折率が変化し、位相情報に誤差が生じるため、高精度の測定ができなくなるという問題があった。   However, when the temperature in the spectroscopic device changes due to a change in the temperature of the environment in which the spectroscopic device is installed, the refractive index of the optical element (silicon lens, etc.) used in the spectroscopic device changes, resulting in an error in phase information. As a result, there is a problem that high-precision measurement cannot be performed.

この発明はこのような事情に鑑みてなされたもので、その課題は設置する環境温度が変化しても高精度の測定を行うことができるテラヘルツ分光装置を提供することである。   The present invention has been made in view of such circumstances, and its object is to provide a terahertz spectrometer capable of performing high-precision measurement even when the installed environmental temperature changes.

上記問題を解決するため請求項1記載の発明は、パルス光を発生するレーザ光源と、前記レーザ光源からのパルス光をポンプ光とプローブ光とに分割するビームスプリッタと、前記パルス光の照射によってテラヘルツパルス光を発生するテラヘルツ光発生器と、前記テラヘルツパルス光を検出するテラヘルツ光検出器と、前記テラヘルツ光発生器及び前記テラヘルツ光検出器の少なくとも一方に配置された半球状レンズと、前記ポンプ光又はプローブ光の光路中に配置された時間遅延装置とを備えたテラヘルツ分光装置において、前記プローブ光は繰返し周期が数十MHzのパルス光であり、該プローブ光の光路中に、温度変化による光路長の変化を補正するための光路長補正部材が少なくとも1個配置されており、前記半球状レンズの光軸上の長さの合計と、前記光路長補正部材の光軸上の長さの合計とはほぼ同じであり、前記半球状レンズと前記光路長補正部材とは同じ材料からなることを特徴とする。 In order to solve the above-mentioned problem, the invention described in claim 1 includes a laser light source that generates pulsed light, a beam splitter that splits pulsed light from the laser light source into pump light and probe light, and irradiation with the pulsed light. A terahertz light generator that generates terahertz pulse light, a terahertz light detector that detects the terahertz pulse light, a hemispherical lens disposed in at least one of the terahertz light generator and the terahertz light detector, and the pump In the terahertz spectrometer including a time delay device disposed in the optical path of the light or the probe light, the probe light is pulsed light having a repetition period of several tens of MHz, and the probe light is subjected to a temperature change in the optical path. the optical path length correction member for correcting the variation of the optical path length is arranged at least one optical axis of the hemispherical lens The total length of the total length of the optical axis of the optical path length correction member is approximately the same, the hemispherical lens and the optical path length correction member, characterized in that it consists of the same material.

請求項2記載の発明は、請求項1記載のテラヘルツ分光装置において、前記半球状レンズは、前記テラヘルツ光発生器と前記テラヘルツ光検出器との両方にそれぞれ配置されたことを特徴とする。   According to a second aspect of the present invention, in the terahertz spectrometer according to the first aspect, the hemispherical lens is disposed in both the terahertz light generator and the terahertz light detector.

請求項3記載の発明は、請求項1又は2記載のテラヘルツ分光装置において、前記時間遅延装置は、前記プローブ光の光路中に配置されたことを特徴とする。
請求項4記載の発明は、請求項1,2又は3記載のテラヘルツ分光装置において、前記光路長補正部材は、平行平板部材であることを特徴とする。
According to a third aspect of the present invention, in the terahertz spectrometer according to the first or second aspect, the time delay device is arranged in an optical path of the probe light.
According to a fourth aspect of the present invention, in the terahertz spectrometer according to the first, second, or third aspect, the optical path length correction member is a parallel plate member.

請求項記載の発明は、請求項1〜4のいずれか1項記載のテラヘルツ分光装置において、前記半球状レンズは、超半球レンズであることを特徴とする。 According to a fifth aspect of the present invention, in the terahertz spectrometer according to any one of the first to fourth aspects, the hemispherical lens is a super hemispherical lens.

