JPH03257353A - Apparatus for measuring refractive index of air - Google Patents

Apparatus for measuring refractive index of air

Info

Publication number
JPH03257353A
JPH03257353A JP5710090A JP5710090A JPH03257353A JP H03257353 A JPH03257353 A JP H03257353A JP 5710090 A JP5710090 A JP 5710090A JP 5710090 A JP5710090 A JP 5710090A JP H03257353 A JPH03257353 A JP H03257353A
Authority
JP
Japan
Prior art keywords
air
refractive index
vacuum
length
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5710090A
Other languages
Japanese (ja)
Inventor
Eiji Ogita
英治 荻田
Bunkan Kin
文煥 金
Katsumi Isozaki
克巳 磯崎
Hideo Hirukawa
英男 蛭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5710090A priority Critical patent/JPH03257353A/en
Publication of JPH03257353A publication Critical patent/JPH03257353A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the refractive index of air with high accuracy by correcting the fluctuation of a length standard by providing a vacuum part and an air part both of which respectively have a pair of reflecting surfaces arranged thereto to a spacer constituted of a material uniform in the change of length in an optical axis direction. CONSTITUTION:The spacer 61 of a reference interval part 6 is formed from a material, for example, glass or ceramic, uniform in the change of length in an optical axis direction based on expansion/contraction due to temp., pressure or the like and the change with time of the material. When the output beam of a laser beam source 1 is split by a half mirror 2 and the split beam are further respectively split by interferometers 4, 5 to be incident to the interval part 6, they are respectively reflected by a pair of the reflecting surfaces 64, 65 of an air part 6 and a part of the reflecting surfaces 66, 67 of a vacuum part 6b to again return to the interferometers 4, 5 and detected as interference signals by beam detectors 7, 8 and these signals are converted to electric signals to be sent to an operator 9. The operator 9 converts the electric signals to phase signals to operate the absolute value of the refractive index of air. In this case, since the ratio of the length of the air part 6a and that of the vacuum part 6b is always equal, the refractive index of air can be measured with high accuracy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は干渉を利用した空気の屈折率を測定する装置に
関し、特に測定精度の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a device for measuring the refractive index of air using interference, and particularly to improving measurement accuracy.

〈従来の技術〉 第2図(イ)は一般的な干渉を利用した空気の屈折率測
定装置の原理例を示す構成図である。
<Prior Art> FIG. 2(A) is a block diagram showing an example of the principle of an air refractive index measuring device using general interference.

第2図(イ)において、レーザ光源11の出力は干渉計
12で2つに分岐され、これら2つの光は基準間隔部1
3に入射され、基準間隔部13の反射面13a、13b
で反射されて再び干渉計12に戻り干渉信弓として光検
出器14に入射される。干渉信号は光検出器14で電気
信号に変換されて演算器15に入射される。演算器15
にて基準間隔部13から反射された光の光路長変化に伴
う干渉信号の変化から空気の屈折率を演算している。こ
の時、空気の屈折率(n)が変化し、光路長差が(Δn
L>変化したとすると、干渉信号の光路長変化出力(M
)とは次の関係か成り立つ。
In FIG. 2(A), the output of the laser light source 11 is split into two by the interferometer 12, and these two lights are transmitted to the reference interval 1.
3, and the reflective surfaces 13a and 13b of the reference interval part 13
The beam is reflected by the beam, returns to the interferometer 12, and enters the photodetector 14 as an interference beam. The interference signal is converted into an electrical signal by the photodetector 14 and input to the arithmetic unit 15 . Arithmetic unit 15
The refractive index of the air is calculated from the change in the interference signal due to the change in the optical path length of the light reflected from the reference interval section 13. At this time, the refractive index (n) of air changes, and the optical path length difference (Δn
If L>changes, the optical path length change output of the interference signal (M
) holds the following relationship.

Δ n L=M たたし、Lは基準間隔部13の反射面13aと13bと
の間隔(長さ基準)である。したがって、長さ基準(L
)を予め求めておくことにより、干渉信月の光路長変化
出力(M)から空気の屈折率変化(△n〉が求められる
Δ n L=M where L is the distance (length standard) between the reflective surfaces 13a and 13b of the standard spacing section 13. Therefore, the length criterion (L
) is obtained in advance, the refractive index change (Δn>) of the air can be obtained from the optical path length change output (M) of the interference Shingetsu.

しかし」二記の構成では、空気の屈折率変化は求められ
るが、絶対値は求められない。そのため、第2図(ロ)
に示すように、基準間隔部13を真空容器16内に保持
し、真空から大気に開放する操作を行い、反射面間の光
路長差を測定することにより、次式から空気の屈折率の
絶対値を求めることができる。
However, in the configuration described in item 2, although the change in the refractive index of air can be determined, the absolute value cannot be determined. Therefore, Figure 2 (b)
As shown in Figure 2, by holding the reference spacing part 13 in a vacuum container 16, opening it from the vacuum to the atmosphere, and measuring the optical path length difference between the reflecting surfaces, the absolute refractive index of air can be calculated from the following formula. You can find the value.

n=1+−(Δm/L)(λ/2) ただし、Δm=真空から大気に雰囲気を変化させた時の
干渉次数変化 λ:レーサ光源の真空中の波長 である。
n=1+-(Δm/L) (λ/2) where Δm=change in interference order when the atmosphere is changed from vacuum to atmosphere λ: wavelength of the laser light source in vacuum.

〈発明か解決しようとする課題〉 しかしながら上記従来技術に示ず空気の屈折率測定装置
ては、基準間隔部13の反射面13aと1、3 bの間
隔である長さ基準(L)は、雰囲気の温度や気圧や基準
間隔部の材料の経年変化等により変動するため、空気の
屈折率を求める場合には誤差となり、高精度に空気の屈
折率が測定できないという課題があった。
<Problem to be Solved by the Invention> However, in the air refractive index measuring apparatus which is not shown in the above-mentioned prior art, the length reference (L), which is the distance between the reflective surfaces 13a and 1 and 3b of the reference interval part 13, is Since the refractive index of the air fluctuates due to the temperature and pressure of the atmosphere, changes in the material of the reference interval over time, etc., there is an error when determining the refractive index of the air, which poses a problem in that the refractive index of the air cannot be measured with high accuracy.

本発明は上記従来技術の課題を踏まえて成されたもので
あり、基準間隔部の長さ基準の変動を補正でき、高精度
の空気の屈折率の絶対値を測定できる空気の屈折率測定
装置を提供することを目的としたものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and is an air refractive index measuring device capable of correcting variations in the length reference of the reference interval part and measuring the absolute value of the refractive index of air with high precision. The purpose is to provide the following.

〈課題を解決するための手段〉 上記課題を解決するための本発明の構成は、レザ光源と
、このレーザ光源の出力光が入力される干渉計と、光軸
と垂直な面内では光軸方向での長さの変化が均一である
材料で形成されたスペザを備え、このスペーサの光軸に
対して垂直な両端面に同一方向を向いた1対の反射面を
2組配置すると共に一方の組の反射面間は真空部に、他
方の組の反射面間は周囲の空気か流通できるような連通
孔を有する空気部にそれぞれ配置された構成の基準間隔
部と、この基準間隔部から反射された光の光路長変化に
伴って前記干渉計により得られる前記真空部と空気部と
におけるそれぞれの干渉の強度信号を測定し電気信号に
変換する2つの光検出器と、この光検出器から出力され
た電気信号を位相信号に変換し、位相信号の変化から前
記空気部内の空気の屈折率の絶対値を演算する演算器と
を設けた構成としたことを特徴とするものである。
<Means for Solving the Problems> The configuration of the present invention for solving the above problems includes a laser light source, an interferometer into which the output light of the laser light source is input, and an optical axis in a plane perpendicular to the optical axis. It is equipped with a spacer made of a material whose length changes uniformly in the direction, and two sets of reflective surfaces facing the same direction are arranged on both end faces perpendicular to the optical axis of this spacer, and one A reference spacing part is arranged between the reflecting surfaces of the set in a vacuum part, and a part between the reflecting surfaces of the other set is arranged in an air part having communication holes through which surrounding air can circulate, and from this reference spacing part. two photodetectors that measure respective interference intensity signals in the vacuum section and the air section obtained by the interferometer as the optical path length of the reflected light changes and convert them into electrical signals; and the photodetector The apparatus is characterized in that it is provided with an arithmetic unit that converts the electrical signal output from the air into a phase signal and calculates the absolute value of the refractive index of the air in the air portion from the change in the phase signal.

く作用〉 本発明によると、同一部材中に真空部と空気部を設け、
長さ変化の比が常に等しくなるような構成としており、
温度や圧力や材料の経年変化等による基準間隔部の長さ
基準の変動による影響を小さくできる。
Effect> According to the present invention, a vacuum part and an air part are provided in the same member,
The structure is such that the ratio of length changes is always equal,
It is possible to reduce the influence of fluctuations in the length standard of the standard interval portion due to temperature, pressure, aging of materials, etc.

〈実施例〉 以下、本発明を図面に基づいて説明する。<Example> Hereinafter, the present invention will be explained based on the drawings.

第1図〈イ〉は本発明に係わる空気の屈折率測定装置の
一実施例を示す構成図である。
FIG. 1A is a block diagram showing an embodiment of an air refractive index measuring device according to the present invention.

第1図(イ)において、1は安定した波長のレザ光を発
生するレーザ光源、2はレーザ光源1の出力光を2つに
分岐するハーフミラ−13はミラー、4.5は干渉計で
あり、測定精度を上げるために差動型の干渉計を使用す
る。6は空気部6aと真空部6bから成る基準間隔部で
あり、この基準間隔部6は光軸方向での長さの変化(即
ち温度による膨脂や圧力による収縮、及び材料の持つ経
年変化等)が光軸と垂直な面内では均一な材料で形成さ
れたスペーサ61とこのスペーサ61の両開に配置され
た透明なカラスで形成された窓62.63から構成され
ている。ここで第1図(ロ)に示すように、スペーサ6
1は光軸方向での長さの変化が光軸と垂直な面内では均
一な材料に光軸方向に沿って2つの孔61a、61bが
開けられ、一方の孔(例えば61a)には側面から開け
られた開孔6 ]、 cが合流している。又、両端面6
1d。
In FIG. 1(a), 1 is a laser light source that generates laser light with a stable wavelength, 2 is a half mirror 13 that splits the output light of the laser light source 1 into two, and 4.5 is an interferometer. , a differential interferometer is used to improve measurement accuracy. Reference numeral 6 denotes a standard interval section consisting of an air section 6a and a vacuum section 6b, and this standard interval section 6 is subject to changes in length in the optical axis direction (i.e., expansion due to temperature, contraction due to pressure, aging of materials, etc.). ) consists of a spacer 61 made of a uniform material in a plane perpendicular to the optical axis, and windows 62 and 63 made of transparent glasses placed on both sides of this spacer 61. Here, as shown in FIG. 1 (b), the spacer 6
1, two holes 61a and 61b are made along the optical axis direction in a material whose length in the optical axis direction is uniform in a plane perpendicular to the optical axis, and one hole (for example, 61a) has a side surface. The apertures 6] and c are joined together. Also, both end faces 6
1d.

61eは光軸に対して垂直とされている。第1図(イ)
に戻り、このスペーサの両端面61d、61eに窓62
.63が組み合わされて空気部6aと真空部6bが形成
される。又、空気部6a及び真空部6bにはスペーサ6
1の両端で光軸に対して垂直な面(窓12.13上)に
同一方向を向いた1対2組の反射面64と65.66と
67がそれぞれ同一長さ基準を有して平行に支持されて
いる。68はスペーサ61の開孔61c、即ち空気部6
aに設けた周囲の空気を流通させるための連通孔である
。7.8は基準間隔部6の空気部6a及び真空部6bか
らの干渉信号を電気信号に変換する光検出器、9は光検
出器7.8から得られる電気信号を位相信号に変換して
空気の屈折率の絶対値を演算する演算器である。
61e is perpendicular to the optical axis. Figure 1 (a)
Returning to , windows 62 are formed on both end surfaces 61d and 61e of this spacer.
.. 63 are combined to form an air section 6a and a vacuum section 6b. Also, spacers 6 are provided in the air section 6a and the vacuum section 6b.
1 and 2 pairs of reflective surfaces 64 and 65 facing in the same direction on the plane perpendicular to the optical axis (on the window 12.13) at both ends of 1. 66 and 67 have the same length reference and are parallel to each other. is supported by 68 is the opening 61c of the spacer 61, that is, the air portion 6
This is a communication hole provided in a for circulating the surrounding air. 7.8 is a photodetector that converts interference signals from the air section 6a and vacuum section 6b of the reference interval section 6 into electrical signals; 9 is a photodetector that converts the electrical signals obtained from the photodetector 7.8 into phase signals; This is a calculator that calculates the absolute value of the refractive index of air.

この様な構成において、レーザ光源1の出力光はハーフ
ミラ−2で2つに分岐され、一方の光はハーフミラ−2
を透過し干渉計4に入射される。
In such a configuration, the output light of the laser light source 1 is split into two by the half mirror 2, and one light is split into two by the half mirror 2.
It passes through and enters the interferometer 4.

入射光は干渉計4にて更に2つに分岐され基準間隔部6
の空気部6aの1対の反射面64.65でそれぞれ反射
され、再び干渉計4に戻り干渉信号として光検出器7に
入射される。他方の光はハフミラー2、ミラー3で反射
されて干渉計5に入射される。入射光は干渉計5にて更
に2つに分岐され、基準間隔部6の真空部6bの1対の
反射面66.67でそれぞれ反射され、再び干渉計5に
戻り干渉信号として光検出器8に入射される。干渉信号
は光検出器7.8でそれぞれ電気信号に変換されて演算
器9に送られる。演算器9では電気信号を位相信号に変
換後、空気の屈折率の絶対値が演算される6 以下に演算器9での演算動作について説明する。
The incident light is further split into two by the interferometer 4 and then sent to the reference interval part 6.
The signals are reflected by a pair of reflecting surfaces 64 and 65 of the air portion 6a, return to the interferometer 4, and enter the photodetector 7 as an interference signal. The other light is reflected by the Hough mirror 2 and mirror 3 and enters the interferometer 5. The incident light is further split into two by the interferometer 5, reflected by a pair of reflecting surfaces 66 and 67 of the vacuum section 6b of the reference spacing section 6, and returned to the interferometer 5 again as an interference signal to the photodetector 8. is incident on the The interference signals are each converted into electrical signals by photodetectors 7 and 8 and sent to a calculator 9. After converting the electrical signal into a phase signal, the computing unit 9 calculates the absolute value of the refractive index of air.6 The computing operation of the computing unit 9 will be described below.

空気部6aの長さ基準Laと真空部6bの長さ基準LV
は同一比率で変化するので、その関係は次式で表される
Length reference La of air section 6a and length reference LV of vacuum section 6b
changes at the same rate, the relationship is expressed by the following equation.

Lv = k −La    −−−(1)ただし、k
:比例定数 である。ここで、光学系を真空中に保持したとすると、
空気部6aも真空となるので基準間隔部6の屈折率は1
となる。この時、光検出器7.8から得られる位相信号
をそれぞれθaO1θ■0とすると、 θao=(2π/λO) La0・1    ・(2)
θvo=(2π/λO) LVo・1   −(3)た
だし、λ:レーザ光源1の真空中の波長0:光学系が真
空中にある状態 である。したがって、位相信号の差分は、θaO−θv
o=(2yr/λO)  (LaO−LvO)=(2g
LaO/λO)(1−k) となり、比例定数には、次式で表される。
Lv = k −La ---(1) However, k
: It is a constant of proportionality. Now, if the optical system is kept in vacuum,
Since the air portion 6a also becomes a vacuum, the refractive index of the reference interval portion 6 is 1.
becomes. At this time, if the phase signals obtained from the photodetector 7.8 are respectively θaO1θ■0, then θao=(2π/λO) La0・1 ・(2)
θvo=(2π/λO) LVo·1 −(3) where λ: wavelength of the laser light source 1 in vacuum 0: the optical system is in a vacuum. Therefore, the difference in phase signals is θaO−θv
o=(2yr/λO) (LaO−LvO)=(2g
LaO/λO)(1-k), and the proportionality constant is expressed by the following formula.

k=1−[((θaO−θvO) / 2 yr L 
ao)λ0l−(4)一方、光学系が空気中にある待は
、光検出器7゜8から得られる位相信号をそれぞれθa
1.θ■1とすると、 θa1=(2π/λ1)La1−Na   −(5)θ
v1=(2g/λ1 ) LVl ・1   −(6)
ただし、Na:空気の屈折率 1 :光学系が空気中にある状態 である。したがって、位相信号の差分は、θa1−θ■
1 (2π/λ1  )  (La1− Na1−Lvl−
1)(2πLa1/λ1  )  (Na  −k)と
なり、空気の屈折率Naは、次式で表される。
k=1-[((θaO-θvO)/2 yr L
ao)λ0l-(4) On the other hand, when the optical system is in the air, the phase signal obtained from the photodetector 7°8 is
1. If θ■1, θa1=(2π/λ1)La1−Na−(5)θ
v1 = (2g/λ1) LVl ・1 - (6)
However, Na: the refractive index of air is 1: the optical system is in the air. Therefore, the difference in phase signals is θa1−θ■
1 (2π/λ1) (La1- Na1-Lvl-
1)(2πLa1/λ1) (Na −k), and the refractive index Na of air is expressed by the following equation.

Na=((θa1−θvl)/2  x )(λ1/L
a1)+に−(7)(4)式及び(7)式より、 Na −1 =((θa1−θv1) / 2 yr )(λ1/L
a1)((θaO−θvo) / 2 yr )(λ0
 / L ao) ・(8)ここで、λ0−λ1 (1
+α〉 La0= Lal (1+ε) とすると、(8)式は、 Na−1 (1/2g)(λ1 /La1)[((θa1−θV1
)(θaO−θvo)((1+α)/(1+ε))J・
・・(9)又、I、VO= Lvl (1+ε)であり
、前記(3) 、 (6)式%式%) [ 故に、(9)式及び00式より、 Na  −1 =(1/2π)(λ1/La1)((θa1−θv1)
(θaO−θvO)  θv1/θVO)  ・・・0
1)となる。したかって、空気部6aの長さ基準La1
、レーザ光源1の真空中での波長λ1、空気部6a及び
真空部6bでの位相信号測定値θal、θ■1、光学系
を真空にした状態での空気部6a及び真空部6bでの位
相信号測定値θaO1θ■0を求めることにより、空気
の屈折率Naを算出することができる。
Na=((θa1−θvl)/2 x )(λ1/L
a1) + - (7) From equations (4) and (7), Na -1 = ((θa1-θv1) / 2 yr ) (λ1/L
a1)((θaO−θvo)/2yr)(λ0
/ L ao) ・(8) Here, λ0−λ1 (1
+α〉 La0=Lal (1+ε), equation (8) becomes Na-1 (1/2g) (λ1 /La1) [((θa1-θV1
)(θaO−θvo)((1+α)/(1+ε))J・
... (9) Also, I, VO = Lvl (1 + ε), and the above (3), (6) formula % formula %) [Therefore, from formula (9) and formula 00, Na −1 = (1/ 2π)(λ1/La1)((θa1-θv1)
(θaO−θvO) θv1/θVO) ...0
1). Therefore, the length reference La1 of the air portion 6a
, the wavelength λ1 of the laser light source 1 in vacuum, the phase signal measurement values θal, θ■1 in the air part 6a and the vacuum part 6b, the phase in the air part 6a and the vacuum part 6b with the optical system in a vacuum state By determining the signal measurement value θaO1θ■0, the refractive index Na of air can be calculated.

又、空気部6a及び真空部6bの長さ基準LaLvを長
くして、その長さ基準の数分の−の短い長さ基準を有す
る空気部だけの基準間隔部を別に設け、その内挿を用い
て空気部6aでの位相信号測定値θaを推定することに
より、より精度良く空気の屈折率の絶対値を測定するこ
とができる。
In addition, the length reference LaLv of the air portion 6a and the vacuum portion 6b is lengthened, and a reference interval portion for only the air portion having a short length reference of a fraction of the length reference is provided separately, and the interpolation is performed. By using this to estimate the phase signal measurement value θa in the air portion 6a, it is possible to measure the absolute value of the refractive index of the air with higher accuracy.

更にスペーサ61の材料として膨II!係数の小さいガ
ラスセラミックを使用することにより、温度補正等をし
なくても干渉信号のみで空気の屈折率を求めることかで
きる。
Furthermore, as the material for the spacer 61, Illusion II! By using glass ceramic with a small coefficient, it is possible to determine the refractive index of air using only the interference signal without performing temperature correction or the like.

〈発明の効果〉 以上、実施例と共に具体的に説明したように、本発明に
よれば、真空部と空気部との長さの比が常に等しくなる
ような基準間隔部を用いて両者の位相の差をとっており
、温度や圧力や材料の経年変化等の基準間隔部の長さ基
準の変動による影響を補正できるため高精度な空気の屈
折率の絶対値を測定することかできる空気の屈折率測定
装置を実現することができる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, the phase of the vacuum part and the air part is adjusted using a reference interval part such that the length ratio of the vacuum part and the air part are always equal. It is possible to measure the absolute value of the refractive index of air with high accuracy because it can compensate for the influence of changes in the length standard of the standard interval, such as temperature, pressure, and aging of materials. A refractive index measuring device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる空気屈折率測定装置の一実施例
を示す構成図、第2図は従来例である。 J・・・レーザ光源、2・・・ハーフミラ−13・・・
ミラ、4,5・・・干渉計、7,8・・・光検出器、9
・・・演算器、6・・・基準間隔部、6a・・・空気部
、6b・・・真空部、61・・・スペーサ、62.63
・・・窓、64〜67・・・反射面、68・・・連通孔
FIG. 1 is a block diagram showing an embodiment of an air refractive index measuring device according to the present invention, and FIG. 2 is a conventional example. J...Laser light source, 2...Half mirror 13...
Mira, 4, 5... Interferometer, 7, 8... Photodetector, 9
...Arithmetic unit, 6...Reference interval part, 6a...Air part, 6b...Vacuum part, 61...Spacer, 62.63
...Window, 64-67...Reflection surface, 68...Communication hole.

Claims (1)

【特許請求の範囲】 レーザ光源と、 このレーザ光源の出力光が入力される干渉計と、光軸と
垂直な面内では光軸方向での長さの変化が均一である材
料で形成されたスペーサを備え、このスペーサの光軸に
対して垂直な両端面に同一方向を向いた1対の反射面を
2組配置すると共に一方の組の反射面間は真空部に、他
方の組の反射面間は周囲の空気が流通できるような連通
孔を有する空気部にそれぞれ配置された構成の基準間隔
部と、 この基準間隔部から反射された光の光路長変化に伴って
前記干渉計により得られる前記真空部と空気部とにおけ
るそれぞれの干渉の強度信号を測定し電気信号に変換す
る2つの光検出器と、この光検出器から出力された電気
信号を位相信号に変換し、位相信号の変化から前記空気
部内の空気の屈折率の絶対値を演算する演算器とを設け
た構成としたことを特徴とする空気の屈折率測定装置。
[Claims] A laser light source, an interferometer into which the output light of the laser light source is input, and an interferometer made of a material whose length in the optical axis direction is uniform in a plane perpendicular to the optical axis. A spacer is provided, and two sets of reflective surfaces facing the same direction are arranged on both end faces perpendicular to the optical axis of the spacer, and the space between the reflective surfaces of one set is a vacuum area, and the reflective surface of the other set is Between the surfaces, there is a reference interval section each arranged in an air section having a communication hole through which surrounding air can circulate, and the interferometer obtains the information obtained by the interferometer as the optical path length of the light reflected from this reference interval section changes. two photodetectors that measure the interference intensity signals in the vacuum section and the air section and convert them into electrical signals, and convert the electrical signals output from these photodetectors into phase signals, 1. A refractive index measuring device for air, comprising: a computing unit that computes the absolute value of the refractive index of the air in the air portion from the change.
JP5710090A 1990-03-08 1990-03-08 Apparatus for measuring refractive index of air Pending JPH03257353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5710090A JPH03257353A (en) 1990-03-08 1990-03-08 Apparatus for measuring refractive index of air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5710090A JPH03257353A (en) 1990-03-08 1990-03-08 Apparatus for measuring refractive index of air

Publications (1)

Publication Number Publication Date
JPH03257353A true JPH03257353A (en) 1991-11-15

Family

ID=13046085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5710090A Pending JPH03257353A (en) 1990-03-08 1990-03-08 Apparatus for measuring refractive index of air

Country Status (1)

Country Link
JP (1) JPH03257353A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519950U (en) * 1991-08-28 1993-03-12 横河電機株式会社 Air refractive index measuring device
JPH05240786A (en) * 1992-02-27 1993-09-17 Ohara Inc Temperature coefficient measuring device for refractive index
JP2005257414A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Photothermal conversion measurement device, method and cell
JP2011099756A (en) * 2009-11-05 2011-05-19 Canon Inc Measuring apparatus
CN110389112A (en) * 2019-07-22 2019-10-29 浙江理工大学 A kind of high-precision laser interferometric modulator air refraction absolute measurement device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195547A (en) * 1987-02-03 1988-08-12 シユピンドレル・ウント・ホイエル・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Laser interferometer and refractometer
JPH01210850A (en) * 1988-02-18 1989-08-24 Yokogawa Electric Corp Refractive index fluctuation measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195547A (en) * 1987-02-03 1988-08-12 シユピンドレル・ウント・ホイエル・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Laser interferometer and refractometer
JPH01210850A (en) * 1988-02-18 1989-08-24 Yokogawa Electric Corp Refractive index fluctuation measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519950U (en) * 1991-08-28 1993-03-12 横河電機株式会社 Air refractive index measuring device
JPH05240786A (en) * 1992-02-27 1993-09-17 Ohara Inc Temperature coefficient measuring device for refractive index
JP2005257414A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Photothermal conversion measurement device, method and cell
JP2011099756A (en) * 2009-11-05 2011-05-19 Canon Inc Measuring apparatus
CN110389112A (en) * 2019-07-22 2019-10-29 浙江理工大学 A kind of high-precision laser interferometric modulator air refraction absolute measurement device and method

Similar Documents

Publication Publication Date Title
US4685803A (en) Method and apparatus for the measurement of the refractive index of a gas
US4733967A (en) Apparatus for the measurement of the refractive index of a gas
EP0646767B1 (en) Interferometric distance measuring apparatus
Downs et al. Bi-directional fringe counting interference refractometer
US4847512A (en) Method of measuring humidity by determining refractive index using dual optical paths
JPH03257353A (en) Apparatus for measuring refractive index of air
JPH0829128A (en) Physical-quantity measuring apparatus, and measuring instrument thereof
WO2009135447A2 (en) The interferometric system with compensation of the refractive index fluctuation of the ambiance
JPS58169004A (en) Highly accurate interference length measuring method in atmosphere
RU2113697C1 (en) Optical pressure gauge
JPH0331090Y2 (en)
JPH0480643A (en) Refractive index measuring apparatus
JPH0456250B2 (en)
JP3374505B2 (en) Laser interferometer and method for correcting length error
JPS6338091B2 (en)
JPH0543058U (en) Air refractive index measuring device
JP2990309B2 (en) Optical member for measuring correction coefficient of differential interferometer
JPS60104236A (en) Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber
JP3944583B2 (en) Block gauge calibration method and apparatus that do not require optical contact
JPH0319937B2 (en)
Schultheis A simple fiber-optic Fabry-Perot temperature sensor
JPH01210850A (en) Refractive index fluctuation measuring instrument
JPH0373825A (en) Instrument for measuring refractive index of fluid
JP2712509B2 (en) Reflection film characteristic measuring device
JPH01313703A (en) Disturbance elimination type heterodyne interference method optical fiber sensor