JP2007303912A - Photothermal conversion measuring device, and sample storage vessel used for device - Google Patents

Photothermal conversion measuring device, and sample storage vessel used for device Download PDF

Info

Publication number
JP2007303912A
JP2007303912A JP2006131315A JP2006131315A JP2007303912A JP 2007303912 A JP2007303912 A JP 2007303912A JP 2006131315 A JP2006131315 A JP 2006131315A JP 2006131315 A JP2006131315 A JP 2006131315A JP 2007303912 A JP2007303912 A JP 2007303912A
Authority
JP
Japan
Prior art keywords
sample
excitation light
container
storage space
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006131315A
Other languages
Japanese (ja)
Other versions
JP4740792B2 (en
Inventor
Akira Motai
亮 馬渡
Hiroyuki Takamatsu
弘行 高松
Eiji Takahashi
英二 高橋
Masahito Amanaka
将人 甘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006131315A priority Critical patent/JP4740792B2/en
Publication of JP2007303912A publication Critical patent/JP2007303912A/en
Application granted granted Critical
Publication of JP4740792B2 publication Critical patent/JP4740792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy of photothermal conversion measurement by heightening irradiation efficiency of excitation light to a sample with a simple and inexpensive constitution. <P>SOLUTION: When generating a photothermal effect by allowing the excitation light to enter the sample S, an excitation light reflector 56 is provided in a sample storage vessel 50 for storing the sample S. The excitation light reflector 56 encloses a sample storing space from the outside, reflects the excitation light to be scattered from the sample storing space, and allows the excitation light to re-enter the space. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種試料の含有物質の分析等に用いられる光熱変換測定技術に関するものである。   The present invention relates to a photothermal conversion measurement technique used for analysis of substances contained in various samples.

従来、各種試料の含有物質の分析等を行う手段として、光熱効果、すなわち、試料に励起光を照射したときにその照射部位が前記励起光を吸収して発熱する効果を利用した光熱変換測定が知られている。   Conventionally, as a means for performing analysis of substances contained in various samples, photothermal conversion measurement using a photothermal effect, that is, an effect that an irradiation site absorbs the excitation light and generates heat when the sample is irradiated with excitation light. Are known.

例えば、下記特許文献1には、液体の試料に励起光を照射して前記光熱効果を生じさせるとともに、その発熱量を光学的な測定装置により測定するものが開示されている。この測定装置は、前記の液体試料に前記励起光とは別の測定光を透過させ、この測定光の屈折率の変化から前記光熱効果による発熱量を測定するものである。ここで、前記屈折率は前記測定光の位相変化から求められ、その位相変化は光干渉法により測定される。
特開2004−301520号公報
For example, Patent Document 1 below discloses a liquid sample that is irradiated with excitation light to cause the photothermal effect, and the calorific value thereof is measured by an optical measuring device. This measuring apparatus transmits measurement light different from the excitation light to the liquid sample and measures the amount of heat generated by the photothermal effect from the change in the refractive index of the measurement light. Here, the refractive index is obtained from the phase change of the measurement light, and the phase change is measured by optical interferometry.
JP 2004-301520 A

前記の光熱変換測定装置において、その測定精度を高めるためには、前記励起光による光熱効果を向上させることが重要である。その手段として、前記励起光を増強することが考えられるが、その場合、励起光照射のための光学系が大掛かりで高価なものとなってしまう。   In the photothermal conversion measuring apparatus, in order to increase the measurement accuracy, it is important to improve the photothermal effect by the excitation light. As a means for this, it is conceivable to enhance the excitation light. In this case, the optical system for irradiating the excitation light is large and expensive.

本発明は、このような事情に鑑み、簡単かつ低コストの構成で、試料に対する励起光の照射効率を高めて測定精度の向上を測ることができる技術の提供を目的とする。   In view of such circumstances, an object of the present invention is to provide a technique capable of measuring the improvement in measurement accuracy by increasing the irradiation efficiency of excitation light on a sample with a simple and low-cost configuration.

前記課題を解決するための手段として、本発明は、試料に励起光を入射してその光熱効果による前記試料の発熱量を測定する光熱変換測定装置に用いられる試料収容器であって、前記試料を収容するための試料収容空間を囲み、かつ、この試料収容空間内に前記励起光を入射するための入射口を有する容器体と、前記試料収容空間をこの試料収容空間内での前記励起光の光軸方向と略直交する方向から囲み、当該試料収容空間から到来する励起光をこの試料収容空間側に反射させる励起光反射体とを備えるものである。   As a means for solving the above-mentioned problems, the present invention provides a sample container used in a photothermal conversion measuring apparatus that measures the amount of heat generated by the sample by the excitation light incident on the sample and the photothermal effect thereof. A container body that encloses a sample storage space for receiving the excitation light, and has an entrance for allowing the excitation light to enter the sample storage space, and the excitation light in the sample storage space. And an excitation light reflector that reflects excitation light arriving from the sample storage space toward the sample storage space.

また本発明は、試料に励起光を入射してその光熱効果による前記試料の発熱量を測定する光熱変換測定装置であって、前記試料収容器と、この試料収容器の試料収容空間内に収容される試料に対して当該試料収容器の入射口から前記励起光を入射する励起光入射光学系と、前記試料に前記励起光とは別の測定光を透過させてこの透過した測定光の位相変化を測定する測定装置とを備えるものである。   The present invention also relates to a photothermal conversion measuring device for measuring the calorific value of the sample due to the photothermal effect of the excitation light incident on the sample, the sample container being accommodated in the sample accommodating space of the sample container. An excitation light incident optical system that makes the excitation light incident on the sample to be received from the entrance of the sample container, and the measurement light different from the excitation light is transmitted through the sample, and the phase of the transmitted measurement light And a measuring device for measuring the change.

以上の構成によれば、前記試料収容器の試料収容空間内に入射される励起光のうち、当該試料収容空間からその外に散乱しようとする光は当該試料収容空間を囲む励起光反射体で反射して前記試料収容空間内に再入射されるので、前記試料収容空間内に収容される試料に対する前記励起光の照射効率が高められる。従って、この励起光を特に増強させなくても当該励起光による試料の光熱効果を高めることができる。   According to the above configuration, of the excitation light that enters the sample storage space of the sample container, the light that is to be scattered outside the sample storage space is the excitation light reflector that surrounds the sample storage space. Since the light is reflected and re-entered in the sample storage space, the irradiation efficiency of the excitation light on the sample stored in the sample storage space is increased. Therefore, the photothermal effect of the sample by the excitation light can be enhanced without particularly increasing the excitation light.

ここで、前記励起光反射体は、前記試料収容空間内での前記励起光の光軸方向について前記試料収容空間の一部のみを覆うものでもよいが、同空間の全域を覆うものであれば、前記励起光の照射効率がより高められる。   Here, the excitation light reflector may cover only a part of the sample storage space in the optical axis direction of the excitation light in the sample storage space. The irradiation efficiency of the excitation light is further increased.

前記励起光反射体は前記試料収容空間を囲む前記容器体の内側面上にあることが、好ましい。あるいは、前記容器体のうち前記試料収容空間に面する部分の少なくとも一部が前記励起光を透過させる透光体であり、この透光体を挟んで前記試料収容空間と反対の側に前記励起光反射体が位置する試料収容器でもよい。後者のものでは、前記励起光反射体と前記試料収容空間内の試料とが直接接触することが阻止される。従って、当該接触による不都合、例えば励起光反射体の劣化や試料の特性に対する影響等を回避することができる。また、前記試料収容空間を囲む容器体の内径が非常に小さくてその容器体の内側面上に励起光反射体を配することが困難な場合でも、当該励起光反射体による励起光の反射が可能になる。   It is preferable that the excitation light reflector is on an inner surface of the container body surrounding the sample accommodation space. Alternatively, at least a part of the container body that faces the sample storage space is a transparent body that transmits the excitation light, and the excitation is provided on the opposite side of the sample storage space with the transparent body interposed therebetween. It may be a sample container in which the light reflector is located. In the latter, direct contact between the excitation light reflector and the sample in the sample storage space is prevented. Therefore, inconvenience due to the contact, for example, deterioration of the excitation light reflector and influence on the characteristics of the sample can be avoided. Further, even when the inner diameter of the container body surrounding the sample storage space is very small and it is difficult to arrange the excitation light reflector on the inner surface of the container body, the excitation light reflection by the excitation light reflector is not possible. It becomes possible.

さらに、前記容器体が、前記透光体を含みかつ前記試料収容空間を囲む内側容器と、この内側容器の外側に位置する外側容器とを備え、この外側容器の内側に前記内側容器が着脱可能に挿入されるとともに、当該外側容器の内側面のうち前記内側容器の前記透光体に対向する面に前記励起光反射体が設けられているものであれば、外側容器は設置したまま当該外側容器に対して前記内側容器を挿脱するだけで、試料の交換ができる。従って、複数種の試料についての測定を効率よく行うことができる。   Furthermore, the container body includes an inner container that includes the translucent body and surrounds the sample storage space, and an outer container that is positioned outside the inner container, and the inner container is detachable inside the outer container. If the excitation light reflector is provided on the surface of the inner container facing the translucent body among the inner surfaces of the outer container, the outer container remains installed and the outer container is installed. The sample can be exchanged simply by inserting and removing the inner container with respect to the container. Therefore, it is possible to efficiently perform measurement on a plurality of types of samples.

本発明において、前記試料収容空間の形状は適宜設定可能である。そのうち、特に、前記試料収容空間が同空間内に入射される励起光の光軸方向と平行な方向に延びる形状が好ましい。この試料収容器を用い、前記励起光及び前記測定光を前記試料収容空間内の試料に対してその試料収容空間の長手方向に沿う方向に同軸で入射すれば、前記容器体の容積を特に大きくすることなく、前記試料内での前記励起光及び前記測定光の光路長を伸ばすことができ、これによって測定精度のさらなる向上を図ることができる。   In the present invention, the shape of the sample storage space can be set as appropriate. Of these, the shape in which the sample storage space extends in a direction parallel to the optical axis direction of the excitation light incident on the space is particularly preferable. If the excitation light and the measurement light are incident on the sample in the sample storage space coaxially in the direction along the longitudinal direction of the sample storage space using this sample storage device, the volume of the container body is particularly increased. Without this, the optical path lengths of the excitation light and the measurement light in the sample can be extended, thereby further improving the measurement accuracy.

以上のように、本発明によれば、試料収容空間から外向きに散乱しようとする励起光を励起光反射体で反射させて前記試料収容空間内に再入射することにより、簡単かつ低コストの構成で、試料に対する励起光の照射効率を高めて光熱効果の向上ひいては測定精度の向上を測ることができる効果がある。   As described above, according to the present invention, the excitation light to be scattered outward from the sample storage space is reflected by the excitation light reflector and re-entered into the sample storage space. With the configuration, there is an effect that it is possible to measure the improvement of the photothermal effect and hence the measurement accuracy by increasing the irradiation efficiency of the excitation light to the sample.

本発明の好ましい実施の形態を図面を参照しながら説明する。   A preferred embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施の形態に係る光熱変換測定装置の例を示す。この装置は、励起光入射光学系(以下、単に「励起系」と称する。)10と、測定系(測定装置)20と、試料収容部40とを備える。そして、この試料収容部40に図2等に示される試料収容器50がセットされ、その収容器50内に色素水溶液やエタノール等の対象試料Sがセットされる。   FIG. 1 shows an example of a photothermal conversion measuring apparatus according to the first embodiment of the present invention. This apparatus includes an excitation light incident optical system (hereinafter simply referred to as “excitation system”) 10, a measurement system (measurement apparatus) 20, and a sample container 40. A sample container 50 shown in FIG. 2 or the like is set in the sample container 40, and a target sample S such as an aqueous dye solution or ethanol is set in the container 50.

前記励起系10は、前記試料収容部40に励起光を入射するためのものであり、励起光源12と、分光機構14と、変調機構16と、光案内部18とを備える。前記励起光源12としては、例えば白色光を出力するキセノンランプが好適である。この励起光源12から発せられる光は前記分光機構14で分光され、前記変調機構16で周期的に変調されて測定に好適な励起光となる。この励起光が前記光案内部(例えばコリメート機構やライトガイド)18を通じて前記試料収容部40内の試料に照射されることにより、当該試料が当該励起光を吸収して発熱し、その温度変化によって当該試料の屈折率が変化する。   The excitation system 10 is for entering excitation light into the sample storage unit 40, and includes an excitation light source 12, a spectroscopic mechanism 14, a modulation mechanism 16, and a light guide unit 18. As the excitation light source 12, for example, a xenon lamp that outputs white light is suitable. The light emitted from the excitation light source 12 is dispersed by the spectroscopic mechanism 14 and periodically modulated by the modulation mechanism 16 to become excitation light suitable for measurement. When the excitation light is irradiated onto the sample in the sample storage unit 40 through the light guide unit (for example, a collimating mechanism or a light guide) 18, the sample absorbs the excitation light and generates heat. The refractive index of the sample changes.

前記測定系20は、前記試料の屈折率を測定するための測定光を前記試料Sに照射し、かつ、その測定光から前記屈折率を測定するものである。この実施の形態では、前記測定系20は、測定光源22と必要な光学系、さらには光検出器36、信号処理装置38を備えている。   The measurement system 20 irradiates the sample S with measurement light for measuring the refractive index of the sample, and measures the refractive index from the measurement light. In this embodiment, the measurement system 20 includes a measurement light source 22 and necessary optical systems, a photodetector 36, and a signal processing device 38.

前記測定光源22は、例えば出力1mWのHe−Neレーザ発生器からなり、この測定光源22から照射される光は、図1に示されるように、λ/2波長板23で偏光面の調節を受けた後、偏光ビームスプリッタ24によって互いに直交する偏光L1,L2に2分される。   The measurement light source 22 is composed of a He—Ne laser generator with an output of 1 mW, for example, and the light irradiated from the measurement light source 22 is adjusted in polarization plane by a λ / 2 wavelength plate 23 as shown in FIG. After being received, the light is divided into two by the polarization beam splitter 24, which are polarized light L1 and L2 orthogonal to each other.

前記偏光L1は、参照光として用いられるもので、音響光学変調機25Aによって光周波数のシフト(周波数変換)を受けた後、ミラー26Aで反射して偏光ビームスプリッタ28に入力される。また、前記偏光L2は、測定光として用いられるもので、音響光学変調機25Bによって光周波数のシフト(周波数変換)を受けた後、ミラー26Bで反射して前記偏光ビームスプリッタ28に入力され、このスプリッタ28で前記偏光L1と合成される。   The polarized light L1 is used as reference light. After being subjected to optical frequency shift (frequency conversion) by the acousto-optic modulator 25A, the polarized light L1 is reflected by the mirror 26A and input to the polarization beam splitter 28. The polarized light L2 is used as measurement light. After being subjected to optical frequency shift (frequency conversion) by the acousto-optic modulator 25B, the polarized light L2 is reflected by the mirror 26B and input to the polarizing beam splitter 28. The light is combined with the polarized light L 1 by the splitter 28.

なお、前記の互いに直交する2偏光L1、L2の周波数差fbは、例えば、30MHz程度が好適である。   The frequency difference fb between the two polarized lights L1 and L2 orthogonal to each other is preferably about 30 MHz, for example.

前記偏光L1は、前記偏向ビームスプリッタ30をそのまま透過してミラー34で180°反射することにより前記偏光ビームスプリッタ30に戻る。このとき、前記偏光ビームスプリッタ30と前記ミラー34との間には1/4波長板33が介在していてこの1/4波長板33を前記偏光L1が往復で通過するため、この偏光L1の偏光面は90°回転する。従って、前記偏光ビームスプリッタ30に戻った偏光L1は前記試料収容部40と反対の側に90°反射する。この偏光L1は、偏光板35を通じて光検出器36に入力される。   The polarized light L1 passes through the deflecting beam splitter 30 as it is and is reflected by the mirror 34 by 180 °, thereby returning to the polarizing beam splitter 30. At this time, a quarter wavelength plate 33 is interposed between the polarization beam splitter 30 and the mirror 34, and the polarized light L1 passes back and forth through the quarter wavelength plate 33. The polarization plane rotates 90 °. Accordingly, the polarized light L1 that has returned to the polarizing beam splitter 30 is reflected by 90 ° on the side opposite to the sample container 40. This polarized light L 1 is input to the photodetector 36 through the polarizing plate 35.

一方、前記偏光L2は、前記偏光ビームスプリッタ30で前記試料収容部40側に90°反射され、1/4波長板32を通じて試料収容部40へ導かれる。この偏光L2は後述のように試料に入射され、さらに180°反射して、前記1/4波長板32を通じて前記偏光ビームスプリッタ30に戻る。この偏光L2は、前記1/4波長板32の往復透過によってその偏光面が90°回転した状態にあるので、今度は当該偏光ビームスプリッタ30をそのまま透過して前記偏光L2と合流し、前記偏光板35および前記光検出器36へ向かう。   On the other hand, the polarized light L2 is reflected by 90 ° toward the sample container 40 by the polarization beam splitter 30 and guided to the sample container 40 through the quarter-wave plate 32. As will be described later, the polarized light L2 is incident on the sample, is further reflected by 180 °, and returns to the polarizing beam splitter 30 through the quarter-wave plate 32. Since the polarization plane of the polarized light L2 is rotated by 90 ° due to the reciprocal transmission of the quarter-wave plate 32, the polarized light splitter 30 is transmitted through the polarized beam splitter 30 as it is and merged with the polarized light L2. To the plate 35 and the photodetector 36.

前記偏光板35では、前記偏光L1,L2がそれぞれ参照光及び測定光として互いに干渉し、その干渉光の光強度が前記光検出器36によって電気信号(検出信号)に変換される。前記信号処理装置38は、前記検出信号に基づいて前記偏光L2(測定光)の位相変化を演算する。これにより、光干渉法による位相変化の測定が達成される。   In the polarizing plate 35, the polarizations L1 and L2 interfere with each other as reference light and measurement light, and the light intensity of the interference light is converted into an electric signal (detection signal) by the photodetector 36. The signal processing device 38 calculates a phase change of the polarized light L2 (measurement light) based on the detection signal. Thereby, the measurement of the phase change by the optical interferometry is achieved.

ここで、前記干渉光強度S1は、次の(1)式で表される。   Here, the interference light intensity S1 is expressed by the following equation (1).

S1=C1+C2・cos(2π・fb・t+φ) …(1)
同式において、C1、C2は前記偏光ビームスプリッタ等の光学系や試料Sの透過率により定まる定数、φは前記偏光L1,L2の光路長差による位相差、fbは2偏光L1,L2の周波数差である。この(1)式より、前記干渉光強度S1の変化(前記励起光を照射しない或いはその光強度が小さいときとその光強度が大きいときとの差)から、前記位相差φの変化が求まることがわかる。前記信号処理装置38は、(1)式に基づいて前記位相差φの変化を算出する。
S1 = C1 + C2 · cos (2π · fb · t + φ) (1)
In the equation, C1 and C2 are constants determined by the transmittance of the optical system such as the polarizing beam splitter and the sample S, φ is a phase difference due to the optical path length difference between the polarized lights L1 and L2, and fb is a frequency of the two polarized lights L1 and L2. It is a difference. From this equation (1), the change in the phase difference φ can be obtained from the change in the interference light intensity S1 (the difference between when the excitation light is not irradiated or when the light intensity is low and when the light intensity is high). I understand. The signal processing device 38 calculates the change in the phase difference φ based on the equation (1).

なお、前記励起光Leの強度が例えばチョッパの回転により周波数fで周期的に強度変調されていると、試料Sの屈折率も前記周波数fで変化し、測定光L2の光路長も前記周波数fで変化し(参照光L1の光路長は一定)、前記位相差φも周波数fで変化する。従って、前記位相差φの変化を前記周波数fの成分(前記励起信号の強度変調周期と同周期成分)について測定(算出)すれば、周波数fの成分を有しないノイズの影響を除去しつつ試料Sの屈折率変化のみを測定することが可能である。この測定は、前記位相差φの測定のS/N比を向上させる。   Note that when the intensity of the excitation light Le is periodically intensity-modulated at a frequency f by, for example, chopper rotation, the refractive index of the sample S also changes at the frequency f, and the optical path length of the measurement light L2 is also the frequency f. (The optical path length of the reference light L1 is constant), and the phase difference φ also changes with the frequency f. Therefore, if the change in the phase difference φ is measured (calculated) with respect to the component of the frequency f (the same period component as the intensity modulation period of the excitation signal), the influence of noise having no component of the frequency f is removed. Only the refractive index change of S can be measured. This measurement improves the S / N ratio of the measurement of the phase difference φ.

また、前記励起光源12にレーザダイオードやLEDなどが用いられる場合、その励起光源12の電源を電気回路でコントロールすることにより前記変調を行うことも可能である。   When a laser diode or LED is used for the excitation light source 12, the modulation can be performed by controlling the power source of the excitation light source 12 with an electric circuit.

次に、前記試料収容部40の構成を図2(a)を参照しながら説明する。この試料収容部40は、集光レンズ42及びダイクロイックミラー44と、本発明に係る試料収容器50とを備えている。   Next, the configuration of the sample container 40 will be described with reference to FIG. The sample container 40 includes a condenser lens 42, a dichroic mirror 44, and a sample container 50 according to the present invention.

前記集光レンズ42は、前記励起系10から導入される励起光Leを集光して前記試料収容器50に収容された試料Sに入射する。前記ダイクロイックミラー44は、前記集光レンズ42と前記試料収容器50との間に位置し、前記集光レンズ42により集光される励起光Leをそのまま透過させる。その一方で、このダイクロイックミラー44は、前記測定系20から前記励起光Leと直交する方向に導入される偏光L2(以下「測定光L2」と称する。)を90°反射させて前記励起光Leと同軸で前記試料Sに入射する。   The condensing lens 42 condenses the excitation light Le introduced from the excitation system 10 and enters the sample S accommodated in the sample container 50. The dichroic mirror 44 is located between the condenser lens 42 and the sample container 50 and transmits the excitation light Le collected by the condenser lens 42 as it is. On the other hand, the dichroic mirror 44 reflects the polarized light L2 (hereinafter referred to as “measurement light L2”) introduced from the measurement system 20 in a direction orthogonal to the excitation light Le by 90 °, thereby exciting the excitation light Le. And enters the sample S coaxially.

なお、前記励起系10から導入される励起光Leは図2(a)に示されるようにそのまま集光レンズ42に照射されてもよいし、同図(b)に示されるような反射体46での反射により前記集光レンズ42に導かれてもよい。後者の場合、前記反射体46に回折格子を用いると、前記励起光Leの分光を同時に行うことも可能になる。   The excitation light Le introduced from the excitation system 10 may be irradiated to the condenser lens 42 as it is as shown in FIG. 2A, or a reflector 46 as shown in FIG. The light may be guided to the condenser lens 42 by reflection. In the latter case, if a diffraction grating is used for the reflector 46, the excitation light Le can be split simultaneously.

次に、前記試料収容器50の具体的な構造を図3を参照しながら説明する。   Next, a specific structure of the sample container 50 will be described with reference to FIG.

この試料収容器50は、円筒状の周壁54と、この周壁54の一方の開口を塞ぐ底壁52とを有し、前記周壁54の内側に、試料Sを収容するための試料収容空間が形成されている。すなわち、前記周壁54及び底壁52は、前記試料収容空間を囲む容器体を構成する。前記試料収容空間は、前記底壁52と反対の側(図では右側)に開放され、その開口が前記励起光Le及び前記測定光L2の入射口55になっている。   The sample container 50 has a cylindrical peripheral wall 54 and a bottom wall 52 that closes one opening of the peripheral wall 54, and a sample storage space for storing the sample S is formed inside the peripheral wall 54. Has been. That is, the peripheral wall 54 and the bottom wall 52 constitute a container body surrounding the sample storage space. The sample storage space is opened to the side opposite to the bottom wall 52 (right side in the figure), and the opening serves as the entrance 55 for the excitation light Le and the measurement light L2.

この実施の形態では、前記試料収容空間が前記周壁54の中心軸と平行な方向に延びる円柱状をなしている。そして、この試料収容空間の長手方向が前記励起光Le及び前記測定光L2の光軸方向と合致する姿勢で試料収容器50が設置されている。   In this embodiment, the sample storage space has a cylindrical shape extending in a direction parallel to the central axis of the peripheral wall 54. And the sample container 50 is installed with the attitude | position in which the longitudinal direction of this sample accommodation space corresponds with the optical axis direction of the said excitation light Le and the said measurement light L2.

この試料収容器50の設置姿勢は特に限定されない。図示のように開口(入射口55)が側方や下方を向く姿勢では、前記試料収容空間から試料Sが流出しないように、前記入射口を透光材からなる蓋で塞ぐようにすればよい。これに対し、前記入射口が上を向く場合には前記蓋を省略してもよい。   The installation posture of the sample container 50 is not particularly limited. In the posture in which the opening (incident port 55) faces sideward or downward as shown in the figure, the incident port may be closed with a lid made of a translucent material so that the sample S does not flow out of the sample storage space. . On the other hand, the lid may be omitted when the incident port faces upward.

図に示される試料収容器50の特徴として、前記試料収容空間を囲む前記周壁54の内周面及び前記底壁54の内側面(底面)上に薄膜の励起光反射体56が形成されている。この励起光反射体56は、前記試料収容空間内から到来する励起光Leをこの試料収容空間側に(すなわち試料収容器内側に)反射させるものであればよく、その具体的な材質は限定されない。好適な例としては、アルミニウムや金などからなる薄膜、誘電多層膜、その他屈折率の低い材料からなる膜が挙げられる。   As a characteristic of the sample container 50 shown in the figure, a thin-film excitation light reflector 56 is formed on the inner peripheral surface of the peripheral wall 54 and the inner side surface (bottom surface) of the bottom wall 54 surrounding the sample storage space. . The excitation light reflector 56 only needs to reflect the excitation light Le coming from within the sample storage space toward the sample storage space (that is, inside the sample container), and the specific material is not limited. . Preferable examples include a thin film made of aluminum or gold, a dielectric multilayer film, and other films made of a material having a low refractive index.

この励起光反射体56は、少なくとも周壁54の内周面に形成されていればよい。しかし、この励起光反射体56が図示のように底壁54の内側面にも形成されていて前記測定光L2を反射するものであれば、この測定光L2が試料収容空間内を往復して試料Sを透過するため、その実光路長は前記周壁54の軸長の約2倍となる。従って、試料収容器50の容積を小さく抑えながら大きな光路長を稼ぐことが可能になる。   The excitation light reflector 56 only needs to be formed on at least the inner peripheral surface of the peripheral wall 54. However, if the excitation light reflector 56 is also formed on the inner surface of the bottom wall 54 as shown in the figure and reflects the measurement light L2, the measurement light L2 reciprocates in the sample storage space. Since it passes through the sample S, its actual optical path length is about twice the axial length of the peripheral wall 54. Therefore, it is possible to earn a large optical path length while keeping the volume of the sample container 50 small.

次に、この光熱変換測定装置の作用を説明する。   Next, the operation of this photothermal conversion measuring device will be described.

まず、前記励起系10から前記試料収容部40に照射される励起光Leは、集光レンズ42で集光されて試料収容器50の入射口55からその試料収容空間内に入射され、この試料収容空間内に収容されている試料Sを透過する。このとき、試料Sの所定の含有物質が前記励起光Leを吸収して発熱する(光熱効果)。従って、この発熱量は前記試料S中の前記含有物質の含有量に応じて変化する。   First, the excitation light Le emitted from the excitation system 10 to the sample container 40 is collected by the condenser lens 42 and is incident into the sample accommodation space from the entrance 55 of the sample container 50. The sample S accommodated in the accommodation space is transmitted. At this time, the predetermined contained material of the sample S absorbs the excitation light Le and generates heat (photothermal effect). Therefore, this calorific value changes according to the content of the contained substance in the sample S.

しかも、前記励起光Leのうち、前記試料収容空間からその外に散乱しようとする光は、当該試料収容空間を囲む励起光反射体56で内側に反射し、前記試料収容空間内に再入射される。従って、この試料収容空間内の試料Sに対する前記励起光Leの照射効率が高められる。つまり、この励起光を特に増強させなくても当該励起光による試料の光熱効果を高めることができる。   Moreover, of the excitation light Le, the light that is to be scattered out of the sample accommodation space is reflected inward by the excitation light reflector 56 surrounding the sample accommodation space, and reentered into the sample accommodation space. The Therefore, the irradiation efficiency of the excitation light Le with respect to the sample S in the sample accommodation space is increased. That is, the photothermal effect of the sample by the excitation light can be enhanced without particularly increasing the excitation light.

一方、前記測定光20から試料収容部40に導入される測定光L2は、ダイクロイックミラー44で90°反射することにより、前記励起光Leと同軸で前記入射口55から前記試料収容空間内に入射される。このとき、前記光熱効果による発熱の量に応じて前記試料Sでの屈折率が変わり、該屈折率に応じて前記位相差φが変わっているので、当該発熱の量に応じて前記測定系20に戻る測定光L2とこの測定系20における前記参照光L1との干渉光強度が変わる。この干渉光強度が前記測定系20にて測定されることにより、前記試料Sの温度変化により生じる前記測定光L2の屈折率の変化が求められ、その結果、試料の含有物質の量(濃度)の分析が可能となる。   On the other hand, the measurement light L2 introduced from the measurement light 20 into the sample storage unit 40 is reflected by 90 ° by the dichroic mirror 44, and is incident on the sample reception space coaxially with the excitation light Le from the incident port 55. Is done. At this time, since the refractive index in the sample S changes according to the amount of heat generated by the photothermal effect, and the phase difference φ changes according to the refractive index, the measurement system 20 according to the amount of heat generated. The intensity of the interference light between the measurement light L2 returning to the reference light L1 in the measurement system 20 changes. By measuring the interference light intensity with the measurement system 20, a change in the refractive index of the measurement light L2 caused by a temperature change of the sample S is obtained. As a result, the amount (concentration) of the substance contained in the sample Can be analyzed.

この装置において、励起光反射体56の存在によって試料Sへの励起光Leの照射効率が高められることは、その分前記試料S中の特定物質による光熱効果が高まることを意味し、これは測定精度(感度)の向上につながる。また、図3に示されるように、前記励起光Leと同軸に前記測定光L2が試料収容空間内に入射される装置において、この試料収容空間が両光Le,L2の光軸方向と平行な方向に延びる形状を有するものでは、試料収容器50の全体の著しい大型化を伴わずに、前記試料S内での前記測定光L2の光路長が有効に増え、当該測定光L2による測定感度をさらに高めることが可能になる。   In this apparatus, the fact that the excitation efficiency of the excitation light Le to the sample S is increased by the presence of the excitation light reflector 56 means that the photothermal effect by the specific substance in the sample S is increased correspondingly. It leads to improvement of accuracy (sensitivity). Further, as shown in FIG. 3, in the apparatus in which the measurement light L2 is incident on the sample receiving space coaxially with the excitation light Le, the sample receiving space is parallel to the optical axis direction of both the light Le and L2. In the case of having a shape extending in the direction, the optical path length of the measurement light L2 in the sample S is effectively increased without significantly increasing the overall size of the sample container 50, and the measurement sensitivity by the measurement light L2 is increased. It can be further increased.

ここで、前記励起光反射体56の配設領域は適宜設定可能である。例えば、前記励起光反射体56は、前記励起光Leの光軸方向について前記試料収容空間の一部のみを覆うものでもよい。具体的には、同方向に間欠的に配されたものでもよいし、入射口に近い側の領域のみ、あるいは試料収容空間の奥側の領域のみに設けられたものでもよい。ただし、図示のように励起光反射体56が試料収容空間の全域を覆うものであれば、前記励起光の照射効率がより高められる。   Here, the arrangement region of the excitation light reflector 56 can be set as appropriate. For example, the excitation light reflector 56 may cover only a part of the sample storage space in the optical axis direction of the excitation light Le. Specifically, it may be intermittently arranged in the same direction, or may be provided only in a region near the entrance or only in a region on the back side of the sample storage space. However, if the excitation light reflector 56 covers the entire area of the sample storage space as shown in the drawing, the irradiation efficiency of the excitation light can be further increased.

また、前記励起光反射体56は必ずしも容器体の内側面上にあるものに限られない。例えば、前記容器体のうち前記試料収容空間に面する部分の少なくとも一部が前記励起光を透過させる透光体であり、この透光体を挟んで前記試料収容空間と反対の側に前記励起光反射体が位置するようにしてもよい。このような構成の試料収容器であれば、前記励起光反射体と前記試料収容空間内の試料とが直接接触することが阻止されるため、当該接触による不都合、例えば励起光反射体の劣化等の不都合を回避することができる。   Further, the excitation light reflector 56 is not necessarily limited to being on the inner side surface of the container body. For example, at least a part of the portion of the container body that faces the sample storage space is a transparent body that transmits the excitation light, and the excitation is provided on the opposite side of the sample storage space with the transparent body interposed therebetween. A light reflector may be located. In the case of the sample container having such a configuration, the excitation light reflector and the sample in the sample storage space are prevented from coming into direct contact with each other. Therefore, inconvenience due to the contact, such as deterioration of the excitation light reflector, etc. The inconvenience can be avoided.

その例を第2の実施の形態として図4に示す。図示の試料収容器50では、前記底壁52及び前記周壁54が外側容器を構成し、その内側面に前記第1の実施の形態と同様に励起光反射体56が設けられるのに加え、この外側容器の内側に挿入される内側容器58が備えられている。   An example thereof is shown in FIG. 4 as a second embodiment. In the sample container 50 shown in the figure, the bottom wall 52 and the peripheral wall 54 constitute an outer container, and an excitation light reflector 56 is provided on the inner surface thereof in the same manner as in the first embodiment. An inner container 58 is provided that is inserted inside the outer container.

この内側容器58は、例えば石英やPDMS(ポリジメチルシロサキン)のような透光材(特に紫外光透過性の高い材料)からなり、前記外側容器の内側にほぼ隙間なく着脱可能に挿入される外形を有している。すなわち、前記励起光反射体56の表面形状と略同等の外面形状を有している。換言すれば、前記外側容器の内側面のうち前記内側容器58に対向する面に前記励起光反射体56が設けられた状態となっている。   The inner container 58 is made of a translucent material (particularly a material having a high ultraviolet light transmission property) such as quartz or PDMS (polydimethyl siloxane), and is detachably inserted into the outer container with almost no gap. It has an external shape. That is, it has an outer surface shape that is substantially the same as the surface shape of the excitation light reflector 56. In other words, the excitation light reflector 56 is provided on the surface of the inner surface of the outer container that faces the inner container 58.

前記内側容器58は、前記外側容器の内側空間よりも一回り小さい試料収容空間を囲む形状であって、その試料収容空間内に前記励起光Leを入射するための入射口55をもつ形状を有している。つまり、前記外側容器を一回り小さくした形状を有し、この外側容器と同じ向きに開口する(励起光入射側に開口する)姿勢で当該外側容器内に挿入される。   The inner container 58 has a shape surrounding a sample storage space that is slightly smaller than the inner space of the outer container, and has a shape having an incident port 55 for allowing the excitation light Le to enter the sample storage space. is doing. That is, the outer container has a shape that is slightly smaller, and is inserted into the outer container in a posture that opens in the same direction as the outer container (opens on the excitation light incident side).

この試料収容器50においても、その内側容器58が囲む試料収容空間内に試料Sを収容してその試料収容空間内に前記入射口55から前記励起光Le及び前記測定光L2を入射することにより、前記第1の実施の形態と同様の光熱変換測定を行うことができる。また、前記試料収容空間に入射される励起光Leのうち同空間からその外側に散乱しようとする光は、前記透光材からなる内側容器58を透過してその外側の励起光反射体56で反射され、再び前記試料収容空間内に入射されるので、前記第1の実施の形態と同様に励起光の入射効率を高めることができる。   Also in the sample container 50, the sample S is stored in the sample storage space surrounded by the inner container 58, and the excitation light Le and the measurement light L2 are incident on the sample storage space from the incident port 55. The photothermal conversion measurement similar to that in the first embodiment can be performed. In addition, the excitation light Le incident on the sample accommodation space is scattered from the same space to the outside, and passes through the inner container 58 made of the translucent material. Since the light is reflected and again enters the sample accommodation space, the incident efficiency of the excitation light can be increased as in the first embodiment.

さらに、この試料収容器50では、前記励起光反射体56と前記試料Sとが直接接触するのを阻止しながら前記励起光Leの入射効率を高めることができる。   Furthermore, in this sample container 50, the incident efficiency of the excitation light Le can be increased while preventing the excitation light reflector 56 and the sample S from coming into direct contact.

また、試料Sを交換する場合には内側容器58を着脱するだけでよく、外側容器及び励起光反射体56はそのままの状態で繰返し使用することができる。従って、複数種の試料についての測定を効率よく行うことができる。また、前記内側容器58には、市販の比較的安価な透明セルを使用することも可能である。   Further, when exchanging the sample S, it is only necessary to attach and detach the inner container 58, and the outer container and the excitation light reflector 56 can be repeatedly used as they are. Therefore, it is possible to efficiently perform measurement on a plurality of types of samples. The inner container 58 may be a commercially available relatively inexpensive transparent cell.

本発明に係る試料収容器は、その容器体が複数の試料収容空間を囲むものであってもよい。また、その容器体の一部が導光機能を有するものであってもよい。その例を第3の実施の形態として図5(a)(b)に示す。   In the sample container according to the present invention, the container body may surround a plurality of sample storage spaces. Moreover, a part of the container body may have a light guide function. An example thereof is shown in FIGS. 5A and 5B as a third embodiment.

