JP2010085339A - Zero point adjustment method of gas sensor using contact combustion type gas detection element - Google Patents

Zero point adjustment method of gas sensor using contact combustion type gas detection element Download PDF

Info

Publication number
JP2010085339A
JP2010085339A JP2008256917A JP2008256917A JP2010085339A JP 2010085339 A JP2010085339 A JP 2010085339A JP 2008256917 A JP2008256917 A JP 2008256917A JP 2008256917 A JP2008256917 A JP 2008256917A JP 2010085339 A JP2010085339 A JP 2010085339A
Authority
JP
Japan
Prior art keywords
zero point
temperature
gas detection
combustion type
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256917A
Other languages
Japanese (ja)
Other versions
JP5229802B2 (en
Inventor
Haruichi Otani
晴一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2008256917A priority Critical patent/JP5229802B2/en
Publication of JP2010085339A publication Critical patent/JP2010085339A/en
Application granted granted Critical
Publication of JP5229802B2 publication Critical patent/JP5229802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correct easily a temperature-dependent change of zero point with time. <P>SOLUTION: In the zero point correction method of gas sensor using a contact combustion type gas detection element including a gas detection means 10 detecting and outputting a difference output between a contact combustion type gas detection element 11 and a compensation element 12 compensating the temperature characteristics of the sensor, a temperature detection means 70 detecting an environmental temperature, a zero point calibration means 20 calibrating the zero point of the gas detection means, a zero point adjustment means 30 adjusting a temperature change of output after the zero point calibration, a concentration computing means 50, and a concentration display means 60, an adjustment coefficient is previously calculated from the relation between the temperature change of the contact combustion type gas detection element 11 and the amount of zero point change and is stored in a temperature adjustment coefficient computing means 40, and the adjustment is carried out based on the adjustment coefficient by the zero point adjustment means 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、接触燃焼式ガス検出素子と温度補償素子とをブリッジ接続するなどしてその差分を検出信号とする検出部を用いたガス検出装置のゼロ点のドリフトを調整する技術に関する。   The present invention relates to a technique for adjusting drift of a zero point of a gas detection device using a detection unit that uses a difference as a detection signal by, for example, bridge-connecting a catalytic combustion type gas detection element and a temperature compensation element.

一般に検知素子や補償素子は、基準温度での抵抗値に個体差が存在するため、基準抵抗が対辺となるようにブリッジ接続して基準抵抗の値を調整して基準温度でブリッジバランスが取られて、ゼロガス状態で検出出力がゼロとなるように調整、つまりゼロバランスがとられている。   In general, the sensing element and compensation element have individual differences in the resistance value at the reference temperature, so that the bridge connection is adjusted by adjusting the value of the reference resistance by bridge connection so that the reference resistance is opposite to the reference temperature. Thus, adjustment is made so that the detection output becomes zero in the zero gas state, that is, zero balance is achieved.

補償素子は、検知素子の温度依存性を補正するために用いられるものではあるが、それぞれの素子での消費電力、つまり発熱量がたとえ同一であるとしても、各素子のサイズ、熱伝導率、表面の放射率の違いから、所定濃度例えばOppmでの検出信号は、環境の温度により変化、つまりドリフトを生じる。このため、温度検出素子を用いてドリフトを低減することも行われている。   Although the compensation element is used to correct the temperature dependence of the sensing element, even if the power consumption of each element, that is, the amount of heat generated is the same, the size, thermal conductivity, Due to the difference in emissivity of the surface, the detection signal at a predetermined concentration, for example, Oppm, changes, that is, drifts depending on the temperature of the environment. For this reason, drift is also reduced using a temperature detection element.

しかしながら長年の使用によりガス検知素子には、その表面に接触したガスがガス検知素子の熱により燃焼し、生成物の一部が付着して温度抵抗係数が例えば8ppm/degに変化し、結果としてゼロドリフトが生じる。
このため、この状態でたとえゼロ点を校正しても、ゼロ点の温度変化依存性は初期に比べ大きくなり、指示精度が低下してしまう問題があった。図2の例では温度変化依存性が初期(点A)の0ppm/degに対し、ゼロドリフト後(点B)はゼロ点を校正(点C)しても温度変化依存性は例えば8ppm/degのままとなる。
However, after many years of use, the gas sensing element is burned by the heat of the gas sensing element due to the heat of the gas sensing element, part of the product adheres, and the temperature resistance coefficient changes to, for example, 8 ppm / deg. Zero drift occurs.
For this reason, even if the zero point is calibrated in this state, the temperature change dependency of the zero point becomes larger than that in the initial stage, and there is a problem that the indication accuracy is lowered. In the example of FIG. 2, the temperature change dependency is 0 ppm / deg at the initial stage (point A), but after zero drift (point B), the temperature change dependency is 8 ppm / deg even if the zero point is calibrated (point C). Will remain.

一方、同一規格の接触燃焼式ガス検知素子のゼロドリフト量とゼロ点の温度変化依存性との関係を調べたところ、図5に示したように―定の関係が在ることが判った。   On the other hand, as a result of examining the relationship between the zero drift amount of the catalytic combustion type gas detection element of the same standard and the temperature change dependency of the zero point, it was found that there is a certain relationship as shown in FIG.

本発明はこのような事情に鑑みてなされたものであって、その目的とするところは補償素子以外に感温素子を有する構成において、事前に調べたゼロドリフト量と温度変化依存性との関係式、又はテーブルから温度補償係数を補正することが可能であるとの知見に基づいて接触燃焼式ガス検出素子を使用したガス検出装置のゼロ点の経時的な温度依存性の変化を簡易的に補正する方法を提案することである。   The present invention has been made in view of such circumstances, and the object of the present invention is the relationship between the zero drift amount examined in advance and the temperature change dependency in a configuration having a temperature sensing element in addition to the compensation element. Based on the knowledge that it is possible to correct the temperature compensation coefficient from the equation or table, the change in temperature dependence of the zero point of the gas detection device using the catalytic combustion type gas detection element over time can be simplified. It is to propose a correction method.

このような課題を達成するために本発明においては、接触燃焼式ガス検出素子と当該センサの温度特性を補償する補償素子との差分出力を検出出力とするガス検出手段と、環境温度を検出する温度検出手段と、ガス検出手段のゼロ点を校正するゼロ点校正手段と、ゼロ点校正後の出力の温度変化を補正するゼロ点補正手段と、濃度演算手段と、濃度表示手段とを備えた接触燃焼式ガス検出素子を使用したガス検出装置のゼロ点補正方法において、温度変化とゼロ点変化量との関係から予め補正係数を算出して温度補正係数演算手段に格納しておき、前記ゼロ点補正手段で前記補正係数により補正するようにした。   In order to achieve such a problem, in the present invention, a gas detection means for detecting a differential output between a catalytic combustion type gas detection element and a compensation element for compensating the temperature characteristic of the sensor, and an environmental temperature are detected. A temperature detection means, a zero point calibration means for calibrating the zero point of the gas detection means, a zero point correction means for correcting a temperature change of the output after the zero point calibration, a concentration calculation means, and a concentration display means In the zero point correction method of the gas detection device using the catalytic combustion type gas detection element, a correction coefficient is calculated in advance from the relationship between the temperature change and the zero point change amount, and is stored in the temperature correction coefficient calculation means. Correction is made by the correction coefficient by the point correction means.

本発明によればゼロ点調整後に接触燃焼式ガス検出素子の特性が変化しても、予め特定されている温度変化量とゼロ点変化量との関係に基づいて温度変化に起因するゼロドリフトを容易に補正することができる。   According to the present invention, even if the characteristics of the catalytic combustion type gas detection element change after the zero point adjustment, the zero drift caused by the temperature change is reduced based on the relationship between the temperature change amount specified in advance and the zero point change amount. It can be easily corrected.

そこで以下に本発明の詳細を図示した実施例に基づいて説明する。
図1は、本発明の一実施例を示すものであって、検出部10は、接触燃焼式ガス検知素子11と補償素子12とを直列に接続し、またこれらの対辺側には2つの基準抵抗13、14を接続してそれぞれの接続点を検出端子とし、接触燃焼式ガス検知素子11と補償素子12との差分信号を検出信号として出力するように構成されている。
なお、端子15,16は、定電圧源または定電流源からなる駆動電源に接続されている。
Therefore, details of the present invention will be described below based on the illustrated embodiment.
FIG. 1 shows an embodiment of the present invention, in which a detection unit 10 has a catalytic combustion type gas detection element 11 and a compensation element 12 connected in series, and two reference sides on these opposite sides. The resistors 13 and 14 are connected to each other as a detection terminal, and a differential signal between the catalytic combustion type gas detection element 11 and the compensation element 12 is output as a detection signal.
Note that the terminals 15 and 16 are connected to a driving power source including a constant voltage source or a constant current source.

検出部10からの検出信号は、ゼロ点校正手段20により所定時点でゼロ点が調整されてゼロ点補正手段30に出力している。ゼロ点補正手段30は、後述する温度補正係数演算手段40からの信号に基づいて温度変化に起因する検出信号のゼロ点の温度変化分を補正して濃度演算手段50を経由して濃度表示手段60に出力されている。   The detection signal from the detection unit 10 is output to the zero point correction unit 30 after the zero point is adjusted at a predetermined time by the zero point calibration unit 20. The zero point correction means 30 corrects the temperature change at the zero point of the detection signal caused by the temperature change based on the signal from the temperature correction coefficient calculation means 40 described later, and the density display means via the density calculation means 50 Output to 60.

温度補正係数演算手段40は、環境温度検出手段70からの温度信号に基づいてゼロ点変化量演算手段80で算出された温度変化量に対応するゼロ点変化量を算出する。   The temperature correction coefficient calculation means 40 calculates a zero point change amount corresponding to the temperature change amount calculated by the zero point change amount calculation means 80 based on the temperature signal from the environmental temperature detection means 70.

この実施例において、装置を設置した時点(図2の点A)でゼロ点校正手段20によりゼロ点の初期補正を行うと、この時の調整量aがゼロ点調整量記憶手段90に格納される。ゼロ点が補正された検出信号はゼロ点補正手段30を経由して濃度演算手段50により濃度に変換され濃度表示手段60に出力されて濃度として表示される(図3)。   In this embodiment, when the zero point is initially corrected by the zero point calibration means 20 at the time of installation of the apparatus (point A in FIG. 2), the adjustment amount a at this time is stored in the zero point adjustment amount storage means 90. The The detection signal whose zero point has been corrected is converted into a density by the density calculating means 50 via the zero point correcting means 30, and is output to the density display means 60 and displayed as a density (FIG. 3).

一方、環境温度の変化により接触燃焼式ガス検出素子11と補償素子12と形状や表面性状の相違により一時的に温度差が生じたとしても、これに伴うゼロ点のドリフト分は、環境温度検出手段70からの信号により補正され、ガス濃度に対応した検出信号が出力される。   On the other hand, even if there is a temporary temperature difference due to differences in shape and surface properties between the catalytic combustion type gas detection element 11 and the compensation element 12 due to changes in the environmental temperature, the drift of the zero point associated with this will be detected The detection signal corresponding to the gas concentration is output after being corrected by the signal from the means 70.

他方、長時間の使用により接触燃焼式ガス検知素子11にガス成分が付着すると、温度抵抗特性が変動するため環境温度検出手段70からの信号だけではゼロ点が補正できず、ゼロ点のドリフトが発生し、ゼロ点の温度変化依存性は初期状態に比較して大きくなる。   On the other hand, if a gas component adheres to the catalytic combustion type gas detection element 11 due to long-term use, the temperature resistance characteristic fluctuates, so the zero point cannot be corrected only with the signal from the environmental temperature detection means 70, and the zero point drift does not occur. It occurs, and the temperature change dependency of the zero point becomes larger than that in the initial state.

このゼロ点のドリフトが確認された時点で、ユーザがゼロ点校正手段によりゼロ点の校正を行うと、調整れたドリフト量bがゼロ点調整量記憶手段90に格納される。温度補正係数演算手段40は、基準時点(装置を設置した時点)から現時点(図2の点B)までの調整量a+b(例えば濃度換算で2000ppm)に対応する予め求めておいたゼロ点温度依存量(図2の点C)8ppm/degを予め計算された関係式や辞書を使用して読み出す(図4)。   When the zero point drift is confirmed and the user calibrates the zero point by the zero point calibration unit, the adjusted drift amount b is stored in the zero point adjustment amount storage unit 90. The temperature correction coefficient calculation means 40 is a zero point obtained in advance corresponding to the adjustment amount a + b (for example, 2000 ppm in terms of concentration) from the reference time (when the device is installed) to the current time (point B in FIG. 2). The temperature dependent amount (point C in FIG. 2) 8 ppm / deg is read out using a previously calculated relational expression or dictionary (FIG. 4).

検出信号は、温度補正係数演算手段40からのゼロ点温度依存量(8ppm/deg)に基づいてゼロ点補正手段30によりゼロ点の温度依存分が補正され、濃度演算手段50により濃度に変換され濃度表示手段60に出力されてゼロ点が補正された濃度として表示される。   Based on the zero point temperature dependency amount (8 ppm / deg) from the temperature correction coefficient calculation means 40, the detection signal is corrected for the temperature dependency of the zero point by the zero point correction means 30, and converted into a concentration by the concentration calculation means 50. It is output to the density display means 60 and displayed as a density with the zero point corrected.

これにより、たとえ環境温度の急激な変化により接触燃焼式ガス検知素子11の温度が一時的に変化してもゼロ点のドリフトが自動的に修正される。   As a result, even if the temperature of the catalytic combustion gas detection element 11 changes temporarily due to a rapid change in the environmental temperature, the zero point drift is automatically corrected.

なお、上述の実施例においては接触燃焼式ガス検知素子11と補償素子12との接続点から検出信号を取り出しているが、接触燃焼式ガス検知素子11及び補償素子12にそれぞれ基準抵抗を接続しその接続点を検出信号の出力端子とするものに適用しても同様の作用を奏する。   In the above-described embodiment, the detection signal is extracted from the connection point between the catalytic combustion gas detection element 11 and the compensation element 12, but a reference resistance is connected to each of the catalytic combustion gas detection element 11 and the compensation element 12. Even if the connection point is used as an output terminal of a detection signal, the same effect is obtained.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 本発明の動作を示す説明図である。It is explanatory drawing which shows operation | movement of this invention. 本発明の初期時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the initial stage of this invention. 本発明のゼロドリフトが発生した時点の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the zero drift generate | occur | produced of this invention. ドリフト量と温度依存性の関係を示す線図である。It is a diagram which shows the relationship between drift amount and temperature dependence.

符号の説明Explanation of symbols

10 検出部 11 接触燃焼式ガス検知素子 12 補償素子 13、14 基準抵抗   10 Detector 11 Catalytic combustion gas detector 12 Compensator 13 and 14 Reference resistance

Claims (1)

接触燃焼式ガス検出素子と当該センサの温度特性を補償する補償素子との差分出力を検出出力とするガス検出手段と、環境温度を検出する温度検出手段と、ガス検出手段のゼロ点を校正するゼロ点校正手段と、ゼロ点校正後の出力の温度変化を補正するゼロ点補正手段と、濃度演算手段と、濃度表示手段とを備えた接触燃焼式ガス検出素子を使用したガス検出装置のゼロ点補正方法において、
前記接触燃焼式ガス検出素子の温度変化とゼロ点変化量との関係から予め補正係数を算出して温度補正係数演算手段に格納しておき、前記ゼロ点補正手段により前記補正係数に基づいて補正することを特徴とする接触燃焼式ガス検出素子を使用したガス検出装置のゼロ点調整方法。
A gas detection means that outputs a differential output between a catalytic combustion type gas detection element and a compensation element that compensates the temperature characteristic of the sensor, a temperature detection means that detects an environmental temperature, and a zero point of the gas detection means are calibrated. Zero of a gas detection device using a contact combustion type gas detection element comprising a zero point calibration means, a zero point correction means for correcting a temperature change of the output after the zero point calibration, a concentration calculation means, and a concentration display means In the point correction method,
A correction coefficient is calculated in advance from the relationship between the temperature change of the catalytic combustion type gas detection element and the amount of change in the zero point, stored in the temperature correction coefficient calculating means, and corrected based on the correction coefficient by the zero point correction means. A zero point adjustment method for a gas detection device using a catalytic combustion type gas detection element.
JP2008256917A 2008-10-02 2008-10-02 Gas detector Expired - Fee Related JP5229802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256917A JP5229802B2 (en) 2008-10-02 2008-10-02 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256917A JP5229802B2 (en) 2008-10-02 2008-10-02 Gas detector

Publications (2)

Publication Number Publication Date
JP2010085339A true JP2010085339A (en) 2010-04-15
JP5229802B2 JP5229802B2 (en) 2013-07-03

Family

ID=42249429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256917A Expired - Fee Related JP5229802B2 (en) 2008-10-02 2008-10-02 Gas detector

Country Status (1)

Country Link
JP (1) JP5229802B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062209A (en) * 2010-11-15 2011-05-18 奇瑞汽车股份有限公司 Self-adaptive control method and device for eliminating drifting of sensor
US20150090002A1 (en) * 2013-10-01 2015-04-02 Lg Innotek Co., Ltd. Gas sensor package
JP2015224892A (en) * 2014-05-26 2015-12-14 理研計器株式会社 Gas detector
US11262265B2 (en) 2019-03-22 2022-03-01 Seiko Epson Corporation Temperature correction device, sensor module, and temperature correction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281477A (en) * 1993-03-25 1994-10-07 Shimadzu Corp Continuous analysis device
JPH09236258A (en) * 1996-02-29 1997-09-09 Harman Co Ltd Device for calibrating unburned component concentration detector for combustion equipment
JP2007010594A (en) * 2005-07-04 2007-01-18 Ngk Spark Plug Co Ltd Catalytic combustion type gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281477A (en) * 1993-03-25 1994-10-07 Shimadzu Corp Continuous analysis device
JPH09236258A (en) * 1996-02-29 1997-09-09 Harman Co Ltd Device for calibrating unburned component concentration detector for combustion equipment
JP2007010594A (en) * 2005-07-04 2007-01-18 Ngk Spark Plug Co Ltd Catalytic combustion type gas sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062209A (en) * 2010-11-15 2011-05-18 奇瑞汽车股份有限公司 Self-adaptive control method and device for eliminating drifting of sensor
WO2012065386A1 (en) * 2010-11-15 2012-05-24 奇瑞汽车股份有限公司 Self-adaptive control method for eliminating sensor drift and device thereof
RU2534847C1 (en) * 2010-11-15 2014-12-10 Чери Автомобиль Ко., Лтд. Method for self-adaptive control for elimination of sensor drift and device for specified method implementation
US20150090002A1 (en) * 2013-10-01 2015-04-02 Lg Innotek Co., Ltd. Gas sensor package
US9618490B2 (en) * 2013-10-01 2017-04-11 Lg Innotek Co., Ltd. Gas sensor package
JP2015224892A (en) * 2014-05-26 2015-12-14 理研計器株式会社 Gas detector
US11262265B2 (en) 2019-03-22 2022-03-01 Seiko Epson Corporation Temperature correction device, sensor module, and temperature correction method

Also Published As

Publication number Publication date
JP5229802B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
US7651263B2 (en) Method and apparatus for measuring the temperature of a gas in a mass flow controller
KR102234155B1 (en) System and method for correcting current value of shunt resistor
US8874387B2 (en) Air flow measurement device and air flow correction method
JP5563507B2 (en) Gas detector
JP5229802B2 (en) Gas detector
JP6344101B2 (en) Gas detector
CN105572191A (en) Pressure compensation method of electrochemical gas sensor
JP2011209152A (en) Flowmeter
US11740175B2 (en) Method and device for compensating temperature gradient effects
US6843100B2 (en) Thermal conductivity measurement of carbon dioxide gas with relative humidity and temperature compensation
KR100959829B1 (en) Temperature-compensated gas measurement apparatus for nano device gas sensor and method thereof
CN108303151B (en) Measurement of a fluid parameter and sensor device for the measurement of a fluid parameter
EP1544583A3 (en) Thermal type gas flow measuring instrument
US20160003757A1 (en) Gas measurement device and measurement method thereof
JP2007285849A (en) Gas concentration detector
JP4810264B2 (en) Concentration measuring device
JP5844556B2 (en) Method for correcting output of heat conduction type gas sensor and gas detector
JP2010181228A (en) Temperature measuring device
JPH07260730A (en) Environment sensor output correction device
JPH11118617A (en) Temperature controller
JP2004085489A (en) Thermal flowmeter
JP5511120B2 (en) Gas concentration detector
US20170131250A1 (en) Device and method for detecting a gas component
JP2005043296A (en) Thermogravimetry
CN111562360B (en) Temperature compensation alcohol detection method and alcohol detection instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees