JPH06281477A - Continuous analysis device - Google Patents

Continuous analysis device

Info

Publication number
JPH06281477A
JPH06281477A JP9205193A JP9205193A JPH06281477A JP H06281477 A JPH06281477 A JP H06281477A JP 9205193 A JP9205193 A JP 9205193A JP 9205193 A JP9205193 A JP 9205193A JP H06281477 A JPH06281477 A JP H06281477A
Authority
JP
Japan
Prior art keywords
temperature
gas
measurement
correction coefficient
measured value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9205193A
Other languages
Japanese (ja)
Inventor
Shingo Sumi
心吾 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9205193A priority Critical patent/JPH06281477A/en
Publication of JPH06281477A publication Critical patent/JPH06281477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To appropriately correct the variation of a measured value, and also appropriately calibrate a temperature correction factor itself, and thereby obtain an accurate measured value at all times by providing the device with a correction factor calibration means calibrating a temperature correction factor stored in a correction factor memory means. CONSTITUTION:Gas concentration at a gas analysis section 20 or the temperature of sample gas is measured. A temperature sensor 24 also transmits a signal corresponding to the measured temperature to a control section 22. In the control section 22, these signals are converted into digital data by means of amplifiers 23 and 24 and A/D converters 25 and 26 provided for these sensors respectively so as to be inputted to a CPU 28. The CPU 28 consisting of a microcomputer, computes a correct measured value, that is, a corrected measured value from the data of an analysis section by operating on data in accordance with a specified program stored in a memory section 29, so as to output the resultant to an output section 27. In the case of zero-span calibration which is appropriately performed, a temperature correction parameter used for correction at the time of measurement is calibrated. By this constitution, an accurate measured value can thereby be obtained at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、時間的に連続に測定を
行なう各種の分析装置(例えば、連続ガス分析装置や連
続水分析装置等)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various analyzers (for example, continuous gas analyzers, continuous water analyzers, etc.) for continuous measurement in time.

【0002】[0002]

【従来の技術】連続ガス分析装置は、燃焼炉からの排ガ
スや雰囲気調整炉からのサンプリングガス等、各種ガス
の濃度を連続的に測定する(一定時間毎に間欠的に測定
する場合を含む)ために広く用いられている。連続ガス
分析装置は、測定対象ガスの種類(例えばCO、CO
2、NO等)やその濃度レベルに応じて種々の原理、形
式のものが用いられるが、多くの分析装置において、サ
ンプルガスの温度や分析部(或いはセンサ)の温度によ
り測定値が変動するという問題がある。このような温度
による測定値の変動を抑えるため、従来より、 (1)測定を行なうセンサ自体を温度変化の少ないもの
に変更する (2)分析部全体を恒温槽に入れる (3)分析部(又は被測定ガス)の温度に対する測定値
出力の変動を予め測定して補正係数等をメモリに格納し
ておき、測定時にその補正係数を用いて補正する 等の方法が用いられている。
2. Description of the Related Art A continuous gas analyzer continuously measures the concentration of various gases such as exhaust gas from a combustion furnace and sampling gas from an atmosphere control furnace (including the case of intermittent measurement at regular intervals). Widely used for. The continuous gas analyzer is a type of gas to be measured (for example, CO, CO
(2, NO, etc.) and various principles and types are used depending on the concentration level, but in many analyzers, the measured value varies depending on the temperature of the sample gas or the temperature of the analysis unit (or sensor). There's a problem. In order to suppress the fluctuation of the measured value due to such temperature, conventionally, (1) the sensor itself for performing the measurement is changed to a sensor with a small temperature change (2) the whole analysis unit is placed in a thermostatic chamber (3) the analysis unit ( Alternatively, a method is used in which the variation of the measured value output with respect to the temperature of the (measured gas) is measured in advance, the correction coefficient and the like are stored in the memory, and the correction coefficient is used during the measurement.

【0003】[0003]

【発明が解決しようとする課題】上記(1)の方法は、
要求される測定レベルによっては、そのようなセンサが
存在しない場合がある。(2)の方法は、大きな保温槽
や温度調節のための制御機構等が必要になるため、分析
装置全体が非常に大きくなると共に、コストアップが大
きい。また、分析部の温度が安定するまで時間がかかる
という問題もある。(3)の方法では、個々の装置によ
って温度−出力特性が変化する場合には、装置毎に補正
係数を求めなければならず、また、装置の特性が経年変
化するような場合には対応することができないという問
題がある。
The method of (1) above is
Depending on the required measurement level, such a sensor may not exist. The method (2) requires a large heat-retaining tank, a control mechanism for adjusting the temperature, and the like, so that the entire analyzer becomes very large and the cost increases. There is also a problem that it takes time until the temperature of the analysis unit stabilizes. In the method of (3), when the temperature-output characteristic changes depending on each device, the correction coefficient must be calculated for each device, and it corresponds to the case where the device characteristics change over time. There is a problem that you can not.