同図に示される試料収容器60の容器体は、本体板62と、左右一対のプリズム63,64と、蓋板65とで構成されている。   The container body of the sample container 60 shown in the figure is composed of a main body plate 62, a pair of left and right prisms 63 and 64, and a lid plate 65.

前記本体板62の上面には、複数本の試料収容空間形成用の溝62aが形成されている。前記各溝62aは、例えば正方形または矩形の断面形状を有し、前記本体板62の左端から右端に至るまで延び、これらの溝62aが互いに平行な姿勢で前後方向(図5(a)では上下方向)に配列されている。そして、これらの溝62aを上から覆うように前記蓋板65が前記本体板62の上に重ね合わされる。   On the upper surface of the main body plate 62, a plurality of sample storage space forming grooves 62a are formed. Each of the grooves 62a has, for example, a square or rectangular cross-sectional shape, extends from the left end to the right end of the main body plate 62, and these grooves 62a are parallel to each other in the front-rear direction (in FIG. Direction). Then, the cover plate 65 is overlaid on the main body plate 62 so as to cover these grooves 62a from above.

さらに、前記各溝62aの内側面及び前記蓋板65の下面はそれぞれ励起光反射体66によりコーティングされ、この励起光反射体66が前記各溝62に対応する試料収容空間をその軸方向と直交する方向から囲む配置となっている。   Further, the inner surface of each groove 62a and the lower surface of the cover plate 65 are coated with an excitation light reflector 66, respectively, and the excitation light reflector 66 allows the sample storage space corresponding to each groove 62 to be orthogonal to the axial direction. It is arranged to surround from the direction to do.

前記プリズム63,64は、前記各溝62aに対応する試料収容空間(すなわち前記本体板62と前記蓋板65とにより囲まれる試料収容空間)の左右両端を塞ぐようにこれら本体板62及び蓋板65の左右端面に接合される。具体的に、前記各プリズム63,64は二等辺三角形状の断面を有し、その等辺のうちの一方の等辺に相当する面(水平面)が前記蓋板65の上面と面一となる高さ位置で、その他方の等辺に相当する面(垂直面)が前記両板62,65の端面に接合されている。   The prisms 63 and 64 have the main body plate 62 and the cover plate so as to block the left and right ends of the sample storage space corresponding to the grooves 62a (that is, the sample storage space surrounded by the main body plate 62 and the cover plate 65). It is joined to the left and right end faces of 65. Specifically, each of the prisms 63 and 64 has an isosceles triangular cross section, and a height (horizontal plane) corresponding to one of the equilateral sides is flush with the upper surface of the lid plate 65. At a position, a surface (vertical surface) corresponding to the other equal side is joined to the end surfaces of the plates 62 and 65.

さらに、前記各プリズム63,64において、前記二等辺三角形の斜辺に相当する斜面はそれぞれ測定光反射膜63a,64aによりコーティングされている。これらの測定光反射膜63a,64aは、前記励起光Leは透過させて前記測定光L2のみを反射させるもので、例えば誘電多層膜が好適である。この誘電多層膜としては、例えば前記測定光L2がHe−Neレーザの場合、金属酸化膜の多層膜等が好適である。   Further, in each of the prisms 63 and 64, the slope corresponding to the hypotenuse of the isosceles triangle is coated with the measurement light reflecting films 63a and 64a, respectively. These measurement light reflection films 63a and 64a transmit the excitation light Le and reflect only the measurement light L2. For example, a dielectric multilayer film is suitable. As the dielectric multilayer film, for example, when the measurement light L2 is a He—Ne laser, a metal oxide multilayer film is suitable.

この試料収容器60は、その各試料収容空間の軸方向が前記励起系10からの励起光Leの光軸と平行となる姿勢で、かつ、その励起系10側に前記プリズム64が向く向きで、試料収容部40に設置される。また、測定系20は、前記試料収容器60に対してそのプリズム63の上面に測定光L2を入射する。そして、この測定光L2が前記プリズム63の測定光反射膜63aで反射することにより前記各試料収容空間内にその軸方向(長手方向)に沿って入射され、かつ、これらの試料収容空間から出た測定光L2が前記プリズム64の測定光反射膜64aで反射して前記測定系20に戻されるように、前記測定光L2の入射位置が設定されている。   The sample container 60 has a posture in which the axial direction of each sample storage space is parallel to the optical axis of the excitation light Le from the excitation system 10 and the prism 64 faces the excitation system 10 side. The sample storage unit 40 is installed. Further, the measurement system 20 makes the measurement light L2 incident on the upper surface of the prism 63 with respect to the sample container 60. Then, the measurement light L2 is reflected by the measurement light reflecting film 63a of the prism 63, so that the measurement light L2 enters the sample storage spaces along the axial direction (longitudinal direction) and exits from the sample storage spaces. The incident position of the measurement light L2 is set so that the measurement light L2 is reflected by the measurement light reflection film 64a of the prism 64 and returned to the measurement system 20.

この構成においても、前記励起系10から試料収容部40に導入される励起光Leが集光レンズ42で集光され、プリズム64を通じて前記各試料収容空間内の試料Sに入射され、この試料Sの光熱効果を引き起こす。この励起光Leのうち前記各試料収容空間から外に散乱しようとする光は、前記本体板62及び蓋板65の表面に形成された励起光反射体66で反射する。すなわち、前記試料収容空間内に再入射される。   Also in this configuration, the excitation light Le introduced from the excitation system 10 into the sample storage unit 40 is collected by the condenser lens 42 and is incident on the sample S in each sample storage space through the prism 64. Cause a photothermal effect. Of the excitation light Le, light that is to be scattered out of the sample accommodation spaces is reflected by an excitation light reflector 66 formed on the surfaces of the main body plate 62 and the cover plate 65. That is, it is re-entered into the sample storage space.

その一方、前記測定系20から前記プリズム63の上面に入射される測定光L2は、プリズム63の測定光反射膜63aで反射して前記各試料収容空間内に入射され、これらの試料収容空間を抜けた後に前記プリズム64の測定光反射体64aで上向きに反射して前記測定系20に戻される。   On the other hand, the measurement light L2 incident on the upper surface of the prism 63 from the measurement system 20 is reflected by the measurement light reflecting film 63a of the prism 63 and is incident on the sample storage spaces. After coming off, it is reflected upward by the measurement light reflector 64 a of the prism 64 and returned to the measurement system 20.

この構成によれば、単一の試料収容器60で複数の試料Sについての光熱変換測定を同時に行うことができる。また、試料収容器60自身がその試料収容空間内に測定光を導く導光手段(プリズム63,64)を有するため、同試料収容器60の周囲の光学系の構成を簡素化することができる。   According to this configuration, the photothermal conversion measurement of a plurality of samples S can be performed simultaneously with a single sample container 60. Further, since the sample container 60 itself has light guide means (prisms 63 and 64) for guiding the measurement light into the sample accommodating space, the configuration of the optical system around the sample container 60 can be simplified. .

また、第4の実施の形態として図6に示すように、前記第3の実施の形態に係る試料収容器60のプリズム64の垂直面(すなわち本体板62及び蓋板65に対向する面)が測定光反射膜62bでコーティングされたものでは、前記試料収容空間を通る測定光L2が前記測定光反射膜62bで反射して前記試料収容空間を再透過するために、この測定光L2の前記試料収容空間内での光路長が倍増する。   Further, as shown in FIG. 6 as the fourth embodiment, the vertical surface of the prism 64 of the sample container 60 according to the third embodiment (that is, the surface facing the main body plate 62 and the cover plate 65). In the case of the coating with the measurement light reflecting film 62b, the measurement light L2 passing through the sample accommodation space is reflected by the measurement light reflection film 62b and retransmits through the sample accommodation space. Doubles the optical path length in the accommodation space.

第5の実施の形態を図7に示す。ここに示す試料収容器には透明で細長いガラス管(例えばキャピラリガラス管)68が使用され、その内側空間が試料収容空間として利用される。ただし、このガラス管68は、その軸長に比して内径が微小な形状を有しており(例えば軸長が1〜2mで内径が0.1〜0.2mm)、当該ガラス管68の内側面に励起光反射体のコーティング(例えば蒸着による成膜)をすることが困難である。そこで、この実施の形態では、前記ガラス管68の外周面に鏡面コートが施されることにより、当該外周面上に励起光反射体66が形成されている。   A fifth embodiment is shown in FIG. The sample container shown here uses a transparent and elongated glass tube (for example, a capillary glass tube) 68, and its inner space is used as a sample storage space. However, the glass tube 68 has a shape whose inner diameter is minute compared to the axial length (for example, the axial length is 1 to 2 m and the inner diameter is 0.1 to 0.2 mm). It is difficult to coat the inner surface with an excitation light reflector (for example, film formation by vapor deposition). Therefore, in this embodiment, the outer peripheral surface of the glass tube 68 is mirror-coated so that the excitation light reflector 66 is formed on the outer peripheral surface.

このキャピラリガラス管68においても、その内側空間に収容される試料Sに対して当該ガラス管68の軸方向に沿って励起光及び測定光が同軸に入射されることにより、精度の高い光熱変換測定が効率良く行われる。すなわち、前記励起光のうち前記内側空間から管本体を通じて前記励起光反射体66に至る光が同反射体66で前記内側空間側に反射する(すなわち同空間内に再入射される)ため、この励起光の入射効率が高められる。また、試料収容器全体の大型化を避けながら前記内側空間内での測定光の光路長を大きくすることができる。   Also in this capillary glass tube 68, the excitation light and the measurement light are coaxially incident on the sample S accommodated in the inner space along the axial direction of the glass tube 68, so that the photothermal conversion measurement with high accuracy is performed. Is done efficiently. That is, the light that reaches the excitation light reflector 66 from the inner space through the tube body out of the excitation light is reflected by the reflector 66 toward the inner space (that is, re-entered in the same space). Incident efficiency of excitation light is increased. In addition, the optical path length of the measurement light in the inner space can be increased while avoiding an increase in the size of the entire sample container.

前記図3に示す試料収容器50において、その底壁52及び周壁54を石英で構成し、その表面を前記励起光反射体56に相当するアルミニウム薄膜でコーティングする。周壁54の軸長Zは1.5cm(従って測定光の光路長は3cm)とし、内径(すなわち試料収容空間の直径)は5mmとする。   In the sample container 50 shown in FIG. 3, the bottom wall 52 and the peripheral wall 54 are made of quartz, and the surface thereof is coated with an aluminum thin film corresponding to the excitation light reflector 56. The axial length Z of the peripheral wall 54 is 1.5 cm (therefore, the optical path length of the measuring light is 3 cm), and the inner diameter (that is, the diameter of the sample storage space) is 5 mm.

その試料収容空間内に試料Sとして色素水溶液を入れる。この試料Sに対してLEDまたは水銀ランプから発せられた励起光を入射するとともに、これと同軸にHe−Ne−レーザ(波長633mm)からなる測定光を入射する。   An aqueous dye solution is placed as sample S in the sample storage space. Excitation light emitted from an LED or mercury lamp is incident on the sample S, and measurement light composed of a He—Ne—laser (wavelength 633 mm) is incident coaxially with the excitation light.

本発明の第1の実施の形態に係る光熱変換測定装置の全体構成図である。It is a whole lineblock diagram of a photothermal conversion measuring device concerning a 1st embodiment of the present invention. (a)(b)は前記光熱変換測定装置における試料収容部の例を示す図である。(A) and (b) are figures which show the example of the sample accommodating part in the said photothermal conversion measuring apparatus. 前記試料収容部に設置される試料収容器の断面図である。It is sectional drawing of the sample container installed in the said sample accommodating part. 本発明の第2の実施の形態に係る試料収容器の断面図である。It is sectional drawing of the sample container which concerns on the 2nd Embodiment of this invention. (a)は本発明の第3の実施の形態に係る試料収容器の一部平面図、(b)は(a)の4B−4B線断面図である。(A) is a partial top view of the sample container which concerns on the 3rd Embodiment of this invention, (b) is the 4B-4B sectional view taken on the line of (a). 本発明の第4の実施の形態に係る試料収容器の断面図である。It is sectional drawing of the sample container which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る試料収容器の断面図である。It is sectional drawing of the sample container which concerns on the 5th Embodiment of this invention.

符号の説明Explanation of symbols

L1 偏光(参照光)
L2 偏光(励起光)
Le 励起光
S 試料
10 励起系
20 測定系
40 試料収容部
50 試料収容器
52 底壁(容器体)
54 周壁(容器体)
55 入射口
56 励起光反射体
58 内側容器
60 試料収容器
62 本体板(容器体)
63 プリズム(容器体)
64 プリズム(容器体)
65 蓋板(容器体)
66 励起光反射体
68 キャピラリガラス管(容器体)
L1 polarized light (reference light)
L2 polarized light (excitation light)
Le Excitation light S Sample 10 Excitation system 20 Measurement system 40 Sample container 50 Sample container 52 Bottom wall (container)
54 Perimeter wall (container)
55 Entrance 56 Excitation light reflector 58 Inner container 60 Sample container 62 Main plate (container)
63 Prism (container)
64 Prism (container)
65 Lid (container)
66 Excitation light reflector 68 Capillary glass tube (container)

Claims (8)

試料に励起光を入射してその光熱効果による前記試料の発熱量を測定する光熱変換測定装置に用いられる試料収容器であって、
前記試料を収容するための試料収容空間を囲み、かつ、この試料収容空間内に前記励起光を入射するための入射口を有する容器体と、
前記試料収容空間をこの試料収容空間内での前記励起光の光軸方向と略直交する方向から囲み、当該試料収容空間から到来する励起光をこの試料収容空間側に反射させる励起光反射体とを備えることを特徴とする試料収容器。
A sample container used in a photothermal conversion measurement device that measures the amount of heat generated by the sample by the excitation light incident on the sample and the photothermal effect thereof,
A container body that encloses a sample storage space for storing the sample and has an entrance for allowing the excitation light to enter the sample storage space;
An excitation light reflector that surrounds the sample storage space from a direction substantially orthogonal to the optical axis direction of the excitation light in the sample storage space and reflects the excitation light coming from the sample storage space toward the sample storage space; A sample container.
請求項1記載の試料収容器において、
前記励起光反射体は前記試料収容空間内での前記励起光の光軸方向について前記試料収容空間の全域を覆うものであることを特徴とする試料収容器。
The sample container of claim 1,
The sample container is characterized in that the excitation light reflector covers the entire area of the sample storage space in the optical axis direction of the excitation light in the sample storage space.
請求項1または2記載の試料収容器において、
前記励起光反射体は前記試料収容空間を囲む前記容器体の内側面上にあることを特徴とする試料収容器。
The sample container according to claim 1 or 2,
The sample container is characterized in that the excitation light reflector is on an inner surface of the container body surrounding the sample housing space.
請求項1または2記載の試料収容器において、
前記容器体のうち前記試料収容空間に面する部分の少なくとも一部が前記励起光を透過させる透光体であり、この透光体を挟んで前記試料収容空間と反対の側に前記励起光反射体が位置することを特徴とする試料収容器。
The sample container according to claim 1 or 2,
At least a part of the container body that faces the sample storage space is a transparent body that transmits the excitation light, and the excitation light is reflected on a side opposite to the sample storage space with the transparent body interposed therebetween. A sample container in which a body is located.
請求項4記載の試料収容器において、
前記容器体が、前記透光体を含みかつ前記試料収容空間を囲む内側容器と、この内側容器の外側に位置する外側容器とを備え、この外側容器の内側に前記内側容器が着脱可能に挿入されるとともに、当該外側容器の内側面のうち前記内側容器の前記透光体に対向する面に前記励起光反射体が設けられていることを特徴とする試料収容器。
The sample container of claim 4,
The container body includes an inner container that includes the translucent body and surrounds the sample storage space, and an outer container positioned outside the inner container, and the inner container is detachably inserted into the outer container. The sample container is characterized in that the excitation light reflector is provided on a surface of the inner side surface of the outer side container facing the translucent body.
請求項1〜5のいずれかに記載の試料収容器において、
前記試料収容空間が同空間内に入射される励起光の光軸方向と平行な方向に延びる形状を有することを特徴とする試料収容器。
In the sample container according to any one of claims 1 to 5,
The sample container is characterized in that the sample storage space has a shape extending in a direction parallel to the optical axis direction of the excitation light entering the same space.
試料に励起光を入射してその光熱効果による前記試料の発熱量を測定する光熱変換測定装置であって、
前記試料を収容する請求項1〜6のいずれかに記載の試料収容器と、
この試料収容器の試料収容空間内に収容される試料に対して当該試料収容器の入射口から前記励起光を入射する励起光入射光学系と、
前記試料に前記励起光とは別の測定光を透過させてこの透過した測定光の位相変化を測定する測定装置とを備えることを特徴とする光熱変換測定装置。
A photothermal conversion measuring device for measuring the calorific value of the sample due to the photothermal effect when excitation light is incident on the sample,
The sample container according to any one of claims 1 to 6, which accommodates the sample;
An excitation light incident optical system that makes the excitation light incident on the sample accommodated in the sample accommodating space of the sample container from the incident port of the sample container;
A photothermal conversion measurement apparatus comprising: a measurement apparatus that transmits measurement light different from the excitation light to the sample and measures a phase change of the transmitted measurement light.
試料に励起光を入射してその光熱効果による前記試料の発熱量を測定する光熱変換測定装置であって、
前記試料を収容する請求項6記載の試料収容器と、
この試料収容器の試料収容空間内に収容される試料に対して当該試料収容器の入射口から前記励起光を入射する励起光入射光学系と、
前記試料に前記励起光とは別の測定光を透過させてこの透過した測定光の位相変化を測定する測定装置とを備え、
前記励起光入射光学系及び前記測定装置は、前記励起光及び前記測定光を前記試料収容空間内の試料に対してその試料収容空間の長手方向に沿う方向に同軸で入射することを特徴とする光熱変換測定装置。
A photothermal conversion measuring device for measuring the calorific value of the sample due to the photothermal effect when excitation light is incident on the sample,
The sample container according to claim 6, which accommodates the sample;
An excitation light incident optical system that makes the excitation light incident on the sample accommodated in the sample accommodating space of the sample container from the incident port of the sample container;
A measurement device that transmits measurement light different from the excitation light to the sample and measures a phase change of the transmitted measurement light; and
The excitation light incidence optical system and the measurement device are characterized in that the excitation light and the measurement light are incident on the sample in the sample accommodation space coaxially in a direction along the longitudinal direction of the sample accommodation space. Photothermal conversion measuring device.
JP2006131315A 2006-05-10 2006-05-10 Photothermal conversion measuring device Expired - Fee Related JP4740792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131315A JP4740792B2 (en) 2006-05-10 2006-05-10 Photothermal conversion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131315A JP4740792B2 (en) 2006-05-10 2006-05-10 Photothermal conversion measuring device

Publications (2)

Publication Number Publication Date
JP2007303912A true JP2007303912A (en) 2007-11-22
JP4740792B2 JP4740792B2 (en) 2011-08-03

Family

ID=38837959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131315A Expired - Fee Related JP4740792B2 (en) 2006-05-10 2006-05-10 Photothermal conversion measuring device

Country Status (1)

Country Link
JP (1) JP4740792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040641A (en) * 2016-09-06 2018-03-15 国立大学法人九州大学 Optical measurement system and optical cell
JP2020190564A (en) * 2016-09-06 2020-11-26 国立大学法人九州大学 Optical measuring system and optical cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351260A (en) * 1986-08-19 1988-03-04 Sanyo Electric Co Ltd Recording paper take-up device
JPH05240774A (en) * 1992-03-02 1993-09-17 Hitachi Ltd Optical cell and optical detecting device and sample separating/detecting device using them
JPH0627059A (en) * 1992-07-13 1994-02-04 Hitachi Ltd Method and apparatus for opto-thermal conversion analysis
JP2002090363A (en) * 2000-09-13 2002-03-27 Matsushita Electric Ind Co Ltd Urine examination apparatus
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2002296175A (en) * 2001-01-29 2002-10-09 Kosu:Kk Cell for fluid analysis and analyzer using it
JP2004286578A (en) * 2003-03-20 2004-10-14 Asahi Kasei Corp Reflection type spectrum analyzer for hot lens
JP2005257414A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Photothermal conversion measurement device, method and cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351260A (en) * 1986-08-19 1988-03-04 Sanyo Electric Co Ltd Recording paper take-up device
JPH05240774A (en) * 1992-03-02 1993-09-17 Hitachi Ltd Optical cell and optical detecting device and sample separating/detecting device using them
JPH0627059A (en) * 1992-07-13 1994-02-04 Hitachi Ltd Method and apparatus for opto-thermal conversion analysis
JP2002090363A (en) * 2000-09-13 2002-03-27 Matsushita Electric Ind Co Ltd Urine examination apparatus
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2002296175A (en) * 2001-01-29 2002-10-09 Kosu:Kk Cell for fluid analysis and analyzer using it
JP2004286578A (en) * 2003-03-20 2004-10-14 Asahi Kasei Corp Reflection type spectrum analyzer for hot lens
JP2005257414A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Photothermal conversion measurement device, method and cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040641A (en) * 2016-09-06 2018-03-15 国立大学法人九州大学 Optical measurement system and optical cell
JP2020190564A (en) * 2016-09-06 2020-11-26 国立大学法人九州大学 Optical measuring system and optical cell

Also Published As

Publication number Publication date
JP4740792B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4909285B2 (en) Single mode (SM) fiber optic reader system and method for interrogating a resonant waveguide grating sensor
US10768101B2 (en) Measuring device and method for sensing different gases and gas concentrations
US20190219505A1 (en) Device for analysing a specimen using the goos-hänchen surface plasmon resonance effect
JP5743558B2 (en) Analysis equipment
JP4491277B2 (en) Sample analyzer
JP2009204476A (en) Sensing device
JP4740792B2 (en) Photothermal conversion measuring device
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
JP2007127449A (en) Measuring container
JP4538364B2 (en) Refractive index measuring tool, refractive index measuring apparatus and refractive index measuring method
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP2007218633A (en) Autoanalyzer
US20130100450A1 (en) Apparatus for determining optical density of liquid sample and optical waveguide thereof
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP5001226B2 (en) Photothermal conversion measuring device and method
JP4173725B2 (en) Sensors using evanescent waves
US8228502B2 (en) Measurement device equipped with device for deciding measurement start point
JP4938429B2 (en) Impurity analysis method and apparatus
JP2006125919A (en) Spectral analyzer and spectral analysis method
JP4742166B2 (en) Sample analyzer
JP4549292B2 (en) Photothermal conversion measuring device, photothermal conversion measuring method
JP2005147891A (en) Surface plasmon resonance sensor
Li et al. Gas concentration monitoring based on the two-dimensional reflection intensity curve of Bloch surface wave
JP2014115268A (en) Spectroscopic analyzer
JP7364293B2 (en) Optical detector for detecting gases and suspended solids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees