JP4286433B2 - Retaining method using angled pile with variable beam support point position - Google Patents

Retaining method using angled pile with variable beam support point position Download PDF

Info

Publication number
JP4286433B2
JP4286433B2 JP2000173492A JP2000173492A JP4286433B2 JP 4286433 B2 JP4286433 B2 JP 4286433B2 JP 2000173492 A JP2000173492 A JP 2000173492A JP 2000173492 A JP2000173492 A JP 2000173492A JP 4286433 B2 JP4286433 B2 JP 4286433B2
Authority
JP
Japan
Prior art keywords
pile
support point
support
stage
mountain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000173492A
Other languages
Japanese (ja)
Other versions
JP2001348872A (en
Inventor
弘之 内海
浩一 稲垣
正 日元
恒明 岡田
博之 西岡
英二 佐藤
昭次 山川
達彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2000173492A priority Critical patent/JP4286433B2/en
Publication of JP2001348872A publication Critical patent/JP2001348872A/en
Application granted granted Critical
Publication of JP4286433B2 publication Critical patent/JP4286433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、斜杭を反力とする山留め工法の技術分野に属し、更に云えば、2段目切梁の支持点を可変とした斜杭による山留め工法に関する。
【0002】
【従来の技術】
従来、例えば特開平7−252835号公報には、直杭を反力とする斜め切梁による山留め工法が記載されている。しかし、直杭のみでは、設計上想定した以上の土圧が発生した場合は、対処が困難である。
【0003】
特開2000−45282公報には、斜杭を組杭として切梁の反力とする山留め工法が記載されている。
【0004】
この斜杭を組杭として切梁の反力とする山留め工法は、斜杭が主として軸応力を発生し、曲げモーメントやせん断応力が小さいという特長があり、構造的に安定している。
【0005】
上記斜杭を組杭として切梁の反力とする山留め工法は、解析結果では、図7(A)及び(B)に示すように、1段目切梁5及び2段目切梁6の水平力が斜杭2、2頭部の交点に向けて作用すると、破線で示した初期状態から、更に掘削を進めて山留め壁1の土圧が増しても、斜杭2、2に作用する曲げモーメントは最小限に抑えることができ、斜杭2、2の変形は実線で示した程度に納めることができると予想された。しかし、実際には、コンクリート構造等の連結部材3で斜杭2、2同士を組杭とする方法が採用されているため、その組杭状態の精度誤差や、支持地盤状態によっては、必ずしも前記斜杭2、2に作用する曲げモーメントを最小限に抑えられるとは限らず、図8(A)及び(B)に示したように、斜杭2、2は大きく変形する場合がある。
【0006】
そこで従来、上記問題を解決するため、以下に示す(1)〜(4)の手順を実施し、前記斜杭2、2に作用する曲げモーメントを最小限に抑える調整を行い地盤の掘削を進めていた。
【0007】
(1) 斜杭2、2に設けた応力計により、軸力の発生を確認しつつ地盤の掘削を進める。
【0008】
(2) 斜杭2、2に負荷する軸力が所定大きさの軸力を計測した段階で、地盤の掘削を一旦中止し、1段目切梁5に設けられた油圧プレロードにより相当大きさの軸力を導入して山留め壁を支持させた後に、2段目切梁6の支持点6aを上記連結部材3から取り外す。
【0009】
(3) 上記(1)の手順時に測定した軸力状態から斜杭2、2に作用する曲げモーメントが略発生しない位置を推定し、その位置に2段目切梁6の支持点6aを定着処理して固定する。
【0010】
(4) 2段目切梁6に設けられた油圧プレロードにより相当大きさの軸力を導入して山留め壁を支持させる。
必要に応じ、以上の手順を繰り返し、前記斜杭2、2に作用する曲げモーメントを最小限に抑える調整を行いながら地盤の掘削を進める。
【0011】
【本発明が解決しようとする課題】
上記2段目切梁6の支持点6aの位置を調整する時は、1段目切梁5のみで山留め壁を支持させるので、危険な状態である。
【0012】
また、斜杭2、2に負荷する軸力が所定の大きさに達し、2段目切梁6の支持点6aを調整する際には、上記(1)〜(4)の手順を行う必要があり、作業が煩雑で、時間がかかる。
【0013】
更に、曲げモーメントが略発生しない位置は、上述したように連結部材3等の施工条件によって変化するため、当該位置を推定するには熟練した技術が必要になり、誰にでもできる仕事ではない。
【0014】
加えて、上記(1)〜(4)の手順を行うと、切梁の負荷が山留め壁の支持を1段目切梁5から2段目切梁6へ移行したり、逆に、2段目切梁6から1段目切梁5へ移行するので、斜杭2、2及び山留め壁の周辺地盤に悪影響を発生させる。
【0015】
従って、本発明の目的は、1段目切梁及び2段目切梁の軸力を保持したまま2段目切梁の支持点の位置を調整することで、山留め壁の安全性を確保でき、山留め壁の周辺地盤に悪影響をほとんど発生させない、切梁支持点位置を可変とした斜杭による山留め工法を提供することである。
【0016】
本発明の次の目的は、2段目切梁の支持点の位置を推定する必要が無く、よって熟練した技術を必要とせず、誰でも、素早く正確に調整することができ、工期の短縮に寄与する、切梁支持点位置を可変とした斜杭による山留め工法を提供することである。
【0017】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る切梁支持点位置を可変とした斜杭による山留め工法は、
斜杭を組杭として切梁の反力とする山留め工法において、
前記組杭頭部の連結部材に鉛直方向への切梁支持点可変装置を設け、前記切梁支持点可変装置に2段目切梁の端部をピン接合すること、
斜杭に設けた応力計により、軸力の発生度を確認しつつ地盤の掘削を進め、所定大きさの軸力を計測した段階で、前記切梁支持点可変装置により2段目切梁の支持点を、斜杭に曲げモーメントが略発生しない位置へ近づける調整を行い、位置を決定した後に固着処理を行い、その後地盤の掘削を最終段階まで行うことを特徴とする。
【0018】
請求項2に記載した発明は、請求項1に記載した発明に係る切梁支持点位置を可変とした斜杭による山留め工法において、
切梁支持点可変装置は、連結部材の側面に固定支承を有する台座を固定して設け、前記固定支承の上側又は下側に可動支承を設け、前記固定支承と可動支承との間にジャッキ等の駆動手段を設け、前記可動支承に2段目切梁の支持点をピン接合した構成であり、駆動手段により可動支承の位置を調整することを特徴とする。
【0019】
【本発明の実施形態及び実施例】
図1は、請求項1に記載した発明に係る切梁支持点位置を可変とした斜杭による山留め工法の初期段階を示している。
【0020】
即ち、地盤の掘削底部8の周辺に山留め壁1を構築し、前記山留め壁1側に適度な傾斜の法面9を残す形に掘削底部8の第一次掘削を行っている。そして、第一次掘削の掘削底部8に複数の斜杭2、2を構築し、前記各斜杭2、2の杭頭部を連結部材3により連結し組杭としている。前記連結部材3と、前記山留め壁1の上部に設けた腹起し4aとの間に1段目切梁5を架設して、この1段目切梁5により前記山留め壁1を支持している。
【0021】
図2は、前記法面9を掘削して第一次掘削を完成した後に、前記組杭頭部の連結部材3に鉛直方向への切梁支持点可変装置7を設け、同切梁支持点可変装置7に2段目切梁6の端部をピン接合し、他方の端部を、前記山留め壁1の中部に設けた腹起し4bとピン接合して前記山留め壁1を支持させた段階を示している。
【0022】
図3は、斜杭2、2に設けた応力計(図示省略)により、軸力の発生度を確認しつつ掘削底部8の掘削を進め、所定の大きさの軸力を計測した段階で、前記切梁支持点可変装置7により2段目切梁6の支持点6aを、曲げモーメントが略発生しない位置へ近づける調整を行い、位置を決定した後に固着処理を行う段階を示している。
【0023】
上記切梁支持点可変装置7は、図5に示すように、連結部材3の側面に固定支承7bを有する台座7aを固定して設け、前記固定支承7bの上側に可動支承7cを設け、前記固定支承7bと可動支承7cとを駆動手段であるジャッキ7dにより連結し、前記可動支承7cに2段目切梁6の支持点6aをピン接合した構成である。前記ジャッキ7dにより可動支承7cの位置を調整する(請求項2記載の発明)。
【0024】
前記ジャッキ7dは、調整ボルト7eの下部が前記固定支承7bのナット7gに通されて固着され、上部は可動支承7cの下面の上下を挟むロックナット7f、7fにより固定されている。なお、前記可動支承7cの背面はテフロン処理及び塗装等により台座7aの側面を滑りやすく構成されている。
【0025】
従って、上記図3の第二次掘削が進み、同山留め壁1に作用する土圧が増し、斜杭2に負荷する軸力が、所定の大きさに達すると、上記上側のナット7fを緩め、下側のナット7fを回して可動支承7cをせり上げてゆき、応力計により斜杭2に負荷する軸力が略発生しない位置へと可動支承7cを移動させ、支持点6aの位置を調整する。前記応力計の読みとして適正な位置が決定した後に、ロックナット7f、7fを強く締め付けてその位置を固定し、更に溶接して前記可動支承7cを固定する。かくして、斜杭2、2に作用する曲げモーメントを最小限に抑えることができ、図6(A)及び(B)に示すように、第二次掘削が進んで土圧が増しても前記斜杭2、2の変形を最小限に抑えることができる。
【0026】
図4は、更に第二次掘削を進め、上記法面10を掘削して掘削底部8の掘削を最終段階まで行う段階を示している。
【0027】
上述した切梁支持点位置を可変とした斜杭よる山留め工法は、1段目切梁5及び2段目切梁6の軸力を保持したまま前記支持点6aの調整を進めることができるため、山留め壁の安全性を担保でき、斜杭2、2及び山留め壁1の周辺地盤への悪影響をほとんど発生させない。
【0028】
更に、上記切梁支持点可変装置7は、ロックナット7f、7fの回転操作だけで、2段目切梁6の支持点6aの位置を調整することができ、応力計の読みにより正確を期せるので、作業が簡易であり熟練した技術を必要とせず、誰でも素早く正確に支持点6aの位置を調整することができ、工期の短縮に寄与する。
【0029】
なお、上記実施形態では、支持点6aを上方へ移動させる場合を示したが、前記支持点6aを下側へ移動させて調整する場合は、下側のナット7fを緩め、上側のナット7fを回して締め込む方法が実施できる。その後の手順は、上方へ調整する場合と同様である。
【0030】
また、上記実施形態では、上記2段目切梁6の他方の端部が、腹起し4bとピン接合されているが、これに限らない。即ち、前記他方の端部は、腹起し4bとボルト接合されても良い。その場合、支持点6aの調整時には、他方の端部と腹起し4bとのボルト接合部を緩め、2段目切梁6の支持角度の変位に対し、ボルトとナットの隙間にスペーサー等の隙間部材を挿入するとより良い。
【0031】
更に、上記実施形態では、台座7aに設けた固定支承7bの上方に可動支承7cを設けているが、逆に固定支承7bの下方に可動支承7cを設けた構成でも同様に実施できる。
【0032】
加えて、斜杭2に作用する曲げモーメントを軽減させるために、斜杭2、2同士を繋ぎ材11により連結しても良い。
【0033】
図5の実施形態では、ジャッキ7dとして、調整ボルト7e及びロックナット7f、7fで構成したものを示しているが、この限りではない。機械式ジャッキや油圧シリンダを採用して実施することもできる。要するに鉛直方向に駆動することができる手段を有していれば、構成は限定しない。
【0034】
上記実施形態では、連結部材3をコンクリートで構成しているが、側面に切梁支持点可変装置7を設置できればよく、その材質は限定しない。
【0035】
上記実施形態では、固定支承7bを有する台座7aを用いているが、固定支承7bのみを連結部材3の側面に固着処理しても良い。
【0036】
上記実施形態では、第二次掘削を最終段階としているが、更に第三次掘削及び第四次掘削と進める場合にも、同様に実施される。即ち、上記実施形態では、上記支持点6aの調整を1回しか行っていないが、必要に応じ、上記調整を複数回繰り返しても良い。
【0037】
【本発明が奏する効果】
本発明に係る切梁支持点位置を可変とする斜杭による山留め工法によれば、1段目切梁及び2段目切梁の軸力を保持したまま同2段目切梁の支持点の調整を進めることができるため、山留め壁の安全性を担保でき、斜杭及び山留め壁の周辺地盤への悪影響をほとんど発生させない。
【0038】
更に、上記切梁支持点可変装置は、ロックナットの回転操作だけで、2段目切梁の支持点の位置を調整することができ、応力計の読みにより正確を期せるので、熟練した技術を必要とせず、誰にでも素早く正確に支持点の位置を調整することができ、工期の短縮に寄与する。
【図面の簡単な説明】
【図1】本発明に係る切梁支持点位置を可変とした斜杭による山留め工法の実施形態を示した立面図である。
【図2】本発明に係る切梁支持点位置を可変とした斜杭による山留め工法の掘削途中の段階を示した立面図である。
【図3】本発明に係る切梁支持点位置を可変とした斜杭による山留め工法の掘削途中の段階を示した立面図である。
【図4】本発明に係る切梁支持点位置を可変とした斜杭による山留め工法において、最終段階まで掘削が進んだ状態を示した立面図である。
【図5】切梁支持点可変装置を詳細に示した正面図である。
【図6】Aは、斜杭による山留め工法において、支持点を調節した後に山留め壁を支持した時の斜杭の変形を示した立面図である。Bは、Aの解析図である。
【図7】Aは、従来の斜杭による山留め工法において、予想された斜杭の変形を示した立面図である。Bは、Aの解析図である。
【図8】Aは、従来の斜杭による山留め工法において、実際に山留め壁を支持した時の斜杭の変形を示した立面図である。Bは、Aの解析図である。
【符号の説明】
1 山留め壁
2 斜杭
3 連結部材
4a、4b 腹起し
5 1段目切梁
6 2段目切梁
5a、6a 支持点
7 切梁支持点可変装置
7a 台座
7b 固定支承
7c 可動支承
7d ジャッキ
8 掘削底面
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a mountain-clamping method using a diagonal pile as a reaction force, and more particularly, relates to a mountain-clamping method using a diagonal pile in which the support point of a second-stage beam is variable.
[0002]
[Prior art]
Conventionally, for example, Japanese Patent Application Laid-Open No. 7-252835 describes a method of retaining a mountain using an oblique beam with a straight pile as a reaction force. However, it is difficult to deal with the direct pile alone when the earth pressure exceeds the design assumption.
[0003]
Japanese Patent Application Laid-Open No. 2000-45282 describes a mountain-clamping method in which diagonal piles are used as a set pile and the reaction force of the beam is made.
[0004]
The pile-clamping method, which uses this diagonal pile as a group pile and the reaction force of the beam, is characterized by the fact that the diagonal pile mainly generates axial stress and has a small bending moment and shear stress, and is structurally stable.
[0005]
As shown in FIGS. 7 (A) and 7 (B), the mountain retaining method using the diagonal pile as a set pile and the reaction force of the cut beam is shown in FIGS. 7 (A) and 7 (B). When the horizontal force acts toward the intersection of the diagonal piles 2 and 2 heads, even if the excavation is further advanced and the earth pressure of the retaining wall 1 increases from the initial state shown by the broken line, it acts on the diagonal piles 2 and 2. It was expected that the bending moment could be minimized and that the deformation of the diagonal piles 2 and 2 could be accommodated to the extent shown by the solid lines. However, in practice, since a method is used in which the slant piles 2 and 2 are assembled to each other with the connecting member 3 such as a concrete structure, depending on the accuracy error of the assembled pile state and the support ground state, the above-described method is not necessarily used. The bending moment acting on the diagonal piles 2 and 2 is not necessarily minimized, and the diagonal piles 2 and 2 may be greatly deformed as shown in FIGS.
[0006]
Therefore, conventionally, in order to solve the above problem, the following procedures (1) to (4) are performed, and the excavation of the ground is carried out by adjusting to minimize the bending moment acting on the inclined piles 2 and 2. It was.
[0007]
(1) The excavation of the ground is advanced while confirming the generation of the axial force with the stress gauges provided on the inclined piles 2 and 2.
[0008]
(2) When the axial force applied to the slant piles 2 and 2 has measured a predetermined amount of axial force, the excavation of the ground is temporarily stopped, and the hydraulic preload provided on the first-stage cut beam 5 is considerably large. After the axial force is introduced to support the retaining wall, the support point 6a of the second-stage beam 6 is removed from the connecting member 3.
[0009]
(3) A position where a bending moment acting on the inclined piles 2 and 2 is not substantially generated is estimated from the axial force state measured in the procedure of (1) above, and the support point 6a of the second-stage cut beam 6 is fixed at that position. Process and fix.
[0010]
(4) The retaining wall is supported by introducing a considerable axial force by the hydraulic preload provided on the second-stage beam 6.
If necessary, the above procedure is repeated to proceed with excavation of the ground while making adjustments that minimize the bending moment acting on the inclined piles 2 and 2.
[0011]
[Problems to be solved by the present invention]
When adjusting the position of the support point 6a of the second-stage cut beam 6, the mountain retaining wall is supported only by the first-stage cut beam 5, which is a dangerous state.
[0012]
Further, when the axial force applied to the slant piles 2 and 2 reaches a predetermined magnitude and the support point 6a of the second-stage cut beam 6 is adjusted, it is necessary to perform the procedures (1) to (4) above. , Work is complicated and time consuming.
[0013]
Furthermore, since the position where the bending moment is not substantially generated changes depending on the construction conditions of the connecting member 3 and the like as described above, a skilled technique is required to estimate the position, which is not a job that anyone can do.
[0014]
In addition, when the above steps (1) to (4) are performed, the load of the cut beam shifts the support of the retaining wall from the first-stage cut beam 5 to the second-stage cut beam 6, or vice versa. Since the transition is made from the leveling beam 6 to the first level cutting beam 5, an adverse effect is generated on the ground around the inclined piles 2 and 2 and the retaining wall.
[0015]
Therefore, the object of the present invention is to secure the safety of the retaining wall by adjusting the position of the support point of the second-stage beam while maintaining the axial force of the first-stage beam and the second-stage beam. The purpose of the present invention is to provide a mountain pile construction method using slant piles with variable beam support point positions that hardly cause adverse effects on the ground around the mountain retaining wall.
[0016]
The next object of the present invention is that it is not necessary to estimate the position of the support point of the second stage beam, so that no skill is required, and anyone can make a quick and accurate adjustment and shorten the construction period. The purpose of this is to provide a pile retaining method using slant piles with variable beam support point positions.
[0017]
[Means for Solving the Problems]
As a means for solving the problems of the prior art, a pile fixing method using a slant pile with variable beam support point positions according to the invention described in claim 1 is:
In the mountain-clamping method that uses the diagonal pile as the pile and the reaction force of the beam,
Providing a cutting beam support point variable device in the vertical direction on the connecting member of the pile head, and pin-joining the end of the second-stage cutting beam to the beam support point variable device;
The excavation of the ground is carried out while confirming the degree of axial force generated by a stress meter provided on the slant pile, and the axial force of a predetermined magnitude is measured. The support point is adjusted to be close to a position where the bending moment is not substantially generated in the slant pile, and after fixing the position, the fixing process is performed, and then the ground is excavated to the final stage.
[0018]
The invention described in claim 2 is a mountain-clamping method using a diagonal pile in which the beam support point position according to the invention described in claim 1 is variable.
The beam support point variable device is provided by fixing a pedestal having a fixed support on a side surface of a connecting member, and a movable support is provided above or below the fixed support, and a jack or the like is provided between the fixed support and the movable support. The drive means is provided, and the support point of the second stage beam is pin-joined to the movable support, and the position of the movable support is adjusted by the drive means.
[0019]
[Embodiments and Examples of the Invention]
FIG. 1 shows an initial stage of a mountain-clamping method using a diagonal pile with variable beam support point positions according to the invention described in claim 1.
[0020]
In other words, the mountain retaining wall 1 is constructed around the excavation bottom 8 of the ground, and the first excavation of the excavation bottom 8 is performed in such a manner that the slope 9 having an appropriate slope is left on the mountain retaining wall 1 side. A plurality of diagonal piles 2 and 2 are constructed on the excavation bottom 8 of the primary excavation, and the pile heads of the respective diagonal piles 2 and 2 are connected by a connecting member 3 to form a set pile. A first-stage cutting beam 5 is installed between the connecting member 3 and a protuberance 4 a provided on the top of the retaining wall 1, and the retaining wall 1 is supported by the first-stage cutting beam 5. Yes.
[0021]
FIG. 2 shows that after completing the first excavation by excavating the slope 9, the connecting member 3 of the pile pile head is provided with a cutting beam support point varying device 7 in the vertical direction. The end portion of the second-stage cut beam 6 is pin-joined to the variable device 7, and the other end portion is pin-joined to the protuberance 4 b provided in the middle portion of the mountain retaining wall 1 to support the mountain retaining wall 1. Shows the stage.
[0022]
FIG. 3 is a stage in which excavation of the excavation bottom 8 is advanced while confirming the degree of generation of the axial force by a stress meter (not shown) provided in the inclined piles 2 and 2, and the axial force of a predetermined magnitude is measured. The figure shows a stage in which the cut beam support point variable device 7 adjusts the support point 6a of the second-stage cut beam 6 to a position where a bending moment is not substantially generated, and after fixing the position, the fixing process is performed.
[0023]
As shown in FIG. 5, the beam supporting point variable device 7 is provided with a base 7a having a fixed support 7b fixed to the side surface of the connecting member 3, and a movable support 7c provided above the fixed support 7b. The fixed bearing 7b and the movable bearing 7c are connected by a jack 7d as driving means, and the support point 6a of the second-stage cut beam 6 is pin-connected to the movable bearing 7c. The position of the movable support 7c is adjusted by the jack 7d (the invention according to claim 2).
[0024]
In the jack 7d, the lower part of the adjusting bolt 7e is fixed by being passed through the nut 7g of the fixed support 7b, and the upper part is fixed by lock nuts 7f and 7f sandwiching the upper and lower surfaces of the lower surface of the movable support 7c. The back surface of the movable support 7c is configured such that the side surface of the pedestal 7a can be easily slipped by Teflon treatment, painting, or the like.
[0025]
Accordingly, when the second excavation of FIG. 3 proceeds, the earth pressure acting on the retaining wall 1 increases, and the axial force applied to the slant pile 2 reaches a predetermined magnitude, the upper nut 7f is loosened. Then, the lower nut 7f is turned to raise the movable support 7c, and the movable support 7c is moved to a position where the axial force applied to the inclined pile 2 is not substantially generated by the stress meter, and the position of the support point 6a is adjusted. To do. After an appropriate position is determined as a reading of the stress meter, the lock nuts 7f and 7f are firmly tightened to fix the position, and further welded to fix the movable support 7c. Thus, the bending moment acting on the inclined piles 2 and 2 can be minimized, and as shown in FIGS. 6 (A) and 6 (B), even if the earth pressure increases as the second excavation progresses, Deformation of the piles 2 and 2 can be minimized.
[0026]
FIG. 4 shows a stage where the second excavation is further advanced, and the slope 10 is excavated to excavate the excavation bottom 8 to the final stage.
[0027]
The above-described mountain pile fixing method using the inclined piles with variable beam support point positions can advance the adjustment of the support points 6a while maintaining the axial force of the first-stage beam 5 and the second-stage beam 6. Therefore, the safety of the retaining wall can be ensured, and the adverse effects on the surrounding ground of the inclined piles 2 and 2 and the retaining wall 1 are hardly generated.
[0028]
Furthermore, the beam support point varying device 7 can adjust the position of the support point 6a of the second-stage beam 6 only by rotating the lock nuts 7f and 7f, and is accurate by reading the stress meter. Therefore, the operation is simple and does not require a skilled technique, and anyone can adjust the position of the support point 6a quickly and accurately, which contributes to shortening the construction period.
[0029]
In the above embodiment, the case where the support point 6a is moved upward has been shown. However, when the support point 6a is moved downward to adjust, the lower nut 7f is loosened and the upper nut 7f is moved. You can turn and tighten. The subsequent procedure is the same as that when adjusting upward.
[0030]
Moreover, in the said embodiment, although the other edge part of the said 2nd-stage cut beam 6 is pin-joined with the protuberance 4b, it is not restricted to this. That is, the other end portion may be bolted to the flank 4b. In that case, when adjusting the support point 6a, the bolt joint part between the other end part and the protuberance 4b is loosened, and the gap between the bolt and the nut is separated from the gap between the bolt and the nut with respect to the displacement of the support angle of the second-stage cut beam 6. It is better to insert a member.
[0031]
Further, in the above embodiment, the movable support 7c is provided above the fixed support 7b provided on the pedestal 7a, but conversely, a structure in which the movable support 7c is provided below the fixed support 7b can be similarly implemented.
[0032]
In addition, in order to reduce the bending moment acting on the inclined pile 2, the inclined piles 2, 2 may be connected by the connecting material 11.
[0033]
In the embodiment of FIG. 5, the jack 7d is configured by the adjustment bolt 7e and the lock nuts 7f and 7f, but is not limited thereto. It can also be implemented by employing a mechanical jack or a hydraulic cylinder. In short, the configuration is not limited as long as it has means that can be driven in the vertical direction.
[0034]
In the said embodiment, although the connection member 3 is comprised with concrete, what is necessary is just to be able to install the cutting beam support point variable apparatus 7 in a side surface, The material is not limited.
[0035]
In the above embodiment, the pedestal 7 a having the fixed support 7 b is used, but only the fixed support 7 b may be fixed to the side surface of the connecting member 3.
[0036]
In the above-described embodiment, the second excavation is the final stage. However, the third excavation and the fourth excavation are also performed in the same manner. That is, in the embodiment, the adjustment of the support point 6a is performed only once, but the adjustment may be repeated a plurality of times as necessary.
[0037]
[Effects of the present invention]
According to the mountain retaining method using the slant pile with variable beam support point position according to the present invention, the axial force of the first-stage beam and the second-stage beam is maintained while maintaining the axial force of the second-stage beam. Since the adjustment can be advanced, the safety of the retaining wall can be ensured, and there is almost no adverse effect on the surrounding ground of the inclined pile and retaining wall.
[0038]
Furthermore, the cutting beam support point variable device can adjust the position of the support point of the second-stage cutting beam only by rotating the lock nut, and can be accurate by reading the stress meter. Anyone can quickly and accurately adjust the position of the support point, which contributes to shortening the construction period.
[Brief description of the drawings]
FIG. 1 is an elevational view showing an embodiment of a mountain-clamping method using slant piles with variable beam support point positions according to the present invention.
FIG. 2 is an elevational view showing a stage in the middle of excavation of a mountain retaining method using a slant pile with variable beam support point positions according to the present invention.
FIG. 3 is an elevational view showing a stage in the middle of excavation of the mountain-clamping method using a slant pile with variable beam support point positions according to the present invention.
FIG. 4 is an elevational view showing a state in which excavation has progressed to the final stage in the pile retaining method using the inclined piles with variable beam support point positions according to the present invention.
FIG. 5 is a front view showing the detail of the beam supporting point variable device in detail.
FIG. 6A is an elevation view showing the deformation of the slope pile when the mountain retaining wall is supported after adjusting the support point in the mountain pile construction method using the slope pile. B is an analysis diagram of A. FIG.
FIG. 7A is an elevation view showing deformation of a slant pile expected in a conventional mountain pile method using slant piles. B is an analysis diagram of A. FIG.
FIG. 8A is an elevational view showing deformation of a diagonal pile when a mountain retaining wall is actually supported in a conventional method of mountain retaining with a diagonal pile. B is an analysis diagram of A. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mountain retaining wall 2 Diagonal pile 3 Connecting member 4a, 4b Raising 5 1st stage beam 6 2nd stage beam 5a, 6a Supporting point 7 Cutting beam supporting point variable device 7a Base 7b Fixed bearing 7c Movable bearing 7d Jack 8 Bottom of excavation

Claims (2)

斜杭を組杭として切梁の反力とする山留め工法において、
前記組杭頭部の連結部材に鉛直方向への切梁支持点可変装置を設け、前記切梁支持点可変装置に2段目切梁の端部をピン接合すること、
斜杭に設けた応力計により、軸力の発生度を確認しつつ地盤の掘削を進め、所定大きさの軸力を計測した段階で、前記切梁支持点可変装置により2段目切梁の支持点を、斜杭に曲げモーメントが略発生しない位置へ近づける調整を行い、位置を決定した後に固着処理を行い、その後地盤の掘削を最終段階まで行うことを特徴とする、切梁支持点位置を可変とした斜杭による山留め工法。
In the mountain-clamping method that uses the diagonal pile as the pile and the reaction force of the beam,
Providing a cutting beam support point variable device in the vertical direction on the connecting member of the pile head, and pin-joining the end of the second-stage cutting beam to the beam support point variable device;
The excavation of the ground is carried out while confirming the degree of axial force generated by a stress meter provided on the slant pile, and the axial force of a predetermined magnitude is measured. Adjusting the support point closer to a position where bending moment does not substantially occur in the slant pile, fixing the position after determining the position, and then excavating the ground to the final stage A mountain-clamping method with slant piles that can be made variable.
切梁支持点可変装置は、連結部材の側面に固定支承を有する台座を固定して設け、前記固定支承の上側又は下側に可動支承を設け、前記固定支承と可動支承との間にジャッキ等の駆動手段を設け、前記可動支承に2段目切梁の支持点をピン接合した構成であり、駆動手段により可動支承の位置を調整することを特徴とする、請求項1に記載した切梁支持点位置を可変とした斜杭による山留め工法。The beam support point variable device is provided by fixing a pedestal having a fixed support on a side surface of a connecting member, and a movable support is provided above or below the fixed support, and a jack or the like is provided between the fixed support and the movable support. 2. The beam according to claim 1, wherein the driving means is provided, and a support point of a second-stage cutting beam is pin-connected to the movable bearing, and the position of the movable bearing is adjusted by the driving means. A mountain-clamping method using slant piles with variable support point positions.
JP2000173492A 2000-06-09 2000-06-09 Retaining method using angled pile with variable beam support point position Expired - Fee Related JP4286433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173492A JP4286433B2 (en) 2000-06-09 2000-06-09 Retaining method using angled pile with variable beam support point position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173492A JP4286433B2 (en) 2000-06-09 2000-06-09 Retaining method using angled pile with variable beam support point position

Publications (2)

Publication Number Publication Date
JP2001348872A JP2001348872A (en) 2001-12-21
JP4286433B2 true JP4286433B2 (en) 2009-07-01

Family

ID=18675712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173492A Expired - Fee Related JP4286433B2 (en) 2000-06-09 2000-06-09 Retaining method using angled pile with variable beam support point position

Country Status (1)

Country Link
JP (1) JP4286433B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936897A (en) * 2012-11-29 2013-02-20 广州建筑股份有限公司 Steel bridge capable of being used as supporting and reinforcing structure
CN106592600A (en) * 2016-12-05 2017-04-26 中建六局土木工程有限公司 Construction method for early warning supporting system adjacent to running subway in complex environment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263897B2 (en) * 2010-02-24 2013-08-14 大成建設株式会社 Yamatome and Yamatome construction method
CN101864773B (en) * 2010-04-14 2011-11-30 江苏江中集团有限公司 Deep foundation pit support process
CN103485347A (en) * 2012-06-07 2014-01-01 叶强 Batter pile used for building foundation pit support and construction method thereof
CN110185042B (en) * 2019-06-13 2021-09-17 湖北省鄂西北工程勘察有限责任公司 Foundation pit supporting structure of underground continuous wall and construction method thereof
CN112343062A (en) * 2020-10-27 2021-02-09 安徽省无为市建筑安装总公司 Foundation pit supporting template for building foundation construction
CN112709219A (en) * 2020-12-29 2021-04-27 中铁科工集团装备工程有限公司 Adjustable template device for supporting guide wall and guide wall supporting method
CN113239428B (en) * 2021-03-30 2021-11-30 深圳市地质局 Monitoring, early warning and forecasting method for inner support
CN114016547A (en) * 2021-12-20 2022-02-08 湖南城市学院 Construction method of basement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936897A (en) * 2012-11-29 2013-02-20 广州建筑股份有限公司 Steel bridge capable of being used as supporting and reinforcing structure
CN102936897B (en) * 2012-11-29 2015-06-17 广州建筑股份有限公司 Steel bridge capable of being used as supporting and reinforcing structure
CN106592600A (en) * 2016-12-05 2017-04-26 中建六局土木工程有限公司 Construction method for early warning supporting system adjacent to running subway in complex environment

Also Published As

Publication number Publication date
JP2001348872A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
US6539685B2 (en) Apparatus and method for lifting sunken foundations
JP4286433B2 (en) Retaining method using angled pile with variable beam support point position
KR100720321B1 (en) Auto-syncronized supporting system controlling to recover and offset displacement and repulsive force occurred according to working load, and constructing method of the supporting system
CN108487280B (en) Counter-force static pressure type open caisson sinking construction method
KR100895881B1 (en) Underground tunnel formation infrastructure establishment method
US7300230B2 (en) Pile anchor head for an underpinning pile and method of preloading the same
JP4705497B2 (en) Reinforcement method of pile foundation of existing building
JP2018204379A (en) Joint structure for steel material
JP2015117507A (en) Inclination restoration apparatus
JP4553978B1 (en) Support device for height adjustment
CN102704414B (en) Construction method for jacking arched bridges
CN115516170A (en) Reusable beam support module for weldless caulking
JP5235700B2 (en) Construction method of building foundation and joint board for building foundation construction
CN111119260B (en) Deviation rectifying method applying dynamic monitoring and dynamic reinforcement
JP5952600B2 (en) Connection structure between superstructure and pile
KR100476842B1 (en) soldier beam installed according to axial force in excavating work
JP2977805B1 (en) Straightening method and straightening device for buildings with uneven settlement
KR200390445Y1 (en) Auto-syncronized supporting system controlling to recover and offset displacement and repulsive force occurred according to working load
JP4896549B2 (en) Structure setting method
JP3353200B2 (en) Earth retaining method
CN108457200B (en) Temporary supporting structure for underpinning of curved bridge section pile foundation and construction method
KR100900995B1 (en) Messer shield excavator apparatus for curved tunnel excavation and excavation method using the same
JP4722691B2 (en) Repair method for soil concrete in existing structures
RU2244783C1 (en) Method for connection of eccentrically loaded column with stepped foundation
JP4593010B2 (en) Pillar building jig and column building method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees