JP6219867B2 - Component concentration measuring device - Google Patents

Component concentration measuring device Download PDF

Info

Publication number
JP6219867B2
JP6219867B2 JP2015047005A JP2015047005A JP6219867B2 JP 6219867 B2 JP6219867 B2 JP 6219867B2 JP 2015047005 A JP2015047005 A JP 2015047005A JP 2015047005 A JP2015047005 A JP 2015047005A JP 6219867 B2 JP6219867 B2 JP 6219867B2
Authority
JP
Japan
Prior art keywords
phase
optical signal
wave
detector
concentration measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015047005A
Other languages
Japanese (ja)
Other versions
JP2016166803A (en
Inventor
卓郎 田島
卓郎 田島
昌人 中村
昌人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015047005A priority Critical patent/JP6219867B2/en
Publication of JP2016166803A publication Critical patent/JP2016166803A/en
Application granted granted Critical
Publication of JP6219867B2 publication Critical patent/JP6219867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、誘電分光を用いて成分濃度を測定する技術に関する。   The present invention relates to a technique for measuring a component concentration using dielectric spectroscopy.

高齢化が進み、成人病に対する対応が大きな課題になっている。血糖値などの検査は血液の採取が必要なために患者にとって大きな負担である。そのため、血液を採取しない非侵襲な成分濃度測定装置が注目されている。   As aging progresses, the response to adult diseases has become a major issue. Tests such as blood glucose levels are a heavy burden on patients because they need to collect blood. Therefore, a non-invasive component concentration measuring apparatus that does not collect blood has attracted attention.

非侵襲な成分濃度測定装置として、誘電分光法を用いた装置が提案されている。誘電分光法は、皮膚内に電磁波を照射し、測定対象の血液成分、例えば、グルコース分子と水の相互作用に従い、電磁波を吸収させ、電磁波の周波数に対する振幅及び位相を観測する。観測される電磁波の周波数に対する振幅及び位相から、誘電緩和スペクトルを算定する。一般的には、Cole−Cole式に基づき緩和カーブの線形結合として表現し、複素誘電率を算定する。   An apparatus using dielectric spectroscopy has been proposed as a noninvasive component concentration measuring apparatus. Dielectric spectroscopy irradiates the skin with electromagnetic waves, absorbs the electromagnetic waves according to the interaction of blood components to be measured, for example, glucose molecules and water, and observes the amplitude and phase with respect to the frequency of the electromagnetic waves. The dielectric relaxation spectrum is calculated from the amplitude and phase with respect to the frequency of the observed electromagnetic wave. In general, the complex dielectric constant is calculated by expressing as a linear combination of relaxation curves based on the Cole-Cole equation.

従来の測定法としては、マイクロ波からミリ波以上の周波数帯では、光電気変換(フォトミキシング)を利用した誘電分光装置がある(特許文献1参照)。特許文献1の誘電分光装置は、周波数の異なる2つの連続光波が合成された光信号を光電変換して電磁波、例えばテラヘルツ波を発生し、発生したテラヘルツ波を被測定対象物に照射し、被測定対象物を透過したテラヘルツ波を受信するとともに、2つの連続光波のうちの一方の位相を変調して合成した参照光を入力してホモダインミキシングする構成である。ホモダインミキシングする検出器には例えば、光伝導アンテナを用い、参照光の照射によりアンテナ間のコンダクタンスが参照光に含まれる2つの連続光波間の差周波数にて変調されることで実現される。従来の誘電分光装置においては、電磁波をホモダイン検波する際には、検出器で被測定対象物を透過した光信号と参照光をミキシングするときにおける2つの光路長差が一致していることが必要である。そのため、空間を伝搬するテラヘルツ波の伝搬長や光が伝搬するファイルの長さ等を調節する。   As a conventional measurement method, there is a dielectric spectroscopic device using photoelectric conversion (photomixing) in a frequency band from microwave to millimeter wave or more (see Patent Document 1). The dielectric spectroscopic device of Patent Document 1 photoelectrically converts an optical signal in which two continuous light waves having different frequencies are combined to generate an electromagnetic wave, for example, a terahertz wave, irradiates the object to be measured with the generated terahertz wave, The configuration is such that the terahertz wave transmitted through the measurement object is received and the reference light synthesized by modulating the phase of one of the two continuous light waves is input to perform homodyne mixing. For example, a detector that performs homodyne mixing uses a photoconductive antenna, and the conductance between the antennas is modulated by the difference frequency between two continuous light waves included in the reference light by irradiation with the reference light. In the conventional dielectric spectroscopic device, when homodyne detection of electromagnetic waves, it is necessary that the two optical path length differences when the optical signal transmitted through the object to be measured and the reference light are mixed by the detector match. It is. Therefore, the propagation length of the terahertz wave propagating in space, the length of the file through which light propagates, and the like are adjusted.

特開2013−32933号公報JP 2013-32933 A

Andrew P. Gregory, and Robert N. Clarke, “A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids”, IEEE Transactions on Dielectrics and Electrical Insulation, August 2006, Vol. 13, No. 4, pp.727-743Andrew P. Gregory, and Robert N. Clarke, “A Review of RF and Microwave Techniques for Dielectric Measurements on Polar Liquids”, IEEE Transactions on Dielectrics and Electrical Insulation, August 2006, Vol. 13, No. 4, pp.727- 743 Jae-Young Kim, Ho-Jin Song, Katsuhiro Ajito, Makoto Yaita, and Naoya Kukutsu, “Continuous-Wave THz Homodyne Spectroscopy and Imaging System With Electro-Optical Phase Modulation for High Dynamic Range”, IEEE Transactions on terahertz science and technology, March 2013, Vol. 3, No. 2, pp.158-164Jae-Young Kim, Ho-Jin Song, Katsuhiro Ajito, Makoto Yaita, and Naoya Kukutsu, “Continuous-Wave THz Homodyne Spectroscopy and Imaging System With Electro-Optical Phase Modulation for High Dynamic Range”, IEEE Transactions on terahertz science and technology, March 2013, Vol. 3, No. 2, pp.158-164

しかしながら、温度等の環境変動によりファイバの屈折率が変動し、2つの光路長差が変動すると、信号の振幅・位相が不安定となり、測定再現性や測定精度が得られないという問題があった。   However, if the refractive index of the fiber fluctuates due to environmental fluctuations such as temperature, and the difference between the two optical path lengths fluctuates, there is a problem that the amplitude and phase of the signal become unstable and measurement reproducibility and measurement accuracy cannot be obtained. .

本発明は、上記に鑑みてなされたものであり、環境変動によりファイバの屈折率が変化する場合でも、測定の再現性や測定精度を確保することを目的とする。   The present invention has been made in view of the above, and an object thereof is to ensure measurement reproducibility and measurement accuracy even when the refractive index of a fiber changes due to environmental fluctuations.

本発明に係る成分濃度測定装置は、周波数の異なる2つの連続光波が合波された第1の光信号を光電変換してミリ波又はテラヘルツ波の第1の電磁波を発生させる放射器と、前記2つの連続光波のうちの一方の連続光波の位相を電気的に変調する光位相変調器と、前記光位相変調器で位相変調された連続光波と位相変調されていない他方の連続光波とが合波された第2の光信号を照射されるとともに、被測定対象物を透過又は反射した前記第1の電磁波を受信し、前記第1の電磁波と前記第2の光信号をホモダインミキシングする検出器と、を有し、前記第1の光信号及び第2の光信号が通るファイバの遅延長を同じにし、前記第2の光信号が通る前記ファイバに前記第1の電磁波の空間伝搬長と等しい空間遅延線を挿入したことを特徴とする。   The component concentration measuring apparatus according to the present invention includes a radiator that photoelectrically converts a first optical signal obtained by combining two continuous light waves having different frequencies to generate a first electromagnetic wave of a millimeter wave or a terahertz wave, An optical phase modulator that electrically modulates the phase of one of the two continuous light waves is combined with the continuous light wave that is phase-modulated by the optical phase modulator and the other continuous light wave that is not phase-modulated. A detector that receives the first electromagnetic wave that is irradiated with the waved second optical signal and that is transmitted or reflected by the object to be measured, and that performs homodyne mixing of the first electromagnetic wave and the second optical signal. The delay length of the fiber through which the first optical signal and the second optical signal pass is the same, and is equal to the spatial propagation length of the first electromagnetic wave through the fiber through which the second optical signal passes Characterized by the insertion of a spatial delay line .

上記成分濃度測定装置において、前記検出器が検出する位相が一定となるように、前記空間遅延線の間隔を調整する間隔調整手段を有することを特徴とする。   The component concentration measuring apparatus includes an interval adjusting unit that adjusts an interval between the spatial delay lines so that a phase detected by the detector is constant.

上記成分濃度測定装置において、前記放射器と前記検出器との間に前記第1の電磁波を反射する放物面鏡を備え、前記間隔調整手段は当該放物面鏡の間隔を調整することを特徴とする。   In the component concentration measuring apparatus, a parabolic mirror that reflects the first electromagnetic wave is provided between the radiator and the detector, and the interval adjusting unit adjusts the interval of the parabolic mirror. Features.

本発明によれば、環境変動によりファイバの屈折率が変化する場合でも、測定の再現性や測定精度を確保することができる。   According to the present invention, measurement reproducibility and measurement accuracy can be ensured even when the refractive index of the fiber changes due to environmental fluctuations.

本実施の形態における成分濃度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the component density | concentration measuring apparatus in this Embodiment. 本実施の形態における別の成分濃度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of another component density | concentration measuring apparatus in this Embodiment. 誘電分光センサの測定系を示す図である。It is a figure which shows the measurement system of a dielectric spectroscopy sensor. 別の誘電分光センサの測定系を示す図である。It is a figure which shows the measurement system of another dielectric spectroscopy sensor.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態における成分濃度測定装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a component concentration measuring apparatus according to the present embodiment.

図1に示す成分濃度測定装置は、連続波光源11A,11B、スプリッタ12A,12B、カプラ13A,13B、位相変調器14、発振器15、放射器16、検出器17、ロックインアンプ18、モニタ19、および遅延線20を備える。   The component concentration measuring apparatus shown in FIG. 1 includes continuous wave light sources 11A and 11B, splitters 12A and 12B, couplers 13A and 13B, a phase modulator 14, an oscillator 15, a radiator 16, a detector 17, a lock-in amplifier 18, and a monitor 19. And a delay line 20.

連続波光源11A,11Bは、周波数が互いに異なる連続光波を出力する。以下の説明では、連続波光源11Aから出力された連続光波を第1光信号、連続波光源11Bから出力された連続光波を第2光信号とする。   The continuous wave light sources 11A and 11B output continuous light waves having different frequencies. In the following description, the continuous light wave output from the continuous wave light source 11A is referred to as a first optical signal, and the continuous light wave output from the continuous wave light source 11B is referred to as a second optical signal.

スプリッタ12Aは、第1光信号を2つに分波し、スプリッタ12Bは、第2光信号を2つに分波する。   The splitter 12A demultiplexes the first optical signal into two, and the splitter 12B demultiplexes the second optical signal into two.

カプラ13Aは、スプリッタ12Aで分波された第1光信号とスプリッタ12Bで分波された第2光信号とを合波する。カプラ13Aで合波された光信号はファイバを通って放射器16に入力される。   The coupler 13A combines the first optical signal demultiplexed by the splitter 12A and the second optical signal demultiplexed by the splitter 12B. The optical signal combined by the coupler 13A is input to the radiator 16 through the fiber.

位相変調器14は、制御信号により電気的に位相変調が可能な電気光学結晶を用いた位相変調器であり、スプリッタ12Bとカプラ13Bの間に配置される。位相変調器14に、発振器15からの単一周波数fの制御信号を印加してセロダイン位相変調を行い、変調周波数fと同等の周波数シフトをスプリッタ12Bで分波された第2光信号に生じさせる。   The phase modulator 14 is a phase modulator using an electro-optic crystal that can be electrically phase-modulated by a control signal, and is disposed between the splitter 12B and the coupler 13B. The control signal of the single frequency f from the oscillator 15 is applied to the phase modulator 14 to perform serodyne phase modulation, and a frequency shift equivalent to the modulation frequency f is generated in the second optical signal demultiplexed by the splitter 12B. .

カプラ13Bは、スプリッタ12Aで分波された第1光信号と位相変調器14で位相変調された第2光信号とを合波する。カプラ13Bで合波された参照光は遅延線20を通って検出器17に入力される。   The coupler 13B combines the first optical signal demultiplexed by the splitter 12A and the second optical signal phase-modulated by the phase modulator 14. The reference light combined by the coupler 13B is input to the detector 17 through the delay line 20.

放射器16は、カプラ13Aで合波された光信号を光電変換し、第1光信号と第2光信号の周波数差に一致する周波数の電磁波(ミリ波又はテラヘルツ波)を発生する。放射器16としては、例えば単一走行キャリア・フォトダイオード(UTC−PD:Uni−Traveling−Carrier Photodiode)を利用できる。   The radiator 16 photoelectrically converts the optical signal combined by the coupler 13A, and generates an electromagnetic wave (millimeter wave or terahertz wave) having a frequency matching the frequency difference between the first optical signal and the second optical signal. As the radiator 16, for example, a single traveling carrier photodiode (UTC-PD) can be used.

検出器17は、カプラ13Bで合波された参照光を光電変換して電磁波を発生するとともに、放射器16から放射されてサンプル100を透過した電磁波を受信してホモダインミキシングして周波数fの電気信号を出力する。検出器17は、アンテナ付きSBD(ショットキー・バリア・ダイオード)で構成されるTHzミキサと、アンテナ付きUTC−PDで構成されるフォトミキサと、光ファイバとを同一パッケージに実装することで実現できる。検出器17には、光伝導アンテナ(PCA:Photo−Conductive Antenna)を用いてもよい。光伝導アンテナでは、参照光の照射によりアンテナ間のコンダクタンスが参照光に含まれる2つの連続光波間の差周波数にて変調されることで実現される。   The detector 17 photoelectrically converts the reference light combined by the coupler 13B to generate an electromagnetic wave, receives the electromagnetic wave radiated from the radiator 16 and transmitted through the sample 100, and performs homodyne mixing to generate an electric frequency f. Output a signal. The detector 17 can be realized by mounting a THz mixer composed of an SBD (Schottky barrier diode) with an antenna, a photomixer composed of an UTC-PD with an antenna, and an optical fiber in the same package. . The detector 17 may be a photoconductive antenna (PCA: Photo-Conductive Antenna). In the photoconductive antenna, the conductance between the antennas is modulated by the difference frequency between two continuous light waves included in the reference light by irradiation of the reference light.

ロックインアンプ18は、検出器17が出力する電気信号を同期検波して振幅及び位相を検出し、モニタ19は、ロックインアンプ18が検出した振幅及び位相を処理する。   The lock-in amplifier 18 detects the amplitude and phase by synchronously detecting the electrical signal output from the detector 17, and the monitor 19 processes the amplitude and phase detected by the lock-in amplifier 18.

テラヘルツ波帯では、放物面鏡31A,31Bを用いた擬似光学系によるフリースペース法により、テラヘルツ波を測定対象であるサンプル100に照射し、透過信号から複素誘電率を計測する。放物面鏡31A,31Bを利用した場合は、レンズを利用するのに比べてレンズ内の多重反射が生じないので測定値が安定する。   In the terahertz wave band, the complex dielectric constant is measured from the transmitted signal by irradiating the sample 100 as a measurement target with a terahertz wave by a free space method using a pseudo optical system using parabolic mirrors 31A and 31B. When the parabolic mirrors 31A and 31B are used, since the multiple reflection in the lens does not occur as compared with the case where the lens is used, the measurement value is stabilized.

従来の誘電分光装置においては、電磁波をホモダイン検波する際に、検出器でのミキシング時における2つの光路長差が一致するように光が伝搬するファイバの長さ等を予め調整する。本実施の形態では、カプラ13Aから放射器16までのファイバと、カプラ13Bから検出器17までのファイバとを同等の遅延長とし、さらにカプラ13Bと検出器17の間に、放射器16から検出器17に出射されるテラヘルツ波の空間伝搬長と同等の長さ(遅延長)を有する遅延線20を備える。遅延線20は、ファイバ端にレンズコリメータを接続し、2つのレンズを対向させ、平行光を伝搬させることで低損失で実現できる。   In the conventional dielectric spectroscopic apparatus, when homodyne detection of electromagnetic waves, the length of the fiber through which light propagates is adjusted in advance so that the two optical path length differences at the time of mixing at the detector coincide. In the present embodiment, the fiber from the coupler 13A to the radiator 16 and the fiber from the coupler 13B to the detector 17 have the same delay length, and further, the detection from the radiator 16 is performed between the coupler 13B and the detector 17. A delay line 20 having a length (delay length) equivalent to the spatial propagation length of the terahertz wave emitted to the device 17 is provided. The delay line 20 can be realized with low loss by connecting a lens collimator to the fiber end, making two lenses face each other, and propagating parallel light.

ここで遅延線20の作用効果について説明する。   Here, the effect of the delay line 20 will be described.

ファイバの屈折率温度係数dns/dTは、6.6×10−6/℃であり、空気の屈折率温度係数dna/dTは、−1.4×10−7/℃である。カプラ13Aから放射器16まで、カプラ13Bから検出器17までのファイバの長さをL,Lとする。テラヘルツ波の空間伝搬長をLとする。ホモダイン検波の条件として2つの光路長差を合わせると、それぞれの長さは以下となる。 The refractive index temperature coefficient dns / dT of the fiber is 6.6 × 10 −6 / ° C., and the refractive index temperature coefficient dna / dT of air is −1.4 × 10 −7 / ° C. The lengths of the fibers from the coupler 13A to the radiator 16 and from the coupler 13B to the detector 17 are L 1 and L 2 . The space propagation length of the terahertz wave and L 3. When the two optical path length differences are combined as the homodyne detection conditions, the respective lengths are as follows.

+L=n
ここで、nはファイバコアの屈折率1.4である。空気の屈折率は1である。
n s L 1 + L 3 = n s L 2
Here, ns is the refractive index of the fiber core 1.4. The refractive index of air is 1.

温度変化をΔTとすると、遅延差ΔLは以下の式で表すことができる。   If the temperature change is ΔT, the delay difference ΔL can be expressed by the following equation.

ΔL=(L−L)(dns/dT)ΔT+L(dna/dT)ΔT ΔL = (L 1 −L 2 ) (dns / dT) ΔT + L 3 (dna / dT) ΔT

遅延差Δτは以下となる。   The delay difference Δτ is as follows.

Δτ=2πΔL/λ
ここで、λはテラヘルツ波の波長である。例えば、L1−L2=20cm、L3=28cmとし、ΔT=1℃の変化が生じた場合、テラヘルツ波の波長λは、1THzのときにλ=0.3mmであるので、遅延差Δτ=0.03rad=1.8度の温度に付随する位相信号の変動が生じる。
Δτ = 2πΔL / λ
Here, λ is the wavelength of the terahertz wave. For example, when L1-L2 = 20 cm and L3 = 28 cm and a change of ΔT = 1 ° C. occurs, the wavelength λ of the terahertz wave is λ = 0.3 mm at 1 THz, and therefore the delay difference Δτ = 0. A phase signal variation associated with a temperature of 03 rad = 1.8 degrees occurs.

本実施の形態では、遅延線20の長さをLとして、2つの光路長差を合わせて、それぞれの長さを以下とする。 In this embodiment, the length of the delay line 20 as L 4, together two optical path length difference, and the following respective lengths.

+L=n+L n s L 1 + L 3 = n s L 2 + L 4

つまり、L≒L、L≒Lとすることで、ΔL≒0とすることができ、Δτ≒0となり、温度変動に対して位相信号の変動を低減することができる。また、湿度によって空気の屈折率変化がある場合も同様にその変動をキャンセルすることができる。 That is, by setting L 1 ≈L 2 and L 3 ≈L 4 , ΔL≈0 can be obtained, and Δτ≈0 can be obtained, so that the fluctuation of the phase signal can be reduced with respect to the temperature fluctuation. Also, when there is a change in the refractive index of air due to humidity, the change can be canceled in the same manner.

なお、カプラ13Aと放射器16との間に、上記の式を満たすように遅延線20を配置してもよい。   Note that the delay line 20 may be disposed between the coupler 13A and the radiator 16 so as to satisfy the above formula.

図2は、本実施の形態における別の成分濃度測定装置の構成を示すブロック図である。   FIG. 2 is a block diagram showing a configuration of another component concentration measuring apparatus in the present embodiment.

図2に示す成分濃度測定装置は、図1の成分濃度測定装置に、さらに遅延線20の長さを調節する機械移動ステージ21と制御器22を備えたものである。   The component concentration measuring apparatus shown in FIG. 2 is provided with a machine moving stage 21 and a controller 22 for adjusting the length of the delay line 20 in addition to the component concentration measuring apparatus of FIG.

制御器22は、位相信号をモニタしながら、位相が一定となるように機械移動ステージ21を制御して遅延線20の長さを変化させる。これにより、ファイバの温度分布差による微小な変化を低減することができる。   The controller 22 changes the length of the delay line 20 by controlling the machine moving stage 21 so that the phase becomes constant while monitoring the phase signal. Thereby, the minute change by the temperature distribution difference of a fiber can be reduced.

また、図2の成分濃度測定装置は、図1の成分濃度測定装置に比べ、放物面鏡31A〜31Dが2枚多く備えている。放射器からは所定の角度で放射したテラヘルツ波を放物面鏡31Aにより平行ビームにしており、放物面鏡31A、31B間と放物面鏡31C、31D間はテラヘルツ波は平行であるため、この間の距離を調節して位相が一定となるようにしてもよい。具体的には、放物面鏡31B,31Cを機械移動ステージ21に固定し、制御器22が位相信号をモニタしながら、位相が一定となるように放物面鏡31B,31Cを移動させてテラヘルツ波の空間伝搬長を調節する。平行ビームとなる伝搬区間で伝搬長を調整することで低損失で位相制御を実現できる。なお、テラヘルツ波の空間伝搬長と遅延線20の長さと同時に調整してもよい。   2 includes two more parabolic mirrors 31A to 31D than the component concentration measuring apparatus of FIG. The terahertz wave radiated from the radiator at a predetermined angle is converted into a parallel beam by the parabolic mirror 31A, and the terahertz wave is parallel between the parabolic mirrors 31A and 31B and the parabolic mirrors 31C and 31D. The distance may be adjusted so that the phase becomes constant. Specifically, the parabolic mirrors 31B and 31C are fixed to the machine moving stage 21, and the controller 22 monitors the phase signal and moves the parabolic mirrors 31B and 31C so that the phase is constant. Adjust the spatial propagation length of terahertz waves. Phase control can be realized with low loss by adjusting the propagation length in the propagation section that becomes a parallel beam. The spatial propagation length of the terahertz wave and the length of the delay line 20 may be adjusted simultaneously.

また、温度センサを制御器22に接続し、測定された温度を元に、機械移動ステージ21を制御してもよい。位相信号をモニタする図2の構成はフィードバック制御であるのに対し、温度により制御する構成はフィードフォワードの制御になるので、遅延線20の制御を高速にできるという効果がある。   Further, a temperature sensor may be connected to the controller 22 to control the machine moving stage 21 based on the measured temperature. The configuration shown in FIG. 2 for monitoring the phase signal is feedback control, whereas the configuration controlled by temperature is feedforward control, so that the delay line 20 can be controlled at high speed.

次に、レンズを用いた誘電分光センサの測定系について説明する。   Next, a measurement system of a dielectric spectroscopic sensor using a lens will be described.

図3は、本実施の形態の誘電分光センサの測定系を示す図である。図3の例では、誘電分光センサの測定系に透過型の配置をして水溶液や油等の液体を透過した透過信号の振幅、位相を測定する。放射器16から放射されたテラヘルツ波は、レンズ51を通過し、固定治具54に保持された誘電率測定用セル53のサンプルセルに入射する。サンプルセルのサイズは、例えば、ビームサイズ以上として数ミリ×数ミリ角以上である。サンプルを固定する窓板52の材料は、高抵抗Si,Zカット水晶、HDPE、TPX、Tsurupica等を用いてもよく、測定周波数に応じて透過率の高い材料を選択する。サンプルセルを通過したテラヘルツ波は、レンズ51を通過し、検出器17で受信される。なお、サンプルセルは、インレットとアウトレットを備えるフローセル構成としてもよい。また、固体を測定してもよい。   FIG. 3 is a diagram showing a measurement system of the dielectric spectroscopic sensor of the present embodiment. In the example of FIG. 3, a transmission type is arranged in the measurement system of the dielectric spectroscopic sensor, and the amplitude and phase of a transmission signal transmitted through a liquid such as an aqueous solution or oil are measured. The terahertz wave radiated from the radiator 16 passes through the lens 51 and enters the sample cell of the dielectric constant measurement cell 53 held by the fixing jig 54. The size of the sample cell is, for example, several millimeters × several millimeters or more as the beam size. The material of the window plate 52 for fixing the sample may be a high resistance Si, Z cut crystal, HDPE, TPX, Tsurupica, etc., and a material having a high transmittance is selected according to the measurement frequency. The terahertz wave that has passed through the sample cell passes through the lens 51 and is received by the detector 17. Note that the sample cell may have a flow cell configuration including an inlet and an outlet. Moreover, you may measure solid.

図4は、本実施の形態の別の誘電分光センサの測定系を示す図である。図4の例では、シリコンを材料とするATRプリズム55上にサンプルセルを配置し、サンプルセルで反射した反射信号の振幅、位相を測定する。放射器16から放射されたテラヘルツ波は、レンズ51、ATRプリズム55を通過し、固定治具54に保持された誘電率測定用セル53のサンプルセルで反射する。サンプルセルは、窓板52で誘電率測定用セル53に封止される。サンプルセルで反射したテラヘルツ波は、ATRプリズム55、レンズ51を通過し、検出器17で受信される。   FIG. 4 is a diagram showing a measurement system of another dielectric spectroscopic sensor of the present embodiment. In the example of FIG. 4, a sample cell is disposed on the ATR prism 55 made of silicon, and the amplitude and phase of the reflected signal reflected by the sample cell are measured. The terahertz wave radiated from the radiator 16 passes through the lens 51 and the ATR prism 55 and is reflected by the sample cell of the dielectric constant measurement cell 53 held by the fixing jig 54. The sample cell is sealed in the dielectric constant measurement cell 53 by the window plate 52. The terahertz wave reflected by the sample cell passes through the ATR prism 55 and the lens 51 and is received by the detector 17.

以上説明したように、本実施の形態によれば、カプラ13Aから放射器16までのファイバと、カプラ13Bから検出器17までのファイバとを同等の遅延長とし、カプラ13Bと検出器17の間に、放射器16から検出器17に出射されるテラヘルツ波の空間伝搬長と同等の長さ(遅延長)を有する遅延線20を備えることにより、光路長の屈折率変動を同等にでき、環境変動に伴う位相変化を抑制し、高精度にデータを取得することが可能となる。   As described above, according to the present embodiment, the fiber from the coupler 13A to the radiator 16 and the fiber from the coupler 13B to the detector 17 have the same delay length, and the gap between the coupler 13B and the detector 17 is set. In addition, by providing the delay line 20 having a length (delay length) equivalent to the spatial propagation length of the terahertz wave emitted from the radiator 16 to the detector 17, the refractive index variation of the optical path length can be made equivalent, and the environment It is possible to suppress phase change due to fluctuations and acquire data with high accuracy.

11A,11B…連続波光源
12A,12B…スプリッタ
13A,13B…カプラ
14…位相変調器
15…発振器
16…放射器
17…検出器
18…ロックインアンプ
19…モニタ
20…遅延線
21…機械移動ステージ
22…制御器
31A〜31D…放物面鏡
51…レンズ
52…窓板
53…誘電率測定用セル
54…固定治具
55…ATRプリズム
100…サンプル
DESCRIPTION OF SYMBOLS 11A, 11B ... Continuous wave light source 12A, 12B ... Splitter 13A, 13B ... Coupler 14 ... Phase modulator 15 ... Oscillator 16 ... Radiator 17 ... Detector 18 ... Lock-in amplifier 19 ... Monitor 20 ... Delay line 21 ... Machine movement stage DESCRIPTION OF SYMBOLS 22 ... Controller 31A-31D ... Parabolic mirror 51 ... Lens 52 ... Window board 53 ... Cell for dielectric constant measurement 54 ... Fixing jig 55 ... ATR prism 100 ... Sample

Claims (3)

周波数の異なる2つの連続光波が合波された第1の光信号を光電変換してミリ波又はテラヘルツ波の第1の電磁波を発生させる放射器と、
前記2つの連続光波のうちの一方の連続光波の位相を電気的に変調する光位相変調器と、
前記光位相変調器で位相変調された連続光波と位相変調されていない他方の連続光波とが合波された第2の光信号を照射されるとともに、被測定対象物を透過又は反射した前記第1の電磁波を受信し、前記第1の電磁波と前記第2の光信号をホモダインミキシングする検出器と、を有し、
前記第1の光信号及び第2の光信号が通るファイバの遅延長を同じにし、前記第2の光信号が通る前記ファイバに前記第1の電磁波の空間伝搬長と等しい空間遅延線を挿入したことを特徴とする成分濃度測定装置。
A radiator that photoelectrically converts a first optical signal in which two continuous light waves having different frequencies are combined to generate a first electromagnetic wave of a millimeter wave or a terahertz wave;
An optical phase modulator that electrically modulates the phase of one of the two continuous light waves;
The second optical signal obtained by combining the continuous light wave phase-modulated by the optical phase modulator and the other continuous light wave which is not phase-modulated is irradiated and transmitted or reflected by the object to be measured. A detector that receives the first electromagnetic wave and homodyne mixes the first electromagnetic wave and the second optical signal;
The delay length of the fiber through which the first optical signal and the second optical signal pass is made the same, and a spatial delay line equal to the spatial propagation length of the first electromagnetic wave is inserted into the fiber through which the second optical signal passes. A component concentration measuring apparatus characterized by that.
前記検出器が検出する位相が一定となるように、前記空間遅延線の間隔を調整する間隔調整手段を有することを特徴とする請求項1記載の成分濃度測定装置。   2. The component concentration measuring apparatus according to claim 1, further comprising interval adjusting means for adjusting an interval between the spatial delay lines so that a phase detected by the detector is constant. 前記放射器と前記検出器との間に前記第1の電磁波を反射する放物面鏡を備え、前記間隔調整手段は当該放物面鏡の間隔を調整することを特徴とする請求項2記載の成分濃度測定装置。   The parabolic mirror that reflects the first electromagnetic wave is provided between the radiator and the detector, and the interval adjusting unit adjusts the interval of the parabolic mirror. Ingredient concentration measuring device.
JP2015047005A 2015-03-10 2015-03-10 Component concentration measuring device Active JP6219867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047005A JP6219867B2 (en) 2015-03-10 2015-03-10 Component concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047005A JP6219867B2 (en) 2015-03-10 2015-03-10 Component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2016166803A JP2016166803A (en) 2016-09-15
JP6219867B2 true JP6219867B2 (en) 2017-10-25

Family

ID=56898428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047005A Active JP6219867B2 (en) 2015-03-10 2015-03-10 Component concentration measuring device

Country Status (1)

Country Link
JP (1) JP6219867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007897A (en) * 2017-11-28 2018-05-08 湖北久之洋红外系统股份有限公司 A kind of terahertz time-domain spectroscopy measuring system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600374B2 (en) * 2007-12-21 2014-10-01 株式会社栃木ニコン Terahertz spectrometer
US8378304B2 (en) * 2010-08-24 2013-02-19 Honeywell Asca Inc. Continuous referencing for increasing measurement precision in time-domain spectroscopy
JP5713501B2 (en) * 2011-08-01 2015-05-07 日本電信電話株式会社 Homodyne detection system electromagnetic spectrum measurement system
JP5768619B2 (en) * 2011-09-22 2015-08-26 アイシン精機株式会社 Terahertz wave generation detector
JP5986943B2 (en) * 2013-03-22 2016-09-06 日本電信電話株式会社 Homodyne detection system electromagnetic spectrum measurement system
JP2014202660A (en) * 2013-04-08 2014-10-27 パイオニア株式会社 Time-domain spectral instrument, time-domain spectroscopy, and imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007897A (en) * 2017-11-28 2018-05-08 湖北久之洋红外系统股份有限公司 A kind of terahertz time-domain spectroscopy measuring system

Also Published As

Publication number Publication date
JP2016166803A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
US10684217B2 (en) Optical absorption spectroscopy based gas analyzer systems and methods
US9863815B2 (en) Method and apparatus for multifrequency optical comb generation
JP6220128B2 (en) Terahertz wave generator and terahertz wave measuring method
JP6238058B2 (en) Terahertz spectroscopy system
JP6389135B2 (en) Component concentration analyzer and component concentration analysis method
US10113959B2 (en) Terahertz wave generating device and spectroscopic device using same
US8179527B2 (en) Terahertz spectrometer
WO2016084322A1 (en) Measuring apparatus and method for measuring terahertz pulses
US9400214B1 (en) Terahertz frequency domain spectrometer with a single photoconductive element for terahertz signal generation and detection
Ozturk et al. Comparison of free space measurement using a vector network analyzer and low-cost-type THz-TDS measurement methods between 75 and 325 GHz
JP6804061B2 (en) Dielectric spectroscope
US20160377958A1 (en) Terahertz wave generating apparatus and information obtaining apparatus
JP6426540B2 (en) Dielectric spectroscopy
JP6219867B2 (en) Component concentration measuring device
JP4853255B2 (en) Gas analyzer
JP2017003341A (en) Dielectric spectroscopic apparatus
JP2017194361A (en) Dielectric spectroscopic device
JP6278917B2 (en) Component concentration measuring apparatus and component concentration measuring method
Jones et al. Ultra-wideband tunable dual-mode laser for continuous wave terahertz generation
JP6254543B2 (en) Dielectric spectrometer
JP6401694B2 (en) Dielectric spectrometer
Yamamoto et al. Millimeter-wave ellipsometry using low-coherence light source
JPWO2015174463A1 (en) Detection device and manufacturing method thereof
CN114370992B (en) Microcavity dispersion detection device
JP2019020147A (en) Spectroscopic element, measuring method and measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170928

R150 Certificate of patent or registration of utility model

Ref document number: 6219867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150