JP4294633B2 - Gas detector - Google Patents

Gas detector Download PDF

Info

Publication number
JP4294633B2
JP4294633B2 JP2005313983A JP2005313983A JP4294633B2 JP 4294633 B2 JP4294633 B2 JP 4294633B2 JP 2005313983 A JP2005313983 A JP 2005313983A JP 2005313983 A JP2005313983 A JP 2005313983A JP 4294633 B2 JP4294633 B2 JP 4294633B2
Authority
JP
Japan
Prior art keywords
value
reference value
gas sensor
load resistance
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005313983A
Other languages
Japanese (ja)
Other versions
JP2006053163A (en
Inventor
昌志 西口
一夫 翁長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
FIS Inc
Original Assignee
Panasonic Ecology Systems Co Ltd
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ecology Systems Co Ltd, FIS Inc filed Critical Panasonic Ecology Systems Co Ltd
Priority to JP2005313983A priority Critical patent/JP4294633B2/en
Publication of JP2006053163A publication Critical patent/JP2006053163A/en
Application granted granted Critical
Publication of JP4294633B2 publication Critical patent/JP4294633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、ガス検出装置に関する。   The present invention relates to a gas detection device.

従来、金属酸化物半導体からなるガスセンサを用いて雰囲気の汚染、特に喫煙による炭酸ガスの発生を検出するものとして、特開平6−66750号公報に記載されたものが知られている。この従来例は、ガスセンサの周囲温度、経時変化等によるドリフトを補正するため、ガスセンサ信号の包絡線を求めて該包絡線を基準値とし、ガスセンサ信号のレベルが基準値よりもガス濃度が高い側にある場合、つまり汚染側にある場合には基準値をガスセンサ信号のレベルに速やかに追随させ、逆にガスセンサ信号が基準値よりもガス濃度が低い側にある場合には、基準値をガスセンサ信号のレベルに向けて緩慢に追随させ、ガスセンサ信号のレベルと現在の基準値のレベルとの比較により、両者の差が許容値以上となった場合にガス発生と判定するようになっている。図8はこの従来例のガスセンサ信号のレベル(イ)と、基準値(ロ)の推移を示している。
特開平6−66750号公報
Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 6-66750, a gas sensor made of a metal oxide semiconductor is used to detect atmospheric contamination, particularly the generation of carbon dioxide due to smoking. In this conventional example, in order to correct the drift due to the ambient temperature of the gas sensor, changes with time, etc., the envelope of the gas sensor signal is obtained and the envelope is used as a reference value, and the gas sensor signal level is higher than the reference value. If the gas sensor signal is on the side where the gas concentration is lower than the reference value, the reference value is set to the gas sensor signal. By slowly comparing the level of the gas sensor signal and the level of the current reference value, it is determined that gas has been generated when the difference between the two exceeds an allowable value. FIG. 8 shows the transition of the level (A) of the gas sensor signal and the reference value (B) of this conventional example.
JP-A-6-66750

ところで、上記従来例では、図8(a)、(b)に示すように基準値よりもガスセンサ信号のレベルが基準値を越えると、一定時間毎に基準値をガスセンサ信号レベルに近づけるようになっているため、ガス濃度が高く、ガス発生と判定されるべき筈の状態にかかわらず、基準値とガスセンサ信号のレベルとの差が大きくならず、汚染度出力は正確な検出ができないという問題があった。   By the way, in the conventional example, as shown in FIGS. 8A and 8B, when the level of the gas sensor signal exceeds the reference value, the reference value approaches the gas sensor signal level at regular intervals. Therefore, the difference between the reference value and the level of the gas sensor signal does not increase regardless of the soot state that should be determined as gas generation due to high gas concentration, and the pollution level output cannot be detected accurately. there were.

また、広範囲なガスセンサ信号を検出対象とするのが難しいものとして、限られた範囲を対象としていた。   In addition, it was difficult to target a wide range of gas sensor signals as a detection target, and a limited range was targeted.

本発明はこのような従来の課題を解決するものであり、温度や湿度変化によるノイズ、ガスセンサ信号のドリフトによる誤検出を防ぐとともに、ガスセンサ信号の立ち上がりを速やかに検知することができ、また、ガス検知後の基準値の計算による誤差を低減することができ、また、広範囲なガスセンサ信号を計算精度を落とす事なく処理できるガス検出装置を提供することを目的としている。   The present invention solves such a conventional problem, and can prevent noise due to temperature and humidity changes, misdetection due to drift of the gas sensor signal, can quickly detect the rise of the gas sensor signal, and An object of the present invention is to provide a gas detection device that can reduce an error due to calculation of a reference value after detection, and can process a wide range of gas sensor signals without reducing calculation accuracy.

本発明のガス検出装置は、金属酸化物半導体ガスセンサ信号の現在のレベルを判定して、この現在のレベルに応じて前記ガスセンサに直列接続される負荷抵抗値を切り替える負荷抵抗切り替え手段と、前記負荷抵抗値の変更に応じて前記ガスセンサの出力信号の基準となる基準値を、負荷抵抗切り替えの前後で前記ガスセンサ信号のレベルとの関係が変化しないように補正し負荷抵抗切り替えによる誤差を防止する基準値補正手段とを備えたものである。 The gas detection device of the present invention is configured to determine a current level of a metal oxide semiconductor gas sensor signal and to change a load resistance switching unit that switches a load resistance value connected in series to the gas sensor according to the current level, and the load A reference for correcting a reference value of the output signal of the gas sensor in accordance with the change of the resistance value so that the relationship with the level of the gas sensor signal does not change before and after the load resistance switching, thereby preventing an error due to the load resistance switching. And a value correcting means.

本発明によれば、金属酸化物半導体ガスセンサのバラツキやドリフトによってセンサ信号が大きくばらついた場合においても常に精度の高い検出をすることができるガス検出装置が得られる According to the present invention, it is possible to obtain a gas detection device capable of always performing highly accurate detection even when sensor signals vary greatly due to variations or drifts in metal oxide semiconductor gas sensors .

本発明により、金属酸化物半導体ガスセンサ信号の現在のレベルを判定してこの現在のレベルに応じて前記ガスセンサに直列接続される負荷抵抗値を切り替える手段と、前記負荷抵抗値の変更に応じて前記ガスセンサの出力信号の基準となる基準値を負荷抵抗切り替えの前後で前記ガスセンサ信号のレベルとの関係が変化しないように補正し負荷抵抗切り替えによる誤差を防止する手段とを備えたので、広範囲なガスセンサ信号を常に計算精度を落とす事なく処理できるという効果がある。ガスセンサの抵抗値が製造のバラツキや使用中に大きく変化した場合においても、常に精度の高い検知が可能となり、負荷抵抗切り替えによる誤差を防止できる。 The present invention, a means for switching to determine the current level of load resistance connected in series to the gas sensor in accordance with the current level of the metal oxide semiconductor gas sensor signal, in response to said change in the load resistance value Since a reference value that serves as a reference for the output signal of the gas sensor is corrected so that the relationship with the level of the gas sensor signal does not change before and after the load resistance switching, a means for preventing errors due to the load resistance switching is provided. There is an effect that the signal can always be processed without reducing the calculation accuracy. Even when the resistance value of the gas sensor varies greatly during manufacturing or during use, highly accurate detection is always possible, and errors due to load resistance switching can be prevented.

金属酸化物半導体ガスセンサ信号の現在のレベルを判定して、この現在のレベルに応じてガスセンサに直列接続される負荷抵抗値を切り替える負荷抵抗切り替え手段と、前記負荷抵抗値の変更に応じて前記ガスセンサの出力信号の基準となる基準値を負荷抵抗切り替えの前後で前記ガスセンサ信号のレベルとの関係が変化しないように補正し負荷抵抗切り替えによる誤差を防止する基準値補正手段とを備えたものであり、負荷抵抗切り替えの前後で出力される汚染度の誤差を防止することができる。ガスセンサの抵抗値が製造のバラツキや使用中に大きく変化した場合においても、常に精度の高い検知が可能となり、負荷抵抗切り替えによる誤差を防止できる。
To determine the current level of metal oxide semiconductor gas sensor signal, and the load resistance switching means for switching the load resistance connected in series to the gas sensor in accordance with the current level, the gas sensor according to the change of the load resistance And a reference value correcting means for correcting the reference value as a reference of the output signal so that the relationship with the level of the gas sensor signal does not change before and after switching the load resistance and preventing an error caused by switching the load resistance . Further, it is possible to prevent an error in the degree of contamination output before and after switching the load resistance. Even when the resistance value of the gas sensor varies greatly during manufacturing or during use, highly accurate detection is always possible, and errors due to load resistance switching can be prevented.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

