JPH05223678A - Pressure/differential pressure transmitter - Google Patents

Pressure/differential pressure transmitter

Info

Publication number
JPH05223678A
JPH05223678A JP2558192A JP2558192A JPH05223678A JP H05223678 A JPH05223678 A JP H05223678A JP 2558192 A JP2558192 A JP 2558192A JP 2558192 A JP2558192 A JP 2558192A JP H05223678 A JPH05223678 A JP H05223678A
Authority
JP
Japan
Prior art keywords
calibration
pressure
transmitter
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2558192A
Other languages
Japanese (ja)
Other versions
JP3074895B2 (en
Inventor
Kenkichi Takadera
賢吉 高寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP04025581A priority Critical patent/JP3074895B2/en
Publication of JPH05223678A publication Critical patent/JPH05223678A/en
Application granted granted Critical
Publication of JP3074895B2 publication Critical patent/JP3074895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a pressure/differential pressure transmitter which properly evaluates aged deterioration by eliminating such elements as arising from the difference of calibration environment, although calibration is made in any environment. CONSTITUTION:An intelligent type pressure/differential pressure transmitter is provided with a semiconductor complex sensor 1 which can detect not only pressures of differential pressures but also transmitter temperatures and static pressures at the time of detection. A memory 7 which stares the static pressure and transmitter temperature at calibration (or, only transmitter temperature at calibration) obtained from the semiconductor composite sensor 1, being made to correspond to calibration dates and calibration amount, and a micro processor 4 which outputs the content stored in the memory 7 as required are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、工業計測用に用いら
れる圧力・差圧伝送器に関し、特に、入力校正時や静圧
ゼロ校正時に温度などを含めて記憶しておき、装置の経
年変化を正当に評価することのできる圧力・差圧伝送器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure / differential pressure transmitter used for industrial measurement, and particularly, it stores temperature and the like at the time of input calibration or zero static pressure calibration, and stores it over time. The present invention relates to a pressure / differential pressure transmitter that can be properly evaluated.

【0002】[0002]

【従来の技術】圧力・差圧伝送器は、適宜な間隔で入力
校正(つまり、ゼロ点校正やスパン校正等による入出力
特性の校正)や入力静圧のゼロを校正をすることによ
り、長期間にわたって使用するものである。そして、従
来の伝送器では、入力校正時や静圧ゼロ校正時には、校
正日時と校正量(例えば、校正前後のゼロ点変化量やス
パン変化量)のみを記憶していた。
2. Description of the Related Art A pressure / differential pressure transmitter is capable of performing long-term calibration by input calibration (that is, calibration of input / output characteristics such as zero point calibration and span calibration) and zero input static pressure at appropriate intervals. It is used over a period of time. Then, in the conventional transmitter, only the calibration date and time and the calibration amount (for example, the zero point change amount and the span change amount before and after the calibration) are stored at the time of input calibration and static pressure zero calibration.

【0003】[0003]

【発明が解決しようとする課題】ところで、圧力・差圧
伝送器の精度が向上するにつれ、その精度管理を厳格に
行う傾向がユーザ間で定着し、経年変化が少ないことが
伝送器選定の重要な要素となってきた。ここで、伝送器
の経年変化を正しく評価するためには、各校正がメーカ
推奨の環境下で行われること、或いは、少なくとも各校
正時が同じ環境下にあることが必要である。
As the accuracy of the pressure / differential pressure transmitter is improved, it is important to select the transmitter that the tendency to strictly control the accuracy is fixed among users and the secular change is small. Has become a factor. Here, in order to correctly evaluate the secular change of the transmitter, it is necessary that each calibration is performed under the environment recommended by the manufacturer, or at least each calibration is under the same environment.

【0004】しかし、常に、メーカが推奨した環境下で
校正作業がされるとは限らない等の理由により、経年変
化が正しく評価できない場合がある。すなわち、伝送器
を取り外し、環境の安定している計器室で校正作業がさ
れるのは稀であり、一般には、機器の設置された現場で
校正作業が行われている為、校正環境の差に基づく変化
まで経年変化であると評価されてしまう恐れがある。
However, there is a case where the secular change cannot be correctly evaluated because the calibration work is not always performed under the environment recommended by the manufacturer. That is, it is rare that the transmitter is removed and calibration work is performed in an instrument room where the environment is stable.In general, calibration work is performed at the site where the equipment is installed. There is a risk that even changes based on will be evaluated as aging.

【0005】例えば、元バルブを閉としてプロセスから
隔離し、校正用入力印加口から入力を加えて校正するよ
うな場合(図2参照)、機器の設置されている現場は一
般に周囲温度条件が厳しく、また、プロセスからの隔離
後の経過時間によってはプロセスの温度の影響も残って
しまうので、本来不必要な校正まで行ってしまうことが
ある。また、例えば、差圧伝送器においてはプロセスの
圧力を導入後、スリーバルブセットを操作して静圧印加
後にゼロ点を校正する操作をすることも多く(図2参
照)、この場合にも上記と同様のことが言える。
For example, when the main valve is closed to be isolated from the process, and the calibration is performed by applying an input from the calibration input application port (see FIG. 2), the ambient temperature condition is generally severe at the site where the equipment is installed. In addition, since the influence of the temperature of the process remains depending on the elapsed time after isolation from the process, an unnecessary calibration may be performed. Further, for example, in the differential pressure transmitter, after the process pressure is introduced, the three-valve set is often operated to calibrate the zero point after the static pressure is applied (see FIG. 2). The same can be said of.

【0006】この発明は、かかる実情に基づくものであ
り、いかなる環境において校正作業がされたとしても、
校正環境の差異に基づく要素を除去して、正当に経年変
化を評価することができる圧力・差圧伝送器を提供する
ことを目的とする。
The present invention is based on such an actual situation, and even if calibration work is performed in any environment,
An object of the present invention is to provide a pressure / differential pressure transmitter that can properly evaluate secular changes by removing elements based on differences in calibration environments.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する
為、この発明に係る圧力・差圧伝送器は、圧力又は差
圧の入力を検出できると共に、入力検出時における伝送
器温度及び静圧も検出できる複合センサを備えるインテ
リジェント形の圧力・差圧伝送器であって、機器の入
力校正をした時には前記複合センサより得られる校正時
静圧及び校正時温度或いは校正時温度のみを、また、機
器の静圧ゼロ校正をした時には前記複合センサより得ら
れる校正時温度を、当該校正日時や校正量に対応させて
記憶する校正時データ記憶手段と、この校正時データ
記憶手段の記憶内容を、必要に応じて出力する校正時デ
ータ出力手段とを特徴的に備えている。
In order to achieve the above object, the pressure / differential pressure transmitter according to the present invention is capable of detecting the input of pressure or differential pressure, and the transmitter temperature and static pressure at the time of detecting the input. It is an intelligent pressure / differential pressure transmitter equipped with a combined sensor that can also detect the static pressure at the time of calibration and the temperature at the time of calibration or only the temperature at the time of calibration, which is obtained from the combined sensor when input calibration of the device When the static pressure zero calibration of the equipment, the calibration temperature obtained from the composite sensor, the calibration time data storage means for storing the calibration time and the calibration amount, and the stored contents of the calibration time data storage means, Characteristically, it is provided with a calibration data output means for outputting as needed.

【0008】[0008]

【作用】 複合センサは、圧力または差圧を検出した時に、その
検出時の伝送器温度及び静圧も同時に検出する。 校正時データ記憶手段は、機器の入力校正時や静圧ゼ
ロ校正時に、前記複合センサより得られる校正時静圧及
び校正時温度(又は校正時温度のみ)を当該校正日時や
校正量に対応させて記憶する。
When the composite sensor detects the pressure or the differential pressure, it simultaneously detects the transmitter temperature and the static pressure at the time of the detection. The calibration data storage means associates the calibration static pressure and the calibration temperature (or only the calibration temperature) obtained from the composite sensor with the calibration date and time or the calibration amount during input calibration or zero static pressure calibration of the device. To remember.

【0009】具体的には、入力校正時には、校正日時、
校正量(校正前後におけるゼロ点変化量やスパン変化
量)の他に、校正時の伝送器温度と静圧値(但し、圧力
伝送器では伝送器温度のみ)を記憶する。また、入力静
圧のゼロを校正する時には、校正日時や校正量の他に、
校正時の伝送器温度を差圧伝送器内に記憶する。 校正時データ出力手段は、この校正時データ記憶手段
の記憶内容を、必要に応じて出力する。従って、必要に
応じて校正時の校正環境(伝送器温度や静圧)を把握す
ることができるので、機器の経年変化を評価する際に
は、例えば同じ温度、同じ静圧で評価を受けることがで
き、校正環境の差に基づく要素を経年変化分から除去す
ることができる。
Specifically, at the time of input calibration, the calibration date and time,
In addition to the calibration amount (zero point change amount and span change amount before and after calibration), the transmitter temperature and static pressure value at the time of calibration (however, only the transmitter temperature in the pressure transmitter) are stored. Also, when calibrating the zero of the input static pressure, in addition to the calibration date and time and the calibration amount,
Store the transmitter temperature during calibration in the differential pressure transmitter. The calibration data output means outputs the stored contents of the calibration data storage means as needed. Therefore, the calibration environment (transmitter temperature and static pressure) at the time of calibration can be grasped as necessary. Therefore, when assessing the secular change of equipment, for example, the evaluation should be performed at the same temperature and the same static pressure. Therefore, an element based on the difference in the calibration environment can be removed from the secular change.

【0010】[0010]

【実施例】以下、実施例に基づいて、この発明を更に詳
細に説明する。図1は、この発明の一実施例である圧力
・差圧伝送器の回路ブロック図を示したものである。こ
の装置は、圧力センサ1-1と温度センサ1-2と静圧セン
サ1-3とを備える半導体複合センサ1と、圧力センサ1
-1と温度センサ1-2と静圧センサ1-3の出力を受け、こ
れを切り換えて出力するマルチプレクサ2と、マルチプ
レクサ2の出力をデジタル信号に変換するA/Dコンバ
ータ3と、伝送器本来の処理や校正処理をするマイクロ
プロセッサ4と、圧力・差圧データをアナログ信号に変
換するD/Aコンバータ5と、D/Aコンバータ5の出
力を受け、これを電流出力に変換するV/I変換器6
と、マイクロプロセッサの処理プログラムや校正時デー
タなどを記憶するメモリ7,8と、コミュニケータ(図
示せず)との送受信で動作するデジタルI/Oポート9
とで構成されている。
The present invention will be described in more detail based on the following examples. FIG. 1 is a circuit block diagram of a pressure / differential pressure transmitter according to an embodiment of the present invention. This device includes a semiconductor composite sensor 1 and a pressure sensor 1 -1 and the temperature sensor 1 -2 and static pressure sensor 1 -3, the pressure sensor 1
1 and receives the output of the temperature sensor 1 -2 and static pressure sensor 1 -3, a multiplexer 2 outputs by switching this, an A / D converter 3 for converting the output of the multiplexer 2 into a digital signal, the transmitter originally , A D / A converter 5 for converting pressure / differential pressure data into an analog signal, and a V / I for receiving the output of the D / A converter 5 and converting it into a current output. Converter 6
, A memory 7, 8 for storing a processing program of the microprocessor, data at the time of calibration, etc., and a digital I / O port 9 which operates by transmission and reception with a communicator (not shown).
It consists of and.

【0011】図2は、校正時の処理を説明するため、差
圧伝送器の校正系統図を図示したものである。ここで伝
送器10は、図1の構成からなる差圧伝送器であり、ま
た、測定プロセスとは元バルブ11を介して接続され、
校正用圧力導入口とは校正用バルブ12を介して接続さ
れている。なお、13はスリーバルブセットであり、1
4は校正用圧力基準器である。
FIG. 2 shows a calibration system diagram of the differential pressure transmitter for explaining the process at the time of calibration. Here, the transmitter 10 is a differential pressure transmitter having the configuration of FIG. 1, and is connected to the measurement process via the original valve 11,
The calibration pressure inlet is connected via the calibration valve 12. In addition, 13 is a three valve set,
Reference numeral 4 is a calibration pressure reference device.

【0012】図2において、直流電源15と伝送器10
によって電流ループが形成されており、出力された電流
値は精密抵抗16の電圧降下として精密電圧計17によ
り計測される。また、18はコミュニケータである。続
いて、図2を参照しつつ、差圧伝送器10の入力校正時
における動作を説明する。圧力基準器14によって圧力
を計測しつつ、校正圧力導入口より入力圧を印加する。
そして、0%に相当する入力圧の状態で出力電流を4.
000mAに合わせる。具体的には精密電圧計17で電
圧降下を監視しつつコミュニケータからの指示により出
力電流を4.000mAに校正する。
In FIG. 2, a DC power supply 15 and a transmitter 10 are provided.
A current loop is formed by, and the output current value is measured by the precision voltmeter 17 as a voltage drop of the precision resistor 16. 18 is a communicator. Next, the operation of the differential pressure transmitter 10 during input calibration will be described with reference to FIG. While measuring the pressure by the pressure reference device 14, the input pressure is applied from the calibration pressure introducing port.
Then, the output current is set to 4. in the state of the input pressure corresponding to 0%.
Adjust to 000mA. Specifically, the output voltage is calibrated to 4.000 mA according to an instruction from the communicator while monitoring the voltage drop with the precision voltmeter 17.

【0013】次に、校正圧力導入口より100%に相当
する入力圧を印加し、出力電流を20.000mAに合
わせる。以上の処理によりゼロ点やスパンが変化してい
るはずであるが、校正終了後、このゼロ点変化やスパン
変化と共に、校正日時、校正時の伝送器温度、及び静圧
が自動的にメモリ7に記憶される。このように伝送器温
度や静圧は、校正日時に対応して履歴として自動的に記
憶されるので、校正者が、わざわざ温度や静圧を計測し
て記録する必要はない。従って、校正者にとって非常に
便利であると共に記録を忘れるなどの恐れもなくなる。
Next, an input pressure corresponding to 100% is applied from the calibration pressure introducing port, and the output current is adjusted to 20.000 mA. Although the zero point and span should have changed due to the above processing, after the calibration is completed, the calibration date and time, the transmitter temperature at the time of calibration, and the static pressure are automatically stored in the memory 7 along with this zero point change and span change. Memorized in. In this way, the transmitter temperature and static pressure are automatically stored as a history corresponding to the calibration date and time, so that the calibrator does not need to bother to measure and record the temperature and static pressure. Therefore, it is very convenient for the proofreader and there is no fear of forgetting the record.

【0014】後日、例えば経年変化を評価しようとする
ときには、メモリ7に記憶されている校正日時、ゼロ点
変化量、スパン変化量、静圧、及び伝送器温度を出力さ
せることができる。従って、ゼロ点変化量やスパン変化
量は、校正環境の良否を含めて評価でき、経年変化を正
当に評価をすることができる。
At a later date, for example, when an aging change is to be evaluated, the calibration date and time, the zero point change amount, the span change amount, the static pressure, and the transmitter temperature stored in the memory 7 can be output. Therefore, the zero point change amount and the span change amount can be evaluated including the quality of the calibration environment, and the secular change can be properly evaluated.

【0015】[0015]

【発明の効果】以上説明したように、この発明に係る圧
力・差圧伝送器では、校正時静圧及び校正時温度(又は
校正時温度のみ)が当該校正日時や校正量に対応して自
動的に記憶される。そして、その記憶内容が任意に出力
できるので、必要があれば校正環境を再現することもで
き、機器の経年変化を評価する際に、校正環境の差に基
づく要素を経年変化分から除去して正当な評価をするこ
とができる。
As described above, in the pressure / differential pressure transmitter according to the present invention, the static pressure during calibration and the temperature during calibration (or only the temperature during calibration) automatically correspond to the calibration date and time and the calibration amount. Be remembered. Since the stored contents can be output arbitrarily, it is possible to reproduce the calibration environment if necessary, and when assessing the secular change of the equipment, remove the element based on the difference of the calibration environment from the secular change. You can make various evaluations.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例である圧力・差圧伝送器の
回路ブロック図である。
FIG. 1 is a circuit block diagram of a pressure / differential pressure transmitter according to an embodiment of the present invention.

【図2】差圧伝送器の校正系統図を図示したものであ
る。
FIG. 2 is a diagram showing a calibration system diagram of a differential pressure transmitter.

【符号の説明】[Explanation of symbols]

1 複合センサ 2 メモリ(校正時データ記憶手段) 4 マイクロプロセッサ(校正時データ出力手
段)
1 composite sensor 2 memory (calibration data storage means) 4 microprocessor (calibration data output means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧力又は差圧の入力を検出できると共に、
入力検出時における伝送器温度及び静圧も検出できる複
合センサを備えるインテリジェント形の圧力・差圧伝送
器であって、 機器の入力校正をした時には前記複合センサより得られ
る校正時静圧及び校正時温度或いは校正時温度のみを、
また、機器の静圧ゼロ校正をした時には前記複合センサ
より得られる校正時温度を、当該校正日時や校正量に対
応させて記憶する校正時データ記憶手段と、 この校正時データ記憶手段の記憶内容を、必要に応じて
出力する校正時データ出力手段とを備えることを特徴と
する圧力・差圧伝送器。
1. A pressure or differential pressure input can be detected, and
An intelligent pressure / differential pressure transmitter equipped with a composite sensor that can also detect transmitter temperature and static pressure when an input is detected. Only temperature or calibration temperature
Further, a calibration-time data storage unit that stores the calibration-time temperature obtained from the composite sensor when the static pressure zero calibration of the device is made to correspond to the calibration date and time, and the storage content of the calibration-time data storage unit. A pressure / differential pressure transmitter, comprising:
JP04025581A 1992-02-13 1992-02-13 Pressure / differential pressure transmitter Expired - Lifetime JP3074895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04025581A JP3074895B2 (en) 1992-02-13 1992-02-13 Pressure / differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04025581A JP3074895B2 (en) 1992-02-13 1992-02-13 Pressure / differential pressure transmitter

Publications (2)

Publication Number Publication Date
JPH05223678A true JPH05223678A (en) 1993-08-31
JP3074895B2 JP3074895B2 (en) 2000-08-07

Family

ID=12169887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04025581A Expired - Lifetime JP3074895B2 (en) 1992-02-13 1992-02-13 Pressure / differential pressure transmitter

Country Status (1)

Country Link
JP (1) JP3074895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179818A (en) * 2017-04-17 2018-11-15 日置電機株式会社 Measurement device, measurement data processing device and measurement system
US10527737B2 (en) 2015-12-01 2020-01-07 Kabushiki Kaisha Toshiba Dose calculation device, dose calculation method, and measurement device with dose calculation function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10527737B2 (en) 2015-12-01 2020-01-07 Kabushiki Kaisha Toshiba Dose calculation device, dose calculation method, and measurement device with dose calculation function
JP2018179818A (en) * 2017-04-17 2018-11-15 日置電機株式会社 Measurement device, measurement data processing device and measurement system

Also Published As

Publication number Publication date
JP3074895B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US6065866A (en) Method of calibrating a radiation thermometer
US5499023A (en) Method of and apparatus for automated sensor diagnosis through quantitative measurement of one of sensor-to-earth conductance or loop resistance
US5659125A (en) Automatic calibration method for carbon monoxide monitors
WO1996017236A1 (en) A temperature compensation method in pressure sensors
US5295746A (en) High resolution digital thermometer
JPH0352118B2 (en)
US4414837A (en) Apparatus and methods for the shunt calibration of semiconductor strain gage bridges
KR100384355B1 (en) Method of measuring temperature using negative temperature coefficient sensor and related devices
JPH0243236B2 (en)
JP3074895B2 (en) Pressure / differential pressure transmitter
JP3362193B2 (en) Measuring equipment
JPH06281477A (en) Continuous analysis device
JP2001074795A (en) Instrument and method for measuring resistance of communication line and storing medium
US4844623A (en) Electronic thermometer
JP2588391B2 (en) Initial calibration method of gain in digital indicator
JPH0240567A (en) Measuring apparatus of current with automatic calibration function
EP4293366A1 (en) Signal processing circuit, controller, environment forming device, and signal processing method
JPH0894564A (en) Odor monitor
JP2000338142A (en) Method and device for digital measurement
JPH09232647A (en) Hall element diving circuit
JPH07128153A (en) Temperature detection apparatus
KR960002279B1 (en) Flow automatic inspecting method of mass flow controller
JPH10281806A (en) Signal processor and measuring device
KR960002280B1 (en) Response velocity inspecting method of mass flow controller
JPH08265070A (en) Automatic gain correction device and automatic gain correction method for amplifier