JP2672758B2 - Sample thermoelasticity evaluation device - Google Patents

Sample thermoelasticity evaluation device

Info

Publication number
JP2672758B2
JP2672758B2 JP414693A JP414693A JP2672758B2 JP 2672758 B2 JP2672758 B2 JP 2672758B2 JP 414693 A JP414693 A JP 414693A JP 414693 A JP414693 A JP 414693A JP 2672758 B2 JP2672758 B2 JP 2672758B2
Authority
JP
Japan
Prior art keywords
sample
excitation light
thermoelasticity
intensity
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP414693A
Other languages
Japanese (ja)
Other versions
JPH06213840A (en
Inventor
弘行 高松
伸吾 住江
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP414693A priority Critical patent/JP2672758B2/en
Publication of JPH06213840A publication Critical patent/JPH06213840A/en
Application granted granted Critical
Publication of JP2672758B2 publication Critical patent/JP2672758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は試料の熱弾性評価装置に
係り,詳しくは試料に周期的に強度変調した励起光を照
射し,これにより生じる試料表面の熱膨張振動を測定し
て試料の熱弾性特性等を評価する試料の熱弾性評価装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating thermoelasticity of a sample, and more specifically, it irradiates the sample with excitation light whose intensity is modulated periodically and measures the thermal expansion vibration of the sample surface caused by the excitation light to measure the sample. The present invention relates to a thermoelasticity evaluation device for a sample for evaluating thermoelasticity characteristics and the like.

【0002】[0002]

【従来の技術】試料に周期的に強度変調した励起光を照
射すると,試料はこの光の吸収により発熱し,これによ
り熱膨張する。照射光は周期的に強度変調しているた
め,発熱による試料の温度変化は周期的となり,試料は
熱膨張振動をおこす。これらの熱応答を計測することに
より試料を評価する手法は光音響法ないしは光熱変位法
として知られている(特願平2−70967号等)。図
2は,上記光熱変位法による従来の試料の熱弾性評価装
置A0の一例における概略構成を示す模式図である。図
2に示す如く,従来の試料の熱弾性評価装置A0では,
試料4に光熱変位をあたえる励起レーザとして半導体レ
ーザ1を用いる。そして,半導体レーザ1への注入電流
の変化により,出射光を周波数Fで強度変調する。この
出射光をダイクロイックミラー2で反射させ,レンズ3
で集光し,試料4に照射する。この照射部における試料
4の光熱変位をレーザ光干渉計で計測する。レーザ光干
渉計用レーザとしては,He−Neレーザ5を用い,こ
の出射光を光周波数シフタ(音響光学変調器)6により
周波数差がFB なるビーム1,ビーム2を生成する。ビ
ーム1は,偏光ビームスプリッタ7,1/4波長板8,
ダイクロイックミラー2を透過し,レンズ3で集光し,
試料4に入射する。ビーム1の試料4からの反射光は,
再度1/4波長板8を通過することにより,偏光面が9
0度変化するため偏光ビームスプリッタ7で今度は反射
する。同様に,ビーム2は偏光ビームスプリッタ7を透
過する。これらのレーザ光は直交しているため偏光板9
を透過させることにより,これらのビームを干渉させ,
この干渉光を光電変換器10で受光する。光電変換器1
0からの出力Vをフィルタ11を通し,干渉光における
ビート波信号E1 を取り出す。信号E1 は次式で与えら
れる。 E1 =Acos(2πFB t+P(t)+φ(t)) …(1) ここで,Aは試料4や干渉光学系等に依存する値,P
(t)は試料4の光熱変位によるビーム1の位相変化,
φ(t)はP(t)が零(光熱変位無し)のときのビー
ム1,ビーム2間の光路長差による位相差である。試料
4の光熱変位の振幅をL,位相をqとすると位相差P
(t)は次式で表わされる。 P(t)=(4π/λ)・Lsin(2πFt+q) …(2) 次に,信号E1 の値を零レベル(しきい値)と比較し,
信号E1 が零レベル以上ならばE1 =V,信号E1 が零
レベル以下ならばE1 =−Vとなるようにコンパレータ
12で波形変換を行う。この波形変換後の信号E2 は次
式で表わされる。 E2 =(4V/π)・cos(2πFB t+P(t)+φ(t))+(高周波 成分) …(3) 信号E2 は上記値Aを含まないため位相項におけるP
(t)を,位相検出回路13で検出することにより,試
料4の正確な光熱変位を検出することができた。
2. Description of the Related Art When a sample is irradiated with an excitation light whose intensity is periodically modulated, the sample generates heat due to absorption of the light, thereby expanding thermally. Since the intensity of the irradiation light is periodically modulated, the temperature change of the sample due to heat generation becomes periodic, and the sample causes thermal expansion vibration. A method for evaluating a sample by measuring these thermal responses is known as a photoacoustic method or a photothermal displacement method (Japanese Patent Application No. 2-70967). FIG. 2 is a schematic diagram showing a schematic configuration of an example of a conventional sample thermoelasticity evaluation apparatus A0 by the photothermal displacement method. As shown in FIG. 2, in the conventional sample thermoelasticity evaluation apparatus A0,
The semiconductor laser 1 is used as an excitation laser that gives the sample 4 photothermal displacement. Then, the emitted light is intensity-modulated with the frequency F by the change of the injection current to the semiconductor laser 1. This emitted light is reflected by the dichroic mirror 2, and the lens 3
The sample 4 is focused and irradiated onto the sample 4. The photothermal displacement of the sample 4 in this irradiation part is measured by a laser interferometer. A He-Ne laser 5 is used as a laser for the laser light interferometer, and a beam 1 and a beam 2 having a frequency difference F B are generated from the emitted light by an optical frequency shifter (acousto-optic modulator) 6. The beam 1 includes a polarization beam splitter 7, a quarter wave plate 8,
It passes through the dichroic mirror 2 and is condensed by the lens 3,
It is incident on the sample 4. The reflected light of the beam 1 from the sample 4 is
By passing through the quarter-wave plate 8 again, the polarization plane becomes 9
Since it changes by 0 degree, it is reflected by the polarization beam splitter 7 this time. Similarly, the beam 2 passes through the polarization beam splitter 7. Since these laser lights are orthogonal to each other, the polarizing plate 9
To penetrate these beams,
The interference light is received by the photoelectric converter 10. Photoelectric converter 1
The output V from 0 is passed through the filter 11 to extract the beat wave signal E 1 in the interference light. The signal E 1 is given by the following equation. E 1 = Acos (2πF B t + P (t) + φ (t)) (1) where A is a value depending on the sample 4 and the interference optical system, P
(T) is the phase change of the beam 1 due to the photothermal displacement of the sample 4,
φ (t) is the phase difference due to the optical path length difference between the beam 1 and the beam 2 when P (t) is zero (no photothermal displacement). If the amplitude of the photothermal displacement of sample 4 is L and the phase is q, the phase difference P
(T) is represented by the following equation. P (t) = (4π / λ) · Lsin (2πFt + q) (2) Next, the value of the signal E 1 is compared with the zero level (threshold value),
The waveform conversion is performed by the comparator 12 so that E 1 = V if the signal E 1 is at or above the zero level, and E 1 = −V if the signal E 1 is at or below the zero level. The signal E 2 after the waveform conversion is expressed by the following equation. E 2 = (4V / π) · cos (2πF B t + P (t) + φ (t)) + P in the phase term for (high-frequency components) ... (3) signal E 2 is free from said value A
By detecting (t) with the phase detection circuit 13, the accurate photothermal displacement of the sample 4 could be detected.

【0003】[0003]

【発明が解決しようとする課題】上記従来の試料の熱弾
性評価装置A0で検出された光熱変位には試料4の熱伝
導率等の熱弾性特性情報を含むが,試料4の特性によっ
て励起光に対する反射率が変化した場合,試料4におけ
る励起光の吸収能力である所謂励起光吸収パワーが変わ
るため計測される光熱変位も変化する。例えば試料4が
薄膜である場合,膜の膜厚変化によって試料4の励起光
に対する反射率は大きく変化し,光熱変位も変化する。
このように,光熱変位の測定により試料4の熱弾性特性
を評価する場合,計測された光熱変位には,試料4の励
起光に対する反射率の情報を含むため,計測された光熱
変位から熱弾性特性のみを抽出し,試料を評価すること
はできなかった。また,励起光が試料4を透過する場合
も同様の理由により,計測された光熱変位から熱弾性特
性のみを抽出して試料4を評価することができなかっ
た。本発明は,このような従来の技術における課題を解
決するために,試料の熱弾性評価装置を改良し,試料に
おける励起光の反射率の変化の影響を受けることなく該
試料の熱弾性特性を正確に評価しうる試料の熱弾性評価
装置を提供することを目的とするものである。
The photothermal displacement detected by the conventional sample thermoelasticity evaluation apparatus A0 includes thermoelastic characteristic information such as the thermal conductivity of the sample 4, but the excitation light depends on the characteristic of the sample 4. When the reflectance with respect to changes, the so-called excitation light absorption power, which is the absorption capacity of the excitation light in the sample 4, changes, so the measured photothermal displacement also changes. For example, when the sample 4 is a thin film, the reflectance of the sample 4 with respect to the excitation light changes greatly due to the change in the film thickness, and the photothermal displacement also changes.
As described above, when the thermoelastic characteristics of the sample 4 are evaluated by measuring the photothermal displacement, the measured photothermal displacement includes information on the reflectance of the sample 4 with respect to the excitation light. It was not possible to evaluate the sample by extracting only the characteristics. Further, even when the excitation light passes through the sample 4, for the same reason, it was not possible to evaluate the sample 4 by extracting only the thermoelastic characteristic from the measured photothermal displacement. In order to solve the above problems in the conventional technique, the present invention improves the thermoelasticity evaluation device for a sample, and improves the thermoelastic property of the sample without being affected by the change in the reflectance of the excitation light in the sample. It is an object of the present invention to provide a thermoelasticity evaluation apparatus for a sample that can be evaluated accurately.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,試料に励起光を照射する照射手段と,上記
照射手段によって照射された励起光による上記試料の光
熱変位を光干渉法を用いて測定する測定手段とを備えた
試料の熱弾性評価装置において,上記励起光の照射強度
を検出する第1の検出手段と,上記励起光の上記試料で
の反射光及び/又は透過光の強度を検出する第2の検出
手段と,上記第1の検出手段により検出された上記励起
光の強度と,上記第2の検出手段により検出された上記
反射光及び/又は透過光の強度とから上記試料の励起光
吸収パワーを演算する演算手段と,上記演算手段により
演算された上記試料の励起光吸収パワーにて上記測定手
段により測定された上記試料の光熱変位を補正する補正
手段とを設け,上記補正手段により補正された上記試料
の光熱変位に基づいて該試料の熱弾性評価を行うことを
特徴とする試料の熱弾性評価装置として構成されてい
る。
In order to achieve the above object, the present invention provides an irradiation means for irradiating a sample with excitation light, and an optical interference method for measuring the photothermal displacement of the sample by the excitation light irradiated by the irradiation means. In a thermoelasticity evaluation apparatus for a sample, comprising: a measuring means for measuring by using a first measuring means for detecting the irradiation intensity of the excitation light; and a reflected light and / or a transmitted light of the excitation light on the sample. Of the intensity of the excitation light detected by the first detector, and the intensity of the reflected light and / or the transmitted light detected by the second detector. And a correction means for correcting the photothermal displacement of the sample measured by the measuring means by the excitation light absorption power of the sample calculated by the calculation means. Set up It is configured as a thermoelastic evaluation device of the sample and performing thermoelastic evaluation of the sample based on the photothermal displacement of the sample that has been corrected by the correction means.

【0005】[0005]

【作用】本発明によれば,試料に励起光が照射手段によ
り照射され,上記照射手段によって照射された励起光に
よる上記試料の光熱変位が光干渉法を用いた測定手段に
より測定されるに際し,上記励起光の照射強度が第1の
検出手段により検出され,上記励起光の上記試料での反
射光及び/又は透過光の強度が第2の検出手段により検
出される。上記第1の検出手段により検出された上記励
起光の強度と,上記第2の検出手段により検出された上
記反射光及び/又は透過光の強度とから上記試料の励起
光吸収パワーが演算手段により演算される。上記演算手
段により演算された上記試料の励起光吸収パワーにて上
記測定手段により測定された上記試料の光熱変位が補正
手段により補正される。上記補正手段により補正された
上記試料の光熱変位に基づいて該試料の熱弾性評価が行
われる。上記測定された試料の光熱変位と試料における
励起光の反射率の変化により影響を受ける励起光吸収パ
ワーとは比例関係にあるため,上記のように補正するこ
とにより励起光吸収パワーを一定とした時の光熱変位が
得られる。その結果,試料における励起光の反射率の変
化の影響を受けることなく該試料の熱弾性特性を正確に
評価しうる試料の熱弾性評価装置を得ることができる。
According to the present invention, when the sample is irradiated with the excitation light by the irradiation means and the photothermal displacement of the sample by the excitation light irradiated by the irradiation means is measured by the measuring means using the optical interferometry, The irradiation intensity of the excitation light is detected by the first detection means, and the intensity of the reflected light and / or the transmitted light of the excitation light on the sample is detected by the second detection means. From the intensity of the excitation light detected by the first detection means and the intensity of the reflected light and / or the transmitted light detected by the second detection means, the excitation light absorption power of the sample is calculated by the calculation means. Is calculated. The photothermal displacement of the sample measured by the measuring unit is corrected by the correcting unit by the excitation light absorption power of the sample calculated by the calculating unit. Thermoelasticity evaluation of the sample is performed based on the photothermal displacement of the sample corrected by the correction means. Since the measured photothermal displacement of the sample and the pumping light absorption power affected by the change of the reflectance of the pumping light in the sample are in a proportional relationship, the pumping light absorption power was made constant by the above correction. The photothermal displacement of time is obtained. As a result, it is possible to obtain a thermoelasticity evaluation apparatus for a sample that can accurately evaluate thermoelastic characteristics of the sample without being affected by a change in reflectance of excitation light in the sample.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚以下
の実施例は,本発明を具体化した一例であって,本発明
の技術的範囲を限定する性格のものではない。ここに,
図1は本発明の一実施例に係る試料の熱弾性評価装置A
1の概略構成を示す模式図である。また,前記図2に示
した従来の試料の熱弾性評価装置A0と共通する要素に
は同一符合を使用する。図1に示す如く,本実施例に係
る試料の熱弾性評価装置A1は,半導体レーザ1,ダイ
クロイックミラー2及びレンズ3からなる励起光照射系
P(照射手段に相当)と,He−Neレーザ5,光周波
数シフタ6,偏光ビームスプリッタ7,1/4波長板
8,偏光板9,光電変換器10,フィルタ11,コンパ
レータ12及び位相検出回路13からなる光干渉系Q
(測定手段に相当)とを備えた点で従来例と同様であ
る。しかし,本実施例では励起レーザ(励起光)の照射
強度を検出する光検出器15(第1の検出手段に相当)
と,励起レーザの試料4での反射光及び/又は透過光の
強度を検出する光検出器14,16(第2の検出手段に
相当)と,光検出器15により検出された励起レーザの
強度iと光検出器14,16により検出された反射光の
強度r及び/又は透過光の強度tとから試料4における
励起レーザの吸収量s(励起光吸収パワーに相当)を演
算する演算機能(演算手段に相当)及び吸収量sにて光
干渉系Qを用いて測定された光熱変位を補正する補正機
能(補正手段に相当)を有する計算機17とを設け,計
算機17により補正された試料4の光熱変位に基づいて
試料4の熱弾性評価を行うように構成されている点で従
来例と異なる。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. here,
FIG. 1 shows a thermoelasticity evaluation apparatus A for samples according to an embodiment of the present invention.
It is a schematic diagram which shows schematic structure of 1. Further, the same reference numerals are used for the elements common to the conventional sample thermoelasticity evaluation apparatus A0 shown in FIG. As shown in FIG. 1, a thermoelasticity evaluation apparatus A1 for a sample according to this embodiment includes an excitation light irradiation system P (corresponding to irradiation means) including a semiconductor laser 1, a dichroic mirror 2 and a lens 3, and a He—Ne laser 5. , An optical frequency shifter 6, a polarization beam splitter 7, a quarter wave plate 8, a polarizing plate 9, a photoelectric converter 10, a filter 11, a comparator 12, and a phase detection circuit 13 as an optical interference system Q.
(Corresponding to measuring means) is the same as the conventional example. However, in this embodiment, the photodetector 15 (corresponding to the first detecting means) for detecting the irradiation intensity of the excitation laser (excitation light).
And photodetectors 14 and 16 (corresponding to second detecting means) for detecting the intensity of reflected light and / or transmitted light of the excitation laser on the sample 4, and the intensity of the excitation laser detected by the photodetector 15. A calculation function for calculating the absorption amount s (corresponding to the excitation light absorption power) of the excitation laser in the sample 4 from i and the intensity r of the reflected light and / or the intensity t of the transmitted light detected by the photodetectors 14 and 16 ( And a calculator 17 having a correction function (corresponding to a correction means) for correcting the photothermal displacement measured using the optical interference system Q with the absorption amount s, and the sample 4 corrected by the calculator 17 This is different from the conventional example in that it is configured to evaluate the thermoelasticity of the sample 4 based on the photothermal displacement of.

【0007】以下,本実施例では,この装置A1の動作
について従来例と異なる部分を主体に説明し,従来例と
同様の部分については既述の通りであるので詳細説明は
省略する。この装置A1では,まず従来例と同様に励起
光照射系Pを用いて励起レーザを試料4に照射し,この
照射部における試料4の光熱変位を光干渉系Qを用いて
測定する。さらに,この装置A1では励起レーザの出射
部にビームスプリッタ18を設置し,出射光の一部を光
検出器15で受光することにより励起レーザの照射強度
を計測する。試料4からの反射光は,同ビームスプリッ
タ18で反射し,光検出器14で受光される。これによ
り,試料4からの反射光強度を計測する。試料4の背面
側に設置された光検出器16は,励起レーザが試料4を
透過する場合において,励起レーザの透過光強度を計測
するものである。これらの計測値はA/D変換器19で
デジタル化され,計算機17にとりこまれる。また,光
干渉系Qを用いて測定された試料4の光熱変位について
もA/D変換器19でデジタル化され,計算機17にと
りこまれる。計算機17においては,励起レーザの照射
強度信号と,反射光強度信号及び/又は透過光強度信号
とから,励起光照射系P,光干渉系Qにおける透過効率
をもとに,試料4上での励起レーザの照射強度iと,反
射光強度r及び/又は透過光強度tとを演算し,測定さ
れた光熱変位を補正する。具体的には,励起レーザの試
料4での吸収量sをs=i−r(−t)より算出し,光
熱変位の大きさを吸収量sで除算することにより補正
し,単位吸収量での光熱変位をもとめ,これを評価値と
して試料4の熱弾性特性を評価する。ここで,吸収量s
は,前述したように試料4の励起レーザに対する反射率
の変化の影響を受けて変化するものである。また,上記
測定された試料4の光熱変位は試料4が励起レーザを吸
収して発熱し熱膨張を起こした時の変位量であるから,
この光熱変位と吸収量sとは比例関係にある。従って上
記のように補正を行うことにより,吸収量sによって規
格化した光熱変位,即ち吸収量sを変化させず一定とし
た時の光熱変位が得られる。その結果,試料4における
励起レーザの反射率の変化の影響を受けることなく試料
4の熱弾性特性を正確に評価しうる試料の熱弾性評価装
置を得ることができる。
In the present embodiment, the operation of the device A1 will be described below mainly with respect to the parts different from the conventional example, and the parts similar to the conventional example have been described above, and detailed description thereof will be omitted. In this apparatus A1, first, similarly to the conventional example, the excitation light irradiation system P is used to irradiate the sample 4 with the excitation laser, and the photothermal displacement of the sample 4 at this irradiation portion is measured using the optical interference system Q. Further, in this device A1, the beam splitter 18 is installed at the emission part of the excitation laser, and the irradiation intensity of the excitation laser is measured by receiving a part of the emitted light by the photodetector 15. The reflected light from the sample 4 is reflected by the same beam splitter 18 and received by the photodetector 14. With this, the intensity of the reflected light from the sample 4 is measured. The photodetector 16 installed on the back side of the sample 4 measures the transmitted light intensity of the excitation laser when the excitation laser passes through the sample 4. These measured values are digitized by the A / D converter 19 and taken into the computer 17. Further, the photothermal displacement of the sample 4 measured using the optical interference system Q is also digitized by the A / D converter 19 and taken into the computer 17. In the computer 17, the excitation laser irradiation intensity signal and the reflected light intensity signal and / or the transmitted light intensity signal are used to determine the transmission efficiency in the excitation light irradiation system P and the optical interference system Q on the sample 4. The irradiation intensity i of the excitation laser and the reflected light intensity r and / or the transmitted light intensity t are calculated to correct the measured photothermal displacement. Specifically, the absorption amount s of the excitation laser in the sample 4 is calculated from s = i−r (−t), and the magnitude of the photothermal displacement is corrected by dividing by the absorption amount s. The thermoelastic characteristics of the sample 4 are evaluated using the photothermal displacement of the sample as the evaluation value. Here, the absorption amount s
Is changed under the influence of the change in the reflectance of the sample 4 with respect to the excitation laser as described above. Further, the measured photothermal displacement of the sample 4 is the displacement amount when the sample 4 absorbs the excitation laser and generates heat to cause thermal expansion.
The photothermal displacement and the absorption amount s are in a proportional relationship. Therefore, by performing the correction as described above, the photothermal displacement standardized by the absorption amount s, that is, the photothermal displacement when the absorption amount s is constant without changing is obtained. As a result, it is possible to obtain a sample thermoelasticity evaluation apparatus capable of accurately evaluating the thermoelastic characteristics of the sample 4 without being affected by the change in the reflectance of the excitation laser in the sample 4.

【0008】[0008]

【発明の効果】本発明は,上記したように構成されてい
るため,試料における励起光の反射率の変化により影響
を受ける励起光吸収パワーを一定としたときの光熱変位
が測定できる。その結果,試料における励起光の反射率
の変化の影響を受けることなく該試料の熱弾性特性を正
確に評価しうる試料の熱弾性評価装置を得ることができ
る。
Since the present invention is configured as described above, it is possible to measure the photothermal displacement when the pumping light absorption power that is affected by the change in the reflectance of the pumping light in the sample is constant. As a result, it is possible to obtain a thermoelasticity evaluation apparatus for a sample that can accurately evaluate thermoelastic characteristics of the sample without being affected by a change in reflectance of excitation light in the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る試料の熱弾性評価装
置A1の概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of a sample thermoelasticity evaluation apparatus A1 according to an example of the present invention.

【図2】 従来の試料の熱弾性評価装置A0の一例にお
ける概略構成を示す構成図。
FIG. 2 is a configuration diagram showing a schematic configuration of an example of a conventional sample thermoelasticity evaluation apparatus A0.

【符号の説明】[Explanation of symbols]

A1…試料の熱弾性評価装置 P…励起光照射系(照射手段に相当) Q…光干渉系(測定手段に相当) 15…光検出器(第1の検出手段に相当) 14,16…光検出器(第2の検出手段に相当) 17…計算機(演算手段及び補正手段に相当) s…吸収量(励起光吸収パワーに相当) i…励起レーザの照射強度 r…反射光の強度 t…透過光の強度 A1 ... Thermoelasticity evaluation device for sample P ... Excitation light irradiation system (corresponding to irradiation means) Q ... Optical interference system (corresponding to measurement means) 15 ... Photodetector (corresponding to first detection means) 14, 16 ... Light Detector (corresponding to second detecting means) 17 ... Calculator (corresponding to computing means and correcting means) s ... Absorption amount (corresponding to excitation light absorption power) i ... Excitation intensity of excitation laser r ... Intensity of reflected light t ... Transmitted light intensity

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料に励起光を照射する照射手段と,上
記照射手段によって照射された励起光による上記試料の
光熱変位を光干渉法を用いて測定する測定手段とを備え
た試料の熱弾性評価装置において,上記励起光の照射強
度を検出する第1の検出手段と,上記励起光の上記試料
での反射光及び/又は透過光の強度を検出する第2の検
出手段と,上記第1の検出手段により検出された上記励
起光の強度と,上記第2の検出手段により検出された上
記反射光及び/又は透過光の強度とから上記試料の励起
光吸収パワーを演算する演算手段と,上記演算手段によ
り演算された上記試料の励起光吸収パワーにて上記測定
手段により測定された上記試料の光熱変位を補正する補
正手段とを設け,上記補正手段により補正された上記試
料の光熱変位に基づいて該試料の熱弾性評価を行うこと
を特徴とする試料の熱弾性評価装置。
1. Thermoelasticity of a sample, comprising: irradiation means for irradiating the sample with excitation light; and measurement means for measuring the photothermal displacement of the sample by the excitation light irradiated by the irradiation means using an optical interferometry method. In the evaluation device, first detecting means for detecting the irradiation intensity of the excitation light, second detecting means for detecting the intensity of reflected light and / or transmitted light of the excitation light on the sample, and the first detecting means. Calculation means for calculating the excitation light absorption power of the sample from the intensity of the excitation light detected by the detection means and the intensity of the reflected light and / or the transmitted light detected by the second detection means, A correction means for correcting the photothermal displacement of the sample measured by the measuring means with the excitation light absorption power of the sample calculated by the calculating means is provided, and the photothermal displacement of the sample corrected by the correcting means is provided. Based on A thermoelasticity evaluation apparatus for a sample, wherein the thermoelasticity evaluation of the sample is performed.
JP414693A 1993-01-13 1993-01-13 Sample thermoelasticity evaluation device Expired - Fee Related JP2672758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP414693A JP2672758B2 (en) 1993-01-13 1993-01-13 Sample thermoelasticity evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP414693A JP2672758B2 (en) 1993-01-13 1993-01-13 Sample thermoelasticity evaluation device

Publications (2)

Publication Number Publication Date
JPH06213840A JPH06213840A (en) 1994-08-05
JP2672758B2 true JP2672758B2 (en) 1997-11-05

Family

ID=11576644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP414693A Expired - Fee Related JP2672758B2 (en) 1993-01-13 1993-01-13 Sample thermoelasticity evaluation device

Country Status (1)

Country Link
JP (1) JP2672758B2 (en)

Also Published As

Publication number Publication date
JPH06213840A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
EP0124224A2 (en) Method and apparatus for thin film thickness measurement
US5298970A (en) Sample evaluating method by using thermal expansion displacement
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
JP2746446B2 (en) Optical measuring device
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
CN109084884B (en) Homodyne laser vibration measurement device and vibration detection method thereof
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
JP2672758B2 (en) Sample thermoelasticity evaluation device
US6295131B1 (en) Interference detecting system for use in interferometer
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP4119385B2 (en) Photothermal conversion measuring device
JP3130708B2 (en) Sample defect evaluation method
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
JP2006317325A (en) Apparatus for measuring photothermal conversion
JPS6371675A (en) Laser distance measuring instrument
JP2923779B1 (en) Optical interference device for ultrasonic detection
CN211576103U (en) Photo-thermal surface deformation detection calibration device based on wavelength phase-shift interference
JPH05288721A (en) Evaluating method of sample by photothermal displacement measurement
JPH06294777A (en) Measuring method for ultrasonic vibration
JP2735368B2 (en) Sample evaluation method using thermal expansion vibration
KR0168444B1 (en) Sample evaluating method by using thermal expansion displacement
JPH0921752A (en) Method for measuring photothermal displacement
JPH0536727B2 (en)
JPH0617864B2 (en) Sample evaluation method using thermal expansion vibration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees