JP2005257414A - Photothermal conversion measurement device, method and cell - Google Patents

Photothermal conversion measurement device, method and cell Download PDF

Info

Publication number
JP2005257414A
JP2005257414A JP2004068142A JP2004068142A JP2005257414A JP 2005257414 A JP2005257414 A JP 2005257414A JP 2004068142 A JP2004068142 A JP 2004068142A JP 2004068142 A JP2004068142 A JP 2004068142A JP 2005257414 A JP2005257414 A JP 2005257414A
Authority
JP
Japan
Prior art keywords
light
sample
measurement
cell
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004068142A
Other languages
Japanese (ja)
Other versions
JP4119385B2 (en
Inventor
Hiroyuki Takamatsu
弘行 高松
Masahito Amanaka
将人 甘中
Yasushi Goto
裕史 後藤
Toshihiro Kugimiya
敏洋 釘宮
Tsutomu Morimoto
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004068142A priority Critical patent/JP4119385B2/en
Publication of JP2005257414A publication Critical patent/JP2005257414A/en
Application granted granted Critical
Publication of JP4119385B2 publication Critical patent/JP4119385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Abstract

<P>PROBLEM TO BE SOLVED: To stably and precisely measure a characteristic change by photothermal effect of a sample with enhanced sensitivity while preventing increase in power consumption or cost, reduction in S/N ratio or extension of a measuring time; and to obtain a stable measurement result, even in the case that a cell causes a characteristic change by excitation light irradiation in measuring a sample stored in the cell, without being influenced by this. <P>SOLUTION: The refractive index change by photothermal effect of the sample 5 is measured by measuring a phase change by excitation light irradiation of a measuring light P1 passed through (transmitted by) the sample by use of a light interference method, or based on a phase difference between a reference light P2 and the measuring light P1. In this case, the measuring light P1 is passed through both the cell 6 and the sample 5, but the reference light P2 is passed through only the cell 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,試料の含有物質等を分析する際に用いられ,励起光を試料に照射したときの光熱効果により試料に生じる屈折率変化に基づく試料の特性変化を測定する光熱変換測定装置及びその方法,さらには前記試料を収容するセルに関するものである。   The present invention is a photothermal conversion measuring apparatus that is used when analyzing a substance contained in a sample, and that measures a change in the characteristics of a sample based on a change in refractive index that occurs in the sample due to a photothermal effect when the sample is irradiated with excitation light. The method further relates to a cell containing the sample.

各種試料の含有物質等の分析において,分析感度の向上は,試薬の量の低減や試料の濃縮処理の簡素化,分析の効率化及び低コスト化を図る上で重要である。
ところで,試料に励起光を照射すると,その照射部は励起光を吸収することにより発熱する。これを光熱効果といい,この発熱を測定することを光熱変換測定という。
従来,この光熱変換測定による試料の高感度分析法として,光熱効果により試料に形成される熱レンズ効果を用いた手法(以下,熱レンズ法という)があり,熱レンズ法による分析装置(光熱変換分光分析装置)が知られている(例えば,特許文献1参照)。
図3は,特許文献1に示される熱レンズ法による試料の分析装置の構成図である。(特許文献1の図1を引用)。図3に示されるように,励起光源10からの励起光Aは,チョッパ11で断続光に変換(即ち,周期的に強度変調)され,ビームエクスパンダ12,位置制御ミラー30,31,32,レンズ34及び顕微鏡35を介して試料40に照射される。これにより試料40は励起光Aを吸収して発熱し,その屈折率が変化する。
検出光源20からの検出光Bは,ビームエクスパンダ22を介して励起光Aと同軸経路となって位置制御ミラー31,32で反射し,更にレンズ34,顕微鏡35を介して試料40に照射される。そして,試料40を通過した検出光Cは,集光レンズ50により集光され,開口部51A(ピンホール)を通過して検出器53により受光され,その光強度が検出される。ここで,試料40の屈折率変化により検出光Bの試料40中の集光状態が変化するため,ピンホール51Aを通過して得られる検出光Cの強度は,試料40の屈折率の変化(即ち,試料の含有物質量等に応じた光吸収量)に応じて変化する。この検出光Cの強度変化を測定することにより,試料40の屈折率の変化を測定でき,その測定結果により試料40の含有物質の量等を評価することができる。
特開平10−232210号公報
In the analysis of substances contained in various samples, improvement of analysis sensitivity is important in order to reduce the amount of reagents, simplify the sample concentration process, increase the efficiency of analysis, and reduce costs.
By the way, when the sample is irradiated with excitation light, the irradiated portion generates heat by absorbing the excitation light. This is called the photothermal effect, and measuring this heat generation is called photothermal conversion measurement.
Conventionally, as a high-sensitivity analysis method of a sample by this photothermal conversion measurement, there is a method using a thermal lens effect formed on the sample by the photothermal effect (hereinafter referred to as a thermal lens method), and an analysis apparatus (photothermal conversion) using a thermal lens method. (A spectroscopic analyzer) is known (for example, refer to Patent Document 1).
FIG. 3 is a configuration diagram of a sample analyzer using the thermal lens method disclosed in Patent Document 1. In FIG. (See FIG. 1 of Patent Document 1). As shown in FIG. 3, the excitation light A from the excitation light source 10 is converted into intermittent light (that is, intensity modulated periodically) by the chopper 11, and the beam expander 12, position control mirrors 30, 31, 32, The sample 40 is irradiated through the lens 34 and the microscope 35. As a result, the sample 40 absorbs the excitation light A and generates heat, and its refractive index changes.
The detection light B from the detection light source 20 becomes a coaxial path with the excitation light A via the beam expander 22 and is reflected by the position control mirrors 31 and 32, and further irradiated to the sample 40 via the lens 34 and the microscope 35. The Then, the detection light C that has passed through the sample 40 is condensed by the condenser lens 50, passes through the opening 51A (pinhole), is received by the detector 53, and its light intensity is detected. Here, since the condensing state of the detection light B in the sample 40 changes due to the change in the refractive index of the sample 40, the intensity of the detection light C obtained through the pinhole 51A is a change in the refractive index of the sample 40 ( That is, it varies according to the amount of light absorption according to the amount of substance contained in the sample. By measuring the intensity change of the detection light C, the change in the refractive index of the sample 40 can be measured, and the amount of the substance contained in the sample 40 can be evaluated based on the measurement result.
Japanese Patent Laid-Open No. 10-232210

前記熱レンズ法による試料の分析は,試料の発熱による屈折率変化を,測定光(検出光)の集光状態変化による光強度(検出信号の強度)の変化によって検出するものであり,この光強度(検出信号強度)の変化は,試料の屈折率変化だけでなく,検出器53(光電変換手段)の受光位置や測定光の強度及びその強度分布等にも依存する。このため,再現性良く(安定的に)試料を分析(屈折率変化を測定)することが難しいという問題点があった。
また,測定感度を高めるためには,励起光の強度を増大させる,或いは試料通過後の測定光を通過させるピンホールの径を小さくする必要があるが,励起光強度の増大化は消費電力の増加,高コスト化を招き,ピンホールの小口径化は検出器での受光光量が減少することによるS/N比の低下や測定時間の長時間化を招くという問題点もあった。
本発明は上記事情に鑑みてなされたものであり,その目的とするところは,第一に,試料の光熱効果による特性変化を,安定的に高精度で測定でき,更に,消費電力の増加や高コスト化,S/N比の低下,測定時間の長時間化を防止しながら高感度かつ容易に測定できる光熱変換測定装置及びその方法を提供することにある。
さらに,一般に,試料はガラス等のセル(容器)に入れて測定されるが,このとき励起光は前記セルを通して試料に照射される。セルにおいて励起光が吸収された場合,励起光照射によってセル自体に温度変化が発生するため,セルの屈折率が変化する。このセルの屈折率の変化によっても,同セルを透過する測定光は偏向するため,分析結果に影響を及ぼす場合がある。特に,試料による前記励起光の吸収が微小である場合,前記セルの温度変化の影響を強く受け,試料の温度変化の測定精度が劣化するという問題点がある。
以上のような問題点を解決するための光熱変換測定装置,光熱変換測定方法及びこれらに使用するセルを提供することが,本発明の第二の目的である。
In the analysis of the sample by the thermal lens method, the refractive index change due to the heat generation of the sample is detected by the change in the light intensity (detection signal intensity) due to the change in the focusing state of the measurement light (detection light). The change in intensity (detection signal intensity) depends not only on the change in the refractive index of the sample, but also on the light receiving position of the detector 53 (photoelectric conversion means), the intensity of measurement light, its intensity distribution, and the like. For this reason, there is a problem that it is difficult to analyze the sample (measure the refractive index change) with good reproducibility (stable).
In order to increase the measurement sensitivity, it is necessary to increase the intensity of the excitation light or to reduce the diameter of the pinhole through which the measurement light after passing through the sample is passed. The increase in the cost and the increase in the cost of the pinhole have also caused problems such as a decrease in S / N ratio and a longer measurement time due to a decrease in the amount of light received by the detector.
The present invention has been made in view of the above circumstances. The purpose of the present invention is, firstly, the characteristic change due to the photothermal effect of the sample can be measured stably and with high accuracy, and further, the power consumption can be increased. An object of the present invention is to provide a photothermal conversion measuring apparatus and method capable of easily measuring with high sensitivity while preventing an increase in cost, a decrease in S / N ratio, and a long measurement time.
Furthermore, in general, the sample is measured in a cell (container) such as glass, and at this time, the excitation light is irradiated to the sample through the cell. When the excitation light is absorbed in the cell, a temperature change occurs in the cell itself due to irradiation of the excitation light, so that the refractive index of the cell changes. Even with this change in the refractive index of the cell, the measurement light passing through the cell is deflected, which may affect the analysis result. Particularly, when the absorption of the excitation light by the sample is very small, there is a problem that the measurement accuracy of the temperature change of the sample is deteriorated due to the strong influence of the temperature change of the cell.
It is a second object of the present invention to provide a photothermal conversion measuring device, a photothermal conversion measuring method, and a cell used for these in order to solve the above problems.

上記目的を達成するために本発明は,セル内に収容され励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料を通過する測定光と,前記試料を通過しない参照光とを干渉させることにより計測される前記試料を通過後の測定光と参照光との位相差を検出することにより測定する光熱変換測定装置において,前記測定光と参照光とを前記セル内における同一経路を通過させると共に,前記測定光を前記試料に照射した後さらにセルを通過させ,前記参照光を前記試料を迂回させた後さらに前記セルを通過させることを特徴とする光熱変換測定装置として構成されている。
前記測定光と前記参照光とが各々偏光の種類が異なるものであり,試料に対する前記測定光の入射側に設けられ,前記測定光を通過し前記参照光を反射する第一の手段と,試料に対する前記測定光の入射側と反対側に設けられ,試料を通過後の前記測定光を反射する第二の手段とをさらに具備していてもよい。
前記第一の手段が,前記セルの試料の測定光入射側表面に対向する又は接する内側面に形成されたフィルタ部からなることが望ましい。
また,前記第二の手段が,前記セルの試料の測定光入射側と反対側表面に対向するまたは接する内側面に形成された,試料を通過後の前記測定光を前記第一の手段によって反射された前記参照光と略同一方向に反射する測定光反射部からなることが望ましい。
さらに,前記測定光及び前記参照光は前記試料に対して斜方向から入射させることが望ましい。
In order to achieve the above object, the present invention relates to a characteristic change of the sample caused by the photothermal effect of a sample housed in a cell and irradiated with excitation light, a measurement light passing through the sample, and a reference not passing through the sample. In a photothermal conversion measuring device for measuring by detecting a phase difference between measurement light after passing through the sample measured by causing interference with light and reference light, the measurement light and reference light in the cell As a photothermal conversion measuring apparatus, the light is passed through the same path, and further passes through the cell after irradiating the sample with the measurement light, and further passes through the cell after bypassing the sample. It is configured.
The measurement light and the reference light have different types of polarization, and are provided on the incident side of the measurement light with respect to the sample, pass through the measurement light and reflect the reference light, and the sample And a second means for reflecting the measurement light after passing through the sample.
It is desirable that the first means comprises a filter portion formed on an inner surface facing or in contact with the measurement light incident side surface of the sample of the cell.
Further, the second means reflects the measurement light after passing through the sample formed on the inner surface facing or in contact with the surface opposite to the measurement light incident side of the sample of the cell by the first means. It is desirable that the measuring light reflecting portion reflects in substantially the same direction as the reference light.
Furthermore, it is desirable that the measurement light and the reference light are incident on the sample from an oblique direction.

前記励起光が周期的に強度変調された光であり,前記測定光の位相変化を前記励起光の強度変調周期と同周期成分について測定するものが考えられる。これによって,前記強度変調周期と同じ周期で試料の測定部の温度が変化するので,同じ周期成分を有しないノイズの影響を除去して前記測定光の強度変化に起因する試料の特性変化(温度変化による屈折率変化)のみを測定できる。よって,前記位相変化測定のS/N比が向上し,高精度で試料を分析することが可能となる。
前記励起光が波長ごとに異なる周期で強度変調された光の多重光であり,前記測定光の位相変化を前記励起光の各波長の強度変調周期と同周期成分それぞれについて測定するものも考えられる。これによって,1回の測定によって複数波長の測定光についての試料の発熱(吸収特性)を測定できるので,複数の異なる波長の励起光をそれぞれ照射して測定する場合に比べ,時間や手間の面で効率的な測定が可能となる。
また,前記測定光とこれと光周波数が異なる前記参照光との干渉光の強度を光電変換する光電変換手段と,前記光電変換手段により得られた前記干渉光の強度信号に基づいて前記測定光の位相変化を算出する位相変化算出手段とを具備してなるものも考えられる。これによって得られる電気信号(干渉光の強度信号)は,光周波数が電気信号に変換された信号となり,その位相成分をFM変調により抽出することができる。この抽出された位相成分には,試料の発熱による屈折率変化の信号が含まれるので,試料の温度変化を測定することができる。また,得られた干渉信号の位相を測定するので,光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等に依存することなく安定的に,しかも光学的に高精度で試料の特性変化を測定することが可能となる。
The excitation light is light whose intensity is periodically modulated, and the phase change of the measurement light can be measured for the same period component as the intensity modulation period of the excitation light. As a result, the temperature of the measurement part of the sample changes in the same cycle as the intensity modulation cycle, so that the influence of noise that does not have the same periodic component is removed, and the sample characteristic change (temperature Only the refractive index change due to the change) can be measured. Therefore, the S / N ratio of the phase change measurement is improved, and the sample can be analyzed with high accuracy.
It is also possible that the excitation light is multiplexed light of intensity-modulated light with different periods for each wavelength, and the phase change of the measurement light is measured for each of the same period components as the intensity modulation period of each wavelength of the excitation light. . As a result, it is possible to measure the heat generation (absorption characteristics) of the sample with respect to the measurement light of a plurality of wavelengths by a single measurement. This enables efficient measurement.
Further, photoelectric conversion means for photoelectrically converting the intensity of interference light between the measurement light and the reference light having a different optical frequency, and the measurement light based on the intensity signal of the interference light obtained by the photoelectric conversion means It is also conceivable to include a phase change calculating means for calculating the phase change. The electric signal (intensity signal of interference light) obtained thereby becomes a signal whose optical frequency is converted into an electric signal, and the phase component can be extracted by FM modulation. Since the extracted phase component includes a refractive index change signal due to heat generation of the sample, the temperature change of the sample can be measured. In addition, since the phase of the obtained interference signal is measured, it is stable and optically accurate without depending on the position of the photodetector (photoelectric conversion means), the intensity of the measurement light and its intensity distribution, etc. It becomes possible to measure the characteristic change of the sample.

また,本発明は,前記光熱変換測定装置により行われる光熱変換測定方法として捉えたものであってもよい。
即ち,セル内に収容され励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料を通過する測定光と,前記試料を通過しない参照光とを干渉させることにより計測される前記試料を通過後の測定光と参照光との位相差を検出することにより測定する光熱変換測定方法において,前記測定光と参照光とを前記セル内における同一経路を通過させると共に,前記測定光を前記試料に照射した後さらにセルを通過させ,前記参照光を前記試料を迂回させた後さらに前記セルを通過させることを特徴とする光熱変換測定方法である。
さらには,前記光熱変換測定装置及びその方法において用いられる試料収容用セルとして構成されたものであってもよい。即ち,励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料を通過する測定光と,前記試料を通過しない参照光とを干渉させることにより計測される前記試料を通過後の測定光と参照光との位相差を検出することにより測定する際に,前記試料を収容するセルであって,試料に対する前記測定光の入射側に設けられ,前記測定光を通過し前記参照光を反射する第一の手段と,試料に対する前記測定光の入射側と反対側に設けられ,試料を通過後の前記測定光を反射する第二の手段とを具備してなることを特徴とするセルである。
Further, the present invention may be understood as a photothermal conversion measurement method performed by the photothermal conversion measurement device.
That is, the characteristic change of the sample caused by the photothermal effect of the sample contained in the cell and irradiated with the excitation light is measured by causing the measurement light passing through the sample to interfere with the reference light not passing through the sample. In the photothermal conversion measurement method for measuring by detecting the phase difference between the measurement light after passing through the sample and the reference light, the measurement light and the reference light are passed through the same path in the cell and the measurement is performed. The photothermal conversion measurement method is characterized in that after the sample is irradiated with light, the cell is further passed through, and the reference light is further passed through the cell after bypassing the sample.
Furthermore, it may be configured as a sample storage cell used in the photothermal conversion measuring apparatus and method. That is, the change in the characteristics of the sample caused by the photothermal effect of the sample irradiated with the excitation light passes through the sample measured by causing the measurement light passing through the sample to interfere with the reference light not passing through the sample. When measuring by detecting the phase difference between the later measurement light and the reference light, the cell accommodates the sample, provided on the incident side of the measurement light with respect to the sample, passes through the measurement light and passes through the measurement light. A first means for reflecting the reference light; and a second means for reflecting the measurement light after passing through the sample, provided on the opposite side of the measurement light incident on the sample. Cell.

本発明は,励起光が照射された試料の光熱効果により前記試料に生じる温度変化を前記試料通過後の測定光の位相変化を,前記測定光と参照光とを干渉させる光干渉法により測定することを基本としている。したがって,光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等が異なっても,これらが測定中に変化さえしなければ,これらに依存することがなく安定的に,しかも光学的に高精度で試料の光偏向特性を測定することが可能となる。
また,測定光と参照光とを同軸状態で照射し,参照光はセルのみを透過させ試料を透過させない一方,測定光はセルおよび試料を透過させる構成であるため,前記測定光及び参照光はいずれも前記セル内の略同一経路を透過したものである。したがって,セルにおける励起光の吸収による温度変化および,それに伴う屈折率変化の影響は前記測定光および参照光共等しく受けることとなる。よって,これら測定光と参照光とにおける光路長差(即ち位相差)は,測定光が試料内を透過したことのみによるものであり,試料の特性変化を高精度で測定できる。
The present invention measures the temperature change that occurs in the sample due to the photothermal effect of the sample irradiated with the excitation light, and the phase change of the measurement light after passing through the sample by the optical interferometry that causes the measurement light and reference light to interfere with each other. It is based on that. Therefore, even if the position of the photodetector (photoelectric conversion means), the intensity of the measurement light, its intensity distribution, etc. are different, if they do not change during the measurement, they do not depend on them and are stable. It becomes possible to measure the optical deflection characteristic of the sample optically with high accuracy.
Further, the measurement light and the reference light are irradiated in a coaxial state, and the reference light is transmitted only through the cell and not through the sample, while the measurement light is transmitted through the cell and the sample. All are transmitted through substantially the same path in the cell. Therefore, the measurement light and the reference light are equally affected by the temperature change due to the absorption of the excitation light in the cell and the influence of the refractive index change. Therefore, the optical path length difference (that is, phase difference) between the measurement light and the reference light is only due to the measurement light passing through the sample, and the characteristic change of the sample can be measured with high accuracy.

以下,添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
図1は本発明の一実施の形態に係る光熱変換測定装置の概略構成図であり,その機能について説明する。
所定の励起光源1から出力された励起光(例えば,波長532nm,出力100mWのレーザ(YAG倍波))は,ミラー3により反射されて,レンズ4,試料セル6を通過して試料5に照射される。これにより,試料5が励起光を吸収して発熱し,その温度変化(上昇)によって試料5の屈折率が変化する(光熱効果)。
一方,測定光を出力するレーザ光源7(例えば出力1mWのHe−Neレーザ)から出力された測定光は,偏光の種類が調節され,さらに偏光ビームスプリッタ(PBS9)によって偏光の種類が異なるレーザ光(P1,P2)に分岐される。ここでは,1/2波長板8でレーザ光P1を垂直偏光とし,レーザ光P2を水平偏光とした。この偏光の種類が異なるレーザ光のうち,後に試料を通過する光が測定光であり,通過しない光が参照光である。この例では,レーザ光P1が測定光,P2が参照光としている。
前記測定光P1及び参照光P2は,ミラー12,13で反射された後,偏光ビームスプリッタPBS14によって合成される。
合成された測定光P1及び参照光P2は,同軸形態で測定試料を内在するセル6に照射される。ここで,例えば,セル6の上面(A面)は無反射コーティング処理が施されており,また,セル6と試料5の上面との界面(B面)においては,測定光P1の種類の偏光に対しては無反射,それと偏光の種類が異なる参照光P2の光に対しては,全反射となるコーティング処理(前記第一の手段の一例)が施されている。したがって,参照光P2は,セル6を一度通過した後,前記第一の手段(B面)で反射され,試料5を通過することなく(迂回して),さらにセル6を通過する。
また,試料5の下部におけるセル6との界面(C面)には全反射膜(前記第二の手段の一例)がコーティングされており,試料5を通過後の測定光P1を前記参照光P2が第一の手段(B面)によって反射された方向と略同一方向に反射する。したがって,測定光P1は,セル6内を前記参照光P2と同一経路で一度通過した後,試料5を通過し,さらにセル6内を前記参照光P2と略同一経路で通過する。
以上によって,セル6および試料5を透過し,C面で反射した測定光P1と,セル6と試料5との界面B面で反射した参照光P2とが得られる
この例のように,前記第一の手段がセル6の試料5の測定光P1入射側表面に接する(セル6と試料5の間に隙間がある場合には,対向する)内側面(B面)に形成されたフィルタ部からなっていれば,前記測定光P1を前記参照光P2と略同一経路でセル6内を通過させる構造とすることができ,好適である。
また,前記第二の手段が,セル6の試料5の測定光P1入射側と反対側の表面に接する(セル6と試料5の間に隙間がある場合には,対向する)内側面(C面)に形成された測定光反射部からなり,その反射方向が前記参照光P2のB面における反射方向と略同一方向であれば,測定光P1は参照光P2と略同一経路でセル6内を通過し,後述の偏光板16を通して参照光P2と干渉する。
尚,前記測定光P1及び参照光P2を試料5に対して斜方向から入射させることによって,前記第一の手段(B面)において好適なフィルタ特性(測定光P1を透過し,参照光P2を反射する特性)を得ることができることが確認されている。
これらの反射光は,ミラー19で反射し,偏光板16を通して干渉し,その干渉光の光強度が前記光検出器17(光電変換手段)によって電気信号に変換される。この電気信号(干渉光強度)S1は,次の(1)式で表される。
S1=C1+C2・cos(2π・fb・t+Φ) …(1)
ここで,C1,C2,は測定光レーザ強度,AOM,PBS,ミラー等の光学系や試料5,セル6の透過率,反射率により定まる定数,Φは前記測定光P1,参照光P2の光路長差による位相差,fbは測定光P1と参照光P2との光周波数差である。(1)式より,前記干渉光強度信号S1の変化から,前記位相差Φの変化が測定され,これにより試料の温度変化を検知,計測することができる。
ここで,測定された前記位相差Φは測定光P1と参照光P2の光路長差であり,これら測定光P1と参照光P2とはセル内の略同一経路を通過したものであることから,測定光P1が試料内を通過したことによって生じた光路長差であることが理解できる。従って,たとえセル6において,励起光の吸収による屈折率変化があっても,それらは測定光P1と参照光P2の双方にほぼ等しい位相変化をもたらすため,前記位相差Φは,励起光による容器(セル)の屈折率変化の影響を受けないことになる。
この電気信号(干渉光強度)S1は,信号処理装置18に入力され,(1)式に基づいて前記位相差Φの変化を算出することができる。
また,試料5の中の励起光を吸収する所定の含有物質の量に応じて吸熱量(発熱量)が変わり,該発熱量に応じて屈折率が変わり,該屈折率に応じて前記位相差Φが変わる。即ち,前記含有物質の量が多いほど,前記励起光の変化に対する前記位相差Φの変化が大きい。従って,前記位相差Φを測定すれば,試料5の屈折率が求まり,その結果,試料の含有物質の量(濃度)の分析が可能となる。
即ち,当該光電変換測定装置を用いて,予め所定の含有物質の量(濃度)が既知である複数種類のサンプル試料について前記位相差Φの変化を測定し,その結果とその含有物質の量との対応づけを前記記号処理装置18にデータテーブルとして記憶しておく。そして,測定対象とする試料についての前記位相差Φの測定結果を前記データテーブルに基づいて補間処理等を行う等によりその含有物質の量を特定できる。
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of a photothermal conversion measuring apparatus according to an embodiment of the present invention, and its function will be described.
Excitation light (for example, laser having a wavelength of 532 nm and an output of 100 mW (YAG harmonic)) output from a predetermined excitation light source 1 is reflected by the mirror 3 and passes through the lens 4 and the sample cell 6 to irradiate the sample 5. Is done. As a result, the sample 5 absorbs the excitation light and generates heat, and the refractive index of the sample 5 changes due to the temperature change (rise) (photothermal effect).
On the other hand, the measurement light output from the laser light source 7 that outputs the measurement light (for example, a He—Ne laser having an output of 1 mW) is adjusted in the type of polarization, and further, the laser beam having a different type of polarization by the polarization beam splitter (PBS9). Branches to (P1, P2). Here, in the half-wave plate 8, the laser beam P1 is vertically polarized and the laser beam P2 is horizontally polarized. Of the laser beams having different types of polarization, light that passes through the sample later is measurement light, and light that does not pass is reference light. In this example, laser light P1 is measurement light and P2 is reference light.
The measurement light P1 and the reference light P2 are reflected by the mirrors 12 and 13 and then combined by the polarization beam splitter PBS14.
The synthesized measurement light P1 and reference light P2 are irradiated on the cell 6 in which the measurement sample is contained in a coaxial form. Here, for example, the upper surface (A surface) of the cell 6 is subjected to a non-reflective coating process, and at the interface (B surface) between the cell 6 and the upper surface of the sample 5, the type of polarized light of the measurement light P1 is used. Is applied with a coating process (an example of the first means) for total reflection with respect to the light of the reference light P2 which is non-reflective and has a different polarization type. Therefore, the reference light P2 passes through the cell 6 once, then is reflected by the first means (B surface), and passes through the cell 6 without passing through the sample 5 (bypass).
The interface (C surface) with the cell 6 at the lower part of the sample 5 is coated with a total reflection film (an example of the second means), and the measurement light P1 after passing through the sample 5 is used as the reference light P2. Is reflected in substantially the same direction as the direction reflected by the first means (B surface). Therefore, the measurement light P1 once passes through the cell 6 along the same path as the reference light P2, then passes through the sample 5, and further passes through the cell 6 along the substantially same path as the reference light P2.
As described above, the measurement light P1 transmitted through the cell 6 and the sample 5 and reflected by the C surface and the reference light P2 reflected by the interface B surface between the cell 6 and the sample 5 are obtained. One means comes into contact with the measurement light P1 incident side surface of the sample 5 of the cell 6 (opposite when there is a gap between the cell 6 and the sample 5) from the filter portion formed on the inner side surface (B surface). If this is the case, the measurement light P1 can pass through the cell 6 along substantially the same path as the reference light P2, which is preferable.
In addition, the second means is in contact with the surface of the sample 6 of the cell 6 opposite to the measurement light P1 incident side (facing when there is a gap between the cell 6 and the sample 5). If the reflection direction is substantially the same as the reflection direction of the reference light P2 on the B surface, the measurement light P1 is in the cell 6 along the substantially same path as the reference light P2. , And interferes with the reference light P2 through the polarizing plate 16 described later.
The measurement light P1 and the reference light P2 are incident on the sample 5 from the oblique direction, whereby the first means (surface B) transmits a suitable filter characteristic (the measurement light P1 is transmitted and the reference light P2 is transmitted). It has been confirmed that reflective properties can be obtained.
These reflected lights are reflected by the mirror 19 and interfere through the polarizing plate 16, and the light intensity of the interference light is converted into an electric signal by the photodetector 17 (photoelectric conversion means). This electric signal (interference light intensity) S1 is expressed by the following equation (1).
S1 = C1 + C2 · cos (2π · f b · t + Φ) (1)
Here, C1, C2 are constants determined by the optical system such as the measurement light laser intensity, AOM, PBS, mirror, and the transmittance and reflectance of the sample 5 and the cell 6, and Φ is the optical path of the measurement light P1 and the reference light P2. phase difference due to the length difference, an optical frequency difference between f b is the measuring light P1 and the reference light P2. From the equation (1), the change in the phase difference Φ is measured from the change in the interference light intensity signal S1, and thereby the temperature change of the sample can be detected and measured.
Here, the measured phase difference Φ is an optical path length difference between the measurement light P1 and the reference light P2, and the measurement light P1 and the reference light P2 pass through substantially the same path in the cell. It can be understood that this is the optical path length difference caused by the measurement light P1 passing through the sample. Therefore, even if there is a refractive index change due to absorption of the excitation light in the cell 6, they cause almost the same phase change in both the measurement light P <b> 1 and the reference light P <b> 2. (Cell) is not affected by the refractive index change.
This electric signal (interference light intensity) S1 is input to the signal processing device 18, and the change of the phase difference Φ can be calculated based on the equation (1).
Further, the endothermic amount (heat generation amount) changes according to the amount of the predetermined contained substance that absorbs the excitation light in the sample 5, the refractive index changes according to the heat generation amount, and the phase difference according to the refractive index. Φ changes. That is, the greater the amount of the contained material, the greater the change in the phase difference Φ relative to the change in the excitation light. Therefore, if the phase difference Φ is measured, the refractive index of the sample 5 can be obtained, and as a result, the amount (concentration) of the substance contained in the sample can be analyzed.
That is, using the photoelectric conversion measuring device, the change in the phase difference Φ is measured for a plurality of types of sample samples whose amounts (concentrations) of the predetermined contained substances are known in advance, and the results and the amounts of the contained substances are determined. Is stored in the symbol processing device 18 as a data table. Then, the amount of the contained substance can be specified by performing an interpolation process or the like on the measurement result of the phase difference Φ for the sample to be measured based on the data table.

図1に示されるように,前記励起光源1から出力された励起光を,チョッパ2により所定周期の断続光(断続周波数:f)に変換(周期的に強度変調)することができる。この実施例の場合,前記励起光は周波数fで強度変調されているため,試料5の屈折率も周波数fで変化し,前記位相差Φも周波数fで変化する。従って,前記位相差Φの変化を,周波数fの成分(前記励起信号の強度変調周期と同周期成分)について測定(算出)すれば,周波数fの成分を有しないノイズの影響を除去しつつ試料5の温度変化による屈折率の変化のみを測定できる。これにより,前記位相差Φの測定のS/N比が向上する。   As shown in FIG. 1, the excitation light output from the excitation light source 1 can be converted (periodically intensity modulated) into intermittent light (intermittent frequency: f) with a predetermined period by a chopper 2. In this embodiment, since the excitation light is intensity-modulated at the frequency f, the refractive index of the sample 5 also changes at the frequency f, and the phase difference Φ also changes at the frequency f. Therefore, if the change of the phase difference Φ is measured (calculated) with respect to the component of the frequency f (the same period component as the intensity modulation period of the excitation signal), the influence of noise having no component of the frequency f is removed. Only a change in refractive index due to a temperature change of 5 can be measured. Thereby, the S / N ratio of the measurement of the phase difference Φ is improved.

光熱効果による試料5の特性変化(屈折率変化)は,励起光の波長によっても異なり,試料5の含有物質の種類によって各波長の励起光に対する光熱効果も異なる。
従って,複数の異なる波長の励起光を照射し,そのそれぞれについて前記位相差Φの変化を測定すれば,その分布から試料5の含有物質の種類及び量を特定(評価)できる。しかしながら,励起光を異なる波長ごとに照射して測定を行うことは時間や手間の面で測定効率が悪い。
そこで,前記励起光を,波長ごとに異なる周期で強度変調された光の多重光とし,前記信号処理装置18により,前記測定光の位相Φの変化を,前記励起光の各波長の強度変調周期と同周期成分それぞれについて測定すれば,1回の測定によって複数波長の測定光についての試料の光偏向特性を測定でき,効率的な測定が可能となる。
このような励起光の光源(照射手段)1としては,白色光源(例えば,タングステンランプ)の光を分光器で分光し,分光された光ごとに異なる周波数のチョッパ等を介して強度変調し,それらを集光(合流)した光を前記励起光とするものが考えられる。
具体的には図2に示すように,白色光源40の光をビームスプリッ41によって2方向に分岐させ,それらを固定ミラー42及び移動ミラー43それぞれに反射さて再び前記ビームスプリッタ41に戻して合流させ,これを励起光とする周知のフーリエ分光を用いた励起光出力部とすること等が考えられる。
The characteristic change (refractive index change) of the sample 5 due to the photothermal effect differs depending on the wavelength of the excitation light, and the photothermal effect on the excitation light of each wavelength also differs depending on the type of the substance contained in the sample 5.
Therefore, by irradiating a plurality of different wavelengths of excitation light and measuring the change in the phase difference Φ for each of them, the type and amount of the substance contained in the sample 5 can be specified (evaluated) from the distribution. However, measuring with irradiation of excitation light at different wavelengths is inefficient in terms of time and labor.
Therefore, the excitation light is a multiplexed light of intensity-modulated light with a different period for each wavelength, and the signal processor 18 changes the phase Φ of the measurement light to the intensity modulation period of each wavelength of the excitation light. If each of the same periodic components is measured, the light deflection characteristics of the sample with respect to the measurement light of a plurality of wavelengths can be measured by one measurement, and efficient measurement is possible.
As a light source (irradiation means) 1 for such excitation light, the light of a white light source (for example, a tungsten lamp) is dispersed with a spectroscope, and the intensity is modulated via a chopper having a different frequency for each of the dispersed light, It is conceivable that the light that has collected (merged) them is the excitation light.
Specifically, as shown in FIG. 2, the light from the white light source 40 is split in two directions by a beam split 41, reflected by the fixed mirror 42 and the moving mirror 43, and returned to the beam splitter 41 again to be merged. It is conceivable to use an excitation light output unit using well-known Fourier spectroscopy using this as excitation light.

図1に示されるように前記測定光P1及び/若しくは前記参照光P2を音響光学変調機(AOM10,11)によって光周波数シフト(周波数変換)する実施例も考えられる。この場合,前記測定光P1と参照光P2との間には光周波数差fbが生じる。例えば,この光周波数差fbを30MHz前後とする。
ここで,上記(1)式において光周波数差fbがない(即ちfb=0)場合,(1)式は次のように表される。
S1=C1+C2・cosΦ …(2)
この(2)式に基づき,光干渉法による測定によって得られた値S1から位相差Φを導き出すが,この位相差Φの値はS1以外にも定数C1,C2が変化するとこれに応じて変化する。したがって,測定に当たっては,これら定数C1,C2を常に同一にする必要があり,測定光レーザ強度,AOM,PBS,ミラー等の光学系や試料5,セル6の透過率,反射率等を測定の都度,所定の値に調整するという煩わしさがある。
一方,測定光P1と参照光P2との間に光周波数差fbが存在する(例えば,fb=30MHz)場合,上記(1)式から明らかなように電気信号S1は,時間(t)の変化に応じて変化する周期的な信号である。これをFM復調する等により,前記測定光レーザ強度等の調整状態の変動分を除去して位相差Φを導き出すことができる。
As shown in FIG. 1, an embodiment in which the measurement light P1 and / or the reference light P2 is optically shifted (frequency converted) by an acousto-optic modulator (AOM 10, 11) is also conceivable. In this case, an optical frequency difference f b is generated between the measurement light P1 and the reference light P2. For example, the optical frequency difference f b is about 30 MHz.
Here, when there is no optical frequency difference f b in the equation (1) (that is, f b = 0), the equation (1) is expressed as follows.
S1 = C1 + C2 · cosΦ (2)
Based on the equation (2), the phase difference Φ is derived from the value S1 obtained by the measurement by the optical interferometry. The value of the phase difference Φ changes according to changes in constants C1 and C2 other than S1. To do. Therefore, it is necessary to always make these constants C1 and C2 the same for measurement, and the optical system such as the measurement light laser intensity, AOM, PBS, mirror, and the transmittance and reflectance of the sample 5 and the cell 6 are measured. Each time, there is an annoyance of adjusting to a predetermined value.
On the other hand, when an optical frequency difference f b exists between the measurement light P1 and the reference light P2 (for example, f b = 30 MHz), the electric signal S1 is time (t) as is apparent from the above equation (1). It is a periodic signal that changes in accordance with the change in. The phase difference Φ can be derived by removing the fluctuation of the adjustment state such as the measurement light laser intensity by FM demodulation and the like.

本発明の実施の形態に係る光熱変換測定装置の概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus which concerns on embodiment of this invention. 本発明の実施例に係る光熱変換測定装置におけるフーリエ分光を用いた励起光の出力部の概略構成図。The schematic block diagram of the output part of the excitation light using the Fourier spectroscopy in the photothermal conversion measuring apparatus which concerns on the Example of this invention. 従来の光熱変換測定装置(光熱変換分光分析装置)の概略構成図。The schematic block diagram of the conventional photothermal conversion measuring apparatus (photothermal conversion spectroscopy analyzer).

符号の説明Explanation of symbols

1…励起光源
2…チョッパ
3,12,13,15,19…ミラー
4…レンズ
5…試料
6…セル
7…レーザ光源
8…1/2波長板
9,14…ビームスプリッタ
10,11…音響光学変調機
16…偏光板
17…光検出器(光電変換手段)
18…信号処理装置
DESCRIPTION OF SYMBOLS 1 ... Excitation light source 2 ... Chopper 3,12,13,15,19 ... Mirror 4 ... Lens 5 ... Sample 6 ... Cell 7 ... Laser light source 8 ... 1/2 wavelength plate 9,14 ... Beam splitter 10,11 ... Acoustic optics Modulator 16 ... Polarizing plate 17 ... Photodetector (photoelectric conversion means)
18 ... Signal processing device

Claims (10)

セル内に収容され励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料を通過する測定光と,前記試料を通過しない参照光とを干渉させることにより計測される前記試料を通過後の測定光と参照光との位相差を検出することにより測定する光熱変換測定装置において,
前記測定光と参照光とを前記セル内における同一経路を通過させると共に,前記測定光を前記試料に照射した後さらにセルを通過させ,前記参照光を前記試料を迂回させた後さらに前記セルを通過させる,
ことを特徴とする光熱変換測定装置。
The characteristic change of the sample caused by the photothermal effect of the sample housed in the cell and irradiated with excitation light is measured by causing the measurement light passing through the sample to interfere with the reference light not passing through the sample In a photothermal conversion measurement device that measures by detecting the phase difference between the measurement light after passing through the sample and the reference light,
The measurement light and the reference light are allowed to pass through the same path in the cell, and the measurement light is applied to the sample and then further passed through the cell. After the reference light is bypassed the sample, the cell is further passed through the cell. Let through,
A photothermal conversion measuring device.
前記測定光と前記参照光とが各々偏光の種類が異なるものであり,
試料に対する前記測定光の入射側に設けられ,前記測定光を通過し前記参照光を反射する第一の手段と,
試料に対する前記測定光の入射側と反対側に設けられ,試料を通過後の前記測定光を反射する第二の手段と,
をさらに具備してなる請求項1に記載の光熱変換測定装置。
The measurement light and the reference light are different from each other in the type of polarization,
A first means provided on an incident side of the measurement light with respect to a sample, passing through the measurement light and reflecting the reference light;
A second means for reflecting the measurement light after passing through the sample, provided on the opposite side to the measurement light incident side with respect to the sample;
The photothermal conversion measuring device according to claim 1, further comprising:
前記第一の手段が,前記セルの試料の測定光入射側表面に対向する又は接する内側面に形成されたフィルタ部からなる請求項2に記載の光熱変換測定装置。   3. The photothermal conversion measurement device according to claim 2, wherein the first means includes a filter unit formed on an inner surface facing or in contact with a measurement light incident side surface of the sample of the cell. 前記第二の手段が,前記セルの試料の測定光入射側と反対側の表面に対向するまたは接する内側面に形成された,試料を通過後の前記測定光を前記第一の手段によって反射された前記参照光と略同一方向に反射する測定光反射部からなる請求項2または3のいずれかに記載の光熱変換測定装置。   The second means is formed on the inner surface facing or in contact with the surface opposite to the measurement light incident side of the sample of the cell, and the measurement light after passing through the sample is reflected by the first means. 4. The photothermal conversion measuring device according to claim 2, further comprising a measuring light reflecting portion that reflects in substantially the same direction as the reference light. 前記測定光及び前記参照光を前記試料に対して斜方向から入射させる請求項1ないし4のいずれかに記載の光熱変換測定装置。   5. The photothermal conversion measurement device according to claim 1, wherein the measurement light and the reference light are incident on the sample from an oblique direction. 前記励起光が周期的に強度変調された光であり,前記測定光の位相変化を前記励起光の強度変調周期と同周期成分について測定してなる請求項1ないし5のいずれかに記載の光熱変換測定装置。   The photothermal energy according to any one of claims 1 to 5, wherein the excitation light is light whose intensity is periodically modulated, and the phase change of the measurement light is measured for the same period component as the intensity modulation period of the excitation light. Conversion measuring device. 前記励起光が波長ごとに異なる周期で強度変調された光の多重光であり,前記測定光の位相変化を前記励起光の各波長の強度変調周期と同周期成分それぞれについて測定してなる請求項1ないし6のいずれかに記載の光熱変換測定装置。   The excitation light is multiplexed light of intensity-modulated light with different periods for each wavelength, and the phase change of the measurement light is measured for each of the same period components as the intensity modulation period of each wavelength of the excitation light. The photothermal conversion measuring device according to any one of 1 to 6. 前記測定光とこれと光周波数が異なる前記参照光との干渉光の強度を光電変換する光電変換手段と,前記光電変換手段により得られた前記干渉光の強度信号に基づいて前記測定光の位相変化を算出する位相変化算出手段と,をさらに具備してなる請求項1ないし7のいずれかに記載の光熱変換測定装置。   Photoelectric conversion means for photoelectrically converting the intensity of interference light between the measurement light and the reference light having a different optical frequency; and a phase of the measurement light based on an intensity signal of the interference light obtained by the photoelectric conversion means The photothermal conversion measuring device according to any one of claims 1 to 7, further comprising a phase change calculating means for calculating a change. セル内に収容され励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料を通過する測定光と,前記試料を通過しない参照光とを干渉させることにより計測される前記試料を通過後の測定光と参照光との位相差を検出することにより測定する光熱変換測定方法において,
前記測定光と参照光とを前記セル内における同一経路を通過させると共に,前記測定光を前記試料に照射した後さらにセルを通過させ,前記参照光を前記試料を迂回させた後さらに前記セルを通過させること,
を特徴とする光熱変換測定方法。
The characteristic change of the sample caused by the photothermal effect of the sample housed in the cell and irradiated with excitation light is measured by causing the measurement light passing through the sample to interfere with the reference light not passing through the sample In the photothermal conversion measurement method for measuring by detecting the phase difference between the measurement light after passing through the sample and the reference light,
The measurement light and the reference light are allowed to pass through the same path in the cell, and the measurement light is applied to the sample and then further passed through the cell. After the reference light is bypassed the sample, the cell is further passed through the cell. Passing,
A photothermal conversion measurement method characterized by the above.
励起光が照射された試料の光熱効果により生じる前記試料の特性変化を,前記試料を通過する測定光と,前記試料を通過しない参照光とを干渉させることにより計測される前記試料を通過後の測定光と参照光との位相差を検出することにより測定する際に,前記試料を収容するセルであって,
試料に対する前記測定光の入射側に設けられ,前記測定光を通過し前記参照光を反射する第一の手段と,
試料に対する前記測定光の入射側と反対側に設けられ,試料を通過後の前記測定光を反射する第二の手段と,
を具備してなることを特徴とするセル。
Changes in the characteristics of the sample caused by the photothermal effect of the sample irradiated with the excitation light are measured by causing the measurement light passing through the sample and the reference light not passing through the sample to interfere with each other after passing through the sample. A cell that accommodates the sample when measuring by detecting the phase difference between the measurement light and the reference light,
A first means provided on an incident side of the measurement light with respect to a sample, passing through the measurement light and reflecting the reference light;
A second means for reflecting the measurement light after passing through the sample, provided on the opposite side to the measurement light incident side with respect to the sample;
A cell comprising:
JP2004068142A 2004-03-10 2004-03-10 Photothermal conversion measuring device Expired - Fee Related JP4119385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068142A JP4119385B2 (en) 2004-03-10 2004-03-10 Photothermal conversion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068142A JP4119385B2 (en) 2004-03-10 2004-03-10 Photothermal conversion measuring device

Publications (2)

Publication Number Publication Date
JP2005257414A true JP2005257414A (en) 2005-09-22
JP4119385B2 JP4119385B2 (en) 2008-07-16

Family

ID=35083283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068142A Expired - Fee Related JP4119385B2 (en) 2004-03-10 2004-03-10 Photothermal conversion measuring device

Country Status (1)

Country Link
JP (1) JP4119385B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255993A (en) * 2006-03-22 2007-10-04 Kobe Steel Ltd Separation refining analyzer
JP2007303912A (en) * 2006-05-10 2007-11-22 Kobe Steel Ltd Photothermal conversion measuring device, and sample storage vessel used for device
CN101441174B (en) * 2008-12-17 2010-08-25 宁波大学 Apparatus and method for measuring medium thermal light coefficient and thermal expansion coefficient
CN102175711A (en) * 2011-01-11 2011-09-07 华中科技大学 Measuring method and device for coefficients of thermal expansion
JP2013092691A (en) * 2011-10-26 2013-05-16 Ricoh Co Ltd Powder adhesion amount detection method, and image forming apparatus
JP2020518787A (en) * 2016-12-23 2020-06-25 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Infrared detector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257353A (en) * 1990-03-08 1991-11-15 Yokogawa Electric Corp Apparatus for measuring refractive index of air
JPH06265496A (en) * 1993-01-13 1994-09-22 Kobe Steel Ltd Defective evaluation method of sample
JPH06308095A (en) * 1993-04-21 1994-11-04 Hitachi Ltd Phtothermic displacement signal detection method and device
JPH0921752A (en) * 1995-07-07 1997-01-21 Kobe Steel Ltd Method for measuring photothermal displacement
JPH10232210A (en) * 1997-02-19 1998-09-02 Bunshi Bio Photonics Kenkyusho:Kk Light and heat conversion spectroscopic analyzer
JP2000356746A (en) * 1999-06-15 2000-12-26 Kanagawa Acad Of Sci & Technol Dark field thermal lens microscopic analysis method and device therefor
JP2000356611A (en) * 1999-06-15 2000-12-26 Kanagawa Acad Of Sci & Technol Method and system for analyzing micro amount with thermal lens microscope
JP2002165780A (en) * 2000-11-29 2002-06-11 Ge Medical Systems Global Technology Co Llc Distribution device for x-ray ct system and control method therefor, and x-ray ct system and storage medium
JP2002168780A (en) * 2000-12-04 2002-06-14 Olympus Optical Co Ltd Refractive index change measuring instrument
JP2003042713A (en) * 2001-07-26 2003-02-13 Asahi Kasei Corp Laser measuring method and instrument
JP2005077273A (en) * 2003-09-01 2005-03-24 Ohara Inc Linear expansion coefficient measuring apparatus and linear expansion coefficient measuring method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257353A (en) * 1990-03-08 1991-11-15 Yokogawa Electric Corp Apparatus for measuring refractive index of air
JPH06265496A (en) * 1993-01-13 1994-09-22 Kobe Steel Ltd Defective evaluation method of sample
JPH06308095A (en) * 1993-04-21 1994-11-04 Hitachi Ltd Phtothermic displacement signal detection method and device
JPH0921752A (en) * 1995-07-07 1997-01-21 Kobe Steel Ltd Method for measuring photothermal displacement
JPH10232210A (en) * 1997-02-19 1998-09-02 Bunshi Bio Photonics Kenkyusho:Kk Light and heat conversion spectroscopic analyzer
JP2000356746A (en) * 1999-06-15 2000-12-26 Kanagawa Acad Of Sci & Technol Dark field thermal lens microscopic analysis method and device therefor
JP2000356611A (en) * 1999-06-15 2000-12-26 Kanagawa Acad Of Sci & Technol Method and system for analyzing micro amount with thermal lens microscope
JP2002165780A (en) * 2000-11-29 2002-06-11 Ge Medical Systems Global Technology Co Llc Distribution device for x-ray ct system and control method therefor, and x-ray ct system and storage medium
JP2002168780A (en) * 2000-12-04 2002-06-14 Olympus Optical Co Ltd Refractive index change measuring instrument
JP2003042713A (en) * 2001-07-26 2003-02-13 Asahi Kasei Corp Laser measuring method and instrument
JP2005077273A (en) * 2003-09-01 2005-03-24 Ohara Inc Linear expansion coefficient measuring apparatus and linear expansion coefficient measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255993A (en) * 2006-03-22 2007-10-04 Kobe Steel Ltd Separation refining analyzer
JP2007303912A (en) * 2006-05-10 2007-11-22 Kobe Steel Ltd Photothermal conversion measuring device, and sample storage vessel used for device
CN101441174B (en) * 2008-12-17 2010-08-25 宁波大学 Apparatus and method for measuring medium thermal light coefficient and thermal expansion coefficient
CN102175711A (en) * 2011-01-11 2011-09-07 华中科技大学 Measuring method and device for coefficients of thermal expansion
JP2013092691A (en) * 2011-10-26 2013-05-16 Ricoh Co Ltd Powder adhesion amount detection method, and image forming apparatus
JP2020518787A (en) * 2016-12-23 2020-06-25 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Infrared detector
US11499929B2 (en) 2016-12-23 2022-11-15 Centre National De La Recherche Scientifique Infrared detection device
JP7248575B2 (en) 2016-12-23 2023-03-29 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィク Infrared detector

Also Published As

Publication number Publication date
JP4119385B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
CN110927121B (en) Phase type SPR detection device and method based on white light interference spectrum
US7684039B2 (en) Overlay metrology using the near infra-red spectral range
WO2000058712A1 (en) Isopotomer absorption spectral analyzer and its method
JP4119385B2 (en) Photothermal conversion measuring device
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
JP2008128942A (en) Device for measuring photothermal conversion
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
CN112798556B (en) Non-collinear time-resolved pumping-detecting device and method for infrared and frequency spectrum
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JP4116979B2 (en) Photothermal conversion measuring apparatus and method
JP2016114532A (en) Photothermal conversion spectroscopic analyzer
JP4290139B2 (en) Photothermal conversion measuring apparatus and method
JP4838012B2 (en) Photothermal conversion measuring device
JPS63308543A (en) Scattered light measuring apparatus
CN111693503A (en) Linearly polarized light beam excitation Raman scattering enhancement sensing device
JP4299797B2 (en) Photothermal conversion measuring device
WO2022185615A1 (en) Spectrometry device
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
JP2672758B2 (en) Sample thermoelasticity evaluation device
JP2006300664A (en) Fourier spectral device and measuring timing detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees