JP2006317325A - Apparatus for measuring photothermal conversion - Google Patents

Apparatus for measuring photothermal conversion Download PDF

Info

Publication number
JP2006317325A
JP2006317325A JP2005141122A JP2005141122A JP2006317325A JP 2006317325 A JP2006317325 A JP 2006317325A JP 2005141122 A JP2005141122 A JP 2005141122A JP 2005141122 A JP2005141122 A JP 2005141122A JP 2006317325 A JP2006317325 A JP 2006317325A
Authority
JP
Japan
Prior art keywords
light
sample
measurement
intensity
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005141122A
Other languages
Japanese (ja)
Other versions
JP4290142B2 (en
Inventor
Hiroyuki Takamatsu
弘行 高松
Masahito Amanaka
将人 甘中
Eiji Takahashi
英二 高橋
Toshihiro Kugimiya
敏洋 釘宮
Tsutomu Morimoto
勉 森本
Hisakazu Sakota
尚和 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005141122A priority Critical patent/JP4290142B2/en
Publication of JP2006317325A publication Critical patent/JP2006317325A/en
Application granted granted Critical
Publication of JP4290142B2 publication Critical patent/JP4290142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1712Thermal lens, mirage effect

Abstract

<P>PROBLEM TO BE SOLVED: To measure the characteristic change caused by a photothermal effect in a sample with high sensitivity by a low noise simple configuration inclusive of the measurement of the absorption spectroscopic characteristics of the sample. <P>SOLUTION: The measuring light B1 transmitted through the sample 5 is detected by applying intensity modulations mutually inverse in phase to two beams of exciting light B3a and B3b mutually different in wavelength band before the sample 5 is irradiated with the measuring light B1 by a chopper 2 and the same cycle component as the intensity modulation cycle of the beams of exciting light is extracted from the detection signal by a signal processor 21. The intensity balance of two beams of exciting light is set so as not to cause a change in the temperature of a cell 15 or solvent even during the irradiation with both exciting lights. The detection of measuring light B1 is performed, for example, on the basis of a light interfering method for allowing predetermined reference light B2 to interfere with the measuring light B1 transmitted through the sample 5 to detect the intensity of the interfering light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,試料の含有物質等を分析する際に用いられ,励起光を試料に照射したときの光熱効果により試料に生じる屈折率変化に基づく特性変化を測定する光熱変換測定装置及びその測定方法に関するものである。   The present invention is a photothermal conversion measuring apparatus and method for measuring a characteristic change based on a refractive index change generated in a sample due to a photothermal effect when the sample is irradiated with a sample and the like and irradiated with excitation light. It is about.

各種試料の含有物質等の分析において,分析感度の向上は,試薬の量の低減や試料の濃縮処理の簡素化,分析の効率化及び低コスト化を図る上で重要である。一方,試料に励起光を照射すると,その照射部は励起光を吸収することにより発熱し,これを光熱効果という。この発熱を測定することを光熱変換測定という。
従来,この光熱変換測定による試料の高感度分析法として,光熱効果により試料に形成される熱レンズ効果を用いた手法(以下,熱レンズ法という)が知られている。
熱レンズ法による分析装置(光熱変換分光分析装置)は,例えば,特許文献1に示されている。この熱レンズ法による分析装置では,試料に照射した検出光(測定光)を集光するとともにピンホールに通過させ,そのピンホールを通過後の検出光の光強度を検出することにより,励起光が照射された試料の発熱による屈折率変化を検出光の集光状態の変化として検出するものである。
In the analysis of substances contained in various samples, improvement of analysis sensitivity is important in order to reduce the amount of reagents, simplify the sample concentration process, increase the efficiency of analysis, and reduce costs. On the other hand, when the sample is irradiated with excitation light, the irradiated portion generates heat by absorbing the excitation light, which is called a photothermal effect. Measuring this heat generation is called photothermal conversion measurement.
Conventionally, a method using a thermal lens effect formed on a sample by a photothermal effect (hereinafter referred to as a thermal lens method) is known as a high-sensitivity analysis method for a sample by this photothermal conversion measurement.
An analysis apparatus (photothermal conversion spectroscopic analysis apparatus) using a thermal lens method is disclosed in Patent Document 1, for example. In this analyzer using the thermal lens method, the detection light (measurement light) irradiated to the sample is condensed and passed through a pinhole, and the light intensity of the detection light after passing through the pinhole is detected to detect excitation light. The change in the refractive index due to the heat generation of the sample irradiated with is detected as a change in the condensing state of the detection light.

一方,特許文献2には,試料の光熱効果による屈折率変化を,試料を通過(透過)させた測定光における位相変化として捉え,これを光干渉法を用いて測定する技術が示されている。
これにより,例えば装置ごとに光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく安定的に,しかも光学的に高精度かつ高感度で試料の屈折率変化を測定することが可能となる。
さらに,特許文献1及び特許文献2には,周期的に強度変調した励起光を用い,測定光(検出光)を励起光の強度変調周期と同周期成分について測定することにより,S/N比向上を図ることが示されている。
特開平10−232210号公報 特開2004−301520号公報
On the other hand, Patent Document 2 discloses a technique in which a change in refractive index due to the photothermal effect of a sample is regarded as a phase change in measurement light that has passed (transmitted) through the sample and measured using optical interferometry. .
Thus, for example, even if the position of the photodetector (photoelectric conversion means), the intensity of the measurement light, and its intensity distribution differ from device to device, if it does not change during measurement, it is stable without depending on these. In addition, it is possible to measure the refractive index change of the sample optically with high accuracy and high sensitivity.
Furthermore, Patent Document 1 and Patent Document 2 use excitation light that is periodically intensity-modulated, and measure the measurement light (detection light) with respect to the same period component as the intensity modulation period of the excitation light. Improvements are shown.
Japanese Patent Laid-Open No. 10-232210 JP 2004-301520 A

ところで,試料の吸収分光特性を評価する場合,励起光の光源として白色光源が用いられるが,一般的に,白色光源は発光部分が広いため,その光を高精度で集光して試料に照射させることが難しい。
しかしながら,特許文献1に示される前記熱レンズ法による測定では,熱レンズ効果を発生させるために励起光を高精度で集光して試料に照射させる必要があり,白色光源を用いることができない。このため,波長帯が特定されるレーザ発振器を光源として用いざるを得ず,試料の吸収分光特性を評価できないという問題点があった。
さらに,特許文献1に示される前記熱レンズ法による測定では,測定感度を高めるためには,励起光の強度を増大させる,或いは試料通過後の測定光を通過させるピンホールの径を小さくする必要があるが,励起光強度の増大化は消費電力の増加,高コスト化を招き,ピンホールの小口径化は検出器での受光光量が減少によるS/N比の低下や測定時間の長時間化を招くという問題点があった。
また,特許文献1及び特許文献2のいずれにおいても,測定光及び励起光の光路中に,試料を収容するセルやそのセルに試料とともに収容される溶媒等,励起光によって加熱されて屈折率変化が生じる物質(以下,外乱物質という)が存在する場合,これが外乱となってS/N比を悪化させるという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,試料中における光熱効果による特性変化の測定を,試料の吸収分光特性の測定も含めて簡易な構成により高感度かつ低ノイズで測定できる光熱変換測定装置及びその方法を提供することにある。
By the way, when evaluating the absorption spectral characteristics of a sample, a white light source is used as a light source of excitation light. Generally, since a white light source has a wide light emitting portion, the light is condensed with high accuracy and irradiated onto the sample. It is difficult to let
However, in the measurement by the thermal lens method disclosed in Patent Document 1, it is necessary to collect the excitation light with high accuracy and irradiate the sample in order to generate the thermal lens effect, and a white light source cannot be used. For this reason, there is a problem that a laser oscillator whose wavelength band is specified must be used as a light source, and the absorption spectral characteristics of the sample cannot be evaluated.
Furthermore, in the measurement by the thermal lens method disclosed in Patent Document 1, in order to increase the measurement sensitivity, it is necessary to increase the intensity of the excitation light or to reduce the diameter of the pinhole that allows the measurement light after passing through the sample to pass. However, increasing the excitation light intensity increases power consumption and costs, and reducing the pinhole diameter reduces the S / N ratio due to the decrease in the amount of light received by the detector and increases the measurement time. There was a problem of inviting.
In both Patent Document 1 and Patent Document 2, a refractive index change caused by heating by excitation light, such as a cell containing a sample and a solvent accommodated together with the sample in the optical path of measurement light and excitation light. In the case where there is a substance (hereinafter referred to as “disturbing substance”) that causes turbulence, this becomes a disturbance and there is a problem that the S / N ratio is deteriorated.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to measure the change in characteristics due to the photothermal effect in the sample with a simple configuration including the measurement of the absorption spectral characteristics of the sample. An object of the present invention is to provide a photothermal conversion measuring apparatus and method capable of measuring with high sensitivity and low noise.