【0004】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、簡単な
構成でありながら、分析部や被測定物の温度変化に起因
する測定値の変化を温度補正係数により適切に補正し、
しかも、分析装置の個体差や経年変化等に対応してその
温度補正係数自体を適宜校正して、常に正しい測定値を
求めることのできる連続分析装置を提供することにあ
る。
The present invention has been made to solve such a problem, and an object thereof is to provide a measurement value due to a temperature change of an analysis part or an object to be measured, although it has a simple structure. Change of temperature is corrected properly by temperature correction coefficient,
Moreover, it is an object of the present invention to provide a continuous analysis apparatus capable of always obtaining a correct measurement value by appropriately calibrating the temperature correction coefficient itself in response to individual differences of the analysis apparatus, aging, and the like.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る連続分析装置は、図1に示すよ
うに、 a)被測定物の測定を行ない、原測定値を出力する分析部
11と、 b)分析部11の温度を測定し、温度測定値を出力する温
度測定手段12と、 c)温度補正係数を記憶する補正係数記憶手段14と、 d)補正係数記憶手段14に記憶されている温度補正係数
を用いて、温度測定手段12から出力される温度測定値
に基づき、分析部11から出力される原測定値を補正し
て補正測定値を算出する分析値算出手段15と、 e)ゼロ・スパン試料測定時に分析部11から出力される
原測定値、温度測定手段12から出力される温度測定値
及び該ゼロ・スパン試料の既知の濃度値に基づき、補正
係数記憶手段14に記憶されている温度補正係数を校正
する補正係数校正手段13と、 を備えることを特徴としている。
As shown in FIG. 1, a continuous analyzer according to the present invention, which has been made to solve the above problems, a) measures an object to be measured and outputs an original measured value. Analysis unit 11, which b) measures the temperature of the analysis unit 11 and outputs a temperature measurement value, c) a correction coefficient storage unit 14 which stores a temperature correction coefficient, and d) a correction coefficient storage unit. Using the temperature correction coefficient stored in 14, the original measurement value output from the analysis unit 11 is corrected based on the temperature measurement value output from the temperature measuring unit 12 to calculate the corrected measurement value. Means 15, and e) a correction coefficient based on the original measurement value output from the analysis unit 11 at the time of measuring the zero-span sample, the temperature measurement value output from the temperature measuring means 12, and the known concentration value of the zero-span sample. Temperature correction member stored in the storage means 14 It is characterized in that it comprises a correction coefficient calibration unit 13 for calibrating.

【0006】[0006]

【作用】分析部11で測定を行なう際、温度測定手段1
2は分析部11の温度を測定する。分析部11から出力
される原測定値と温度測定手段12から出力される温度
測定値は、共に分析値算出手段15に入力される。分析
部11から出力される原測定値及び温度測定手段12か
ら出力される温度測定値は、補正係数校正手段13にも
送られる。分析値算出手段15は、補正係数記憶手段1
4に記憶されている温度補正係数と、温度測定手段12
からの温度測定値に基づき、分析部11からの原測定値
を補正して、補正測定値を算出する。以上が通常の測定
の際の動作である。
When the measurement is performed by the analysis unit 11, the temperature measuring means 1
2 measures the temperature of the analysis unit 11. The original measurement value output from the analysis unit 11 and the temperature measurement value output from the temperature measurement unit 12 are both input to the analysis value calculation unit 15. The original measurement value output from the analysis unit 11 and the temperature measurement value output from the temperature measurement unit 12 are also sent to the correction coefficient calibration unit 13. The analysis value calculation means 15 is the correction coefficient storage means 1
4, the temperature correction coefficient and the temperature measuring means 12
The original measurement value from the analysis unit 11 is corrected on the basis of the temperature measurement value from the above to calculate a corrected measurement value. The above is the operation during normal measurement.

【0007】補正係数校正手段13は、適宜行なわれる
ゼロ・スパン校正において、補正係数記憶手段14に記
憶されている温度補正係数を校正する。すなわち、測定
対象成分を含まないガスであるゼロガス及びスパンガス
(測定濃度範囲のほぼ上限の既知の濃度の測定対象成分
を含む標準ガス)を分析部11において適宜測定する際
に、補正係数校正手段13は分析部11から出力される
原測定値を既知の濃度値(ゼロガスのゼロ濃度、スパン
ガスの既知濃度)と比較し、その結果に基づいてその温
度(温度測定手段12で測定される温度)における温度
補正係数を校正する。また、必要に応じて、全温度範囲
にわたる温度補正係数の校正を行なう。
The correction coefficient calibrating means 13 calibrates the temperature correction coefficient stored in the correction coefficient storing means 14 in the zero-span calibration which is appropriately performed. That is, when the zero gas and the span gas (the standard gas containing the measurement target component having a known concentration at the upper limit of the measurement concentration range), which are gases that do not contain the measurement target component, are appropriately measured by the analysis unit 11, the correction coefficient calibration means 13 Compares the original measurement value output from the analysis unit 11 with a known concentration value (zero gas zero concentration, span gas known concentration), and at that temperature (temperature measured by the temperature measuring means 12) based on the result. Calibrate the temperature correction factor. Further, if necessary, the temperature correction coefficient is calibrated over the entire temperature range.

【0008】[0008]

【実施例】本発明の一実施例である連続ガス分析計を図
2〜図5により説明する。本実施例の連続ガス分析計は
図2に示すように、ガス分析部20と制御部22とで構
成される。ガス分析部20はサンプルガスを導入し、そ
こに含まれる測定対象成分(例えば一酸化窒素NOガ
ス)の濃度測定を行なって、濃度測定値に対応した信号
を制御部22に送る。ガス分析部20には温度センサ2
4が取り付けられており、ガス分析部20における濃度
センサ(図示せず)又はサンプルガスの温度を測定す
る。温度センサ24も測定温度に対応した信号を制御部
22に送る。
EXAMPLE A continuous gas analyzer according to an example of the present invention will be described with reference to FIGS. As shown in FIG. 2, the continuous gas analyzer of this embodiment is composed of a gas analyzer 20 and a controller 22. The gas analysis unit 20 introduces the sample gas, measures the concentration of the measurement target component (for example, nitric oxide NO gas) contained therein, and sends a signal corresponding to the measured concentration value to the control unit 22. The gas sensor 20 includes a temperature sensor 2
4 is attached to measure the temperature of a concentration sensor (not shown) or sample gas in the gas analysis unit 20. The temperature sensor 24 also sends a signal corresponding to the measured temperature to the control unit 22.

【0009】制御部22では、これらの信号をそれぞれ
に設けたアンプ23、24及びA/D変換器25、26
によりデジタルデータ(以下、ガス分析部20からの信
号がA/D変換されたデータを分析部データ、温度セン
サ24からの信号がA/D変換されたデータを温度デー
タと呼ぶ)に変換し、CPU28に入力する。CPU2
8はマイコンにより構成されており、記憶部29に記憶
されている所定のプログラムに従って以下のようなデー
タ処理を行なうことにより、分析部データから正しい測
定値(補正測定値)を算出し、出力部27に出力する。
また、適宜行なわれるゼロ・スパン校正の際は、その測
定時の補正に用いる温度補正パラメータの校正を行な
う。出力部27は、記録計等に記録させるため、アナロ
グ出力(DC0〜1V又はDC2〜20mA等)を出力
する。
In the control section 22, the amplifiers 23 and 24 and the A / D converters 25 and 26 respectively provided with these signals are provided.
Is converted into digital data (hereinafter, the data obtained by A / D conversion of the signal from the gas analysis unit 20 is referred to as analysis unit data, and the data obtained by A / D conversion of the signal from the temperature sensor 24 is referred to as temperature data). Input to the CPU 28. CPU2
Reference numeral 8 denotes a microcomputer, which performs the following data processing according to a predetermined program stored in the storage unit 29 to calculate a correct measurement value (correction measurement value) from the analysis unit data and output the output unit. To 27.
Further, in the zero / span calibration that is appropriately performed, the temperature correction parameter used for the correction during the measurement is calibrated. The output unit 27 outputs an analog output (DC 0 to 1 V or DC 2 to 20 mA or the like) for recording on a recorder or the like.

【0010】CPU28が行なう処理を図3及び図4の
フローチャートにより説明する。まず制御部22は、分
析装置が現在、測定モードで動作しているか校正モード
で動作しているかを、操作部31におけるスイッチの状
態又は記憶部29内のフラグの状態をチェックすること
により判定する(ステップS1)。測定モードである場
合にはステップS2以降に進む。
The processing performed by the CPU 28 will be described with reference to the flowcharts of FIGS. First, the control unit 22 determines whether the analyzer is currently operating in the measurement mode or the calibration mode by checking the state of the switch in the operation unit 31 or the state of the flag in the storage unit 29. (Step S1). If it is in the measurement mode, the process proceeds to step S2 and thereafter.

【0011】測定モードでは、CPU28はまずガス分
析部20から分析部データxを入力する(ステップS
2)とともに、温度センサ24から温度データTを入力
する(ステップS3)。そして、記憶部29内のRAM
より温度補正用の4個のパラメータa(T)、b(T)、
α、βを読み出し、以下の式にそれらの値を代入するこ
とにより、温度補正を行なった測定値(補正測定値)y
を算出する(ステップS4)。 y=α・a(T)・f(x)+(b(T)+β) …(1)
In the measurement mode, the CPU 28 first inputs the analysis part data x from the gas analysis part 20 (step S).
At the same time, the temperature data T is input from the temperature sensor 24 (step S3). And the RAM in the storage unit 29
More four parameters for temperature correction a (T), b (T),
By reading out α and β and substituting these values in the following equation, the temperature-corrected measured value (corrected measured value) y
Is calculated (step S4). y = α ・ a (T) ・ f (x) + (b (T) + β) (1)

【0012】式(1)の意味は次の通りである。測定対象
成分が含まれていない(濃度y=0の)ゼロガスを測定
したときにガス分析部20から出力される分析部データ
をxa0とし、濃度yのサンプルガスを測定したときにガ
ス分析部20から出力される分析部データをxaとす
る。xa−xa0=xと変換することにより分析部データ
xaをゼロガス測定時の分析部データxa0に対する差x
に置き換え、濃度yと差分データx(以下、これを単に
分析部データと呼ぶ)との関係を y=f(x) …(2) と置く。ところが、ガス分析部20の特性により、ガス
分析部20が出力する測定値は、同一濃度yのガスを測
定しても、その温度Tにより変動する。そのため、温度
による測定値出力の変化を補正するためのパラメータ
(温度Tの関数)a(T)及びb(T)を式(2)に導入し
て、 y=a(T)・f(x)+b(T) …(3) とする。このa(T)、b(T)は第1次的に温度補正を行
なうためのパラメータであり、本分析装置が使用される
温度範囲内の各温度Tに対して、テーブル又は関数の形
で予め定められる。a(T)、b(T)は最初は装置の製造
時にEEPROM(記憶部29に含まれる)に書き込ま
れる等により初期値が供給されるが、後述するように、
その後適宜、比較的長い時間間隔で、各分析装置の固体
差や経年変化に応じて変更される。
The meaning of the equation (1) is as follows. The analysis unit data output from the gas analysis unit 20 when measuring a zero gas that does not contain the component to be measured (concentration y = 0) is xa0, and when the sample gas having a concentration y is measured, the gas analysis unit 20 Let xa be the analysis unit data output from. By converting xa−xa0 = x, the difference x between the analysis part data xa and the analysis part data xa0 at the time of zero gas measurement is obtained.
And the relationship between the density y and the difference data x (hereinafter, simply referred to as analysis portion data) is expressed as y = f (x) (2). However, due to the characteristics of the gas analysis unit 20, the measurement value output by the gas analysis unit 20 varies depending on the temperature T even when the gas having the same concentration y is measured. Therefore, the parameters (function of temperature T) a (T) and b (T) for correcting the change in the measured value output due to temperature are introduced into the equation (2) to obtain y = a (T) · f (x ) + B (T) ... (3). These a (T) and b (T) are parameters for the primary temperature correction, and for each temperature T within the temperature range in which this analyzer is used, in the form of a table or a function. Predetermined. Initially, a (T) and b (T) are supplied with initial values by being written in an EEPROM (included in the storage unit 29) when the device is manufactured.
After that, it is appropriately changed at relatively long time intervals in accordance with the individual difference and aging of each analyzer.

【0013】α及びβは温度Tに依存しないパラメータ
であり、a(T)、b(T)による温度補正を更に時間的に
きめ細かく補正するために用いられる2次的補正パラメ
ータである。すなわち、a(T)、b(T)が変更される迄
の間、後述の校正処理毎に(すなわち、比較的短い時間
間隔で)、その時点での分析装置のa(T)、b(T)によ
る温度補正からのズレを更に補正するために用いられ
る。従って、式(1)は、比較的長い間隔で更新される、
温度的にきめ細かく補正するための1次的補正パラメー
タa(T)、b(T)に、比較的短い間隔で更新される、時
間的にきめ細かく補正するための2次的補正パラメータ
α、βを加味した補正式として定められている。
Α and β are parameters that do not depend on the temperature T, and are secondary correction parameters used for further finely correcting the temperature correction by a (T) and b (T). That is, until a (T) and b (T) are changed, a (T) and b (of the analyzer at that time are measured every calibration processing described later (that is, at relatively short time intervals). It is used to further correct the deviation from the temperature correction by T). Therefore, equation (1) is updated at relatively long intervals,
Secondary correction parameters α (β) for fine correction in time, which are updated at relatively short intervals, are added to primary correction parameters a (T), b (T) for fine correction in temperature. It is defined as a correction formula with consideration.

【0014】CPU28は、ステップS4で算出した補
正測定値yを出力部27に送り、記録紙に記録したりデ
ィスプレイに表示したりする。(ステップS5)。そし
て、全ての測定が終了したか否かを判断し(ステップS
6)、未だ終了していない場合はステップS2に戻って
次の分析部データxを入力する。全ての測定が終了した
場合には、測定モードの処理を終了する。
The CPU 28 sends the corrected measurement value y calculated in step S4 to the output unit 27 to record it on recording paper or display it on a display. (Step S5). Then, it is judged whether or not all the measurements are completed (step S
6) If not finished yet, return to step S2 to input the next analysis section data x. When all the measurements have been completed, the measurement mode processing ends.

【0015】ステップS1において校正モードであると
判定されると図4のステップS11に進み、次のような
校正処理を行なう。まず、測定者がガス分析部20にゼ
ロガス及び濃度y=ym(既知)のスパンガスを流し、
測定を行なう。CPU28はガス分析部20から出力さ
れる分析部データをそれぞれx01、xm1とし、温度セン
サ24から出力される温度値をT1として入力する(ス
テップS11)。また、記憶部29のRAMに記憶され
ている現時点での1次温度補正パラメータa1(T)、b1
(T)(温度Tの関数)を読み出す(ステップS12)。
これらの値を上式(3)に代入すると、本来は、 0 =a1(T1)・f(x01)+b1(T1) ym=a1(T1)・f(xm1)+b1(T1) となるはずである(a(T)、b(T)は本来、こうなるよ
うに定められている)。ところが、分析装置の個体差や
経年変化により、装置の実際の特性はa(T)、b(T)に
よる補正よりも更にズレている場合がある。そこで、C
PU28は、現時点での温度補正パラメータa1(T1)、
b1(T1)を一応そのままにしておき、それに対してα
1、β1という2次補正パラメータを更に導入して、 0 ={a1(T1)・α1}・f(x01)+{b1(T1)+β1} …(4) ym={a1(T1)・α1}・f(xm1)+{b1(T1)+β1} …(5) となるように、α1及びβ1を定める(ステップS1
3)。これにより、ゼロ・スパン校正を行なった現時点
では、2次補正パラメータα1、β1を加味した上式(4)
又は(5)による温度補正が最も正確な測定値を導き出す
ものとなっている。
If it is determined in step S1 that the mode is the calibration mode, the process proceeds to step S11 in FIG. 4 and the following calibration process is performed. First, the measurer causes a zero gas and a span gas having a concentration y = ym (known) to flow into the gas analysis unit 20,
Take measurements. The CPU 28 inputs the analysis unit data output from the gas analysis unit 20 as x01 and xm1, respectively, and inputs the temperature value output from the temperature sensor 24 as T1 (step S11). In addition, the primary temperature correction parameters a1 (T) and b1 at the present time stored in the RAM of the storage unit 29.
(T) (function of temperature T) is read (step S12).
By substituting these values into the above equation (3), originally, 0 = a1 (T1) · f (x01) + b1 (T1) ym = a1 (T1) · f (xm1) + b1 (T1) should be obtained. There is (a (T) and b (T) are originally defined to be like this). However, the actual characteristics of the device may be further deviated from the correction by a (T) and b (T) due to individual differences of the analysis device and aging. So C
The PU 28 uses the current temperature correction parameter a1 (T1),
b1 (T1) is left as it is and α
By further introducing the secondary correction parameters of 1 and β1, 0 = {a1 (T1) · α1} · f (x01) + {b1 (T1) + β1} (4) ym = {a1 (T1) · α1 .Alpha.1 and .beta.1 are determined so that f (xm1) + {b1 (T1) +. Beta.1} (5) (step S1
3). As a result, at the present time when zero / span calibration is performed, the above equation (4) that takes into account the secondary correction parameters α1 and β1
Alternatively, the temperature correction according to (5) leads to the most accurate measurement value.

【0016】温度Tとa1(T)、b1(T)及びα1、β1の
関係を図5(a)及び(b)に示す(ただし、図5
(a)では関数a1(T)、b1(T)をそれぞれa(T)、b
(T)と表わしている)。図5(a)に示すように、a
(T)、b(T)(a1(T)、b1(T))は分析装置の使用温
度範囲の全温度Tに対して(テーブル又は関数の形で)
定められている。それに対して上述の通り温度T1にお
いてゼロガス、スパンガスの測定を行ない、測定値を真
の濃度で校正すると、温度補正パラメータはその曲線上
の点a(T1)、b(T1)には乗らず、それからやや外れた
ところに、校正された温度補正パラメータ{a(T1)・α
1}、{b(T1)+β1}がプロットされる。このα1、β1の
みを抜き出して温度Tに対してプロットしたのが図5
(b)のグラフである。
The relationship between the temperature T and a1 (T), b1 (T) and α1, β1 is shown in FIGS. 5 (a) and 5 (b) (however, FIG.
In (a), the functions a1 (T) and b1 (T) are converted into a (T) and b, respectively.
(T).) As shown in FIG.
(T), b (T) (a1 (T), b1 (T)) are (in the form of a table or a function) with respect to the total temperature T in the operating temperature range of the analyzer.
It is set. On the other hand, when the zero gas and the span gas are measured at the temperature T1 as described above and the measured value is calibrated with the true concentration, the temperature correction parameter does not ride on the points a (T1) and b (T1) on the curve, At a place slightly deviated from that, the calibrated temperature correction parameter {a (T1) · α
1} and {b (T1) + β1} are plotted. FIG. 5 shows that only α1 and β1 are extracted and plotted with respect to the temperature T.
It is a graph of (b).

【0017】CPU28は、このようにして定めたα
1、β1を温度T1とともに記憶部29のRAMに記憶さ
せる(ステップS14)。なお、校正の異常点を除去す
るために、次のような処理をここで導入してもよい。す
なわち、まずCPU28が図5(a)又は(b)のよう
なグラフを表示部30のディスプレイ上に表示する。測
定者はこのグラフを見て、今回の校正点{a1(T1)・α
1}、{b1(T1)+β1}(又はα1、β1)が、これまでの
各校正点の傾向から見て異常であるか(飛び離れていな
いか)否かをチェックし、異常点である場合には、その
点を除去する操作を操作部31から行なう。
The CPU 28 determines the α thus determined
1 and β1 are stored in the RAM of the storage unit 29 together with the temperature T1 (step S14). It should be noted that the following processing may be introduced here in order to remove the abnormal point of the calibration. That is, first, the CPU 28 displays a graph as shown in FIG. 5A or 5B on the display of the display unit 30. The measurer looks at this graph and sees this calibration point {a1 (T1) ・ α
1}, {b1 (T1) + β1} (or α1, β1) is abnormal, judging from the tendency of each calibration point up to now (whether it is not jumping), and it is an abnormal point. In that case, the operation for removing the point is performed from the operation unit 31.

【0018】次にCPU28は、1次補正パラメータa
1(T)、b1(T)を更新するか否かを測定者に尋ねる(ス
テップS15)。操作者が不要であると回答すると、校
正処理はここで終了する。従って、これ以降の測定モー
ド(図3参照)では、分析部データxに対して、今回R
AMに記憶されたa1(T)、b1(T)及びα1、β1を用い
て上記式(1)により温度補正が行なわれ、補正測定値が
算出される。
Next, the CPU 28 makes the primary correction parameter a.
The operator is asked whether or not to update 1 (T) and b1 (T) (step S15). If the operator replies that it is unnecessary, the calibration process ends here. Therefore, in the subsequent measurement modes (see FIG. 3), the R
Using a1 (T), b1 (T) and α1, β1 stored in the AM, the temperature is corrected by the above equation (1), and the corrected measured value is calculated.

【0019】校正モード(図4)のステップS15にお
いて操作者が1次補正パラメータa1(T)、b1(T)を更
新すると回答すると、CPU28は、前回それらが更新
されてから蓄積されてきたαi、βiの数が十分であるか
否かを検討する(ステップS16)。それらの数(すな
わち、前回a1(T)、b1(T)が更新されてからのゼロ・
スパン校正の回数)が所定数以下である場合には、新た
に作成されるa2(T)、b2(T)の信頼性が低くなるた
め、CPU28は更新するのは不適当と判断し、校正処
理を終了する。ステップS16において、a1(T)、b1
(T)を更新するに十分な数のαi、βiのデータが蓄積さ
れていると判断すると、それらのデータαi、βiを基に
最小自乗法等により、新たな1次温度補正パラメータa
2(T)、b2(T)を作成する。なお、このときには、α=
1、β=0とする(ステップS17)。
When the operator replies in step S15 of the calibration mode (FIG. 4) that the primary correction parameters a1 (T) and b1 (T) are to be updated, the CPU 28 stores αi accumulated since they were last updated. , Βi is examined (step S16). Those numbers (that is, zero since the last time a1 (T) and b1 (T) were updated.
If the number of span calibrations) is less than a predetermined number, the reliability of newly created a2 (T) and b2 (T) will be low, so the CPU 28 determines that updating is inappropriate and The process ends. In step S16, a1 (T), b1
When it is determined that a sufficient number of data of αi and βi for updating (T) are accumulated, a new first-order temperature correction parameter a is obtained by the least square method based on the data αi and βi.
Create 2 (T) and b2 (T). At this time, α =
1 and β = 0 are set (step S17).

【0020】[0020]

【発明の効果】本発明に係る連続分析装置では、適宜行
なうゼロ・スパン校正により、各分析装置の個体毎に異
なり、また、経年変化する分析部や被測定物の温度特性
を正確に把握し、温度補正係数を校正するため、常に正
確な測定値が得られるようになっている。しかも、恒温
槽のような大がかりな装置を使用せず、単にマイコンや
電気回路で構成した制御部を設けるのみで測定値の温度
補正を行なうことができるため、装置全体を小さくする
ことができると共に、低コストで製造することができ
る。また、あらゆる分析方法に対応することができるた
め、測定対象や要求測定レベルに応じた最適な分析方
法、分析装置をそのまま用いることができる。なお、本
発明はガス分析装置に限らず、水測定装置等、あらゆる
測定対象を連続的に測定する(一定時間毎に間欠的に測
定する場合を含む)装置に適用することができる。
With the continuous analyzer according to the present invention, the temperature characteristics of the analyzer and the object to be measured which are different for each analyzer and change over time can be accurately grasped by performing the zero-span calibration as appropriate. Since the temperature correction coefficient is calibrated, accurate measurement values are always obtained. Moreover, since the temperature of the measured value can be corrected by simply providing a control unit composed of a microcomputer and an electric circuit without using a large-scale device such as a constant temperature bath, it is possible to reduce the size of the entire device. Can be manufactured at low cost. Further, since it can be applied to any analysis method, it is possible to directly use the optimum analysis method and analysis apparatus according to the measurement target and the required measurement level. The present invention is not limited to the gas analyzer, but can be applied to an apparatus such as a water measuring apparatus that continuously measures any measurement target (including a case where intermittent measurement is performed at regular intervals).

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】 本発明の一実施例である連続ガス分析装置の
構成を示すブロック図。
FIG. 2 is a block diagram showing the configuration of a continuous gas analyzer which is an embodiment of the present invention.

【図3】 実施例の連続ガス分析装置で行なわれる測定
モード処理のフローチャート。
FIG. 3 is a flowchart of measurement mode processing performed by the continuous gas analyzer according to the embodiment.

【図4】 実施例の連続ガス分析装置で行なわれる校正
モード処理のフローチャート。
FIG. 4 is a flowchart of a calibration mode process performed by the continuous gas analyzer according to the embodiment.

【図5】 温度補正パラメータの変化の一例を示すグラ
フ。
FIG. 5 is a graph showing an example of changes in temperature correction parameters.

【符号の説明】[Explanation of symbols]

11…分析部 12…温度測定
手段 13…補正係数校正手段 14…補正係数
記憶手段 15…分析値算出手段 20…ガス分析部 22…制御部 24…温度センサ 27…出力部 28…CPU 29…記憶部 30…表示部 31…操作部
11 ... Analysis unit 12 ... Temperature measurement means 13 ... Correction coefficient calibration means 14 ... Correction coefficient storage means 15 ... Analysis value calculation means 20 ... Gas analysis section 22 ... Control section 24 ... Temperature sensor 27 ... Output section 28 ... CPU 29 ... Storage Part 30 ... Display part 31 ... Operation part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a)被測定物の測定を行ない、原測定値を
出力する分析部と、 b)分析部の温度を測定し、温度測定値を出力する温度測
定手段と、 c)温度補正係数を記憶する補正係数記憶手段と、 d)補正係数記憶手段に記憶されている温度補正係数を用
いて、温度測定手段から出力される温度測定値に基づ
き、分析部から出力される原測定値を補正して補正測定
値を算出する分析値算出手段と、 e)ゼロ・スパン試料測定時に分析部から出力される原測
定値、温度測定手段から出力される温度測定値及び該ゼ
ロ・スパン試料の既知の濃度値に基づき、補正係数記憶
手段に記憶されている温度補正係数を校正する補正係数
校正手段と、 を備えることを特徴とする連続分析装置。
1. A) an analysis unit for measuring an object to be measured and outputting an original measurement value; b) a temperature measuring means for measuring the temperature of the analysis unit and outputting the temperature measurement value; and c) temperature correction. The original measurement value output from the analysis unit based on the temperature measurement value output from the temperature measurement means, using the correction coefficient storage unit that stores the coefficient and d) the temperature correction coefficient stored in the correction coefficient storage unit. Analytical value calculation means for correcting the above to calculate a corrected measurement value, and e) the original measurement value output from the analyzer during measurement of the zero-span sample, the temperature measurement value output from the temperature measurement means, and the zero-span sample. A correction coefficient calibration means for calibrating the temperature correction coefficient stored in the correction coefficient storage means on the basis of the known concentration value of the continuous analysis apparatus.
JP9205193A 1993-03-25 1993-03-25 Continuous analysis device Pending JPH06281477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9205193A JPH06281477A (en) 1993-03-25 1993-03-25 Continuous analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9205193A JPH06281477A (en) 1993-03-25 1993-03-25 Continuous analysis device

Publications (1)

Publication Number Publication Date
JPH06281477A true JPH06281477A (en) 1994-10-07

Family

ID=14043720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9205193A Pending JPH06281477A (en) 1993-03-25 1993-03-25 Continuous analysis device

Country Status (1)

Country Link
JP (1) JPH06281477A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128826A (en) * 1994-11-01 1996-05-21 Asahi Optical Co Ltd Laser surveying instrument
EP0921390A1 (en) * 1997-12-05 1999-06-09 Oldham France S.A. Method for determining the concentration of a gas in a gas mixture and analysis apparatus for implementing such method
US6131073A (en) * 1996-06-07 2000-10-10 Denso Corporation Electronic circuit with an operating characteristic correcting function
WO2000063750A1 (en) * 1999-04-19 2000-10-26 Seiko Instruments Inc. Sensor clock, data input system of sensor clock, data input method of sensor clock and computer-readable recording medium in which program for making computer execute the method is recorded
JP2007003420A (en) * 2005-06-24 2007-01-11 Matsushita Electric Works Ltd Gas alarm
JP2010085339A (en) * 2008-10-02 2010-04-15 Riken Keiki Co Ltd Zero point adjustment method of gas sensor using contact combustion type gas detection element
US8994981B2 (en) 2007-11-30 2015-03-31 Brother Kogyo Kabushiki Kaisha Calibration system
JP2016180617A (en) * 2015-03-23 2016-10-13 新コスモス電機株式会社 Chemoluminescent gas detection device and chemoluminescent gas detection method
DE102015122449A1 (en) * 2015-12-21 2017-06-22 Endress+Hauser Conducta Gmbh+Co. Kg Method for determining and / or monitoring a process variable

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128826A (en) * 1994-11-01 1996-05-21 Asahi Optical Co Ltd Laser surveying instrument
US6131073A (en) * 1996-06-07 2000-10-10 Denso Corporation Electronic circuit with an operating characteristic correcting function
EP0921390A1 (en) * 1997-12-05 1999-06-09 Oldham France S.A. Method for determining the concentration of a gas in a gas mixture and analysis apparatus for implementing such method
FR2772127A1 (en) * 1997-12-05 1999-06-11 Oldham France Sa METHOD FOR DETERMINING THE CONCENTRATION OF A GAS IN A GASEOUS MIXTURE AND ANALYSIS DEVICE FOR IMPLEMENTING SUCH A METHOD
US6218666B1 (en) 1997-12-05 2001-04-17 Oldham France S.A. Method of determining the concentration of a gas in a gas mixture and analyzer for implementing such a method
WO2000063750A1 (en) * 1999-04-19 2000-10-26 Seiko Instruments Inc. Sensor clock, data input system of sensor clock, data input method of sensor clock and computer-readable recording medium in which program for making computer execute the method is recorded
JP2007003420A (en) * 2005-06-24 2007-01-11 Matsushita Electric Works Ltd Gas alarm
US8994981B2 (en) 2007-11-30 2015-03-31 Brother Kogyo Kabushiki Kaisha Calibration system
JP2010085339A (en) * 2008-10-02 2010-04-15 Riken Keiki Co Ltd Zero point adjustment method of gas sensor using contact combustion type gas detection element
JP2016180617A (en) * 2015-03-23 2016-10-13 新コスモス電機株式会社 Chemoluminescent gas detection device and chemoluminescent gas detection method
DE102015122449A1 (en) * 2015-12-21 2017-06-22 Endress+Hauser Conducta Gmbh+Co. Kg Method for determining and / or monitoring a process variable
DE102015122449B4 (en) * 2015-12-21 2021-01-07 Endress+Hauser Conducta Gmbh+Co. Kg Method for determining and / or monitoring a process variable

Similar Documents

Publication Publication Date Title
US4218746A (en) Method and apparatus for calibrating ion concentration measurement
US7979227B2 (en) Calibration in a laboratory reference method
US4423487A (en) Apparatus for measuring the efficiency of combustion appliances
JP4591105B2 (en) Calibration method
US6065866A (en) Method of calibrating a radiation thermometer
US4858161A (en) Method for the automatic calibration of a high-resolution electronic balance
JPH0354420A (en) Electronic balance
IE45354B1 (en) Measuring instruments
US4436812A (en) Process of calibrating a blood sugar analyzing apparatus
JPH06281477A (en) Continuous analysis device
US5321992A (en) Measurement of gas flows with enhanced accuracy
US4881183A (en) Method and apparatus for emission testing
JPH06242072A (en) Method for measuring ph value of test solution with glass-electrode measuring cell and for calibrating measuring cell at same time
CN113624929B (en) Full-range automatic calibration method for gas sensor
JPS6118816A (en) Temperature drift compensation measuring apparatus
JPH052933B2 (en)
JP2588391B2 (en) Initial calibration method of gain in digital indicator
CN115128210A (en) Over-range calibration method of small-range metering equipment
Podgorski et al. A multichannel measurement system for automatic testing of acoustic calibrators and adjustment of their parameters
JP3032910B2 (en) Analysis equipment
JP2575521B2 (en) Furnace operation method of reducing atmosphere furnace
JPH0574772B2 (en)
JP2001208726A (en) Solid electrolyte type carbon dioxide gas sensor and method of correcting the same
JPH05223678A (en) Pressure/differential pressure transmitter
CN116973507A (en) Zero self-calibration method of CO2 gas sensor in air