参考例1)
図1に示すように、金属酸化物半導体ガスセンサ(以下ガスセンサと省略する)1は負荷抵抗回路を介してバッテリーなどの直流電源3に接続してある。4はガスセンサ1に設けられたヒータであり、このヒータ4も直流電源3に接続してある。負荷抵抗回路は、抵抗2から構成される。
( Reference Example 1)
As shown in FIG. 1, a metal oxide semiconductor gas sensor (hereinafter abbreviated as a gas sensor) 1 is connected to a DC power source 3 such as a battery via a load resistance circuit. Reference numeral 4 denotes a heater provided in the gas sensor 1, and this heater 4 is also connected to the DC power source 3. The load resistance circuit includes a resistor 2.

5は本参考例における信号処理を行うための1チップの例えば4ビットマイクロコンピュータからなる信号処理部であって、図においてはその機能をブロック化して示しており、負荷抵抗回路の両端電圧VRLをA/Dコンバータ6を介して取り込み、電圧VRLからガスセンサ1のセンサ抵抗値Rsを計算するセンサ抵抗計算部7をA/Dコンバータ6を介して取り込み、センサ抵抗値Rsと比較する基準値Rsmを発生させる基準値発生部8と、基準値Rsmとセンサ抵抗値Rsとの比較により汚染度を計算する汚染度計算部9と、この汚染度計算部9で計算された汚染度をアナログ値に変換するD/Aコンバータ10と、汚染度から基準値Rsmの更新量X及び更新周期Zを計算する計算部11等から構成される。
Reference numeral 5 denotes a signal processing unit comprising, for example, a 4-bit microcomputer on a single chip for performing signal processing in this reference example. In the figure, the function is shown in a block form, and the voltage VRL across the load resistance circuit is expressed as a block. A sensor resistance calculation unit 7 that takes in through the A / D converter 6 and calculates the sensor resistance value Rs of the gas sensor 1 from the voltage VRL is taken in through the A / D converter 6 and a reference value Rsm to be compared with the sensor resistance value Rs is obtained. A reference value generation unit 8 to be generated, a contamination degree calculation unit 9 that calculates a contamination degree by comparing the reference value Rsm and the sensor resistance value Rs, and the contamination degree calculated by the contamination degree calculation unit 9 is converted into an analog value. The D / A converter 10 that performs the calculation, the calculation unit 11 that calculates the update amount X and the update cycle Z of the reference value Rsm from the degree of contamination, and the like.

次に図1の回路を図2に示すフローチャートに基づいて説明する。まず、装置をスタートさせると、信号処理部5では、負荷抵抗値RL、基準値発生部8の基準値Rsmを初期設定する。   Next, the circuit of FIG. 1 will be described based on the flowchart shown in FIG. First, when the apparatus is started, the signal processing unit 5 initializes the load resistance value RL and the reference value Rsm of the reference value generating unit 8.

さて初期値設定後、現在の負荷抵抗値RLによる電圧VRLを取り込み、センサ抵抗計算部7がセンサ抵抗値Rsを電圧VRLより計算する。この計算は例えばRs=((256−VRL)×64)/VRLの式にて行う。   Now, after setting the initial value, the voltage VRL based on the current load resistance value RL is taken in, and the sensor resistance calculation unit 7 calculates the sensor resistance value Rs from the voltage VRL. This calculation is performed by, for example, an equation of Rs = ((256−VRL) × 64) / VRL.

このようにセンサ抵抗値Rsは基準値発生部8で発生している現在の基準値Rsmとコンパレータ12,13で比較し、センサ抵抗値Rsが基準値Rsm以上で無ければ、汚染方向基準値更新部8bにより基準値Rsmを更新し、逆にセンサ抵抗値Rsが基準値Rsm0以上であれば、清浄方向基準値更新部8aにより基準値Rsmを更新する。これらの更新量、更新周期は計算部11により計算され、夫々の更新部8a、8bに与えられる。   In this way, the sensor resistance value Rs is compared with the current reference value Rsm generated by the reference value generator 8 by the comparators 12 and 13, and if the sensor resistance value Rs is not equal to or greater than the reference value Rsm, the contamination direction reference value is updated. The reference value Rsm is updated by the unit 8b. Conversely, if the sensor resistance value Rs is equal to or greater than the reference value Rsm0, the reference value Rsm is updated by the cleaning direction reference value update unit 8a. These update amounts and update cycles are calculated by the calculation unit 11 and given to the respective update units 8a and 8b.

この場合清浄方向であれば、サンプリング毎に例えばRsm=Rsm0+(Rs−Rsm0)/3で更新される。尚Rsm0が現在の基準値を示す。   In this case, in the clean direction, for example, Rsm = Rsm0 + (Rs−Rsm0) / 3 is updated every sampling. Rsm0 represents the current reference value.

また汚染方向であれば、基準値更新周期毎(例えば、前回の更新タイミングからのサンプリング回数が所定値Z以上になった場合)に、Rsm=Rsm0−(Rsm0−Rs)/Xで更新する。ここでXは基準値更新量を示し、X=C1=(Rsm−Rs)×Vspan×8/Rsmより求める。尚C1はガスセンサ1の計算出力を示す。またVspanは定数であり、Xは10<X<100の範囲とし、その初期値を10とする。   In the contamination direction, it is updated at Rsm = Rsm0− (Rsm0−Rs) / X every reference value update cycle (for example, when the number of times of sampling from the previous update timing is equal to or greater than a predetermined value Z). Here, X represents the reference value update amount, and is obtained from X = C1 = (Rsm−Rs) × Vspan × 8 / Rsm. C1 indicates the calculated output of the gas sensor 1. Vspan is a constant, X is in the range of 10 <X <100, and its initial value is 10.

さて、上記のように基準値更新が為されながら、汚染度計算部9はセンサ抵抗値Rsとの差により汚染度を求めて、その汚染度をD/Aコンバータ10を介して外部に出力する。   Now, while the reference value is updated as described above, the contamination degree calculation unit 9 obtains the contamination degree from the difference from the sensor resistance value Rs, and outputs the contamination degree to the outside via the D / A converter 10. .

この汚染度出力により例えば空気清浄器や換気扇の場合であればファンの運転を汚染度に応じて運転制御する等行うことになる。   For example, in the case of an air cleaner or a ventilation fan, the operation of the fan is controlled according to the degree of contamination.

以上のように、基準値更新の更新量を出力に応じて変化させることにより、汚染方向の高濃度では更新量を少なく、清浄方向の低濃度では更新量を多くすることが可能となり、基準値とすべき低濃度時は積極的に基準値を更新し、基準値をとるべきでない高濃度時は更新を小さくするため、基準値更新による誤差の少ない検知が可能となる。
As described above, by changing the update amount of the reference value according to the output, it is possible to reduce the update amount at a high concentration in the contamination direction and increase the update amount at a low concentration in the clean direction. Since the reference value is actively updated when the density should be low and the update is small when the density should not be the standard value, detection with less error due to the update of the reference value is possible.

なお、センサ抵抗値Rsの計算において、本参考例では電圧VRLより直接計算したが、サーミスタ等の温度センサ、湿度センサなどによる温度補正や湿度補正などの補正を加えてもよい。
In the calculation of the sensor resistance value Rs, the calculation is made directly from the voltage VRL in this reference example. However, correction such as temperature correction or humidity correction by a temperature sensor such as a thermistor or a humidity sensor may be added.

参考例2)
図3を参照しながら説明する。なお、参考例1と同一の部分は説明を省略する。
( Reference Example 2)
This will be described with reference to FIG. Note that the description of the same parts as those in Reference Example 1 is omitted.

センサ抵抗値Rsが基準値Rsm0以下の汚染方向であれば、基準値更新周期Z毎に、Rsm=Rsm0−(Rsm0−Rs)/X1で更新する。ここでX1は基準値更新量を示し、10<X1<1000の範囲の定数とする。   If the sensor resistance value Rs is a contamination direction equal to or less than the reference value Rsm0, the sensor resistance value Rs is updated at Rsm = Rsm0− (Rsm0−Rs) / X1 every reference value update period Z. Here, X1 represents the reference value update amount, and is a constant in the range of 10 <X1 <1000.

更新周期Zは、Z=C1×Vk5により求める。尚Vk5は更新周期係数であり、Zは20<Z<1000の範囲とし、その初期値を20とする。   The update cycle Z is obtained by Z = C1 × Vk5. Vk5 is an update cycle coefficient, Z is in the range of 20 <Z <1000, and its initial value is 20.

以上のように、基準値更新周期を出力に応じて変化させることにより、基準値をとるべき低濃度時に更新のタイミングが多くなり、確実に基準値をとることが可能となり、正確な検知を行うことができる。   As described above, by changing the reference value update period according to the output, the update timing increases at the low concentration when the reference value should be taken, the reference value can be taken reliably, and accurate detection is performed. be able to.

参考例3)
図4を参照しながら説明する。なお、参考例1、2と同一の部分は説明を省略する。
( Reference Example 3)
This will be described with reference to FIG. The description of the same parts as those in Reference Examples 1 and 2 is omitted.

センサ抵抗値Rsが基準値Rsm0以下の汚染方向であれば、基準値更新周期毎(前回の更新タイミングからのサンプリング回数が所定値Z以上になった場合)に、Rsm=Rsm0−(Rsm0−Rs)/Xで更新する。ここでXは基準値更新量を示し、X=C1=(Rsm−Rs)×Vspan×8/Rsmより求める。尚C1はガスセンサ1の計算出力を示す。またVspanは定数であり、Xは10<X<500の範囲とし、その初期値を10とする。   If the sensor resistance value Rs is a contamination direction equal to or less than the reference value Rsm0, Rsm = Rsm0− (Rsm0−Rs) every reference value update period (when the number of samplings from the previous update timing is equal to or greater than the predetermined value Z). ) / X. Here, X represents the reference value update amount, and is obtained from X = C1 = (Rsm−Rs) × Vspan × 8 / Rsm. C1 indicates the calculated output of the gas sensor 1. Vspan is a constant, X is in the range of 10 <X <500, and its initial value is 10.

更新周期Zは、Z=C1×Vk5により求める。尚Vk5は更新周期係数であり、Zは20<Z<1000の範囲とし、その初期値を20とする。   The update cycle Z is obtained by Z = C1 × Vk5. Vk5 is an update cycle coefficient, Z is in the range of 20 <Z <1000, and its initial value is 20.

図5(a)は本参考例による基準値更新の状態を、センサ抵抗値Rsを電圧VRLに換算し、また基準値Rsmを電圧レベル(イ)、(ロ)に換算して示しており、センサ抵抗値Rsが基準値Rsmより下降している汚染方向時、つまりガスセンサ信号レベルである電圧VRLが基準値レベルを大きく越える汚染方向の場合、すなわち、高濃度時には、ガスセンサ信号レベルに対して基準値レベルを緩やかに近づけるようにその速度をガスセンサ信号レベルに反比例させて更新している。逆にセンサ抵抗値Rsが基準値Rsmより上昇している清浄方向時、つまり電圧VRLが基準値レベルを下回っている場合には早く基準値レベルを電圧VRLに近づくように更新している。図5(b)は、その時の汚染度出力を示している。図に示すように汚染度の変化を正確に検知することが可能となる。
FIG. 5A shows the state of the reference value update according to this reference example, in which the sensor resistance value Rs is converted into the voltage VRL, and the reference value Rsm is converted into the voltage levels (A) and (B). When the sensor resistance value Rs is lower than the reference value Rsm in the contamination direction, that is, when the gas sensor signal level voltage VRL is in a contamination direction that greatly exceeds the reference value level , that is, when the concentration is high , the gas sensor signal level Thus, the speed is updated in inverse proportion to the gas sensor signal level so that the reference value level approaches gradually. Conversely, when the sensor resistance value Rs is higher than the reference value Rsm in the cleaning direction, that is, when the voltage VRL is lower than the reference value level, the reference value level is updated so as to approach the voltage VRL earlier. FIG. 5B shows the contamination level output at that time. As shown in the figure, it is possible to accurately detect a change in the degree of contamination.

以上のように、基準値更新の更新量と更新周期を出力に応じて変化させることにより、更新誤差が少なく、かつ確実に基準値をとることが可能となる。   As described above, by changing the update amount and update cycle of the reference value update according to the output, it is possible to reduce the update error and reliably take the reference value.

(実施例
図6、7を参照しながら説明する。なお、参考例1、2、3と同一の部分は説明を省略する。
(Example 1 )
This will be described with reference to FIGS. The description of the same parts as those in Reference Examples 1, 2, and 3 is omitted.

図6は本発明の実施例の全体構成を示しており図6、図6において金属酸化物半導体ガスセンサ(以下ガスセンサと省略する)1は負荷抵抗回路を介してバッテリーなどの直流電源3に接続してある。4はガスセンサ1に設けられたヒータであり、このヒータ4も直流電源3に接続してある。負荷抵抗回路は、抵抗2、抵抗15,16を後述する条件で並列接続してその合成抵抗から構成される。5は本実施例における信号処理を行うための1チップの例えば4ビットマイクロコンピュータからなる信号処理部であって、図においてはその機能をブロック化して示しており、負荷抵抗回路の両端電圧VRLをA/Dコンバータ6を介して取り込み、電圧VRLからガスセンサ1のセンサ抵抗値Rsを計算するセンサ抵抗計算部7をA/Dコンバータ6を介して取り込み、ガスセンサ信号レベルである電圧VRLから負荷抵抗値RLを切り替える負荷抵抗切り替え部14と、センサ抵抗値Rsと比較する基準値Rsmを発生させる基準値発生部8と、基準値Rsmとセンサ抵抗値Rsとの比較により汚染度を計算する汚染度計算部9と、この汚染度計算部9で計算された汚染度をアナログ値に変換するD/Aコンバータ10と、汚染度から基準値Rsmの更新量X及び更新周期Zを計算する計算部11等から構成される。
FIG. 6 shows the overall configuration of Embodiment 1 of the present invention. In FIGS. 6 and 6, a metal oxide semiconductor gas sensor (hereinafter abbreviated as a gas sensor) 1 is connected to a DC power source 3 such as a battery via a load resistance circuit. It is. Reference numeral 4 denotes a heater provided in the gas sensor 1, and this heater 4 is also connected to the DC power source 3. The load resistance circuit is composed of a combined resistance of resistors 2 and 15 and 16 connected in parallel under the conditions described later. Reference numeral 5 denotes a signal processing unit composed of, for example, a 4-bit microcomputer on a single chip for performing signal processing in this embodiment, and its function is shown in a block form in the figure, and the voltage VRL across the load resistor circuit is expressed as a block. A sensor resistance calculation unit 7 that takes in through the A / D converter 6 and calculates the sensor resistance value Rs of the gas sensor 1 from the voltage VRL is taken in through the A / D converter 6 and loads from the voltage VRL that is the gas sensor signal level. A load resistance switching unit 14 for switching RL, a reference value generating unit 8 for generating a reference value Rsm to be compared with the sensor resistance value Rs, and a pollution degree calculation for calculating a pollution degree by comparing the reference value Rsm and the sensor resistance value Rs. Unit 9, a D / A converter 10 that converts the pollution degree calculated by the pollution degree calculation unit 9 into an analog value, and the pollution degree It consists calculation unit 11 and the like for calculating the update amount X and the update period Z of standard value Rsm.

抵抗15,16は負荷抵抗切り替え部14のスイッチ素子17,18を介して抵抗2に並列接続され、抵抗2のみの時が負荷抵抗回路の両端電圧VRLが最大値となり、抵抗15を抵抗2に並列に接続した状態で電圧VRLが中間値に、両抵抗15,16を共に抵抗2に並列接続した状態で電圧VRLが最小値となるように設定される。   The resistors 15 and 16 are connected in parallel to the resistor 2 via the switch elements 17 and 18 of the load resistance switching unit 14. When only the resistor 2 is present, the voltage VRL across the load resistor circuit becomes the maximum value, and the resistor 15 is changed to the resistor 2. The voltage VRL is set to an intermediate value when connected in parallel, and the voltage VRL is set to the minimum value when both resistors 15 and 16 are connected in parallel to the resistor 2.

次に図6の回路を図7に示すフローチャートに基づいて説明する。まず、装置をスタートさせると、信号処理部5では、負荷抵抗値RL、基準値発生部8の基準値Rsmを初期設定する。ここで初期の負荷抵抗回路の抵抗値RLは抵抗2と抵抗15の並列回路の合成値となるように負荷抵抗切り替え部14の制御部19はスイッチ素子17をオンする。   Next, the circuit of FIG. 6 will be described based on the flowchart shown in FIG. First, when the apparatus is started, the signal processing unit 5 initializes the load resistance value RL and the reference value Rsm of the reference value generating unit 8. Here, the control unit 19 of the load resistance switching unit 14 turns on the switch element 17 so that the initial resistance value RL of the load resistance circuit becomes a composite value of the parallel circuit of the resistors 2 and 15.

さて初期値設定後、現在の負荷抵抗値RLによる電圧VRLを取り込み、負荷抵抗切り替え部14に設けてあるコンパレータ20,21で下限値VRLmin,上限値VRLmaxと比較して、下限値VRLminと上限値VRLmaxの間に入っているか、否かを判定し、否であれば、下限値VRLminを下回っている場合には、負荷抵抗値RLを最も高くなるように、逆に上限値VRLmaxを上回った場合には負荷抵抗値RLを最も低くなるように、負荷抵抗切り替え部14の制御部19はスイッチ素子17,18を制御する。そして負荷抵抗値RLを切り替えた後、電圧VRLを測定し、この測定値と切り替え前の測定値とに基づいて基準値発生部8の基準値補正部8cが負荷抵抗値RLの切り替え後の基準値補正量を決定して現在発生している基準値Rsmを負荷抵抗値RLに合わせて補正する。   Now, after setting the initial value, the voltage VRL based on the current load resistance value RL is taken, and compared with the lower limit value VRLmin and the upper limit value VRLmax by the comparators 20 and 21 provided in the load resistance switching unit 14, the lower limit value VRLmin and the upper limit value are compared. It is determined whether or not it is in the range of VRLmax. If not, if it is below the lower limit value VRLmin, the load resistance value RL is maximized so that it is above the upper limit value VRLmax. The control unit 19 of the load resistance switching unit 14 controls the switch elements 17 and 18 so that the load resistance value RL becomes the lowest. Then, after switching the load resistance value RL, the voltage VRL is measured, and based on this measured value and the measured value before switching, the reference value correcting unit 8c of the reference value generating unit 8 performs the reference after switching the load resistance value RL. A value correction amount is determined and the currently generated reference value Rsm is corrected according to the load resistance value RL.

一方上記の電圧VRLが、下限値VRLmin乃至上限値VRLmaxの範囲にある場合には、センサ抵抗計算部7がセンサ抵抗値Rsを電圧VRLより計算する。   On the other hand, when the voltage VRL is in the range from the lower limit value VRLmin to the upper limit value VRLmax, the sensor resistance calculation unit 7 calculates the sensor resistance value Rs from the voltage VRL.

負荷抵抗切り替えタイミングでは切り替え前に基準値更新計算を行い切り替えから例えば5秒後に下記の計算を行う。   At the load resistance switching timing, the reference value update calculation is performed before switching, and the following calculation is performed, for example, 5 seconds after switching.

Rs1≧Rsの場合(尚Rs1は切り替え直後の値を示す)
Rsm=Rs1+(Rsm−Rs)×(Rs1/Rs)
…(Rs<Rsmの場合)
Rsm=Rs1+(Rs−Rsm)×(Rs1/Rs)
…(Rs>Rsmの場合)
そしてその後Rs=Rs1とする。
When Rs1 ≧ Rs (Rs1 indicates a value immediately after switching)
Rsm = Rs1 + (Rsm−Rs) × (Rs1 / Rs)
... (when Rs <Rsm)
Rsm = Rs1 + (Rs−Rsm) × (Rs1 / Rs)
... (when Rs> Rsm)
Then, Rs = Rs1 is set.

以上のように、負荷抵抗を切り替えることにより、ガスセンサ1の抵抗値が製造のバラツキや使用中に大きく変化した場合においても、常に精度の高い検知が可能となり、負荷抵抗切り替え後に基準値の補正を行うことにより、負荷抵抗切り替えによる誤差を防止できる。   As described above, by switching the load resistance, even when the resistance value of the gas sensor 1 varies greatly during manufacturing variations or during use, highly accurate detection is always possible, and the reference value is corrected after switching the load resistance. By doing so, errors due to load resistance switching can be prevented.

ガス検出装置に関する。   The present invention relates to a gas detection device.

参考例1の全体構成図Overall configuration diagram of Reference Example 1 同動作説明用フローチャートFlow chart for explaining the operation 参考例2の動作説明用フローチャートFlow chart for explaining operation of Reference Example 2 参考例3の動作説明用フローチャートFlow chart for explaining operation of Reference Example 3 同基準値更新時の説明図Explanatory drawing when updating the standard value 本発明の実施例の全体構成図Overall configuration diagram of Embodiment 1 of the present invention 同動作説明用フローチャートFlow chart for explaining the operation 従来の基準値更新の説明図Explanatory drawing of conventional reference value update

符号の説明Explanation of symbols

1 ガスセンサ
2 抵抗
7 センサ抵抗計算部
8 基準値発生部
9 汚染度計算部
10 D/Aコンバータ
11 計算部
12 コンパレータ
13 コンパレータ
14 負荷抵抗切り替え部
15 抵抗
16 抵抗
17 スイッチ素子
18 スイッチ素子
20 コンパレータ
21 コンパレータ
DESCRIPTION OF SYMBOLS 1 Gas sensor 2 Resistance 7 Sensor resistance calculation part 8 Reference value generation part 9 Pollution degree calculation part 10 D / A converter 11 Calculation part 12 Comparator 13 Comparator 14 Load resistance switching part 15 Resistance 16 Resistance 17 Switch element 18 Switch element 20 Comparator 21 Comparator

Claims (1)

金属酸化物半導体ガスセンサ信号の現在のレベルを判定して、この現在のレベルに応じてガスセンサに直列接続される負荷抵抗値を切り替える負荷抵抗切り替え手段と、前記負荷抵抗値の変更に応じて前記ガスセンサの出力信号の基準となる基準値を、負荷抵抗切り替えの前後で前記ガスセンサ信号のレベルとの関係が変化しないように補正し負荷抵抗切り替えによる誤差を防止する基準値補正手段とを備えたことを特徴とするガス検出装置。 To determine the current level of metal oxide semiconductor gas sensor signal, and the load resistance switching means for switching the load resistance connected in series to the gas sensor in accordance with the current level, the gas sensor according to the change of the load resistance And a reference value correcting means for correcting the reference value as a reference of the output signal so that the relationship with the level of the gas sensor signal does not change before and after the load resistance switching, and preventing an error due to the load resistance switching. A gas detection device.
JP2005313983A 2005-10-28 2005-10-28 Gas detector Expired - Lifetime JP4294633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313983A JP4294633B2 (en) 2005-10-28 2005-10-28 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313983A JP4294633B2 (en) 2005-10-28 2005-10-28 Gas detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14747597A Division JP3764248B2 (en) 1997-06-05 1997-06-05 Gas detector

Publications (2)

Publication Number Publication Date
JP2006053163A JP2006053163A (en) 2006-02-23
JP4294633B2 true JP4294633B2 (en) 2009-07-15

Family

ID=36030713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313983A Expired - Lifetime JP4294633B2 (en) 2005-10-28 2005-10-28 Gas detector

Country Status (1)

Country Link
JP (1) JP4294633B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330159B2 (en) * 2009-08-31 2013-10-30 矢崎総業株式会社 Gas detector
JP6529723B2 (en) * 2014-05-19 2019-06-12 新コスモス電機株式会社 Gas alarm
US11567025B2 (en) * 2018-08-10 2023-01-31 Tdk Corporation Gas sensor

Also Published As

Publication number Publication date
JP2006053163A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP2011085470A (en) Apparatus and method for current detection
JP2741381B2 (en) Gas detector
JP4294633B2 (en) Gas detector
JP2016020818A (en) Gas detector
JPH0611477A (en) Carbon dioxide gas concentration sensing device
JP6931259B2 (en) Gas detector and gas detection method using metal oxide semiconductor gas sensor
JP3764248B2 (en) Gas detector
US20210293733A1 (en) Method for operating a gas sensor device and gas sensor device for ascertaining pieces of information about an air quality
JP3152534B2 (en) Environmental sensor
EP1544583A3 (en) Thermal type gas flow measuring instrument
JP7342674B2 (en) gas sensor
JP2010085339A (en) Zero point adjustment method of gas sensor using contact combustion type gas detection element
JP4820174B2 (en) Heater control circuit and thermal conductivity measuring device
JP5979165B2 (en) Device impedance detector for oxygen concentration sensor
JP4254270B2 (en) Thermal sensing circuit
JP3318432B2 (en) Environmental sensor output correction device
JP2007285849A (en) Gas concentration detector
JP6492931B2 (en) Output voltage measurement system
JPH11118617A (en) Temperature controller
JP7473074B2 (en) TEMPERATURE ESTIMATION METHOD, TEMPERATURE ESTIMATION PROGRAM, AND TEMPERATURE ESTIMATION DEVICE
JP4495563B2 (en) Alarm
JP2018116031A (en) Signal correction device
JP6108516B2 (en) Gas detector
JP2018077077A (en) Air-fuel ratio sensor control device
JP2000214030A (en) Pressure sensor circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term