JP2008089546A - Electromagnetic wave measuring device - Google Patents

Electromagnetic wave measuring device Download PDF

Info

Publication number
JP2008089546A
JP2008089546A JP2006273981A JP2006273981A JP2008089546A JP 2008089546 A JP2008089546 A JP 2008089546A JP 2006273981 A JP2006273981 A JP 2006273981A JP 2006273981 A JP2006273981 A JP 2006273981A JP 2008089546 A JP2008089546 A JP 2008089546A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
concave mirror
sample
detector
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006273981A
Other languages
Japanese (ja)
Inventor
Taketoshi Watanabe
壮俊 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006273981A priority Critical patent/JP2008089546A/en
Publication of JP2008089546A publication Critical patent/JP2008089546A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave measuring device for acquiring information of a measuring object by using an electromagnetic wave, capable of performing efficiently even electromagnetic wave measurement of a measuring object having a fine quantity or a fine size. <P>SOLUTION: This electromagnetic wave measuring device for acquiring information of the measuring object 01 by using the electromagnetic wave has an electromagnetic wave reflecting concave mirror 02, an electromagnetic wave irradiation part 04, and an electromagnetic wave detection part 05. At least a part of the electromagnetic wave reflecting concave mirror 02 is formed of ellipsoid of revolution which is a reflecting surface. The electromagnetic wave irradiation part 04 is arranged on one focal point of the reflecting concave mirror 02, and emits the electromagnetic wave from the focal point. The electromagnetic wave detection part 05 is arranged on the other focal point of the reflecting concave mirror 02, and receives the electromagnetic wave collected to the focal point. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電磁波を用いて測定対象ないし試料の分析ないし情報の取得を行う電磁波測定装置に関する。 The present invention relates to an electromagnetic wave measuring apparatus that analyzes an object to be measured or samples or acquires information using electromagnetic waves.

従来、マイクロ波や可視光などの電磁波を試料に照射して、その試料を透過してきた電磁波を検出し、スペクトルを得る装置は、電磁波発生器及び検出器と、分光を行う為の多くの光学部品を有する光学系とで構成されている。例えば、FT-IR装置(フーリエ変換赤外分光光度計)などの赤外分光スペクトル測定装置は、多くのメーカーから市販されており、(1)光源、(2)入射孔、(3)干渉計、(4)試料室、(5)検出器で構成されている(非特許文献1参照)。 Conventionally, a device for obtaining a spectrum by irradiating a sample with electromagnetic waves such as microwaves or visible light and detecting the electromagnetic waves transmitted through the sample is an electromagnetic wave generator and a detector and many optical devices for performing spectroscopy. And an optical system having components. For example, infrared spectroscopic measurement devices such as FT-IR devices (Fourier transform infrared spectrophotometers) are commercially available from many manufacturers: (1) light source, (2) entrance hole, (3) interferometer , (4) a sample chamber, and (5) a detector (see Non-Patent Document 1).

また、近年、技術開発が盛んなテラヘルツ分光装置は、例えば、次の様な要素で構成されている(非特許文献2参照)。すなわち、(1)テラヘルツ波発生及び検出の為の半導体光スイッチや電気光学結晶、(2)半導体光スイッチや電気光学結晶を動作させる為のフェムト秒レーザーとその光学系、(3)テラヘルツ波を試料へ照射する為の光学系で構成されている。また、例えば、低コスト化及び小型化を狙って、一つの筐体においてテラヘルツ波の透過測定及び反射測定のできる装置も考案されている(特許文献1参照)。
“FT-IRの基礎と実際 第2版/東京科学同人”(40頁) “テラヘルツ時間領域分光法 分光研究 第50巻 第6号(2001年)”(265頁、Fig.4) 特開2004−205360号公報
Further, in recent years, a terahertz spectroscopic device that has been actively developed in technology includes, for example, the following elements (see Non-Patent Document 2). (1) Semiconductor optical switches and electro-optic crystals for generating and detecting terahertz waves, (2) Femtosecond lasers and their optical systems for operating semiconductor optical switches and electro-optic crystals, (3) Terahertz waves It consists of an optical system for irradiating the sample. In addition, for example, a device capable of measuring transmission and reflection of terahertz waves in one housing has been devised with the aim of cost reduction and miniaturization (see Patent Document 1).
“FT-IR Fundamentals and Practice 2nd Edition / Tokyo Science Doujin” (p. 40) “Terahertz Time Domain Spectroscopy Spectroscopy Vol. 50, No. 6 (2001)” (page 265, FIG. 4) JP 2004-205360 A

上記の様に試料を透過した電磁波のスペクトルを測定する従来の装置は、分光を行う為に多くの光学部品を有する複雑な光学系を備えており、次の様な点が指摘される。すなわち、微量微小な試料を感度良く測定するには、電磁波を試料サイズ以下に絞って照射する必要がある為、例えば、非特許文献1の152頁に紹介されている様に、ビームコンデンサー光学系などの電磁波を集束させる為の光学系が更に必要である。 A conventional apparatus for measuring the spectrum of an electromagnetic wave transmitted through a sample as described above includes a complicated optical system having many optical components for performing spectroscopy, and the following points are pointed out. That is, in order to measure a very small amount of sample with high sensitivity, it is necessary to irradiate the electromagnetic wave with a size smaller than the sample size. For example, as introduced on page 152 of Non-Patent Document 1, a beam condenser optical system is used. An optical system for focusing electromagnetic waves such as the above is further required.

上記課題に鑑み、本発明の電磁波測定装置は、電磁波を用いて測定対象の情報を取得するための電磁波測定装置であって、次の構成要素を有する。少なくとも一部が反射面の回転楕円面で形成された電磁波反射凹面鏡と、反射凹面鏡の一方の焦点に配されて該焦点から電磁波を射出する電磁波照射部と、反射凹面鏡の他方の焦点に配されて該焦点に集まってくる電磁波を受ける電磁波検出部を有する。 In view of the above problems, the electromagnetic wave measurement device of the present invention is an electromagnetic wave measurement device for acquiring information on a measurement object using electromagnetic waves, and has the following components. An electromagnetic wave reflecting concave mirror at least partially formed of a spheroid of the reflecting surface, an electromagnetic wave irradiation unit arranged at one focal point of the reflecting concave mirror and emitting electromagnetic waves from the focal point, and an other focal point of the reflecting concave mirror And an electromagnetic wave detector that receives the electromagnetic waves gathered at the focal point.

典型的には、前記反射凹面鏡は、その中に測定対象を保持する様に構成され、測定対象に電磁波照射部から電磁波を照射し、測定対象の透過と反射凹面鏡での反射を経てきた電磁波を電磁波検出部で受けて測定する。また、本発明の電磁波測定装置では、典型的には、周波数30GHz以上30THz以下の領域の周波数成分を含む電磁波(本明細書では、テラヘルツ波とも呼ぶ)を用いて、測定対象の分析ないし情報の取得を行う。更に、生体材料などの指紋スペクトルを取得する為には、0.1THzから10THz程度の領域の周波数成分を含む電磁波を用いるのが、好適である。 Typically, the reflection concave mirror is configured to hold a measurement target therein, and the measurement target is irradiated with an electromagnetic wave from an electromagnetic wave irradiation unit, and the electromagnetic wave transmitted through the measurement target and reflected by the reflection concave mirror is received. Receive and measure at electromagnetic wave detector. In the electromagnetic wave measuring apparatus of the present invention, typically, an electromagnetic wave including a frequency component in a frequency range of 30 GHz to 30 THz (also referred to as a terahertz wave in this specification) is used to analyze or analyze information to be measured. Acquire. Furthermore, in order to acquire a fingerprint spectrum of a biomaterial or the like, it is preferable to use an electromagnetic wave including a frequency component in the region of about 0.1 THz to 10 THz.

本発明の電磁波測定装置おいては、反射凹面鏡内に保持される測定対象に一方の焦点位置の電磁波照射部から電磁波を照射して、測定対象を経てきた電磁波を、他方の焦点位置の電磁波検出部で受けて測定する。従って、微量微小な試料の電磁波測定でも効率良く行うことができる。 In the electromagnetic wave measuring apparatus of the present invention, an electromagnetic wave irradiated from the electromagnetic wave irradiation unit at one focal position is irradiated to the measurement object held in the reflecting concave mirror, and the electromagnetic wave that has passed through the measurement object is detected at the other focal position. Receive and measure at the department. Therefore, it is possible to efficiently perform the electromagnetic wave measurement of a very small sample.

以下に、本発明の実施の形態を説明する。先ず、図1と図2を用いて本発明の実施形態を説明する。図1と図2は、本発明による電磁波測定の概念を2つの若干異なる実施形態を用いて説明した断面図である。図1と図2において、01は試料、02は、試料保持部を兼ねる回転楕円面で形成された凹面鏡、03は、凹面鏡表面に形成された電磁波反射膜である。また、04は、回転楕円面の1つの焦点に設置された電磁波照射部、05は、もう一方の回転楕円面の焦点に設置された電磁波検出部である。更に、06は、電磁波照射部04及び検出部05の支持体、07は、試料01を透過する電磁波の経路、08は照射電磁波、09は透過電磁波である。 Hereinafter, embodiments of the present invention will be described. First, an embodiment of the present invention will be described with reference to FIG. 1 and FIG. 1 and 2 are cross-sectional views illustrating the concept of electromagnetic wave measurement according to the present invention using two slightly different embodiments. In FIGS. 1 and 2, 01 is a sample, 02 is a concave mirror formed of a spheroidal surface also serving as a sample holding portion, and 03 is an electromagnetic wave reflecting film formed on the surface of the concave mirror. In addition, 04 is an electromagnetic wave irradiation unit installed at one focal point of the spheroid, and 05 is an electromagnetic wave detection unit installed at the focal point of the other spheroid. Further, 06 is a support for the electromagnetic wave irradiation unit 04 and the detection unit 05, 07 is a path of electromagnetic waves that pass through the sample 01, 08 is an irradiation electromagnetic wave, and 09 is a transmitted electromagnetic wave.

図1の実施形態では、電磁波照射部04自体が電磁波を発生する電磁波光源となり、電磁波検出部05自体が電磁波を受けて検出する電磁波検出器である。これに対して、図2の実施形態では、他の部分で発生された電磁波が支持体06を伝播して電磁波照射部04から凹面鏡02内に照射され、電磁波検出部05で受けられた電磁波が支持体06を伝播して他の部分で検出される様になっている。従って、支持体06は電磁波の伝送路を兼ねている。 In the embodiment of FIG. 1, the electromagnetic wave irradiation unit 04 itself is an electromagnetic wave light source that generates electromagnetic waves, and the electromagnetic wave detection unit 05 itself is an electromagnetic wave detector that receives and detects electromagnetic waves. On the other hand, in the embodiment of FIG. 2, the electromagnetic wave generated in the other part propagates through the support body 06 and is irradiated from the electromagnetic wave irradiation unit 04 into the concave mirror 02, and the electromagnetic wave received by the electromagnetic wave detection unit 05 It propagates through the support body 06 and is detected at other parts. Therefore, the support body 06 also serves as an electromagnetic wave transmission path.

また、図3は、更に異なる実施形態を説明する断面図である。図3において、10は、回転楕円面の焦点に設置された電磁波照射部である電磁波光源、11は、もう一方の回転楕円面の焦点に設置された電磁波検出部である電磁波検出器である。また、12は、試料保持部を兼ねる回転楕円面の半分で形成された凹面鏡02の蓋を兼ねた、電磁波光源10及び検出器11の支持体である。その他の符号は、図1及び図2と同じである。 FIG. 3 is a cross-sectional view illustrating still another embodiment. In FIG. 3, 10 is an electromagnetic wave light source that is an electromagnetic wave irradiation unit installed at the focal point of the spheroid, and 11 is an electromagnetic wave detector that is an electromagnetic wave detection unit installed at the focal point of the other spheroid. Reference numeral 12 denotes a support for the electromagnetic wave light source 10 and the detector 11, which also serves as a lid for the concave mirror 02 formed of a half of a spheroid that also serves as a sample holding unit. Other reference numerals are the same as those in FIGS.

図1及び図2を用いて、これらの実施形態の電磁波測定装置について更に説明する。試料01は、回転楕円面で形成された凹面鏡02で保持されており、この凹面鏡02が測定光学系となっている。凹面鏡02は、測定光学系の機能及び試料01の保持機能を有していれば特に限定は無く、例えば、試料01の温度制御の機能があっても構わない。試料01の凹面鏡02内での好適な保持のされ方は、図1及び図2で示す様に回転楕円面の凹面鏡02内を満たす様に保持される。しかし、これに限らず、例えば、シート状の保持部材に試料を浸透保持して、その保持部材を、電磁波照射部04と検出部05の間の凹面鏡02の中央部に隔壁状に保持する様な保持の仕方でも良い。この場合、例えば、凹面鏡02はこの中央部で分割できて、分割部を組み合わせるときに、そこに、試料を浸透保持したシート状の保持部材を挟んで保持すれば良い。 The electromagnetic wave measurement apparatus according to these embodiments will be further described with reference to FIGS. The sample 01 is held by a concave mirror 02 formed of a spheroidal surface, and this concave mirror 02 serves as a measurement optical system. The concave mirror 02 is not particularly limited as long as it has the function of the measurement optical system and the function of holding the sample 01. For example, the concave mirror 02 may have a function of controlling the temperature of the sample 01. A preferred method of holding the sample 01 in the concave mirror 02 is to hold the sample 01 so as to fill the concave mirror 02 having a spheroidal surface as shown in FIGS. However, the present invention is not limited to this. For example, the sample is infiltrated and held in a sheet-like holding member, and the holding member is held in a partition shape in the central portion of the concave mirror 02 between the electromagnetic wave irradiation unit 04 and the detection unit 05. It is possible to hold it properly. In this case, for example, the concave mirror 02 can be divided at this central portion, and when the divided portions are combined, a sheet-like holding member that permeates and holds the sample may be held therebetween.

上記凹面鏡02の表面に設けられる電磁波を反射する為の反射膜03は、所望の電磁波を反射できるものであれば特に限定は無く、使用波長と異なる波長の電磁波には透過性を持っていても構わない。また、反射膜03を形成せずに、凹面鏡02全体が、所望の電磁波を反射する部材で形成されたものでも構わない。 The reflective film 03 for reflecting the electromagnetic wave provided on the surface of the concave mirror 02 is not particularly limited as long as it can reflect a desired electromagnetic wave, and may have transparency to an electromagnetic wave having a wavelength different from the used wavelength. I do not care. Alternatively, the entire concave mirror 02 may be formed of a member that reflects a desired electromagnetic wave without forming the reflective film 03.

上述した様に、試料01への電磁波の照射は、回転楕円面の焦点に設置された電磁波照射部04から行う。このとき、電磁波の照射は回転楕円面の焦点から行えば特に限定は無く、図1の様に電磁波光源を光学系内部の電磁波照射部04に設置して照射しても構わないし、図2の様に光学系外部からもたらされる照射電磁波08を、照射電磁波08が透過可能な支持体06と電磁波照射部04を通して試料01へ照射しても構わない。後者の場合、照射電磁波08の発生源は、本電磁波測定装置の比較的遠方にあっても良いし、電磁波照射部04の支持体06の近傍にあっても構わない。 As described above, the sample 01 is irradiated with the electromagnetic wave from the electromagnetic wave irradiation unit 04 placed at the focal point of the spheroid. At this time, the irradiation of the electromagnetic wave is not particularly limited as long as it is performed from the focal point of the spheroid, and the electromagnetic wave light source may be installed and irradiated on the electromagnetic wave irradiation unit 04 inside the optical system as shown in FIG. Similarly, the sample 01 may be irradiated with the irradiation electromagnetic wave 08 brought from the outside of the optical system through the support body 06 through which the irradiation electromagnetic wave 08 can be transmitted and the electromagnetic wave irradiation unit 04. In the latter case, the generation source of the irradiation electromagnetic wave 08 may be relatively far from the electromagnetic wave measuring apparatus, or may be in the vicinity of the support body 06 of the electromagnetic wave irradiation unit 04.

図1及び図2において、試料01に照射された電磁波は、試料01を透過し、回転楕円面を有する凹面鏡02で反射され、更に試料01を透過して、もう一方の回転楕円面の焦点に設置された電磁波検出部05に達する。そして、試料01を透過した電磁波の検出は、もう一方の回転楕円面の焦点に設置された電磁波検出部05で行う。電磁波の受光は、回転楕円面の焦点で行えば特に限定は無い。図1の様に電磁波検出部05に電磁波検出器を設置して光学系内部で受光・検出しても構わないし、図2の様に透過電磁波09を、透過電磁波09が透過可能な検出部05と電磁波検出部支持体06を通して光学系外部へ取り出して検出しても構わない。後者の場合、透過電磁波09の検出器は、本電磁波測定装置の比較的遠方にあっても良いし、電磁波検出部05の支持体06の近傍にあっても構わない。 In FIG. 1 and FIG. 2, the electromagnetic wave irradiated on the sample 01 is transmitted through the sample 01, reflected by the concave mirror 02 having a spheroid, and further transmitted through the sample 01 to the focal point of the other spheroid. It reaches the installed electromagnetic wave detection unit 05. Then, the electromagnetic wave transmitted through the sample 01 is detected by the electromagnetic wave detection unit 05 installed at the focal point of the other spheroid. The reception of electromagnetic waves is not particularly limited as long as it is performed at the focal point of the spheroid. As shown in FIG. 1, an electromagnetic wave detector may be installed in the electromagnetic wave detection unit 05 to receive and detect inside the optical system. As shown in FIG. 2, the transmission unit 09 can transmit the transmitted electromagnetic wave 09, and the transmission unit 09 can transmit the transmitted electromagnetic wave 09. Alternatively, it may be detected by taking it out of the optical system through the electromagnetic wave detection unit support 06. In the latter case, the detector of the transmitted electromagnetic wave 09 may be located relatively far from the electromagnetic wave measuring device, or may be in the vicinity of the support body 06 of the electromagnetic wave detection unit 05.

図3に示した本発明の電磁波測定装置の更に異なる実施形態について、更に説明する。本実施形態では、試料01は、回転楕円面の半分で形成された凹面鏡02で保持されている。図1と同様にこの凹面鏡02は、測定光学系となっており、測定光学系の機能及び試料01の保持の機能を有していれば特に限定は無い。また、凹面鏡02に形成された電磁波反射膜03も、所望の電磁波を反射することができれば特に限定はない。電磁波光源10及び電磁波検出器11は支持体12上に設置されており、各々凹面鏡02の焦点位置に設置されている。 Further different embodiments of the electromagnetic wave measuring apparatus of the present invention shown in FIG. 3 will be further described. In the present embodiment, the sample 01 is held by a concave mirror 02 formed by a half of a spheroid. As in FIG. 1, the concave mirror 02 is a measurement optical system, and there is no particular limitation as long as it has the function of the measurement optical system and the function of holding the sample 01. The electromagnetic wave reflection film 03 formed on the concave mirror 02 is not particularly limited as long as it can reflect a desired electromagnetic wave. The electromagnetic wave light source 10 and the electromagnetic wave detector 11 are installed on the support 12 and are each installed at the focal position of the concave mirror 02.

試料01への電磁波の照射は、既に述べた様に、回転楕円面の焦点に設置された電磁波光源10から行う。ここでも、電磁波光源10は、所望の電磁波を発生する素子であれば特に限定は無く、電磁波は単一波長であっても良いし、連続波長を含んでいても構わない。また、電磁波の波形はパルス状であっても良いし、連続波形であっても構わない。試料01に照射される電磁波は、試料01を透過し、回転楕円面を有する凹面鏡02で反射され、更に試料01を透過して、もう一方の回転楕円面の焦点に設置された電磁波検出器11に達して検出される。ここでも、電磁波検出器11は、所望の電磁波を検出する素子であれば特に限定は無い。 As described above, the sample 01 is irradiated with the electromagnetic wave from the electromagnetic wave light source 10 installed at the focal point of the spheroid. Here, the electromagnetic wave light source 10 is not particularly limited as long as it is an element that generates a desired electromagnetic wave, and the electromagnetic wave may have a single wavelength or a continuous wavelength. Further, the waveform of the electromagnetic wave may be a pulse shape or a continuous waveform. The electromagnetic wave irradiated to the sample 01 is transmitted through the sample 01, reflected by the concave mirror 02 having a spheroid, and further transmitted through the sample 01 and installed at the focal point of the other spheroid. Is detected. Here, the electromagnetic wave detector 11 is not particularly limited as long as it is an element that detects a desired electromagnetic wave.

図3に示した実施形態の電磁波測定装置では、図1で説明した実施形態の効果に加え、支持体12が設けられているので、試料01の凹面鏡02への導入の自由度、電磁波の光源及び検出器の自由度が高くなる効果がある。すなわち、試料01は凹面鏡02内に容易に効率良く満たすことができ、光源や検出器は容易かつ正確に所定の位置に取り付けることができる。 In the electromagnetic wave measuring apparatus of the embodiment shown in FIG. 3, in addition to the effects of the embodiment described in FIG. 1, since the support 12 is provided, the degree of freedom of introduction of the sample 01 into the concave mirror 02, the light source of the electromagnetic wave In addition, the degree of freedom of the detector is increased. That is, the sample 01 can be easily and efficiently filled in the concave mirror 02, and the light source and the detector can be easily and accurately attached at predetermined positions.

上記各実施形態の電磁波測定装置を用いることにより、微量微小な試料においても、試料01に対して電磁波をほぼ万遍無く照射することができると共に、透過電磁波を効率良く検出できる。電磁波照射部04、10からの電磁波強度に多少の方向性があるとしても、こうした効果は得られる。従って、試料による電磁波の伝播状態の変化を正確かつ容易に検出できる。この際、電磁波照射部04、10から検出部05、11に至る電磁波の経路07の伝播距離は、電磁波照射部04から試料01を透過して検出部05に直接達する電磁波以外については、全て同じであり、検出の精度を上げるのに寄与している。ここで、図1と図2の実施形態では、検出部05に直接達する電磁波を遮蔽する何らかの手段を設ければ、後述する時間領域分光法を確実且つ容易に利用することができる。例えば、照射部04の検出部05に正対する部分からは電磁波が射出されない構造にするとか、電磁波照射部04に正対する検出器の部分にマスクを設けておく方法がある。 By using the electromagnetic wave measuring apparatus of each of the embodiments described above, even with a very small amount of sample, the sample 01 can be irradiated with electromagnetic waves almost uniformly, and transmitted electromagnetic waves can be detected efficiently. Even if the electromagnetic wave intensity from the electromagnetic wave irradiation units 04 and 10 has some directionality, such an effect can be obtained. Therefore, it is possible to accurately and easily detect a change in the propagation state of the electromagnetic wave caused by the sample. At this time, the propagation distance of the electromagnetic wave path 07 from the electromagnetic wave irradiation unit 04, 10 to the detection unit 05, 11 is the same except for the electromagnetic wave that passes through the sample 01 from the electromagnetic wave irradiation unit 04 and reaches the detection unit 05 directly. This contributes to improving the detection accuracy. Here, in the embodiment of FIGS. 1 and 2, if any means for shielding the electromagnetic wave that directly reaches the detection unit 05 is provided, the time domain spectroscopy described later can be used reliably and easily. For example, there is a method in which an electromagnetic wave is not emitted from a portion facing the detection unit 05 of the irradiation unit 04, or a method in which a mask is provided on a portion of the detector facing the electromagnetic wave irradiation unit 04.

また、上記各実施形態の電磁波測定装置では、光学系が極めて単純である為にその調整は殆ど不要である。更に、試料01を、凹面鏡02で形成された試料容器に満たすことができれば、大気や水蒸気の吸収の影響を避ける為のパージも不要となる。すなわち、上記従来技術では、多くの光学部品で構成されている為に光学調整が煩雑であったが、それが簡単化される。また、大気や水蒸気の影響を避ける必要がある場合、光学系全体をチャンバで取り囲み、真空引きや窒素ガスパージを行わなければならなかったが、それも必要なくなる。 Moreover, in the electromagnetic wave measuring apparatus of each said embodiment, since an optical system is very simple, the adjustment is almost unnecessary. Furthermore, if the sample 01 can be filled in the sample container formed by the concave mirror 02, a purge for avoiding the influence of the absorption of air and water vapor is not necessary. That is, in the above prior art, the optical adjustment is complicated because it is composed of many optical components, but it is simplified. In addition, when it is necessary to avoid the influence of the atmosphere and water vapor, the entire optical system must be surrounded by a chamber and evacuated or purged with nitrogen gas, which is no longer necessary.

以上に述べた様に、実施形態の電磁波測定装置では、反射凹面鏡内に保持される測定対象に1つの焦点の電磁波照射部から電磁波を照射して、測定対象の透過と反射凹面鏡での反射を経てきた電磁波を、他方の焦点の電磁波検出部で受けて測定する。従って、微量微小な試料の電磁波測定でも効率良く行うことができる。 As described above, in the electromagnetic wave measurement apparatus of the embodiment, the measurement object held in the reflecting concave mirror is irradiated with electromagnetic waves from the electromagnetic irradiation unit of one focal point, and the measurement object is transmitted and reflected by the reflecting concave mirror. The received electromagnetic wave is received and measured by the electromagnetic wave detection unit at the other focal point. Therefore, it is possible to efficiently perform the electromagnetic wave measurement of a very small sample.

以下、実施例を用いて本発明を説明するが、本発明は実施例に限定されるものではなく、回転楕円面を有する凹面鏡の形態や、電磁波の発生源や検出器の構成、また使用する電磁波などは自由に変更することが可能である。 Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to the examples, and forms of concave mirrors having a spheroidal surface, configurations of electromagnetic wave generation sources and detectors, and use thereof. Electromagnetic waves and the like can be freely changed.

(実施例1)
本実施例は、図3を用いて説明した上記実施形態の電磁波測定装置に対応するものであり、これを、テラヘルツ波を用いる例に応用した例である。本実施例では、テラヘルツ波の光源及び検出器として、フェムト秒ファイバーレーザーを利用した半導体光スイッチ素子を用いている。
(Example 1)
The present example corresponds to the electromagnetic wave measuring apparatus of the above-described embodiment described with reference to FIG. 3, and is an example in which this is applied to an example using terahertz waves. In this embodiment, a semiconductor optical switch element using a femtosecond fiber laser is used as a terahertz wave light source and detector.

先ず、図4乃至図6を用いて本実施例の装置構成について説明する。図4は本実施例の装置全体の構成を示しており、試料保持部を兼ねた回転楕円面を有する凹面鏡02と、2芯の光ファイバーケーブルを有するテラヘルツ波光源及び検出器の支持体12を備える。また、テラヘルツ波光源及び検出器である半導体光スイッチ素子とフェムト秒レーザーを制御・駆動する為のコントローラー15と、半導体光スイッチ素子用のフェムト秒ファイバーレーザー16及び17を備える。更に、これらの装置は、半導体光スイッチ素子駆動用ケーブル18と、フェムト秒レーザー駆動用ケーブル19と、光ファイバーケーブル20で接続されている。 First, the apparatus configuration of the present embodiment will be described with reference to FIGS. FIG. 4 shows the overall configuration of the apparatus of the present embodiment, which includes a concave mirror 02 having a spheroid that also serves as a sample holder, a terahertz light source having a two-core optical fiber cable, and a detector support 12. . Further, a controller 15 for controlling and driving the semiconductor optical switch element and the femtosecond laser, which are terahertz light sources and detectors, and femtosecond fiber lasers 16 and 17 for the semiconductor optical switch element are provided. Further, these devices are connected by a semiconductor optical switch element driving cable 18, a femtosecond laser driving cable 19, and an optical fiber cable 20.

図5の断面図は、図4の電磁波測定系の構成を示しており、回転楕円面をガラスモールドで形成した凹面鏡02と、凹面鏡02の表面に金属蒸着により形成されたテラヘルツ波反射膜03を示している。また、LT−GaAsを用いた半導体光スイッチ素子によるテラヘルツ波光源(電磁波照射部)13及び検出器(電磁波検出部)14と、2芯の光ファイバーケーブルを有する支持体12を示している。更に、光源13及び検出器14の半導体光スイッチ素子は、これを駆動する為の電気配線用ケーブル18、及びフェムト秒レーザー光を照射する為の光ファイバーケーブル20とそれぞれ接続されている。 The cross-sectional view of FIG. 5 shows the configuration of the electromagnetic wave measurement system of FIG. 4, and includes a concave mirror 02 having a spheroidal surface formed of a glass mold, and a terahertz wave reflecting film 03 formed on the surface of the concave mirror 02 by metal deposition. Show. Further, a terahertz wave light source (electromagnetic wave irradiation unit) 13 and a detector (electromagnetic wave detection unit) 14 by a semiconductor optical switch element using LT-GaAs and a support 12 having a two-core optical fiber cable are shown. Further, the semiconductor optical switch elements of the light source 13 and the detector 14 are connected to an electric wiring cable 18 for driving the light source 13 and an optical fiber cable 20 for irradiating femtosecond laser light, respectively.

凹面鏡02は、テラヘルツ波光源13及び検出器14の位置が焦点となる様に形成されており、ここには試料01が充填される。テラヘルツ波光源13及び検出器14の支持体12は、光源13と検出器14を凹面鏡02に対して2つの焦点位置に精度良く設置する様になっている。その為に、支持体12の端部に楕円柱状の凸状部が形成され、この凸状部が、半分の回転楕円面の凹面鏡02の空間から上方に連続して伸びる楕円柱状の空間に嵌め込まれている。 The concave mirror 02 is formed so that the positions of the terahertz wave light source 13 and the detector 14 are in focus, and the sample 01 is filled therein. The support 12 of the terahertz wave light source 13 and the detector 14 is configured to accurately place the light source 13 and the detector 14 at two focal positions with respect to the concave mirror 02. For this purpose, an elliptical columnar convex portion is formed at the end of the support 12, and this convex portion is fitted into an elliptical columnar space continuously extending upward from the space of the concave mirror 02 having a half spheroid surface. It is.

図6(a)、(b)は、本実施例のテラヘルツ波光源13と検出器14の構成及びその断面を示す。ここに示す様に、凹面鏡02の焦点位置に相当する光ファイバーケーブル20の端面にテラヘルツ波光源13及び検出器14が設置され、これらは、支持体12の側面から配線された半導体光スイッチ素子駆動用ケーブル18に接続されている。半導体光スイッチ素子では、図6(a)に示す様に、2つの三角形の金属膜が微小なギャップで対向したテラヘルツ波用アンテナ(ボウタイアンテナ)21が形成されている。これに代って、2本の直線で構成されたダイポール型など、周波数帯域によって様々な形状のアンテナを選択することもできる。 FIGS. 6 (a) and 6 (b) show configurations and cross sections of the terahertz light source 13 and the detector 14 of the present embodiment. As shown here, a terahertz wave light source 13 and a detector 14 are installed on the end surface of the optical fiber cable 20 corresponding to the focal position of the concave mirror 02, and these are for driving a semiconductor optical switch element wired from the side surface of the support 12 Connected to cable 18. In the semiconductor optical switch element, as shown in FIG. 6A, a terahertz wave antenna (bowtie antenna) 21 in which two triangular metal films face each other with a minute gap is formed. Instead of this, antennas of various shapes can be selected depending on the frequency band, such as a dipole type composed of two straight lines.

更に、図6(b)に沿って、前記半導体光スイッチ素子と支持体12との断面構造について説明する。半導体光スイッチ素子は、LT−GaAs基板23上にテラヘルツ波用アンテナ21が形成されて構成され、半導体光スイッチ素子を駆動する為の電気配線用ケーブル18はこのテラヘルツ波用アンテナ21と接続されている。この半導体光スイッチ素子は、フェムト秒レーザー光が透過可能な接着材22で支持体12に固定されている。 Further, a sectional structure of the semiconductor optical switch element and the support 12 will be described with reference to FIG. The semiconductor optical switch element is configured by forming a terahertz wave antenna 21 on an LT-GaAs substrate 23, and an electric wiring cable 18 for driving the semiconductor optical switch element is connected to the terahertz wave antenna 21. Yes. This semiconductor optical switch element is fixed to the support 12 with an adhesive 22 that can transmit femtosecond laser light.

次に、本実施例の装置によるテラヘルツ波の発生と検出について説明する。テラヘルツ波の発生は、テラヘルツ波光源13の半導体光スイッチ素子にフェムト秒レーザー光を照射することによって行う。すなわち、先ず、半導体光スイッチ素子駆動用ケーブル18によって数μmのギャップを有する対向した三角形のテラヘルツ波用アンテナ21の間に数十Vのバイアスを印加する。次に、そのギャップにフェムト秒レーザー光を照射することで、ギャップにある半導体中に自由キャリアを生成する。この自由キャリアが生じた際にテラヘルツ波用アンテナ21間をパルス状の電流が流れ、1階微分した値に比例した電場振幅を持ったテラヘルツ波が発生する。 Next, generation and detection of the terahertz wave by the apparatus of the present embodiment will be described. The terahertz wave is generated by irradiating the semiconductor optical switch element of the terahertz wave light source 13 with femtosecond laser light. That is, first, a bias of several tens of volts is applied between the opposed triangular terahertz wave antennas 21 having a gap of several μm by the semiconductor optical switch element driving cable 18. Next, by irradiating the gap with femtosecond laser light, free carriers are generated in the semiconductor in the gap. When this free carrier is generated, a pulsed current flows between the terahertz wave antennas 21, and a terahertz wave having an electric field amplitude proportional to the first-order differentiated value is generated.

一方、テラヘルツ波の検出器14では、前記テラヘルツ波の発生と同様に半導体光スイッチ素子にフェムト秒レーザー光を照射することによって検出を行う。先ず、対向した三角形のテラヘルツ波用アンテナ21のギャップにフェムト秒レーザー光を照射し、ギャップの半導体中に自由キャリアを生成させる。その際、試料01を透過してきたテラヘルツ波がこのギャップに入射すると、上記自由キャリアはこのテラヘルツ波の電磁界によって加速され、対向した三角形のテラヘルツ波用アンテナ21の間で電流が流れる。テラヘルツ波の検出は、この電流を測定することによって行われる。以上のテラヘルツ波光源及び検出器である半導体光スイッチ素子とフェムト秒レーザーの制御・駆動は、コントローラー15で行われる。 On the other hand, the terahertz wave detector 14 performs detection by irradiating the semiconductor optical switch element with femtosecond laser light in the same manner as the generation of the terahertz wave. First, femtosecond laser light is irradiated to the gap of the opposing triangular terahertz wave antenna 21 to generate free carriers in the semiconductor in the gap. At that time, when the terahertz wave transmitted through the sample 01 enters the gap, the free carriers are accelerated by the electromagnetic field of the terahertz wave, and a current flows between the opposing terahertz wave antennas 21 having a triangular shape. The terahertz wave is detected by measuring this current. The controller 15 controls and drives the terahertz wave light source and the semiconductor optical switch element, which is a detector, and the femtosecond laser.

以下に、本実施例の装置による透過テラヘルツ波の測定例について説明する。本測定例では、有機溶媒に分散させた微量のアミノ酸を試料01とし、上記半導体光スイッチ素子を用いて、テラヘルツ波の照射と、透過してきたテラへルツ波の検出を行う。 Below, the example of a measurement of the transmission terahertz wave by the apparatus of a present Example is demonstrated. In this measurement example, a small amount of amino acid dispersed in an organic solvent is used as sample 01, and the above-described semiconductor optical switch element is used to irradiate terahertz waves and detect transmitted terahertz waves.

先ず、図5の様に回転楕円面の半分で形成された凹面鏡02内に試料01を充填し、テラヘルツ波光源13及び検出器14の支持体12で上から蓋をする。次に、半導体光スイッチ素子&フェムト秒レーザー駆動用コントローラー15によって、ケーブル18を介して、テラヘルツ波光源13の半導体光スイッチ素子のテラヘルツ波用アンテナ21にバイアスを印加する。続いて、前記コントローラー15によって、テラヘルツ波光源用フェムト秒ファイバーレーザー16を駆動することで、図5の様に光ファイバーケーブル20を通してテラヘルツ波光源の半導体光スイッチ素子にフェムト秒レーザー光の照射を行う。こうして、焦点位置にある電磁波照射部13からテラヘルツ波を発生・出射させる。 First, as shown in FIG. 5, a concave mirror 02 formed with a half of a spheroid is filled with a sample 01, and the terahertz wave light source 13 and the support 12 of the detector 14 are covered from above. Next, a bias is applied to the terahertz wave antenna 21 of the semiconductor optical switch element of the terahertz wave light source 13 by the semiconductor optical switch element & femtosecond laser drive controller 15 via the cable 18. Subsequently, the controller 15 drives the femtosecond fiber laser 16 for the terahertz wave light source to irradiate the semiconductor optical switch element of the terahertz wave light source through the optical fiber cable 20 as shown in FIG. Thus, a terahertz wave is generated and emitted from the electromagnetic wave irradiation unit 13 at the focal position.

発生したテラヘルツ波は、図5に示した経路07で試料01を透過し、もう一方の楕円焦点にあるテラヘルツ波検出器14の半導体光スイッチ素子に到達する。 The generated terahertz wave passes through the sample 01 through the path 07 shown in FIG. 5, and reaches the semiconductor optical switch element of the terahertz wave detector 14 at the other elliptical focal point.

次に、前記試料01へのテラヘルツ波照射と同時に、試料01を透過し凹面鏡02で反射され再び試料01を透過するテラヘルツ波の検出を検出器14の半導体光スイッチ素子で行う。先ず、半導体光スイッチ素子&フェムト秒レーザー駆動用コントローラー15によって検出器用フェムト秒ファイバーレーザー17を駆動することで、図5の様に光ファイバーケーブル20を通して検出器14の半導体光スイッチ素子にフェムト秒レーザー光を照射する。続いて、テラヘルツ波検出器14の半導体光スイッチ素子のテラヘルツ波用アンテナ21に流れた電流をコントローラー15によって測定し、透過テラヘルツ波を検出する。 Next, simultaneously with the terahertz wave irradiation to the sample 01, detection of the terahertz wave transmitted through the sample 01, reflected by the concave mirror 02, and again transmitted through the sample 01 is performed by the semiconductor optical switch element of the detector 14. First, the femtosecond laser light for the detector 14 is driven to the semiconductor optical switch element of the detector 14 through the optical fiber cable 20 as shown in FIG. 5 by driving the femtosecond fiber laser 17 for the detector by the semiconductor optical switch element & femtosecond laser drive controller 15. Irradiate. Subsequently, the current flowing through the terahertz wave antenna 21 of the semiconductor optical switch element of the terahertz wave detector 14 is measured by the controller 15 to detect a transmitted terahertz wave.

この際、前記コントローラー15により光源用フェムト秒ファイバーレーザー16と検出器用フェムト秒ファイバーレーザー17を一定の位相差をもって同期して駆動する。これにより、透過したテラヘルツ波の時間領域分光を行い、アミノ酸特有の指紋スペクトルを得ることができる。ここでは、凹面鏡02での反射を経ないで電磁波照射部13から検出器14に直接入る電磁波は存在しない構造になっているので、検出器14に到達する全ての電磁波の経路07の伝播距離は等しくなり、上記時間領域分光を有効に実行できる。 At this time, the controller 15 drives the light source femtosecond fiber laser 16 and the detector femtosecond fiber laser 17 synchronously with a certain phase difference. Thereby, time domain spectroscopy of the transmitted terahertz wave can be performed, and a fingerprint spectrum peculiar to amino acids can be obtained. Here, since there is no electromagnetic wave that directly enters the detector 14 from the electromagnetic wave irradiation unit 13 without being reflected by the concave mirror 02, the propagation distance of the path 07 of all electromagnetic waves reaching the detector 14 is The time domain spectroscopy can be effectively executed.

通常のテラヘルツ波の時間領域分光法では、光源用フェムト秒レーザー光の射出と検出器用フェムト秒レーザー光の半導体光スイッチ素子への照射は一定の位相差をもって同期させて行う。この為に、本実施例においては、ファイバー型フェムト秒レーザーなどが好適に用いられる。また、レーザー光を伝搬させるファイバーは低分散のものであるか、ファイバーの分岐を考慮して、レーザーの調整をしておくことが望ましい。 In normal time domain spectroscopy of terahertz waves, the emission of the femtosecond laser light for the light source and the irradiation of the femtosecond laser light for the detector to the semiconductor optical switch element are performed in synchronization with a certain phase difference. Therefore, in this embodiment, a fiber type femtosecond laser or the like is preferably used. In addition, it is desirable that the fiber for propagating the laser light is of low dispersion or that the laser is adjusted in consideration of fiber branching.

尚、電磁波を用いて測定対象の情報を得る方法は、上記測定方法以外にも種々利用できる。例えば、次の様な方法がある。先ず、測定対象が無い状態で、電磁波照射部から電磁波を出射して、凹面鏡で反射された電磁波を検出部で受けて参照用の電磁波強度のデータを得る。そして、測定対象を凹面鏡内に保持した状態で、同様に電磁波を検出部で受けて電磁波強度のデータを得て、参照用データを参照して測定データを処理して測定対象の情報を得る方法がある。 In addition, the method of obtaining information on a measurement object using electromagnetic waves can be used in various ways other than the above measurement method. For example, there are the following methods. First, in the state where there is no measurement object, the electromagnetic wave is emitted from the electromagnetic wave irradiation unit, and the electromagnetic wave reflected by the concave mirror is received by the detection unit to obtain the electromagnetic wave intensity data for reference. And in a state where the measurement object is held in the concave mirror, the electromagnetic wave is similarly received by the detection unit to obtain the electromagnetic wave intensity data, and the measurement data is processed with reference to the reference data to obtain the measurement object information. There is.

(実施例2)
実施例2は、テラヘルツ波に応用した上記実施例1の電磁波測定装置を2次元に配列し、テラヘルツ波の光源及び検出器に共鳴トンネルダイオード(RTD)を利用した医療システムへの応用例である。
(Example 2)
Example 2 is an application example to a medical system in which the electromagnetic wave measurement device of Example 1 applied to terahertz waves is two-dimensionally arranged and a resonant tunnel diode (RTD) is used as a terahertz wave light source and detector. .

先ず、図7乃至図9を用いて本実施例の装置構成について説明する。図7は本実施例の装置全体の構成を示す。本実施例は、試料保持部を兼ねる回転楕円面の半分を有する凹面鏡02が2次元に配列された基板と、共鳴トンネルダイオード素子によるテラヘルツ波光源と検出器の組が2次元に配列された支持体12を備える。また、テラヘルツ波光源と検出器の共鳴トンネルダイオード素子を制御・駆動する為のコントローラー28を備える。更に、支持体12のテラヘルツ波光源と検出器の共鳴トンネルダイオード素子を駆動する為のコントローラー28は、共鳴トンネルダイオード素子を駆動する為の電気配線用ケーブル26で基板12に接続されている。 First, the apparatus configuration of the present embodiment will be described with reference to FIGS. FIG. 7 shows the overall configuration of the apparatus of this embodiment. In this example, a substrate in which a concave mirror 02 having a half of a spheroid that also serves as a sample holding unit is arranged in a two-dimensional manner, and a terahertz wave light source and detector set by a resonant tunnel diode element are arranged in a two-dimensional manner. Body 12 is provided. In addition, a controller 28 is provided for controlling and driving the terahertz wave light source and the resonant tunneling diode element of the detector. Further, a controller 28 for driving the terahertz light source of the support 12 and the resonant tunneling diode element of the detector is connected to the substrate 12 by an electric wiring cable 26 for driving the resonant tunneling diode element.

図8は、図7の電磁波測定系の構成の断面を示す。ここで示す様に、上記基板では、ガラス基板上にガラスモールドによって作製された回転楕円面を有する凹面鏡02が2次元に配列されている。各凹面鏡02の表面には、金属蒸着により形成されたテラヘルツ波反射膜03が施されている。支持体12では、共鳴トンネルダイオード素子によるテラヘルツ波光源24及び検出器25の組が、上記基板上の凹面鏡02と同様に2次元に配列されている。共鳴トンネルダイオード素子は、これを駆動する為の電気配線用ケーブル26に接続されている。更に、各凹面鏡02は、テラヘルツ波光源24及び検出器25の位置が焦点となる様に形成されており、試料01が充填される。テラヘルツ波光源24及び検出器25の支持体12では、テラヘルツ波光源24と検出器25が、各凹面鏡02に対して2つの焦点位置に精度良く設置される様に各楕円柱状凸部上に形成されている。 FIG. 8 shows a cross section of the configuration of the electromagnetic wave measurement system of FIG. As shown here, in the above-mentioned substrate, concave mirrors 02 having a spheroidal surface produced by a glass mold on a glass substrate are two-dimensionally arranged. The surface of each concave mirror 02 is provided with a terahertz wave reflection film 03 formed by metal vapor deposition. In the support 12, a set of the terahertz light source 24 and the detector 25 using resonant tunneling diode elements is two-dimensionally arranged like the concave mirror 02 on the substrate. The resonant tunneling diode element is connected to an electric wiring cable 26 for driving the resonant tunneling diode element. Further, each concave mirror 02 is formed so that the positions of the terahertz wave light source 24 and the detector 25 are in focus, and the sample 01 is filled. In the support 12 of the terahertz wave light source 24 and the detector 25, the terahertz wave light source 24 and the detector 25 are formed on each elliptical columnar convex portion so as to be accurately installed at two focal positions with respect to each concave mirror 02. Has been.

図9(a)、(b)は、本実施例のテラヘルツ波光源24と検出器25の構成及びその断面を示す。ここに示す様に、凹面鏡02の焦点位置にテラヘルツ波光源24及び検出器25が設置され、これらは、共鳴トンネルダイオード素子駆動用ケーブル26に接続されている。共鳴トンネルダイオード素子27では、図9(a)に示す様に、四角のスリットのある金属膜がテラヘルツ波用アンテナ(スロットアンテナ)21として形成されており、試料01への電磁波照射と、それからの電磁波検出の効率向上を図っている。 FIGS. 9A and 9B show configurations and cross sections of the terahertz light source 24 and the detector 25 of the present embodiment. As shown here, a terahertz light source 24 and a detector 25 are installed at the focal position of the concave mirror 02, and these are connected to a resonant tunnel diode element driving cable 26. In the resonant tunneling diode element 27, as shown in FIG. 9 (a), a metal film having a square slit is formed as a terahertz wave antenna (slot antenna) 21. The efficiency of electromagnetic wave detection is improved.

更に、図9(b)に沿って、前記共鳴トンネルダイオード素子27と支持体12との断面構造について説明する。半導体で作製された共鳴トンネルダイオード素子27は、テラヘルツ波用アンテナ21間に形成されており、共鳴トンネルダイオード素子27を駆動する為のケーブル26はこのテラヘルツ波用アンテナ21と接続されている。この共鳴トンネルダイオード素子27は、接着材22で支持体12に固定されている。 Further, the sectional structure of the resonant tunneling diode element 27 and the support 12 will be described with reference to FIG. A resonant tunnel diode element 27 made of a semiconductor is formed between the terahertz wave antennas 21, and a cable 26 for driving the resonant tunnel diode element 27 is connected to the terahertz wave antenna 21. The resonant tunnel diode element 27 is fixed to the support 12 with an adhesive 22.

この共鳴トンネルダイオード27を用いたテラヘルツ波の発生と検出は、テラヘルツ波用アンテナ21を通して共鳴トンネルダイオード素子27を駆動することで行われる。 Generation and detection of the terahertz wave using the resonant tunneling diode 27 is performed by driving the resonant tunneling diode element 27 through the terahertz wave antenna 21.

以下に、本実施例の装置によるタンパク質の透過テラヘルツ波の測定について説明する。本実施例では、有機溶媒に分散させた微量のタンパク質を試料01として、上記共鳴トンネルダイオード27を用いて、テラヘルツ波の照射と、透過したテラへルツ波の検出を行い、複数の検体について同時に測定を行う。 Hereinafter, the measurement of the transmitted terahertz wave of the protein by the apparatus of this example will be described. In this example, a minute amount of protein dispersed in an organic solvent is used as a sample 01, and the resonant tunneling diode 27 is used to irradiate terahertz waves and detect transmitted terahertz waves. Measure.

先ず、図7及び図8の様に回転楕円面で形成された複数の凹面鏡02に異なる検体の試料01を充填し、テラヘルツ波光源24及び検出器25の支持体12で上から蓋をする。次に、共鳴トンネルダイオード素子駆動用コントローラー28によって各テラヘルツ波光源24の共鳴トンネルダイオード素子27を駆動し、テラヘルツ波を発生させる。発生したテラヘルツ波は、経路07で試料01を透過し、もう一方の楕円焦点にあるテラヘルツ波検出器25の半導体光スイッチ素子27に到達する。そして、前記試料01へのテラヘルツ波照射と同時に、検出器25の共鳴トンネルダイオード素子27を駆動し、試料01を透過したテラヘルツ波の検出を行う。上記測定により、例えば、複数の検体の中から他とは異なるタンパク質を検出することができる。 First, as shown in FIGS. 7 and 8, a plurality of concave mirrors 02 formed of spheroidal surfaces are filled with a sample 01 of a different specimen, and the terahertz wave light source 24 and the support 12 of the detector 25 are covered from above. Next, the resonant tunnel diode element drive controller 28 drives the resonant tunnel diode element 27 of each terahertz wave light source 24 to generate a terahertz wave. The generated terahertz wave passes through the sample 01 through the path 07 and reaches the semiconductor optical switch element 27 of the terahertz wave detector 25 at the other elliptical focal point. Simultaneously with the terahertz wave irradiation to the sample 01, the resonant tunnel diode element 27 of the detector 25 is driven to detect the terahertz wave transmitted through the sample 01. By the above measurement, for example, a protein different from the others can be detected from a plurality of specimens.

尚、本実施例では、光学系を兼ねた試料容器を二次元に配置して、複数の検体について、二次元に配置したテラヘルツ波光源と検出器の組を用いて測定を行った。しかし、医療では多くの検体の測定が望まれる場合が多いが、本発明の装置を用いて微量検体を効率良く測定する場合、上記実施例の構成に限らなくても良い。例えば、円盤或いはベルト状の基板に光学系を兼ねた試料容器を二次元に配置したものと、一次元に配置した検体試料注入装置とテラヘルツ波光源及び検出器と容器洗浄装置の組み合わせの構造を用意する。そして、上記二次元に配置した試料容器を連続的に、上記一次元配置の組み合わせ構造の所に搬送することにより、検体試料を連続的に測定することも可能である。 In this example, a sample container that also serves as an optical system was arranged two-dimensionally, and a plurality of specimens were measured using a terahertz wave light source and detector pair arranged two-dimensionally. However, in many cases, the measurement of many samples is desired in medicine, but the configuration of the above-described embodiment is not limited to the case where a very small amount of sample is efficiently measured using the apparatus of the present invention. For example, the structure of a combination of a two-dimensional sample container that also serves as an optical system on a disk or belt-shaped substrate, and a sample sample injection device, a terahertz wave light source, a detector, and a container cleaning device arranged one-dimensionally prepare. The specimen sample can also be continuously measured by transporting the two-dimensionally arranged sample containers continuously to the one-dimensionally arranged combination structure.

ところで、上記実施例1、2では、回転楕円面の焦点に設置されたテラヘルツ波照射部と検出部にテラヘルツ波発生素子及び検出素子を備えていた。しかし、上記実施形態の所で説明したように、これに代えて、次の様にしても良い。テラヘルツ波発生装置及び検出装置を測定光学系外部に備え、テラヘルツ波伝送路を用いた測定光学系内部の一方の焦点への導波、及び他方の焦点からの測定光学系外部への導波によって、試料へのテラヘルツ波照射、及びこれからの電磁波の検出を行っても良い。 In the first and second embodiments, the terahertz wave irradiating unit and the detecting unit installed at the focal point of the spheroid are provided with the terahertz wave generating element and the detecting element. However, as described in the above embodiment, the following may be used instead. A terahertz wave generation device and a detection device are provided outside the measurement optical system, and are guided to one focus inside the measurement optical system using the terahertz wave transmission path, and guided from the other focus to the outside of the measurement optical system. Further, the terahertz wave irradiation to the sample and the detection of the electromagnetic wave in the future may be performed.

本発明の電磁波測定装置の概念を説明する為の一実施形態を示す断面図。Sectional drawing which shows one Embodiment for demonstrating the concept of the electromagnetic wave measuring apparatus of this invention. 本発明の電磁波測定装置の概念を説明する為の他の実施形態を示す断面図。Sectional drawing which shows other embodiment for demonstrating the concept of the electromagnetic wave measuring apparatus of this invention. 本発明の電磁波測定装置の更に異なる実施形態を説明する為の断面図。Sectional drawing for demonstrating further different embodiment of the electromagnetic wave measuring apparatus of this invention. 実施例1の装置全体の構成を説明する為の斜視図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view for explaining the overall configuration of a device according to a first embodiment. 実施例1の電磁波測定系の構成を説明する為の断面図。1 is a cross-sectional view for explaining the configuration of an electromagnetic wave measurement system of Example 1. FIG. 実施例1のテラヘルツ波光源と検出器を説明する為の図。FIG. 3 is a diagram for explaining a terahertz wave light source and a detector according to the first embodiment. 実施例2の装置全体の構成を説明する為の斜視図。FIG. 6 is a perspective view for explaining the configuration of the entire apparatus of Example 2. 実施例2の電磁波測定系の構成を説明する為の断面図。FIG. 3 is a cross-sectional view for explaining the configuration of an electromagnetic wave measurement system of Example 2. 実施例2のテラヘルツ波光源と検出器を説明する為の図。FIG. 5 is a diagram for explaining a terahertz wave light source and a detector according to the second embodiment.

符号の説明Explanation of symbols

01 試料(測定対象)
02 反射凹面鏡
03 電磁波反射膜
04 電磁波照射部
05 電磁波検出部
10 電磁波照射部(電磁波光源)
11 電磁波検出部(電磁波検出器)
13 電磁波照射部(半導体光スイッチ素子によるテラヘルツ波光源)
14 電磁波検出部(半導体光スイッチ素子によるテラヘルツ波検出器)
16 フェムト秒ファイバーレーザー(テラヘルツ波光源用)
17 フェムト秒ファイバーレーザー(テラヘルツ波検出器用)
24 電磁波照射部(共鳴トンネルダイオード素子によるテラヘルツ波光源)
25 電磁波検出部(共鳴トンネルダイオード素子によるテラヘルツ波検出器)
27 共鳴トンネルダイオード素子
01 Sample (measurement target)
02 Reflective concave mirror
03 Electromagnetic wave reflection film
04 Electromagnetic wave irradiation part
05 Electromagnetic wave detector
10 Electromagnetic wave irradiation part (electromagnetic wave light source)
11 Electromagnetic wave detector (electromagnetic wave detector)
13 Electromagnetic wave irradiation part (Terahertz light source using semiconductor optical switch element)
14 Electromagnetic wave detector (terahertz wave detector using semiconductor optical switch element)
16 femtosecond fiber laser (for terahertz light source)
17 Femtosecond fiber laser (for terahertz wave detector)
24 Electromagnetic wave irradiation part (Terahertz light source using resonant tunneling diode element)
25 Electromagnetic wave detector (Terahertz wave detector using resonant tunneling diode element)
27 Resonant tunnel diode element

Claims (7)

電磁波を用いて測定対象の情報を取得するための電磁波測定装置であって、
少なくとも一部が反射面の回転楕円面で形成された電磁波反射凹面鏡と、
反射凹面鏡の一方の焦点に配されて該焦点から電磁波を射出するための電磁波照射部と、
反射凹面鏡の他方の焦点に配されて該焦点に集まってくる電磁波を受けるための電磁波検出部と、
を有することを特徴とする電磁波測定装置。
An electromagnetic wave measuring apparatus for acquiring information on a measurement object using electromagnetic waves,
An electromagnetic wave reflecting concave mirror at least partially formed of a spheroid of a reflecting surface;
An electromagnetic wave irradiation unit arranged at one focal point of the reflecting concave mirror and emitting an electromagnetic wave from the focal point;
An electromagnetic wave detection unit for receiving an electromagnetic wave arranged at the other focal point of the reflecting concave mirror and collected at the focal point;
An electromagnetic wave measuring device comprising:
前記反射凹面鏡は、その中に測定対象を保持する様に構成され、測定対象に電磁波照射部から電磁波を照射し、測定対象の透過と反射凹面鏡での反射を経てきた電磁波を電磁波検出部で受けて測定する請求項1に記載の電磁波測定装置。 The reflection concave mirror is configured to hold a measurement target therein, and the measurement target is irradiated with the electromagnetic wave from the electromagnetic wave irradiation unit, and the electromagnetic wave detection unit receives the electromagnetic wave that has passed through the measurement target and reflected by the reflection concave mirror. 2. The electromagnetic wave measuring device according to claim 1, wherein 前記電磁波照射部及び電磁波検出部にそれぞれ電磁波発生素子及び電磁波検出器を備える請求項1または2に記載の電磁波測定装置。 3. The electromagnetic wave measurement device according to claim 1, wherein the electromagnetic wave irradiation unit and the electromagnetic wave detection unit each include an electromagnetic wave generation element and an electromagnetic wave detector. 前記反射凹面鏡の外部から前記電磁波照射部に電磁波を導く導波手段と、前記電磁波検出部で受けた電磁波を前記反射凹面鏡の外部に導く導波手段を有する請求項1または2に記載の電磁波測定装置。 3. The electromagnetic wave measurement according to claim 1, further comprising: a waveguide unit that guides an electromagnetic wave from the outside of the reflective concave mirror to the electromagnetic wave irradiation unit; and a waveguide unit that guides the electromagnetic wave received by the electromagnetic wave detection unit to the outside of the reflective concave mirror. apparatus. 前記反射凹面鏡は、反射面とされた回転楕円面の半分の面と、回転楕円面の2つの焦点を含む平面で画された形状を有する請求項1乃至4のいずれかに記載の電磁波測定装置。 5. The electromagnetic wave measuring apparatus according to claim 1, wherein the concave concave mirror has a shape defined by a plane including a half surface of a spheroid that is a reflecting surface and two focal points of the spheroid. . 前記反射凹面鏡は、反射面とされた回転楕円面の全面で画された形状を有する請求項1乃至4のいずれかに記載の電磁波測定装置。 5. The electromagnetic wave measuring apparatus according to claim 1, wherein the reflecting concave mirror has a shape defined by an entire surface of a spheroid that is a reflecting surface. 前記電磁波は、周波数30GHz以上30THz以下の領域の周波数成分を含む電磁波である請求項1乃至6のいずれかに記載の電磁波測定装置。 7. The electromagnetic wave measuring apparatus according to claim 1, wherein the electromagnetic wave is an electromagnetic wave including a frequency component in a region having a frequency of 30 GHz to 30 THz.
JP2006273981A 2006-10-05 2006-10-05 Electromagnetic wave measuring device Pending JP2008089546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273981A JP2008089546A (en) 2006-10-05 2006-10-05 Electromagnetic wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273981A JP2008089546A (en) 2006-10-05 2006-10-05 Electromagnetic wave measuring device

Publications (1)

Publication Number Publication Date
JP2008089546A true JP2008089546A (en) 2008-04-17

Family

ID=39373844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273981A Pending JP2008089546A (en) 2006-10-05 2006-10-05 Electromagnetic wave measuring device

Country Status (1)

Country Link
JP (1) JP2008089546A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217107A (en) * 2011-04-01 2012-11-08 Rohm Co Ltd Terahertz oscillation detection device
CN103267901A (en) * 2013-04-19 2013-08-28 中国科学院深圳先进技术研究院 Electromagnetic wave strength detection device and method
CN104142571A (en) * 2013-05-09 2014-11-12 索尼公司 Optical system, terahertz emission microscope, and method of manufacturing a device
WO2023282118A1 (en) * 2021-07-09 2023-01-12 ローム株式会社 Detection device and detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217107A (en) * 2011-04-01 2012-11-08 Rohm Co Ltd Terahertz oscillation detection device
CN103267901A (en) * 2013-04-19 2013-08-28 中国科学院深圳先进技术研究院 Electromagnetic wave strength detection device and method
CN103267901B (en) * 2013-04-19 2015-07-01 中国科学院深圳先进技术研究院 Electromagnetic wave strength detection device and method
CN104142571A (en) * 2013-05-09 2014-11-12 索尼公司 Optical system, terahertz emission microscope, and method of manufacturing a device
JP2014219306A (en) * 2013-05-09 2014-11-20 ソニー株式会社 Optical system, terahertz emission microscope, and method of manufacturing device
WO2023282118A1 (en) * 2021-07-09 2023-01-12 ローム株式会社 Detection device and detection method

Similar Documents

Publication Publication Date Title
US6605808B2 (en) Diagnostic apparatus using terahertz radiation
US8194246B2 (en) Photoacoustic microcantilevers
CN105784634A (en) Terahertz time domain spectrograph capable of measuring transmission and reflection simultaneously under vertical incidence
US20180031469A1 (en) Terahertz Wave Generating Device and Spectroscopic Device Using Same
US8405406B2 (en) Detecting apparatus and imaging apparatus
US11644418B2 (en) Far-infrared light source and far-infrared spectrometer
US20130088590A1 (en) Far infrared imaging device and imaging method using same
US11221271B2 (en) Photoacoustic sensor for detecting trace amounts of hydrocarbons in gases or liquids
JP2012058073A (en) Terahertz wave measuring apparatus and terahertz wave measuring method
JP2014194344A (en) Method for measurement using terahertz wave
US10241380B2 (en) Terahertz wave generator
JP2008089546A (en) Electromagnetic wave measuring device
JP4403272B2 (en) Spectroscopic measurement method and spectroscopic measurement apparatus
US10845583B2 (en) Scanning microscope
JP2005172774A (en) Method and apparatus for measuring physical properties based on catoptric characteristics
JP2010210543A (en) Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
JP2006329857A (en) Length control device of optical path
JP4601516B2 (en) Terahertz spectrometer
JP2010223586A (en) Terahertz spectrometric instrument and method for terahertz spectrometry
JP5600374B2 (en) Terahertz spectrometer
JP2007101370A (en) Terahertz spectral device
JP3538516B2 (en) Concentration distribution measuring device
JP2004279352A (en) Measuring instrument using terahertz light
JP4393147B2 (en) Terahertz electromagnetic wave generating element
JP6477693B2 (en) Detection device and method of manufacturing the same