上記目的を達成するために本発明は,励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料に照射されこれを透過した測定光に基づいて測定するために用いる光熱変換測定装置或いはその測定方法に適用されるものであり,相互に波長帯が異なる2つの前記励起光に対し(例えば,前記試料への照射前に)相互に逆位相の強度変調を施し,前記試料を透過した前記測定光を検出するとともに,その検出信号から前記励起光の強度変調周期と同周期成分を抽出するものである。
そして,前記測定光の検出信号からの強度変調周期分の抽出信号に基づいて前記試料の光熱効果により生じる特性変化を測定する。
これにより,波長帯の異なる2種類の前記励起光が照射されたときに,その各状態において光の吸収量に変化が生じないように,前記励起光各々の強度バランスを予め設定しておけば,2つの前記励起光の強度変調が逆位相であるので,いずれの励起光の照射中でも前記外乱物質の温度に変化が生じない一方,試料の光熱効果は波長帯が異なる前記励起光が照射されるごとに変化する。このため,前記外乱物質の温度変化に起因する励起光測定信号のダイナミックレンジ(測定範囲)の飽和をほとんど考慮せずに,信号処理系の測定感度(検出感度)を上げることができるので(増幅ゲインを上げる等),前記測定光の検出の際に,前記外乱物質の温度変化(屈折率変化)によるS/N比の悪化を招くことを防止できる。
In order to achieve the above object, the present invention provides a photothermal sensor used to measure a characteristic change of the sample caused by the photothermal effect of the sample irradiated with excitation light based on measurement light irradiated on the sample and transmitted therethrough. The present invention is applied to a conversion measuring apparatus or a measuring method thereof, and two excitation light beams having different wavelength bands are subjected to mutually opposite phase intensity modulation (for example, before irradiation of the sample). While detecting the measurement light which permeate | transmitted the sample, the same period component as the intensity | strength modulation period of the said excitation light is extracted from the detection signal.
Then, the characteristic change caused by the photothermal effect of the sample is measured based on the extracted signal for the intensity modulation period from the detection signal of the measurement light.
Thus, when the two types of excitation light having different wavelength bands are irradiated, the intensity balance of each of the excitation light is set in advance so that the amount of light absorption does not change in each state. Because the intensity modulation of the two excitation lights is in opposite phase, the temperature of the disturbing substance does not change during any of the excitation light irradiations, while the photothermal effect of the sample is irradiated with the excitation light having different wavelength bands. It changes every time. For this reason, the measurement sensitivity (detection sensitivity) of the signal processing system can be increased without considering the saturation of the dynamic range (measurement range) of the excitation light measurement signal due to the temperature change of the disturbance substance (amplification). It is possible to prevent the S / N ratio from being deteriorated due to a temperature change (refractive index change) of the disturbance substance when the measurement light is detected.

ここで,前記測定光の検出手段としては,特許文献2に示されるように,前記試料を透過した前記測定光に所定の参照光を干渉させその干渉光の強度を検出する光干渉法によるもの(以下,第1の測定光検出手段という)が考えられる。
このように,試料の光熱効果による屈折率変化を,前記測定光の位相変化として捉えて光干渉法(相対的な光学手法)により検出することにより,例えば装置ごとに光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく再現性高く(安定的に),しかも光学的に高精度かつ高感度で試料を分析することが可能となる。
この第1の測定光検出手段を用いる場合,前記試料の前記測定光の照射面の反対面側に裏面側光反射手段を設け,これに反射して前記試料を往復通過した後の前記測定光に前記参照光を干渉させること,或いは前記裏面側光反射手段とその反対側の表面側光反射手段とを設け,それらに多重反射して前記試料を透過した後の前記測定光に前記参照光を干渉させること等により,検出感度をより向上させることができる。
Here, as the measurement light detection means, as shown in Patent Document 2, the measurement light transmitted through the sample is interfered with predetermined reference light to detect the intensity of the interference light. (Hereinafter, referred to as first measurement light detection means) can be considered.
In this way, the refractive index change due to the photothermal effect of the sample is regarded as the phase change of the measurement light and detected by the optical interferometry (relative optical technique), for example, a photodetector (photoelectric conversion means) for each device. ) And the intensity of the measurement light and its intensity distribution, etc., if they do not change during measurement, they are highly reproducible (stable), optically accurate and The sample can be analyzed with sensitivity.
When the first measurement light detection means is used, the measurement light after the back surface side light reflection means is provided on the opposite side of the measurement light irradiation surface of the sample and reflected by the sample and reciprocated through the sample. The reference light is made to interfere with the reference light, or the back surface side light reflecting means and the opposite surface side light reflecting means are provided, and the reference light is reflected on the measurement light after being reflected by multiple reflections and passing through the sample. The detection sensitivity can be further improved by causing interference.

また,前記測定光の検出の他の手段としては,前記試料の両側に対向配置され入射された光を反射するとともに少なくとも一方は入射光の一部を透過させる2つの光反射手段により,前記試料に照射された所定の測定光を前記試料に透過させつつ光反射手段相互間で一の軸に沿って多重反射させ,入射光の一部を透過させる側の光反射手段を透過した前記測定光の光強度を光強度検出手段により検出するもの(以下,第2の測定光検出手段という)も考えられる。
これにより,前記光強度検出手段に到達する前記測定光は,2つの光反射手段の間での往復回数が各々異なる測定光が重畳されたものとなるが,試料中における光熱効果(屈折率変化)により前記測定光の光反射手段相互間における光路長が変化すると,前記往復回数が多い測定光ほど位相が大きくずれることになる結果,わずかな屈折率変化(光路長変化)でも前記光強度検出手段の検出信号(光強度検出信号)が大きく変化することになる。その結果,前記試料の光熱効果により生じる特性変化(屈折率変化)を,前述の熱レンズ法や光干渉法を用いた場合よりもより高感度で測定することが可能となる。しかも,そのような高感度の測定を,対向配置された2つの光反射手段及び光強度検出手段というごく簡易な構成により実現できる。
この第2の測定光検出手段において,前記測定光の光路長変化に対する光強度検出信号の変化が大きいということは,振動等の外乱ノイズの影響も大きいことになる一方,前記試料の励起状態が安定すれば,本来検出されるべき光強度検出信号は変動しないはずのものである。
そこで,前記光強度検出手段の検出信号の変動を抑える方向に前記2つの光反射手段の間隔を調節するミラー間隔調節手段を設ければ,振動等の外乱ノイズの影響を抑えて高精度で試料の特性変化を測定できる。
また,前記第1の測定光検出手段及び前記第2の測定光検出手段のいずれにおいても,白色光源等の所定の光源からの光を分光して2つの前記励起光として出力するとともにそれらの波長帯を可変とする可変分光手段を設ければ,その可変分光手段により前記励起光の波長帯を変更するごとに,前記第1若しくは第2の測定光検出手段等による前記測定光の検出を行うことによって試料の吸収分光特性の測定も簡易に行うことができる。
Further, as another means for detecting the measurement light, the sample is formed by two light reflecting means arranged to face both sides of the sample so as to reflect the incident light and transmit at least one part of the incident light. The measurement light that has passed through the light reflecting means on the side that transmits a part of incident light while allowing a predetermined measurement light irradiated on the sample to pass through the sample and multiple reflection along one axis between the light reflecting means The light intensity of the light is detected by the light intensity detection means (hereinafter referred to as second measurement light detection means).
As a result, the measurement light reaching the light intensity detection means is superimposed with measurement light having different numbers of round trips between the two light reflection means, but the photothermal effect (refractive index change) in the sample is superimposed. ), The phase of the measurement light with a larger number of reciprocations shifts more greatly. As a result, the light intensity can be detected even with a slight change in refractive index (change in optical path length). The detection signal (light intensity detection signal) of the means changes greatly. As a result, the characteristic change (refractive index change) caused by the photothermal effect of the sample can be measured with higher sensitivity than when the thermal lens method or the optical interference method is used. Moreover, such high-sensitivity measurement can be realized with a very simple configuration of two light reflecting means and light intensity detecting means arranged opposite to each other.
In the second measurement light detection means, the large change in the light intensity detection signal with respect to the change in the optical path length of the measurement light means that the influence of disturbance noise such as vibration is large, while the excited state of the sample is If stable, the light intensity detection signal that should be detected should not fluctuate.
Therefore, if a mirror interval adjusting means for adjusting the interval between the two light reflecting means is provided in a direction to suppress the fluctuation of the detection signal of the light intensity detecting means, the influence of disturbance noise such as vibration can be suppressed and the sample can be obtained with high accuracy. The change in characteristics can be measured.
Further, in each of the first measurement light detection means and the second measurement light detection means, the light from a predetermined light source such as a white light source is dispersed and output as the two excitation lights, and their wavelengths. If variable spectral means for changing the band is provided, the measurement light is detected by the first or second measurement light detection means or the like each time the wavelength band of the excitation light is changed by the variable spectral means. Accordingly, the absorption spectral characteristics of the sample can be easily measured.

本発明によれば,相互に波長帯が異なる2つの前記励起光に対し前記試料への照射前に相互に逆位相の強度変調を施し,前記試料を透過した前記測定光を検出するとともに,その検出信号から前記励起光の強度変調周期と同周期成分を抽出するので,2つの前記励起光の強度バランスを予め調整しておくことにより,いずれの励起光の照射中でも前記外乱物質の温度に変化が生じないようにできる一方,試料の光熱効果は波長帯が異なる前記励起光が照射されるごとに変化するので,前記測定光の検出の際に,前記外乱物質の温度変化(屈折率変化)によるS/N比の悪化を招くことを防止できる。
また,前記測定光の検出を,前記試料を透過した前記測定光に所定の参照光を干渉させその干渉光の強度を検出する光干渉法に基づき行えば,相対的な光学手法により測定光が検出されるので,安定的に,高精度かつ高感度で試料を分析することが可能となる。
一方,試料の両側に対向配置された2つの光反射手段(少なくとも一方は,入射光の一部を透過させるもの)により,前記試料に照射された所定の測定光を前記試料に透過させつつその光反射手段相互間で一の軸に沿って多重反射させ,その2つの光反射手段の少なくとも一方を透過した前記測定光の光強度を検出すれば,前記試料のわずかな屈折率変化でも光強度検出信号が大きく変化することになり,前記試料の光熱効果により生じる特性変化(屈折率変化)を,高精度かつ高感度で測定することが可能となる。しかも,そのような高感度の測定をごく簡易な構成により実現できる。
また,所定の光源(白色光源等)からの光を分光して2つの前記励起光として出力するとともにそれらの波長帯を可変とし,前記励起光の波長帯を変更するごとに前記測定光の検出を行えば,試料の吸収分光特性の測定も簡易に行うことができる。
According to the present invention, the two excitation light beams having different wavelength bands are subjected to intensity modulation in opposite phases before the sample is irradiated, and the measurement light transmitted through the sample is detected. Since a component with the same period as the intensity modulation period of the excitation light is extracted from the detection signal, the temperature of the disturbance substance can be changed during any excitation light irradiation by adjusting the intensity balance of the two excitation lights in advance. On the other hand, since the photothermal effect of the sample changes each time the excitation light having a different wavelength band is irradiated, the temperature change (refractive index change) of the disturbing substance is detected when the measurement light is detected. It is possible to prevent the deterioration of the S / N ratio due to.
Further, if the measurement light is detected based on an optical interference method in which a predetermined reference light is made to interfere with the measurement light transmitted through the sample and the intensity of the interference light is detected, the measurement light can be detected by a relative optical method. Since it is detected, it becomes possible to analyze the sample stably, with high accuracy and high sensitivity.
On the other hand, two light reflecting means (at least one of which transmits a part of incident light) arranged opposite to both sides of the sample transmit the predetermined measurement light applied to the sample while passing the sample through the sample. If the light intensity of the measurement light transmitted through at least one of the two light reflecting means is detected by multiple reflection between the light reflecting means along one axis, the light intensity can be obtained even with a slight change in the refractive index of the sample. The detection signal changes greatly, and the characteristic change (refractive index change) caused by the photothermal effect of the sample can be measured with high accuracy and high sensitivity. Moreover, such highly sensitive measurement can be realized with a very simple configuration.
In addition, the light from a predetermined light source (white light source, etc.) is dispersed and output as the two excitation lights, their wavelength bands are made variable, and the measurement light is detected each time the excitation light wavelength band is changed. Thus, the absorption spectral characteristics of the sample can be easily measured.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1実施形態に係る光熱変換測定装置X1の概略構成図,図2は光熱変換測定装置X1の構成の一部の応用例を表す概略図,図3は本発明の第2実施形態に係る光熱変換測定装置X2の概略構成図,図4は本発明の第3実施形態に係る光熱変換測定装置X3の概略構成図,図5は光熱変換測定装置X3における2つの高反射ミラー間を進行する測定光の光路長と高反射ミラーに反射及び透過した測定光の強度との関係を表す図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic configuration diagram of the photothermal conversion measurement device X1 according to the first embodiment of the present invention, FIG. 2 is a schematic diagram showing an application example of a part of the configuration of the photothermal conversion measurement device X1, and FIG. 4 is a schematic configuration diagram of a photothermal conversion measurement device X2 according to a second embodiment of the invention, FIG. 4 is a schematic configuration diagram of a photothermal conversion measurement device X3 according to a third embodiment of the present invention, and FIG. It is a figure showing the relationship between the optical path length of the measurement light which advances between two high reflection mirrors, and the intensity | strength of the measurement light reflected and permeate | transmitted to the high reflection mirror.

本発明の実施形態に係る光熱変換測定装置X1〜X3は,励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料に照射されこれを透過した測定光に基づいて測定するために用いるものであり,相互に波長帯が異なる2つの励起光に対し,試料への照射前に相互に逆位相の強度変調を施し,前記試料に照射されこれを透過した測定光を検出するとともに,その検出信号から前記励起光の強度変調周期と同周期成分を抽出するものである。
<第1実施形態>
まず,図1に示す概略構成図を用いて,本発明の第1実施形態に係る光熱変換測定装置X1について説明する。
光熱変換測定装置X1は,励起光源1,反射ミラー3a,2つの可変分光器1a,1b及びチョッパ2を備えた分光励起光源部Zを具備し,これから出力されるパルス状の2つの励起光B3a,B3bが試料5に照射される。
前記分光励起光源部Zにおいて,白色光を出射する所定の励起光源1(例えば,ハロゲンランプ等の白色光源)から出力された励起光(白色光)は,反射ミラー3aにより反射されて2分岐され,各分岐光が2つの可変分光器1a,1b各々により分光されることにより,相互に波長帯が異なる2つの励起光B3a,B3bとして出力される。
前記可変分光器1a,1b各々は,前記励起光源1からの白色光を回析格子等で分光した光を2つの前記励起光B3a,B3bとして出力するとともに,それら励起光B3a,B3bの波長帯を任意に調節して或いは複数の波長帯の候補から選択して可変とするものである(可変分光手段)。
前記可変分光器1a,1b各々から出力される波長帯が異なる2つの励起光B3a,B3bは,反射ミラー18及びレンズ4を経由して試料5に照射されるが,その試料5への照射前に,チョッパ2(逆位相強度変調手段の一例)によって所定周期の断続光(断続周波数:f)に変換(周期的に強度変調)される。その際,2つの励起光B3a,B3bは相互に逆位相の強度変調が施される。即ち,一方の励起光B3aが試料5に照射されている最中は,他方の励起光B3bの試料5への照射は遮断され,一方の励起光B3aの試料5への照射が遮断されている最中は,他方の励起光B3bが試料5へ照射されるという処理が一定周期でなされる。
これにより,試料5が励起光を吸収して発熱し(光熱効果),その温度変化(上昇)によって試料5の屈折率が変化する。
一方,試料5の屈折率変化を測定するための測定光とこれに干渉させる参照光との両方の光源として兼用されるレーザ光源7(例えば,出力1mWのHe−Neレーザ))から出力されたレーザ光は,1/2波長板8で偏波面が調節され,さらに偏光ビームスプリッタ(以下,PBSという)9によって互いに直交する2偏波(B1,B2)に分光される。以降,その一方B1が測定光として,他方B2が参照光として機能する。
各偏波B1,B2は,音響光学変調機(AOM)10,11によって光周波数がシフト(周波数変換)され,ミラー12,13で反射されてPBS14に導かれる。これら直交する2偏波B1,B2の周波数差fbは,例えば,30MHz等とする。
The photothermal conversion measurement devices X1 to X3 according to the embodiment of the present invention measure changes in the characteristics of the sample caused by the photothermal effect of the sample irradiated with excitation light based on the measurement light that is irradiated to the sample and transmitted therethrough. The two excitation lights with different wavelength bands are subjected to intensity modulation with opposite phases before irradiating the sample, and the measurement light irradiated to the sample and transmitted through it is detected. In addition, a component having the same period as the intensity modulation period of the excitation light is extracted from the detection signal.
<First Embodiment>
First, the photothermal conversion measuring device X1 according to the first embodiment of the present invention will be described using the schematic configuration diagram shown in FIG.
The photothermal conversion measurement device X1 includes a spectral excitation light source unit Z including an excitation light source 1, a reflection mirror 3a, two variable spectrometers 1a and 1b, and a chopper 2, and two pulsed excitation lights B3a output therefrom. , B3b is irradiated to the sample 5.
In the spectral excitation light source unit Z, excitation light (white light) output from a predetermined excitation light source 1 (for example, a white light source such as a halogen lamp) that emits white light is reflected by the reflection mirror 3a and branched into two. , Each split light is split by the two variable spectrometers 1a and 1b, respectively, and is output as two excitation lights B3a and B3b having different wavelength bands.
Each of the variable spectrometers 1a and 1b outputs light obtained by separating white light from the excitation light source 1 with a diffraction grating or the like as two excitation lights B3a and B3b, and wavelength bands of the excitation lights B3a and B3b. Is arbitrarily adjusted or selected from a plurality of wavelength band candidates (variable spectroscopic means).
Two excitation lights B3a and B3b having different wavelength bands output from the variable spectrometers 1a and 1b are irradiated to the sample 5 via the reflection mirror 18 and the lens 4, but before the sample 5 is irradiated. Then, it is converted (periodically intensity modulated) into intermittent light (intermittent frequency: f) having a predetermined period by the chopper 2 (an example of the antiphase intensity modulation means). At this time, the two excitation lights B3a and B3b are subjected to intensity modulation with opposite phases. That is, while the one excitation light B3a is being irradiated to the sample 5, the irradiation of the other excitation light B3b to the sample 5 is blocked, and the irradiation of the one excitation light B3a to the sample 5 is blocked. During the process, the process of irradiating the sample 5 with the other excitation light B3b is performed at a constant period.
Thereby, the sample 5 absorbs excitation light and generates heat (photothermal effect), and the refractive index of the sample 5 changes due to the temperature change (rise).
On the other hand, the light is output from a laser light source 7 (for example, a He-Ne laser having an output of 1 mW) that is used as both a light source for measuring light for measuring the refractive index change of the sample 5 and a reference light that interferes therewith. The plane of polarization of the laser light is adjusted by the half-wave plate 8 and further split into two polarized waves (B1, B2) orthogonal to each other by a polarizing beam splitter (hereinafter referred to as PBS) 9. Thereafter, one B1 functions as measurement light and the other B2 functions as reference light.
The polarization frequencies B1 and B2 are shifted in frequency (frequency conversion) by acoustooptic modulators (AOM) 10 and 11, reflected by mirrors 12 and 13, and guided to PBS14. Frequency difference f b of the second polarization B1, B2 of these orthogonal, for example, a 30MHz or the like.