請求項記載の発明は、請求項1〜のいずれか1項記載のテラヘルツ分光装置において、前記半球状レンズと前記光路長補正部材とは、共に単結晶半導体材料からなることを特徴とする。 The invention according to claim 6 is the terahertz spectrometer according to any one of claims 1 to 5 , wherein both the hemispherical lens and the optical path length correcting member are made of a single crystal semiconductor material. .

請求項記載の発明は、請求項記載のテラヘルツ分光装置において、前記単結晶半導体材料はシリコン単結晶であることを特徴とする。 According to a seventh aspect of the invention, in the terahertz spectrometer according to the sixth aspect , the single crystal semiconductor material is a silicon single crystal.

この発明によれば、設置する環境温度が変化しても高精度の測定を行うことができる。   According to the present invention, high-precision measurement can be performed even when the environmental temperature to be installed changes.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係るテラヘルツ分光装置の構成を模式的に示す全体構成図である。   FIG. 1 is an overall configuration diagram schematically showing the configuration of a terahertz spectrometer according to an embodiment of the present invention.

テラヘルツ分光装置100は、試料Sにテラヘルツパルス光を照射し、試料Sを透過したテラヘルツパルス光の電場強度の時間変化データを検出し、このデータに基づいて試料Sの複素誘電率や複素屈折率の波長依存性等を求めるものである。   The terahertz spectrometer 100 irradiates the sample S with terahertz pulse light, detects temporal change data of the electric field intensity of the terahertz pulse light transmitted through the sample S, and based on this data, the complex dielectric constant and complex refractive index of the sample S For determining the wavelength dependence and the like.

テラヘルツ分光装置100は、パルス光P1を発生するレーザ光源1と、レーザ光源1からのパルス光P1をポンプ光P2とプローブ光P3とに分割するビームスプリッタ2と、ポンプ光P2の照射によってテラヘルツパルス光T1を発生させるテラヘルツ光発生器3と、試料Sを保持するホルダ6と、試料Sを透過したテラヘルツパルス光T2を検出するテラヘルツ光検出器9とを備える。   The terahertz spectrometer 100 includes a laser light source 1 that generates pulsed light P1, a beam splitter 2 that splits the pulsed light P1 from the laser light source 1 into pump light P2 and probe light P3, and a terahertz pulse by irradiation with the pump light P2. The terahertz light generator 3 that generates the light T1, the holder 6 that holds the sample S, and the terahertz light detector 9 that detects the terahertz pulse light T2 transmitted through the sample S are provided.

また、テラヘルツ分光装置100は、周知の時系列テラヘルツ光検出法によりテラヘルツパルス光を検出する目的で、テラヘルツ光検出器9へ導かれるプローブ光P3の到達時間を変更する時間遅延装置10を備えている。時間遅延装置10は、可動ミラー10a、固定ミラー10b,10c及び駆動部(図示せず)を有する。可動ミラー10aは駆動部に固定されている。可動ミラー10aは、図1中、M方向に移動可能である。すなわち、テラヘルツパルス光T2の電場強度信号を検出するタイミングは、可動ミラー10aの移動による光路長の変化によって変更される。   The terahertz spectrometer 100 includes a time delay device 10 that changes the arrival time of the probe light P3 guided to the terahertz light detector 9 for the purpose of detecting terahertz pulse light by a known time-series terahertz light detection method. Yes. The time delay device 10 includes a movable mirror 10a, fixed mirrors 10b and 10c, and a drive unit (not shown). The movable mirror 10a is fixed to the drive unit. The movable mirror 10a is movable in the M direction in FIG. That is, the timing for detecting the electric field intensity signal of the terahertz pulse light T2 is changed by a change in the optical path length due to the movement of the movable mirror 10a.

更に、テラヘルツ分光装置100は、テラヘルツ光検出器9へ導かれるプローブ光P3の光路上に、光路長補正部材11を備える。   Further, the terahertz spectrometer 100 includes an optical path length correction member 11 on the optical path of the probe light P3 guided to the terahertz photodetector 9.

レーザ光源1で発生したパルス光P1は平面反射ミラーM1を経てビームスプリッタ2で2つのパルス光に分割される。レーザ光源1としては、例えばフェムト秒パルスレーザが用いられる。レーザ光源1で発生するパルス光P1は、中心波長が赤外領域のうちの1560nm程度、繰り返し周期が数十MHz、パルス幅が100fsec程度のパルス光である。   The pulsed light P1 generated by the laser light source 1 is split into two pulsed lights by the beam splitter 2 through the plane reflection mirror M1. For example, a femtosecond pulse laser is used as the laser light source 1. The pulsed light P1 generated by the laser light source 1 is pulsed light having a center wavelength of about 1560 nm in the infrared region, a repetition period of several tens of MHz, and a pulse width of about 100 fsec.

ビームスプリッタ2で2分割されたパルス光の一方はテラヘルツ光発生器3を励起してテラヘルツパルス光T1を発生させるためのポンプ光P2となる。このポンプ光P2は平面反射ミラーM2を介してテラヘルツ光発生器3へ入射する。テラヘルツ光発生器3にポンプ光P2が入射すると、テラヘルツ光発生器3からテラヘルツパルス光T1が発生する。テラヘルツ光発生器3は、光スイッチ素子及びバイアス回路を有する公知の装置である。テラヘルツ光発生器3から発生するテラヘルツパルス光T1は、概ね0.1×1012〜10×1012Hz(0.1〜10THz)の周波数領域の電磁波である。テラヘルツパルス光T1は、第1のテラヘルツ光学系5を介して収束し、試料ホルダ6に保持された試料Sに導かれる。第1のテラヘルツ光学系5は例えば楕円面ミラーである。 One of the pulse lights divided into two by the beam splitter 2 becomes pump light P2 for exciting the terahertz light generator 3 to generate terahertz pulse light T1. The pump light P2 is incident on the terahertz light generator 3 through the plane reflection mirror M2. When the pump light P <b> 2 is incident on the terahertz light generator 3, terahertz pulse light T <b> 1 is generated from the terahertz light generator 3. The terahertz light generator 3 is a known device having an optical switch element and a bias circuit. The terahertz pulse light T1 generated from the terahertz light generator 3 is an electromagnetic wave in a frequency region of approximately 0.1 × 10 12 to 10 × 10 12 Hz (0.1 to 10 THz). The terahertz pulsed light T1 is converged via the first terahertz optical system 5 and guided to the sample S held by the sample holder 6. The first terahertz optical system 5 is, for example, an ellipsoidal mirror.

試料Sを透過したテラヘルツパルス光T2は、試料Sの透過領域の物性情報を含む光である。テラヘルツパルス光T2は、第2のテラヘルツ光学系7を介して収束し、テラヘルツ光検出器9に導かれる。第2のテラヘルツ光学系5は例えば楕円面ミラーである。   The terahertz pulsed light T2 that has passed through the sample S is light including physical property information of the transmission region of the sample S. The terahertz pulsed light T2 is converged via the second terahertz optical system 7 and guided to the terahertz light detector 9. The second terahertz optical system 5 is, for example, an ellipsoidal mirror.

ビームスプリッタ2で2分割されたパルス光の他方は、テラヘルツパルス光T2を検出するためのプローブ光P3となる。プローブ光P3は、時間遅延装置10、固定ミラー10b、可動ミラー10a及び固定ミラー10cを順次経由し、更に、平面反射ミラーM3、光路長補正部材11、平面反射ミラーM4を経てテラヘルツ光検出器9に入射する。テラヘルツ光検出器9は、光スイッチ素子及びI/V変換回路を有する公知の装置である。テラヘルツ光検出器9にプローブ光P3が入射すると、テラヘルツ光検出器9により、プローブ光P3が照射された時点での試料Sを透過したテラヘルツパルス光T2の電場強度に応じた電流が検出される。検出された電流には、試料Sの物性情報が含まれている。検出された電流は、アンプ(図示せず)により増幅され、演算装置(図示せず)によりフーリエ変換される。最終的に得られた試料Sの物性情報はディスプレイ(図示せず)に表示される。   The other of the pulse lights divided into two by the beam splitter 2 becomes probe light P3 for detecting the terahertz pulse light T2. The probe light P3 sequentially passes through the time delay device 10, the fixed mirror 10b, the movable mirror 10a, and the fixed mirror 10c, and further passes through the plane reflection mirror M3, the optical path length correction member 11, and the plane reflection mirror M4, and the terahertz light detector 9. Is incident on. The terahertz light detector 9 is a known device having an optical switch element and an I / V conversion circuit. When the probe light P3 is incident on the terahertz light detector 9, the terahertz light detector 9 detects a current corresponding to the electric field intensity of the terahertz pulse light T2 that has passed through the sample S when the probe light P3 is irradiated. . The detected current includes physical property information of the sample S. The detected current is amplified by an amplifier (not shown) and subjected to Fourier transform by an arithmetic unit (not shown). The physical property information of the sample S finally obtained is displayed on a display (not shown).

テラヘルツ光発生器3及びテラヘルツ光検出器9の両方には、半球シリコンレンズ(半球状レンズ)4,8が、試料S側に凸となるように配置されている。半球シリコンレンズ4,8は、例えばシリコン単結晶(単結晶半導体材料)からなる。半球シリコンレンズ4,8をテラヘルツパルス光T1,T2が経由することで、テラヘルツパルス光T1,T2の利用効率が高まる。なお、半球状レンズとして、半球シリコンレンズ4,8を用いる代わりに超半球シリコンレンズを用いてもよい。超半シリコンレンズを用いた場合には、半球シリコンレンズ4,8を用いた場合に比べて、利用効率が更に高まる。   In both the terahertz light generator 3 and the terahertz light detector 9, hemispherical silicon lenses (hemispherical lenses) 4 and 8 are arranged so as to be convex toward the sample S side. The hemispherical silicon lenses 4 and 8 are made of, for example, silicon single crystal (single crystal semiconductor material). As the terahertz pulse lights T1 and T2 pass through the hemispherical silicon lenses 4 and 8, the utilization efficiency of the terahertz pulse lights T1 and T2 is increased. As the hemispherical lens, a super hemispherical silicon lens may be used instead of the hemispherical silicon lenses 4 and 8. When the super-half silicon lens is used, the utilization efficiency is further increased as compared with the case where the hemispherical silicon lenses 4 and 8 are used.

また、テラヘルツ光発生器3及びテラヘルツ光検出器9の両方に半球シリコンレンズを配置する必要はない。なお、半球シリコンレンズの材料はシリコン単結晶に限られるものではなく、他の単結晶半導体材料であってもよい。   Moreover, it is not necessary to arrange hemispherical silicon lenses in both the terahertz light generator 3 and the terahertz light detector 9. The material of the hemispherical silicon lens is not limited to a silicon single crystal, and may be another single crystal semiconductor material.

次に、光路長補正部材11について詳しく説明する。   Next, the optical path length correction member 11 will be described in detail.

光路長補正部材11はプローブ光P3の光路上に配置されている。光路長補正部材11は、例えば上面と下面とが平行な平行平板部材である。光路長補正部材11の材料は半球シリコンレンズ4,8の材料と同一(例えばシリコン単結晶)であることが望ましい。また、光路長補正部材11の光路長は、半球シリコンレンズ4,8の光路長の合計とほぼ等しくすることが望ましい。   The optical path length correction member 11 is disposed on the optical path of the probe light P3. The optical path length correction member 11 is, for example, a parallel plate member whose upper surface and lower surface are parallel. The material of the optical path length correcting member 11 is desirably the same as that of the hemispherical silicon lenses 4 and 8 (for example, silicon single crystal). Further, it is desirable that the optical path length of the optical path length correction member 11 is substantially equal to the total optical path length of the hemispherical silicon lenses 4 and 8.

半球シリコンレンズ4,8に使用されているシリコン単結晶の屈折率は、波長1560nmの赤外領域、及びテラヘルツ光に対して、温度が1℃上昇する毎に約1.9×10-4増加する。半球シリコンレンズ4,8の光軸に沿った厚さがそれぞれ10mmの場合、半球シリコンレンズ4,8の温度が共に1℃上昇すると、半球シリコンレンズ4,8のそれぞれの光路長は1.9μm増加することになる。すなわち、半球シリコンレンズ4と半球シリコンレンズ8とで光路長が合計3.8μm増加するので、ビームスプリッタ2から試料Sを経てテラヘルツ光検出器9に達する光路長L1が3.8μm増加する。 The refractive index of the silicon single crystal used for the hemispherical silicon lenses 4 and 8 increases by about 1.9 × 10 −4 every time the temperature rises by 1 ° C. with respect to the infrared region of 1560 nm wavelength and terahertz light. To do. When the thickness of the hemispherical silicon lenses 4 and 8 along the optical axis is 10 mm, respectively, when the temperature of the hemispherical silicon lenses 4 and 8 rises by 1 ° C., the respective optical path lengths of the hemispherical silicon lenses 4 and 8 are 1.9 μm. Will increase. That is, the total optical path length of the hemispherical silicon lens 4 and the hemispherical silicon lens 8 is increased by 3.8 μm, so that the optical path length L1 reaching the terahertz photodetector 9 from the beam splitter 2 through the sample S is increased by 3.8 μm.

そこで、光路長補正部材11としてシリコン単結晶からなる厚さ20mmの平行平板部材をプローブ光P3の光路上に配置する。光路長補正部材11の温度が1℃上昇すると、光路長補正部材11の光路長が3.8μm増加する。すなわち、ビームスプリッタ2から光路長補正部材11を経てテラヘルツ光検出器9に達する光路長L2が3.8μm増加する。   Therefore, a parallel plate member made of silicon single crystal and having a thickness of 20 mm is disposed on the optical path of the probe light P3 as the optical path length correcting member 11. When the temperature of the optical path length correction member 11 increases by 1 ° C., the optical path length of the optical path length correction member 11 increases by 3.8 μm. That is, the optical path length L2 reaching the terahertz photodetector 9 from the beam splitter 2 through the optical path length correcting member 11 is increased by 3.8 μm.

上記したように、温度変化による光路長L1と光路長L2との増加量は等しいので、光路長L1と光路長L2との差に変化は生じない。したがって、テラヘルツ分光装置100内の温度変化により光路長が変化しても、テラヘルツ光検出器9に対して、テラヘルツパルス光T2が入射するタイミングとプローブ光P3が入射するタイミングとがずれることがない。   As described above, since the increase amounts of the optical path length L1 and the optical path length L2 due to the temperature change are equal, the difference between the optical path length L1 and the optical path length L2 does not change. Therefore, even when the optical path length changes due to a temperature change in the terahertz spectrometer 100, the timing at which the terahertz pulse light T2 enters the terahertz light detector 9 does not deviate from the timing at which the probe light P3 enters. .

この実施形態によれば、プローブ光P3の光路中に配置された光路長補正部材11によって半球シリコンレンズ4,8の屈折率の温度変化による光路長の変化を吸収することができるので、環境温度が変化しても高精度の測定を行うことができる。   According to this embodiment, since the optical path length correction member 11 disposed in the optical path of the probe light P3 can absorb the change in the optical path length due to the temperature change in the refractive index of the hemispherical silicon lenses 4 and 8, the environmental temperature Even if changes, high-precision measurement can be performed.

なお、光路長補正部材11はポンプ光P2の光路中に配置してもよい。   The optical path length correcting member 11 may be disposed in the optical path of the pump light P2.

図1は本発明の一実施形態に係るテラヘルツ分光装置の構成を模式的に示す全体構成図である。FIG. 1 is an overall configuration diagram schematically showing the configuration of a terahertz spectrometer according to an embodiment of the present invention.

符号の説明Explanation of symbols

1:レーザ光源、2:ビームスプリッタ、3:テラヘルツ光発生器、4,8:半球シリコンレンズ(半球状レンズ)、9:テラヘルツ光検出器、10:時間遅延装置、11:光路長補正部材、P1:パルス光、P2:ポンプ光、P3:プローブ光。   1: laser light source, 2: beam splitter, 3: terahertz light generator, 4, 8: hemispherical silicon lens (hemispherical lens), 9: terahertz light detector, 10: time delay device, 11: optical path length correction member, P1: Pulse light, P2: Pump light, P3: Probe light.

Claims (7)

パルス光を発生するレーザ光源と、
前記レーザ光源からのパルス光をポンプ光とプローブ光とに分割するビームスプリッタと、
前記パルス光の照射によってテラヘルツパルス光を発生するテラヘルツ光発生器と、
前記テラヘルツパルス光を検出するテラヘルツ光検出器と、
前記テラヘルツ光発生器及び前記テラヘルツ光検出器の少なくとも一方に配置された半球状レンズと、
前記ポンプ光又はプローブ光の光路中に配置された時間遅延装置と
を備えたテラヘルツ分光装置において、
前記プローブ光は繰返し周期が数十MHzのパルス光であり、該プローブ光の光路中に、温度変化による光路長の変化を補正するための光路長補正部材が少なくとも1個配置されており、
前記半球状レンズの光軸上の長さの合計と、前記光路長補正部材の光軸上の長さの合計とはほぼ同じであり、前記半球状レンズと前記光路長補正部材とは同じ材料からなることを特徴とするテラヘルツ分光装置。
A laser light source for generating pulsed light;
A beam splitter that splits the pulsed light from the laser light source into pump light and probe light;
A terahertz light generator that generates terahertz pulsed light by irradiation with the pulsed light; and
A terahertz light detector for detecting the terahertz pulse light;
A hemispherical lens disposed on at least one of the terahertz light generator and the terahertz light detector;
A terahertz spectrometer comprising a time delay device arranged in the optical path of the pump light or the probe light,
The probe light is pulsed light having a repetition period of several tens of MHz, and at least one optical path length correction member for correcting a change in optical path length due to a temperature change is disposed in the optical path of the probe light ,
The total length of the hemispherical lens on the optical axis and the total length of the optical path length correcting member on the optical axis are substantially the same, and the hemispherical lens and the optical path length correcting member are the same material. terahertz spectrometer characterized by comprising a.
前記半球状レンズは、前記テラヘルツ光発生器と前記テラヘルツ光検出器との両方にそれぞれ配置されたことを特徴とする請求項1記載のテラヘルツ分光装置。   The terahertz spectrometer according to claim 1, wherein the hemispherical lens is disposed in both the terahertz light generator and the terahertz light detector. 前記時間遅延装置は、前記プローブ光の光路中に配置されたことを特徴とする請求項1又は2記載のテラヘルツ分光装置。   The terahertz spectrometer according to claim 1, wherein the time delay device is disposed in an optical path of the probe light. 前記光路長補正部材は、平行平板部材であることを特徴とする請求項1,2又は3記載のテラヘルツ分光装置。   The terahertz spectrometer according to claim 1, wherein the optical path length correcting member is a parallel plate member. 前記半球状レンズは、超半球レンズであることを特徴とする請求項1〜4のいずれか1項記載のテラヘルツ分光装置。   The terahertz spectrometer according to claim 1, wherein the hemispherical lens is a super hemispherical lens. 前記半球状レンズと前記光路長補正部材とは、共に単結晶半導体材料からなることを特徴とする請求項1〜のいずれか1項記載のテラヘルツ分光装置。 Wherein the hemispherical lens and the optical path length correction member, terahertz spectrometer according to any one of claims 1-5, characterized in that both of monocrystalline semiconductor material. 前記単結晶半導体材料はシリコン単結晶であることを特徴とする請求項記載のテラヘルツ分光装置。 The terahertz spectrometer according to claim 6, wherein the single crystal semiconductor material is a silicon single crystal.
JP2007329926A 2007-12-21 2007-12-21 Terahertz spectrometer Active JP5600374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329926A JP5600374B2 (en) 2007-12-21 2007-12-21 Terahertz spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329926A JP5600374B2 (en) 2007-12-21 2007-12-21 Terahertz spectrometer

Publications (2)

Publication Number Publication Date
JP2009150811A JP2009150811A (en) 2009-07-09
JP5600374B2 true JP5600374B2 (en) 2014-10-01

Family

ID=40920086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329926A Active JP5600374B2 (en) 2007-12-21 2007-12-21 Terahertz spectrometer

Country Status (1)

Country Link
JP (1) JP5600374B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240858B2 (en) * 2009-09-03 2013-07-17 独立行政法人理化学研究所 Monochromatic tunable terahertz wave generation / detection system and method
JP5836479B2 (en) * 2012-03-30 2015-12-24 株式会社日立製作所 Time domain spectroscopic device and time domain spectroscopic analysis system
JP6219867B2 (en) * 2015-03-10 2017-10-25 日本電信電話株式会社 Component concentration measuring device
CN105548083A (en) * 2015-12-08 2016-05-04 电子科技大学 Double-optical-path terahertz time-domain spectrometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2405466B (en) * 2003-08-27 2006-01-25 Teraview Ltd Method and apparatus for investigating a non-planner sample
JP2006170822A (en) * 2004-12-16 2006-06-29 Tochigi Nikon Corp Terahertz photodetector, terahertz photodetection method, and terahertz imaging apparatus
JP2006250826A (en) * 2005-03-11 2006-09-21 Yamagata Prefecture Measuring element, processing device and measuring method, and measuring element of refractive index

Also Published As

Publication number Publication date
JP2009150811A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP4790560B2 (en) Single terahertz wave time waveform measurement device
US8610073B2 (en) Monochromatic wavelength variable terahertz wave generation/detection system and method
JP4978515B2 (en) Probe apparatus and terahertz spectrometer
JP6182471B2 (en) Terahertz wave phase difference measurement system
JP6324709B2 (en) Optical measuring device and optical measuring method
JP5216544B2 (en) Terahertz wave generator
KR101544962B1 (en) Transmission-type Interference Apparatus using Optical Fibers for Measuring Geometrical Thickness and Refractive index
US8446587B2 (en) Flash photolysis system
US20180031469A1 (en) Terahertz Wave Generating Device and Spectroscopic Device Using Same
JP5600374B2 (en) Terahertz spectrometer
US20150069246A1 (en) Information obtaining apparatus and information obtaining method
JP2007101370A (en) Terahertz spectral device
JP4853255B2 (en) Gas analyzer
JP2007170960A (en) Apparatus and method for measuring thermoelastic property
JP4601516B2 (en) Terahertz spectrometer
JP2004128113A (en) Method and apparatus for measuring life of semiconductor carrier
JP2008089546A (en) Electromagnetic wave measuring device
US10132681B2 (en) Noise reduction apparatus and detection apparatus including the same
Jin et al. A concept of multi-mode high spectral resolution lidar using Mach-Zehnder interferometer
JP4393147B2 (en) Terahertz electromagnetic wave generating element
JP6941004B2 (en) Tunnel current controller and tunnel current control method
JP2005227021A (en) Terahertz light measuring instrument
WO2017033974A1 (en) Autocorrelation measurement device
JP6082222B2 (en) Wavelength swept light source
CN105043560A (en) CARS optical spectrum one-dimensional scanning temperature measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130326

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5600374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250