参照光となる前記偏波B1は,PBS14を通過(透過)して偏光板19に向かう。
これに対し,測定光となる他方の前記偏波B1は,PBS14を透過し,1/4波長板17,ミラー18及び前記レンズ4を通過して,試料5における前記励起光B3a,B3bの照射部(即ち,励起部)に,その励起光B3a,B3bとほぼ同方向から照射されるよう構成されている。
さらに,試料5に入射した測定光B1は,試料5を通過し,試料5の裏面側(測定光B1の照射面の反対面側)に設けられた反射ミラー6で反射し,再び試料5を通過(即ち,往復通過)して,前記レンズ4,前記ミラー18,前記1/4波長板17を通過して前記PBS14へ戻る。
ここで,測定光B1は,前記1/4波長板17を往復通過することによってその偏波面が90°回転しているため,今度はPBS14に反射して前記偏波B2(参照光)とともに前記偏光板19に向かう。
前記偏光板19では,測定光B1と,これと光周波数が異なる参照光B2とが干渉し,その干渉光B1+B2の光強度が光検出器20(光電変換手段)によって電気信号(以下,この電気信号の信号値を干渉光強度という)に変換される。この電気信号(即ち,干渉光強度)は,計算機等の信号処理装置21に入力及び記憶され,この信号処理装置21において測定光B1の位相変化の演算処理(光干渉法による位相変化の測定)がなされる。
このように,光熱変換測定装置X1は,試料5に照射されこれを透過した測定光B1と,参照光B2とを前記偏光板19の方向へ光学系機器により導き,前記偏光板19により測定光B1と参照光B2の干渉光を形成させ,その干渉光強度を前記光検出器20で検出することによって光干渉法により測定光B1を検出する各機器を備える(測定光検出手段及び光干渉手段の一例)。
ここで,試料5は,石英ガラス等の透明容器であるセル15に収容されており,場合によっては,セル15内に所定の溶媒とともに収容されている。従って,測定光B1及び励起光B3a,B3bは,試料5に照射されるとともに,セル15や場合によっては溶媒も通過(透過)することになる。
The polarized light B1 serving as the reference light passes (transmits) through the PBS 14 and travels toward the polarizing plate 19.
On the other hand, the other polarization B1 which becomes the measurement light passes through the PBS 14, passes through the quarter-wave plate 17, the mirror 18 and the lens 4, and is irradiated with the excitation lights B3a and B3b on the sample 5. The part (ie, the excitation part) is configured to be irradiated from substantially the same direction as the excitation lights B3a and B3b.
Further, the measurement light B1 incident on the sample 5 passes through the sample 5, is reflected by the reflection mirror 6 provided on the back surface side of the sample 5 (opposite side of the irradiation surface of the measurement light B1), and again causes the sample 5 to pass. Passing (ie, reciprocating), passes through the lens 4, the mirror 18, and the quarter-wave plate 17 and returns to the PBS 14.
Here, since the polarization plane of the measurement light B1 is rotated 90 ° by reciprocating through the ¼ wavelength plate 17, this time, the measurement light B1 is reflected by the PBS 14 and the polarization B2 (reference light). Heading to the polarizing plate 19.
In the polarizing plate 19, the measurement light B1 and the reference light B2 having a different optical frequency interfere with each other, and the light intensity of the interference light B1 + B2 is detected by the photodetector 20 (photoelectric conversion means). The signal value of the signal is converted into interference light intensity). This electric signal (that is, the interference light intensity) is input and stored in a signal processing device 21 such as a computer, and the signal processing device 21 calculates the phase change of the measurement light B1 (measures the phase change by the optical interference method). Is made.
As described above, the photothermal conversion measuring device X1 guides the measurement light B1 irradiated to and transmitted through the sample 5 and the reference light B2 by the optical system device in the direction of the polarizing plate 19, and the measuring light is transmitted by the polarizing plate 19. Each apparatus includes an apparatus for detecting the measurement light B1 by optical interferometry by forming interference light between B1 and the reference light B2 and detecting the interference light intensity by the photodetector 20 (measurement light detection means and optical interference means). Example).
Here, the sample 5 is accommodated in a cell 15 which is a transparent container such as quartz glass. In some cases, the sample 5 is accommodated in the cell 15 together with a predetermined solvent. Therefore, the measurement light B1 and the excitation light B3a and B3b are irradiated to the sample 5, and the cell 15 and, in some cases, the solvent also pass (transmit).

本光熱変換測定装置X1を用いた測定では,前記チョッパ2により,試料5に照射される相互に波長帯が異なる2つの励起光B3a,B3bに対し相互に逆位相の強度変調を施し(逆位相強度変調工程の一例),そのような強度変調を実行中に試料5を透過した測定光B1を前記光検出器20及び前記信号処理装置21により検出し(測定光検出工程の一例),その検出信号から前記信号処理装置21により励起光B3a,B3bの強度変調周期と同じ周期成分を抽出し(同周期成分抽出工程の一例),その抽出信号に基づいて試料5の光熱効果により生じる特性変化(屈折率変化)を測定する(特性変化測定工程の一例)。
また,前記分光励起光源部Zにより,励起光B3a,B3bの波長帯を変更し(波長帯変更工程の一例),その変更ごとに測定光B1の検出を行うことにより,試料の吸収分光特性の測定も簡易に行うことができる。
ここで,前記信号処理装置21で取得される干渉光強度S1は,次の(1)式で表される。
S1=C1+C2・cos(2π・fb・t+φ) …(1)
C1,C2はPBS等の光学系や試料5の透過率により定まる定数,φは測定光B1と参照光B2との光路長差による位相差,fbは測定光B1と参照光B2との間の周波数差である。(1)式より,前記干渉光強度S1の変化(前記励起光を照射しない或いはその光強度が小さいときとその光強度が大きいときとの差)から,前記位相差φの変化が求まることがわかる。前記信号処理装置21は,(1)式に基づいて前記位相差φの変化を算出する。
ところで,励起光B3a及びB3b各々を照射時の干渉光の振幅(強度変化)を各々Ka,Kbとすると,測定光B1と参照光B2との光路長差による位相差φは,励起光B3aによる状態変化と,励起光B3bによる状態変化との重ね合わせを表す次の(2)式で表される。
φ=Ka・sin(ωt)−Kb・sin(ωt) …(2)
また,試料5が存在しない状態において,Ka≒Kbとなるように予め励起光B3a,B3b各々の強度や波長を調整しておけば,φ≒0とすることができる。これにより,試料5が存在する状態においては,Ka>Kb若しくはKa<Kbとなるため,試料5の励起状態の変化に起因する位相差信号が検出されることになる。
また,当該光熱変換測定装置X1を用いて,予め所定の含有物質の量(濃度)が既知である複数種類のサンプル試料について前記位相差φの変化を測定し,その結果とその含有物質の量との対応づけを前記信号処理装置21にデータテーブルとして記憶しておく。そして,測定対象とする試料についての前記位相差φの測定結果を前記データテーブルに基づいて補間処理等を行う等によりその含有物質の量を特定する処理を前記信号処理装置21により実行すればよい。
このように,試料5の光熱効果による屈折率変化を,試料5を通過(透過)させた測定光B1における励起光の照射による位相変化を光干渉法を用いて測定することによって,即ち,測定光B1と参照光B2との位相の相対評価(位相差)によって測定するので,例えば装置ごとに光検出器20の位置や測定光の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく安定的に,しかも光学的に高精度で試料の屈折率変化を測定することが可能となる。
In the measurement using this photothermal conversion measuring device X1, the chopper 2 applies intensity modulation of opposite phases to the two excitation lights B3a and B3b with different wavelength bands irradiated on the sample 5 (reverse phase). An example of the intensity modulation step), the measurement light B1 transmitted through the sample 5 during execution of such intensity modulation is detected by the photodetector 20 and the signal processing device 21 (an example of the measurement light detection step), and the detection thereof. The signal processing device 21 extracts the same periodic component as the intensity modulation period of the excitation light B3a, B3b from the signal (an example of the same period component extracting step), and the characteristic change caused by the photothermal effect of the sample 5 based on the extracted signal ( (Refractive index change) is measured (an example of a characteristic change measurement step).
In addition, the spectral excitation light source unit Z changes the wavelength bands of the excitation light B3a and B3b (an example of the wavelength band changing process), and the measurement light B1 is detected at each change, thereby changing the absorption spectral characteristics of the sample. Measurement can also be performed easily.
Here, the interference light intensity S1 acquired by the signal processing device 21 is expressed by the following equation (1).
S1 = C1 + C2 · cos (2π · f b · t + φ) (1)
C1 and C2 are constants determined by the optical system such as PBS and the transmittance of the sample 5, φ is a phase difference due to an optical path length difference between the measurement light B1 and the reference light B2, and f b is between the measurement light B1 and the reference light B2. Is the frequency difference. From the equation (1), the change in the phase difference φ can be obtained from the change in the interference light intensity S1 (difference between when the excitation light is not irradiated or when the light intensity is low and when the light intensity is high). Recognize. The signal processing device 21 calculates the change in the phase difference φ based on the equation (1).
By the way, if the amplitudes (intensity changes) of the interference light when irradiating the excitation lights B3a and B3b are Ka and Kb, respectively, the phase difference φ due to the optical path length difference between the measurement light B1 and the reference light B2 depends on the excitation light B3a. It is expressed by the following equation (2) that represents the superposition of the state change and the state change by the excitation light B3b.
φ = Ka · sin (ωt) −Kb · sin (ωt) (2)
If the intensity and wavelength of each of the excitation lights B3a and B3b are adjusted in advance so that Ka≈Kb in the state where the sample 5 does not exist, φ≈0 can be obtained. As a result, in a state where the sample 5 exists, Ka> Kb or Ka <Kb is satisfied, so that a phase difference signal resulting from a change in the excited state of the sample 5 is detected.
In addition, using the photothermal conversion measuring device X1, the change in the phase difference φ is measured for a plurality of types of sample samples whose amounts (concentrations) of the predetermined contained substances are known in advance, and the result and the amount of the contained substances Is stored in the signal processing device 21 as a data table. Then, the signal processing device 21 may execute a process of specifying the amount of the contained substance by, for example, performing an interpolation process on the measurement result of the phase difference φ of the sample to be measured based on the data table. .
Thus, the refractive index change due to the photothermal effect of the sample 5 is measured by measuring the phase change caused by the excitation light irradiation in the measurement light B1 that has passed (transmitted) through the sample 5 using the optical interferometry, that is, the measurement. Since measurement is performed by relative evaluation (phase difference) of the phase between the light B1 and the reference light B2, for example, even if the position of the light detector 20, the intensity of the measurement light, its intensity distribution, etc. are different for each apparatus, it changes during the measurement. If not, it is possible to measure the refractive index change of the sample stably and optically with high accuracy without depending on these.

ここで,両励起光B3a,B3bは,前記チョッパ2により一定周期の強度変調が施されているので,これに同期して前記干渉光強度S1も変動する。そこで,前記信号処理装置21は,試料5を透過した測定光B1を検出する前記光検出器20の検出信号から,励起光B3a,B3b各々の強度変調周期と同じ周期成分を抽出し,その抽出信号に基づいて測定光B1の位相変化(試料5の光熱効果により生じる特性変化)を測定する(同周期成分抽出手段の一例)。
その際,励起光B3a,B3bにより,試料5だけでなくその周囲のセル15や溶媒等も吸熱して温度が上昇し,その屈折率が変化する。
しかし,試料5が存在しない状態で,波長帯の異なる2種類の励起光B3a,B3bが照射されたときに,その各状態においてセル15等による光の吸収量に変化が生じないように,励起光B3a,B3b各々の強度バランスを予め設定しておけば,2つの励起光B3a,B3bの強度変調が逆位相であるので,いずれの励起光の照射中でも試料5以外の物質(セル15や溶媒等)の温度に変化が生じないようにできる。
一方,試料5の光熱効果は波長帯が異なる励起光B3a,B3b各々が切り替わって照射されるごとに変化するので,測定光B1の検出の際に,セル15等の温度変化(屈折率変化)によるS/N比の悪化を招くことを防止できる。
さらに,周波数fの成分を有しないノイズの影響が除去されるため,S/N比が向上する。
Here, since both the pumping lights B3a and B3b are subjected to intensity modulation of a fixed period by the chopper 2, the interference light intensity S1 also fluctuates in synchronization therewith. Therefore, the signal processing device 21 extracts the same period component as the intensity modulation period of each of the excitation lights B3a and B3b from the detection signal of the photodetector 20 that detects the measurement light B1 that has passed through the sample 5, and the extraction thereof. Based on the signal, the phase change of the measurement light B1 (characteristic change caused by the photothermal effect of the sample 5) is measured (an example of the same period component extraction means).
At that time, the excitation light B3a, B3b absorbs not only the sample 5 but also the surrounding cells 15 and solvent, and the temperature rises, and the refractive index changes.
However, when two types of excitation light B3a and B3b having different wavelength bands are irradiated in the state where the sample 5 does not exist, excitation is performed so that the amount of light absorbed by the cell 15 or the like does not change in each state. If the intensity balance of each of the lights B3a and B3b is set in advance, the intensity modulation of the two excitation lights B3a and B3b is in reverse phase, so that any substance other than the sample 5 (cell 15 or solvent) can be used during any excitation light irradiation. Etc.) can be prevented from changing in temperature.
On the other hand, since the photothermal effect of the sample 5 changes every time the excitation lights B3a and B3b having different wavelength bands are switched and irradiated, the temperature change (refractive index change) of the cell 15 or the like is detected when the measurement light B1 is detected. It is possible to prevent the deterioration of the S / N ratio due to.
Further, since the influence of noise having no frequency f component is removed, the S / N ratio is improved.

また,本光熱変換測定装置X1では,裏面側の前記反射ミラー6(前記裏面側光反射手段の一例)に測定光B1を反射させることにより,試料5に往復通過させた後の測定光B1に参照光B2を干渉させて光干渉測定を行うため,片道通過の場合の2倍の感度で前記位相差φの変化を測定できる。しかも,励起光の出力増大やS/N比の低下を伴わない。
ここで,図2に示す概略図を用いて,光熱変換測定装置X1において,より感度を向上させる応用例の構成について説明する。
図2に示す構成は,試料5の表面側(前記測定光の照射面側)とその裏面側とのそれぞれに高反射ミラー6a,6b(前記表面側光反射手段と前記裏面側光反射手段の一例)を配置し,測定光B1をそれら高反射ミラー6a,6bの間で多重反射させるものである。
これにより,測定光B1は,高反射ミラー6a,6b相互間で多重反射しながら,その一部が試料5の表面側の高反射ミラー6aを透過して前記光検出器20の方向へ向かう。従って,前記検出器20には,参照光B2と試料5を多重通過した光が重畳された測定光B1との干渉光が入力されるため,より高感度での位相差測定,即ち,屈折率変化の測定が可能となる。
この場合,多重反射した測定光の位相を同期させるように2つの高反射ミラー6a,6bの間隔を微調整するため,一方の反射ミラーの位置制御を行う駆動機構を設けることが望ましい。
Further, in this photothermal conversion measuring device X1, the measurement light B1 is reflected back and forth on the reflection mirror 6 on the back side (an example of the back surface side light reflection means), so that the measurement light B1 after reciprocating through the sample 5 is reflected. Since the optical interference measurement is performed by interfering with the reference light B2, the change in the phase difference φ can be measured with a sensitivity twice that in the case of one-way passage. In addition, there is no increase in the output of pumping light or a decrease in the S / N ratio.
Here, the configuration of an application example in which the sensitivity is further improved in the photothermal conversion measurement device X1 will be described using the schematic diagram shown in FIG.
In the configuration shown in FIG. 2, the high-reflection mirrors 6a and 6b (the front-side light reflecting means and the back-side light reflecting means are provided on the front side of the sample 5 (the measurement light irradiation surface side) and the back side thereof, respectively. An example) is arranged, and the measurement light B1 is subjected to multiple reflection between the high reflection mirrors 6a and 6b.
As a result, the measurement light B1 passes through the high reflection mirror 6a on the surface side of the sample 5 and is directed toward the photodetector 20 while being subjected to multiple reflection between the high reflection mirrors 6a and 6b. Therefore, since the interference light between the reference light B2 and the measurement light B1 on which the light that has passed through the sample 5 is superimposed is input to the detector 20, the phase difference can be measured with higher sensitivity, that is, the refractive index. Changes can be measured.
In this case, in order to finely adjust the interval between the two high reflection mirrors 6a and 6b so as to synchronize the phase of the multiple reflected measurement light, it is desirable to provide a drive mechanism for controlling the position of one of the reflection mirrors.

<第2実施形態>
次に,図3に示す概略構成図を用いて,本発明の第2実施形態に係る光熱変換測定装置X2について説明する。
この光熱変換測定装置X2は,前記光熱変換測定装置X1の応用例であり,測定光B1を光干渉法により検出する部分については,前記光熱変換測定装置X1と同じであるので図示は省略している(図中,「測定系」と表した部分)。
前述した第1実施形態では,2つの励起光B3a,B3bの強度を,前記セル15や溶媒等の吸熱特性に応じて予め設定する例について示した。
一方,図3に示す光熱変換測定装置X2においては,前記セル15に試料が流し込まれる試料流路15aが設けられている。
そしてこの光熱変換測定装置X2を用いた測定では,試料5を前記試料流路15aに注入する前に,強度変調された2つの励起光B3a,B3bが前記セル15に照射された状態で,前記光検出器20(図1参照)で検出される信号値が一定となる(変動しない)ように,前記励起光源1の出力強度調節機能により,励起光B3a,B3bの強度を調節する。
次に,試料5を前記試料流路15aに注入し,その状態で前記光検出器20及び前記信号処理装置21により測定光の検出を行う。
これにより,熱吸収特性が未知の前記セル15等についても,2つの励起光B3a,B3bの強度を適切に調節できる。
また,図3に示すように,励起光B3a,B3bを試料5に導く導光手段としては,反射ミラー等に限らず,光ファイバ60等によって励起光B3a,B3bを導光し,試料5に照射させる構成であってもかまわない。
Second Embodiment
Next, the photothermal conversion measuring device X2 according to the second embodiment of the present invention will be described using the schematic configuration diagram shown in FIG.
This photothermal conversion measurement device X2 is an application example of the photothermal conversion measurement device X1, and the portion for detecting the measurement light B1 by optical interferometry is the same as the photothermal conversion measurement device X1 and is not shown. (In the figure, the part indicated as “measurement system”).
In the first embodiment described above, an example in which the intensities of the two excitation lights B3a and B3b are set in advance according to the endothermic characteristics of the cell 15 or a solvent has been described.
On the other hand, in the photothermal conversion measuring device X2 shown in FIG. 3, a sample channel 15a into which the sample is poured into the cell 15 is provided.
In the measurement using the photothermal conversion measurement device X2, the cell 15 is irradiated with two excitation lights B3a and B3b whose intensity is modulated before the sample 5 is injected into the sample channel 15a. The intensity of the excitation light B3a and B3b is adjusted by the output intensity adjustment function of the excitation light source 1 so that the signal value detected by the photodetector 20 (see FIG. 1) is constant (does not vary).
Next, the sample 5 is injected into the sample flow path 15a, and in this state, the measurement light is detected by the photodetector 20 and the signal processing device 21.
Accordingly, the intensity of the two excitation lights B3a and B3b can be appropriately adjusted even for the cell 15 and the like whose heat absorption characteristics are unknown.
Further, as shown in FIG. 3, the light guiding means for guiding the excitation light B3a, B3b to the sample 5 is not limited to the reflection mirror, but the excitation light B3a, B3b is guided by the optical fiber 60, etc. It may be configured to irradiate.

<第3実施形態>
次に,図2に示す概略構成図を用いて,本発明の第2実施形態に係る光熱変換測定装置X3について説明する。
光熱変換測定装置X3は,相互に波長帯が異なる2つの励起光B3a,B3bを,相互に逆位相となる強度変調を施して試料5に照射し,その試料5に照射されこれを透過した測定光を検出する点において,前記光熱変換測定装置X1と同様の構成を有するものである。
しかし,当該光熱変換測定装置X3は,測定光B1を照射及び検出する手段の構成において,前記光熱変換測定装置X1と異なる。
図4に示すように,光熱変換測定装置X3も,前記分光励起光源部Zを備え,これにより,相互に波長帯が異なる2つの励起光B3a,B3bが,相互に逆位相となる強度変調が施されて試料5に照射される。
さらに,光熱変換測定装置X3は,前記分光励起光源Zに加え,測定光用の前記レーザ光源7,レンズ20,ビームスプリッタ54,高反射ミラー52,53,光検出器20a,20b,ミラー変位機構50,変位制御装置51,信号処理装置21’等を具備している。
前記分光励起光源部Zからの励起光B3a,B3bが照射されることにより,試料5は励起光を吸収して発熱し(光熱効果),その温度変化(上昇)によって試料5の屈折率が変化する。
<Third Embodiment>
Next, the photothermal conversion measuring device X3 according to the second embodiment of the present invention will be described using the schematic configuration diagram shown in FIG.
The photothermal conversion measurement device X3 irradiates the sample 5 with two excitation light beams B3a and B3b having different wavelength bands, which are subjected to intensity modulation having opposite phases to each other, and the sample 5 is irradiated and transmitted through the sample 5. In the point which detects light, it has the structure similar to the said photothermal conversion measuring apparatus X1.
However, the photothermal conversion measurement device X3 is different from the photothermal conversion measurement device X1 in the configuration of means for irradiating and detecting the measurement light B1.
As shown in FIG. 4, the photothermal conversion measurement device X3 also includes the spectral excitation light source unit Z, whereby two excitation lights B3a and B3b having different wavelength bands can be intensity-modulated so as to have opposite phases to each other. Then, the sample 5 is irradiated.
In addition to the spectral excitation light source Z, the photothermal conversion measurement device X3 includes the laser light source 7 for measurement light, the lens 20, the beam splitter 54, the high reflection mirrors 52 and 53, the photodetectors 20a and 20b, and a mirror displacement mechanism. 50, a displacement control device 51, a signal processing device 21 ', and the like.
By irradiating the excitation light B3a and B3b from the spectral excitation light source Z, the sample 5 absorbs the excitation light and generates heat (photothermal effect), and the refractive index of the sample 5 changes due to its temperature change (rise). To do.

一方,試料5に照射してその屈折率変化を測定するための測定光を出力する前記レーザ光源7から出力された測定光B1は,ビームスプリッタ54を通過し,試料5の両側(おもて面側とうら面側)に平行に対向配置された2つの高反射ミラー52,53(光反射手段の一例)のうちのおもて側の一方(以下,第1高反射ミラー52という)によってその大部分が反射されるが,ごく一部の測定光は前記第1高反射ミラー52を透過し,試料5に照射される。この試料5に照射された測定光は,試料5を挟んで対向配置されたうら側の高反射ミラー53(以下,第2高反射ミラーという)と前記第1高反射ミラー52との間で,試料5に透過しつつ一の軸に沿って多重反射する。そして,試料5に透過しつつ2つの高反射ミラー52,53相互間で多重反射する測定光B1は,前記高反射ミラー52,53各々に到達するごとに,そのごく一部が透過する。
これにより,前記第1高反射ミラー52を試料5が存在する側と反対側(図1中の上側)に反射する測定光(以下,反射側測定光という)には,高反射ミラー52,53相互間での往復回数が各々異なる測定光が,試料5が存在する側から透過して重畳される。また,前記第2高反射ミラー53を試料が存在する側と反対側(図1中の下側)に透過する測定光(以下,透過側測定光という)にも,高反射ミラー52,53相互間での往復回数が各々異なる測定光が,試料5が存在する側から透過して重畳される。
On the other hand, the measurement light B1 output from the laser light source 7 that outputs the measurement light for irradiating the sample 5 and measuring the change in the refractive index thereof passes through the beam splitter 54 and passes through both sides of the sample 5 (front). One of the two high reflection mirrors 52 and 53 (an example of the light reflecting means) disposed opposite to each other in parallel to the surface side and the back surface side (hereinafter referred to as the first high reflection mirror 52). Most of the light is reflected, but only a small part of the measurement light passes through the first high-reflection mirror 52 and is irradiated onto the sample 5. The measurement light applied to the sample 5 is between a high-reflection mirror 53 on the back side (hereinafter referred to as a second high-reflection mirror) and the first high-reflection mirror 52 disposed opposite to each other with the sample 5 interposed therebetween. Multiple reflection is performed along one axis while transmitting through the sample 5. Then, a part of the measurement light B1 that is transmitted through the sample 5 and multiple-reflected between the two high reflection mirrors 52 and 53 is transmitted each time the measurement light B1 reaches each of the high reflection mirrors 52 and 53.
Thereby, the high reflection mirrors 52 and 53 are used as measurement light (hereinafter referred to as reflection side measurement light) that reflects the first high reflection mirror 52 on the side opposite to the side where the sample 5 exists (upper side in FIG. 1). Measurement beams having different numbers of reciprocations between them are transmitted and superimposed from the side where the sample 5 exists. In addition, the high reflection mirrors 52 and 53 are also connected to measurement light (hereinafter referred to as transmission side measurement light) transmitted through the second high reflection mirror 53 on the opposite side (lower side in FIG. 1) to the side where the sample exists. Measurement light having different numbers of reciprocations between them is transmitted and superimposed from the side where the sample 5 exists.

前記第1高反射ミラー52を試料5が存在する側と反対側に反射する前記反射側測定光は,前記ビームスプリッタ54で偏向されて一方の光検出器20a(以下,第1光検出器という,光強度検出手段の一例)で受光され,これによって検出された前記反射側測定光の光強度を表す信号(光強度信号)が計算機等からなる前記信号処理装置21’に取り込まれる。
前記信号処理装置21’は,前記第1光検出器20aで検出される光強度信号の入力インターフェースを備えた計算機等であり,その光強度信号について前記チョッパ2による励起光B3a,B3bの強度変調周期と同じ周期成分を抽出し,光熱変換信号として他の測定処理装置へ出力するものである(同周期成分抽出手段の一例)。
これにより,前記光熱変換測定装置X1の場合と同様に,2つの励起光B3a,B3bのいずれの照射中でもセル15等の温度に変化が生じないようにできる一方,試料5の光熱効果は波長帯が異なる励起光B3a,B3b各々が切り替わって照射されるごとに変化するので,測定光B1の検出の際に,セル15等の温度変化(屈折率変化)によるS/N比の悪化を招くことを防止できる。
さらに,周波数fの成分を有しないノイズの影響が除去されるため,S/N比が向上する。
一方,前記第2高反射ミラー53を試料5が存在する側と反対側に透過する前記透過側測定光は,他方の光検出器20b(以下,第2光検出器という,光強度検出手段の一例)で受光され,これによって検出された光強度信号が変位制御装置51に取り込まれる。
前記変位制御装置51は,前記第2光検出器20b(光強度検出手段)の検出信号に基づいて,前記第2高反射ミラー53を支持してその支持位置を前記測定光の光軸方向に自動変位させる前記ミラー変位機構50を制御することにより,前記第2光検出器20b(光強度検出手段)の検出信号の変動を抑える方向に2つの前記高反射ミラー52,53の間隔を自動調節するものである(ミラー間隔調節手段の一例)。
The reflection-side measurement light that reflects the first high reflection mirror 52 to the side opposite to the side where the sample 5 is present is deflected by the beam splitter 54 to be one of the photodetectors 20a (hereinafter referred to as a first photodetector). , An example of the light intensity detecting means), and a signal (light intensity signal) representing the light intensity of the reflection-side measurement light detected by this is taken into the signal processing device 21 ′ composed of a computer or the like.
The signal processing device 21 ′ is a computer or the like having an input interface for a light intensity signal detected by the first light detector 20a, and the intensity modulation of the excitation lights B3a and B3b by the chopper 2 is performed on the light intensity signal. The same period component as the period is extracted and output as a photothermal conversion signal to another measurement processing device (an example of the same period component extracting means).
As a result, as in the case of the photothermal conversion measuring device X1, the temperature of the cell 15 or the like can be prevented from changing during either irradiation of the two excitation lights B3a and B3b, while the photothermal effect of the sample 5 is in the wavelength band. Since the excitation light B3a and B3b having different values change each time they are switched and irradiated, the S / N ratio is deteriorated due to temperature change (refractive index change) of the cell 15 or the like when the measurement light B1 is detected. Can be prevented.
Further, since the influence of noise having no frequency f component is removed, the S / N ratio is improved.
On the other hand, the transmission side measurement light transmitted through the second high reflection mirror 53 to the side opposite to the side where the sample 5 exists is transmitted to the other light detector 20b (hereinafter referred to as a second light detector). The light intensity signal detected and received by this is taken into the displacement control device 51.
The displacement control device 51 supports the second high reflection mirror 53 based on the detection signal of the second photodetector 20b (light intensity detection means) and sets the support position in the optical axis direction of the measurement light. By controlling the mirror displacement mechanism 50 that automatically displaces, the interval between the two high reflection mirrors 52 and 53 is automatically adjusted in a direction that suppresses fluctuations in the detection signal of the second photodetector 20b (light intensity detection means). (An example of mirror interval adjusting means).

次に,図5を用いて,2つの前記高反射ミラー52,53間を進行する測定光の片道分(往路又は復路)の光路長L(以下,ミラー間光路長Lという)と前記第1高反射ミラー52に反射した前記反射側測定光の強度P1及び前記第2高反射ミラー53に透過した前記透過側測定光の強度P2各々との関係について説明する。
前述したように,前記透過側測定光には,前記高反射ミラー52,53相互間での往復回数が各々異なる測定光(以下,多重反射測定光という)が重畳される。このため,図5に示すように,前記ミラー間光路長Lが,L=n・λ/2(nは正の整数,λは2つのミラー間における測定光の波長)を満たしている状態では,前記多重反射測定光各々の位相が同期して強調し合い(共振する),その光強度P2が最大強度P2maxとなる。そして,前記ミラー間光路長Lが,L=n・λ/2関係から少しでも外れると,ミラー間の往復回数が多い前記多重反射測定光ほど位相が大きくずれることになる結果,わずかな光路長Lの変化でも前記透過側測定光の強度が大きく低下する。ここで,前記高反射ミラー52,53各々の反射率をR(0〜1),L=n・λ/2の関係を満たす前記ミラー間光路長をLn(=n・λ/2)とすると,前記ミラー間光路長L=Lnとしたときに,その光路長Lnを中心として前記透過側測定光の強度P2にP2max〜P2max/2の範囲での変化を生じさせる光路長の範囲ΔL(以下,光路長レンジという)は,次の(3)式で表される。
ΔL=Ln・π・R1/2/(1−R) …(3)
即ち,前記高反射ミラー52,53の反射率Rが大きいほど,また,前記ミラー間光路長Lnが短いほど,前記光路長レンジΔLを小さくでき,わずかな光路長変化を高感度で測定できる。
一方,前記反射側測定光の強度P1は,エネルギー保存則に従って,前記測定光の元々の強度にほぼ等しい強度P1maxから前記透過側測定光の強度P2を差し引いた強度或いはそれに近い強度(P1≒P1max−P2)となる。
この光熱変換測定装置X3は,図5に示す特性を利用するものである。
このような光熱変換測定装置X3により,励起光B3a,B3bの試料5への照射状態を変化させるごとに,前記信号処理装置21’により,前記第1光検出器20aを通じて検出すれば,励起光B3a,B3bの照射により,光熱効果によって試料5の屈折率が変化するため,前記ミラー間光路長Lが変化する結果,前記反射側測定光の強度は,励起光の照射状態の変化による試料5のわずかな屈折率変化でも比較的大きく変化する。
従って,そのようにして検出された前記反射側測定光の強度に基づいて,試料5の光熱効果により生じる屈折率変化(特性変化)を,高感度で測定することが可能となる。しかも,そのような高感度の測定を,図4に示すようなごく簡易な構成により実現できる。
また,前記分光励起光源部Zにより,励起光B3a,B3bの波長帯を変更し,その変更ごとに光強度の検出を行うことにより,試料の吸収分光特性の測定も簡易に行うことができる。
Next, referring to FIG. 5, the optical path length L (hereinafter referred to as the inter-mirror optical path length L) of the one-way (outward path or return path) of the measurement light traveling between the two high reflection mirrors 52 and 53 and the first A relationship between the intensity P1 of the reflection side measurement light reflected by the high reflection mirror 52 and the intensity P2 of the transmission side measurement light transmitted through the second high reflection mirror 53 will be described.
As described above, measurement light (hereinafter referred to as multiple reflection measurement light) having different numbers of reciprocations between the high reflection mirrors 52 and 53 is superimposed on the transmission side measurement light. Therefore, as shown in FIG. 5, when the optical path length L between the mirrors satisfies L = n · λ / 2 (n is a positive integer and λ is the wavelength of the measurement light between the two mirrors). , The phases of the multiple reflection measurement lights are synchronized and emphasized (resonate), and the light intensity P2 becomes the maximum intensity P2max. If the optical path length L between the mirrors is slightly deviated from the relationship L = n · λ / 2, the phase of the multiple reflection measurement light having a large number of reciprocations between the mirrors will be greatly shifted, resulting in a slight optical path length. Even if L changes, the intensity of the transmission side measurement light is greatly reduced. Here, when the reflectivity of each of the high reflection mirrors 52 and 53 is R (0 to 1) and the optical path length between the mirrors satisfying the relationship of L = n · λ / 2 is Ln (= n · λ / 2). , When the optical path length between mirrors L = Ln, the optical path length range ΔL (hereinafter referred to as “P2max−P2max / 2”) is generated in the intensity P2 of the transmission side measurement light around the optical path length Ln. , Referred to as the optical path length range) is expressed by the following equation (3).
ΔL = Ln · π · R 1/2 / (1-R) (3)
That is, as the reflectivity R of the high reflection mirrors 52 and 53 is larger and the optical path length Ln between the mirrors is shorter, the optical path length range ΔL can be reduced, and a slight change in optical path length can be measured with high sensitivity.
On the other hand, the intensity P1 of the reflection side measurement light is obtained by subtracting the intensity P2 of the transmission side measurement light from the intensity P1max substantially equal to the original intensity of the measurement light or an intensity close thereto (P1≈P1max). −P2).
This photothermal conversion measuring device X3 utilizes the characteristics shown in FIG.
If the photothermal conversion measuring device X3 changes the irradiation state of the excitation light B3a, B3b to the sample 5 every time the sample 5 is detected by the signal processing device 21 ′ through the first photodetector 20a, the excitation light Since the refractive index of the sample 5 is changed by the photothermal effect due to the irradiation of B3a and B3b, the optical path length L between the mirrors is changed. As a result, the intensity of the reflection-side measurement light is changed by the change in the irradiation state of the excitation light. Even a slight change in refractive index changes relatively.
Therefore, it is possible to measure with high sensitivity the refractive index change (characteristic change) caused by the photothermal effect of the sample 5 based on the intensity of the reflection side measurement light detected in this way. Moreover, such high-sensitivity measurement can be realized with a very simple configuration as shown in FIG.
Further, by changing the wavelength bands of the excitation light B3a and B3b by the spectral excitation light source unit Z and detecting the light intensity at each change, the absorption spectral characteristics of the sample can be easily measured.

なお,以上示した測定は,前記第1高反射ミラー52で反射される前記反射側測定光の光強度P1に基づいて試料5の光熱変換特性を測定する例について示したが,前記反射側測定光の強度P1と前記透過側測定光の強度P2とは,それらの和が一定(≒P1max)となる関係を有することから,それを考慮して前記第2高反射ミラー53を透過する前記透過側測定光の光強度P2に基づいて試料5の光熱変換特性を測定する構成としてもよい。即ち,2つの前記高反射ミラー52,53の少なくとも一方を試料5が存在する側と反対側に反射若しくは透過した前記測定光についてその光強度を検出し,その検出強度に基づいて試料5の特性評価を行えばよい。
また,2つの前記高反射ミラー52,53のうちの一方の側でのみ光強度の検出を行う場合,その光強度が検出される側と反対側の反射ミラーについては,理論上は完全反射(反射率=100%)するものであってもよい。
In the above-described measurement, the example in which the photothermal conversion characteristic of the sample 5 is measured based on the light intensity P1 of the reflection-side measurement light reflected by the first high reflection mirror 52 has been described. The light intensity P1 and the intensity P2 of the transmission side measurement light have a relationship in which the sum thereof is constant (≈P1max). Therefore, the transmission that transmits through the second high reflection mirror 53 is taken into consideration. A configuration may be adopted in which the photothermal conversion characteristic of the sample 5 is measured based on the light intensity P2 of the side measurement light. That is, the light intensity of the measurement light reflected or transmitted from at least one of the two high reflection mirrors 52 and 53 to the side opposite to the side where the sample 5 exists is detected, and the characteristics of the sample 5 are determined based on the detected intensity. What is necessary is just to evaluate.
When the light intensity is detected only on one of the two high reflection mirrors 52 and 53, the reflection mirror on the side opposite to the side where the light intensity is detected is theoretically completely reflected ( (Reflectance = 100%).

本発明は,光熱変換測定に利用可能である。     The present invention can be used for photothermal conversion measurement.

本発明の第1実施形態に係る光熱変換測定装置X1の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus X1 which concerns on 1st Embodiment of this invention. 光熱変換測定装置X1の構成の一部の応用例を表す概略図。Schematic showing the example of a part of application of the structure of the photothermal conversion measuring apparatus X1. 本発明の第2実施形態に係る光熱変換測定装置X2の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus X2 which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る光熱変換測定装置X3の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus X3 which concerns on 3rd Embodiment of this invention. 光熱変換測定装置X3における2つの高反射ミラー間を進行する測定光の光路長と高反射ミラーに反射及び透過した測定光の強度との関係を表す図。The figure showing the relationship between the optical path length of the measurement light which advances between two highly reflective mirrors in the photothermal conversion measuring apparatus X3, and the intensity | strength of the measured light reflected and permeate | transmitted to the highly reflective mirror.

符号の説明Explanation of symbols

X1,X2,X3…光熱変換測定装置
Z…分光励起光源部
1…励起光源
1a,1b…可変分光器
2…チョッパ
4…レンズ
5…試料
6…反射ミラー
6a,6b…高反射ミラー
7…レーザ光源
8…1/2波長板
9,14…偏光ビームスプリッタ
10,11…音響光学変調機
15…セル
15a…試料流路
17…1/4波長板
19…偏光板
20,20a,20b…光検出器(光強度検出手段)
21,21’…信号処理装置
50…ミラー変位機構
51…変位制御装置
52,53…高反射ミラー
54…ビームスプリッタ
60…光ファイバ
X1, X2, X3 ... Photothermal conversion measuring device Z ... Spectral excitation light source unit 1 ... Excitation light source 1a, 1b ... Variable spectroscope 2 ... Chopper 4 ... Lens 5 ... Sample 6 ... Reflection mirror 6a, 6b ... High reflection mirror 7 ... Laser Light source 8 ... 1/2 wavelength plates 9, 14 ... Polarizing beam splitters 10,11 ... Acousto-optic modulator 15 ... Cell 15a ... Sample channel 17 ... ¼ wavelength plate 19 ... Polarizing plates 20, 20a, 20b ... Light detection (Light intensity detection means)
21, 21 '... signal processing device 50 ... mirror displacement mechanism 51 ... displacement control devices 52, 53 ... high reflection mirror 54 ... beam splitter 60 ... optical fiber

Claims (9)

励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料に照射されこれを透過した測定光に基づいて測定するために用いる光熱変換測定装置であって,
相互に波長帯が異なる2つの前記励起光に対し相互に逆位相の強度変調を施す逆位相強度変調手段と,
前記試料を透過した前記測定光を検出する測定光検出手段と,
前記測定光検出手段の検出信号から前記励起光の強度変調周期と同周期成分を抽出する同周期成分抽出手段と,
を具備してなることを特徴とする光熱変換測定装置。
A photothermal conversion measurement device used for measuring a change in characteristics of the sample caused by the photothermal effect of the sample irradiated with excitation light based on measurement light irradiated to the sample and transmitted therethrough,
Anti-phase intensity modulation means for performing intensity modulation of opposite phases on two pumping lights having mutually different wavelength bands;
Measuring light detecting means for detecting the measuring light transmitted through the sample;
Same period component extracting means for extracting the same period component as the intensity modulation period of the excitation light from the detection signal of the measurement light detecting means;
A photothermal conversion measuring device comprising:
前記測定光検出手段が,
前記試料を透過した前記測定光に所定の参照光を干渉させその干渉光の強度を検出する光干渉手段を具備してなる請求項1に記載の光熱変換測定装置。
The measuring light detection means is
2. The photothermal conversion measuring device according to claim 1, further comprising a light interference means for causing predetermined reference light to interfere with the measurement light transmitted through the sample and detecting the intensity of the interference light.
前記測定光検出手段が,
前記試料の前記測定光の照射面の反対面側に設けられた裏面側光反射手段を具備し,前記測定光が前記裏面側光反射手段に反射して前記試料を往復通過した後の前記測定光に前記参照光を干渉させてなる請求項2に記載の光熱変換測定装置。
The measuring light detection means is
The measurement after the backside light reflecting means provided on the opposite side of the measurement light irradiation surface of the sample, and the measurement light reflected back to the backside light reflecting means and passed through the sample. The photothermal conversion measuring device according to claim 2, wherein the reference light is interfered with light.
前記測定光検出手段が,
前記試料の前記測定光の照射面の反対面側に設けられた裏面側光反射手段と,
前記試料の前記励起光の照射面側に設けられた表面側光反射手段と,を備え,前記測定光が前記裏面側光反射手段と前記表面側光反射手段との間で多重反射して前記試料を透過した後の前記測定光に前記参照光を干渉させてなる請求項2に記載の光熱変換測定装置。
The measuring light detection means is
Back side light reflecting means provided on the opposite side of the measurement light irradiation surface of the sample;
A surface-side light reflecting means provided on the excitation light irradiation surface side of the sample, and the measurement light is multiple-reflected between the back-side light reflecting means and the surface-side light reflecting means, and The photothermal conversion measurement apparatus according to claim 2, wherein the reference light is made to interfere with the measurement light after passing through a sample.
前記測定光検出手段が,
前記試料の両側に対向配置され,前記試料に照射された所定の測定光を前記試料に透過させつつ相互間で一の軸に沿って多重反射させるとともに少なくとも一方は前記測定光の一部を透過させる2つの光反射手段と,
前記測定光の一部を透過させる前記光反射手段を前記試料が存在する側と反対側に反射若しくは透過した前記測定光の光強度を検出する光強度検出手段と,
を具備してなる請求項1に記載の光熱変換測定装置。
The measuring light detection means is
Oppositely arranged on both sides of the sample, the predetermined measurement light applied to the sample is transmitted through the sample while being multiple-reflected along one axis and at least one part of the measurement light is transmitted. Two light reflecting means to cause
A light intensity detection means for detecting the light intensity of the measurement light reflected or transmitted to the side opposite to the side where the sample is present through the light reflection means for transmitting a part of the measurement light;
The photothermal conversion measuring apparatus according to claim 1, comprising:
前記光強度検出手段の検出信号の変動を抑える方向に前記2つの光反射手段の間隔を調節するミラー間隔調節手段を具備してなる請求項5に記載の光熱変換測定装置。   6. The photothermal conversion measuring device according to claim 5, further comprising a mirror interval adjusting unit that adjusts an interval between the two light reflecting units in a direction that suppresses a variation in a detection signal of the light intensity detecting unit. 所定の光源からの光を分光して2つの前記励起光として出力するとともにそれらの波長帯を可変とする可変分光手段を具備してなる請求項1〜6のいずれかに記載の光熱変換測定装置。   The photothermal conversion measuring device according to any one of claims 1 to 6, further comprising variable spectroscopic means for splitting light from a predetermined light source and outputting it as the two excitation lights and making their wavelength bands variable. . 励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料に照射されこれを透過した測定光に基づいて測定する光熱変換測定方法であって,
前記試料に照射される相互に波長帯が異なる2つの前記励起光に対し相互に逆位相の強度変調を施す逆位相強度変調工程と,
逆位相強度変調工程の実行中に前記試料を透過した前記測定光を検出する測定光検出工程と,
前記測定光検出工程による検出信号から前記励起光の強度変調周期と同周期成分を抽出する同周期成分抽出工程と,
前記同周期成分抽出工程による抽出信号に基づいて前記試料の光熱効果により生じる特性変化を測定する特性変化測定工程と,
を有してなることを特徴とする光熱変換測定方法。
A photothermal conversion measurement method for measuring a change in characteristics of a sample caused by a photothermal effect of a sample irradiated with excitation light based on measurement light irradiated on the sample and transmitted therethrough,
An anti-phase intensity modulation step of applying intensity modulation in opposite phases to the two excitation lights having different wavelength bands irradiated to the sample;
A measurement light detection step for detecting the measurement light transmitted through the sample during the execution of the reverse phase intensity modulation step;
The same period component extracting step of extracting the same period component as the intensity modulation period of the excitation light from the detection signal by the measurement light detecting step;
A characteristic change measuring step of measuring a characteristic change caused by the photothermal effect of the sample based on an extraction signal obtained by the same period component extracting step;
A photothermal conversion measurement method characterized by comprising:
所定の光源からの光を分光して2つの前記励起光として出力するとともにその波長帯を可変とする可変分光手段により前記励起光の波長帯を変更する波長帯変更工程を有し,
前記測定光度検出工程が,前記波長帯変更工程により前記励起光の波長帯が変更されるごとに実行されてなる請求項8に記載の光熱変換測定方法。
A wavelength band changing step of changing the wavelength band of the excitation light by a variable spectroscopic means that divides light from a predetermined light source and outputs the two as the excitation light and makes the wavelength band variable;
The photothermal conversion measurement method according to claim 8, wherein the measurement light intensity detection step is executed each time the wavelength band of the excitation light is changed by the wavelength band change step.
JP2005141122A 2005-05-13 2005-05-13 Photothermal conversion measuring apparatus and method Expired - Fee Related JP4290142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141122A JP4290142B2 (en) 2005-05-13 2005-05-13 Photothermal conversion measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141122A JP4290142B2 (en) 2005-05-13 2005-05-13 Photothermal conversion measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2006317325A true JP2006317325A (en) 2006-11-24
JP4290142B2 JP4290142B2 (en) 2009-07-01

Family

ID=37538122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141122A Expired - Fee Related JP4290142B2 (en) 2005-05-13 2005-05-13 Photothermal conversion measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4290142B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925928A1 (en) * 2006-11-24 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Photothermal conversion measuring instrument
EP2006664A2 (en) * 2006-03-22 2008-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Analyzing apparatus
JP2009204613A (en) * 2008-02-27 2009-09-10 Gwangju Inst Of Science & Technology Apparatus and method for obtaining image using coherent anti-stokes raman scattering
JP2012189525A (en) * 2011-03-14 2012-10-04 Kobe Steel Ltd Thermophysical property measuring apparatus and thermophysical property measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006664A2 (en) * 2006-03-22 2008-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Analyzing apparatus
EP2006664A4 (en) * 2006-03-22 2010-07-07 Kobe Steel Ltd Analyzing apparatus
US8023118B2 (en) 2006-03-22 2011-09-20 Kobe Steel, Ltd. Analyzer for absorption spectrometry of impurity concentration contained in liquid using exciting light
EP1925928A1 (en) * 2006-11-24 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Photothermal conversion measuring instrument
JP2009204613A (en) * 2008-02-27 2009-09-10 Gwangju Inst Of Science & Technology Apparatus and method for obtaining image using coherent anti-stokes raman scattering
JP2012189525A (en) * 2011-03-14 2012-10-04 Kobe Steel Ltd Thermophysical property measuring apparatus and thermophysical property measuring method

Also Published As

Publication number Publication date
JP4290142B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
US20120281221A1 (en) Process and measuring equipment for improving the signal resolution in gas absorption spectroscopy
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
US9310294B2 (en) Use of one or more retro-reflectors in a gas analyzer system
CN110927121B (en) Phase type SPR detection device and method based on white light interference spectrum
US5206710A (en) Method and apparatus for thermowave analysis
JP2008128942A (en) Device for measuring photothermal conversion
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
US10018557B2 (en) Terahertz wave measuring device
JP4853255B2 (en) Gas analyzer
JP2005127748A (en) Photothermal converting/measuring apparatus and method
US7608827B2 (en) Near-field terahertz imaging
JP4119385B2 (en) Photothermal conversion measuring device
JP5001226B2 (en) Photothermal conversion measuring device and method
JP2006125919A (en) Spectral analyzer and spectral analysis method
JP4116979B2 (en) Photothermal conversion measuring apparatus and method
JP2014142299A (en) Gas concentration measurement device
JP4290139B2 (en) Photothermal conversion measuring apparatus and method
JP4838012B2 (en) Photothermal conversion measuring device
JP2016114532A (en) Photothermal conversion spectroscopic analyzer
JP4549292B2 (en) Photothermal conversion measuring device, photothermal conversion measuring method
JP4094975B2 (en) Concentration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080919

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120410

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees