JP4284344B2 - 完全空乏型soi−mosトランジスタの製造方法 - Google Patents

完全空乏型soi−mosトランジスタの製造方法 Download PDF

Info

Publication number
JP4284344B2
JP4284344B2 JP2006221443A JP2006221443A JP4284344B2 JP 4284344 B2 JP4284344 B2 JP 4284344B2 JP 2006221443 A JP2006221443 A JP 2006221443A JP 2006221443 A JP2006221443 A JP 2006221443A JP 4284344 B2 JP4284344 B2 JP 4284344B2
Authority
JP
Japan
Prior art keywords
polysilicon
layer
oxide film
forming
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006221443A
Other languages
English (en)
Other versions
JP2006352154A (ja
Inventor
浩一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Semiconductor Co Ltd filed Critical Oki Semiconductor Co Ltd
Priority to JP2006221443A priority Critical patent/JP4284344B2/ja
Publication of JP2006352154A publication Critical patent/JP2006352154A/ja
Application granted granted Critical
Publication of JP4284344B2 publication Critical patent/JP4284344B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、完全空乏型SOI−MOSトランジスタの製造方法に関する。
完全空乏型SOI−MOSトランジスタは、通常のSi基板上に作製されたバルクMOSトランジスタに比べ、以下のような利点がある。
すなわち、(1)サブスレショールド特性が良好で、Vtを下げることができるため、同電圧でより多くのオン電流が得られる。(2)負荷となる接合容量が少ないため、回路として高速動作が期待できる。
図14に完全空乏型SOI−MOSトランジスタの概略断面図を示す。基板101上に埋め込み酸化膜といわれるBOX層(Buried Oxide層)102を挟んでSOI層110が形成されている。BOX層102上でSOI層110の側方には、ソース領域108およびドレイン領域109がそれぞれ形成されている。また、ソース領域108およびドレイン領域109のそれぞれの外側には、分離酸化膜が形成されており、素子分離がなされている。
ソース領域108およびドレイン領域109の上部は、CoSiでシリサイド化(図14中の符号104bおよび104c)されており、それぞれコンタクトメタル105と接続されている。
SOI層110上には、ゲート酸化膜111を介してゲート107が形成されている。ゲート107の周囲に窒化膜等のサイドウォール106が形成され、ソース領域108およびドレイン領域109との接触が防がれている。また、ゲート107の上部は、必要に応じてシリサイド化されている(図14中の符号104a)。
図14に示すような完全空乏型SOI−MOSトランジスタでは、ゲート電位がオフ状態ですでに、SOI層110に存在する空乏層がBOX層102に達していることが特徴の一つとなっている。このBOX層102により、空乏層の延びが抑えられるため、ゲートの上昇に対する電流値の増大が急峻となり、良好なサブスレショールド特性が示される。また、BOX層102はドレイン領域109からの空乏層の延びも抑えるため、微細素子で問題となる短チャネル効果を抑制することができる。
しかし、ゲートの微細化が進むと短チャネル効果がより深刻となるため、SOI層を薄膜化する必要が生じる。
SOI層の薄膜化を達成するために、elevated−source/drain技術が提案されている。これは、ソースドレイン領域に選択的にSiをエピタキシャル成長させ、ソースドレイン部分を厚くして、低抵抗化を実現するものである。
しかし、この技術には、エピタキシャル成長のスループット、Siエピタキシャルの選択性確保等の課題があり、量産に至っていない。
すなわち、エピタキシャル成長によるSi層を形成するために長い時間がかかってしまうというスループットの低下という問題が生じる。
そこで、スループットを上げるために、エピタキシャル成長させる際の温度を上げようとすると、薄膜SOI層が凝集してしまう。
従って、薄膜SOIでは、温度を上げることができないという制限がある。
以上から、本発明は、スループットを向上させることが可能で、短チャネル効果を抑制しつつソースドレイン抵抗の低い完全空乏型SOI−MOSトランジスタの製造方法を提供することを目的とする。
上記課題は、以下に示す本発明により解決することができる。すなわち、本発明は、
<1> 半導体基板上にSOI層を形成し、前記SOI層上に酸化膜を形成し、ゲート部、ソース部およびドレイン部に相当する部分に窒化膜を形成した後、該窒化膜をマスクとして酸化処理を施して前記窒化膜以外の部分に酸化膜を形成し、分離部を形成した後、前記窒化膜と前記SOI層上の酸化膜とを除去する工程と、前記分離部を形成し前記窒化膜と前記SOI層上の酸化膜とを除去した後に、少なくとも前記SOI層上にポリシリコンを堆積してポリシリコン層(A)を形成し、該ポリシリコン層(A)上にSiO2からなる酸化膜を形成する工程と、前記酸化膜を形成した後に、ゲート部以外をエッチングして前記SOI層上に前記ポリシリコン層(A)と前記酸化膜とを順次有するゲートを作製する工程と、前記ゲートを作製した後に、前記ポリシリコン層(A)側面にサイドウォールを形成してから、ソース部およびドレイン部を形成するためのポリシリコンを堆積してポリシリコン層(B)を形成する工程と、レジストによりパターニングを行って前記分離部のポリシリコン層(B)のポリシリコンを除去する工程と、前記ゲート上のポリシリコン層(B)の一部が露出するように、前記レジストを除去する工程と、露出した前記ポリシリコン層(B)のポリシリコンを除去し、残存する前記ポリシリコン層(B)にて前記SOI層より厚さの厚いソース部およびドレイン部を形成する工程と、前記ポリシリコンを除去した後に前記レジストを除去し、前記ゲート上部の酸化膜を除去する工程と、を順次含むことを特徴とする完全空乏型SOI−MOSトランジスタの製造方法である。
<2> 半導体基板上にSOI層を形成し、前記SOI層上に酸化膜を形成し、ゲート部、ソース部およびドレイン部に相当する部分に窒化膜を形成した後、該窒化膜をマスクとして酸化処理を施して前記窒化膜以外の部分に酸化膜を形成し、分離部を形成した後、前記窒化膜と前記SOI層上の酸化膜とを除去する工程と、前記分離部を形成し前記窒化膜と前記SOI層上の酸化膜とを除去した後に、少なくとも該SOI層上にポリシリコンを堆積してポリシリコン層(A)を形成し、該ポリシリコン層(A)上にSiO2からなる酸化膜を形成する工程と、前記酸化膜を形成した後に、ゲート部以外をエッチングして前記SOI層上に前記ポリシリコン層(A)と前記酸化膜とを順次有するゲートを作製する工程と、前記ゲートを作製した後に、前記ポリシリコン層(A)側面にサイドウォールを形成してから、ソース部およびドレイン部を形成するためのポリシリコンを堆積してポリシリコン層(B)を形成する工程と、レジストによりパターニングを行い、前記ゲート上のポリシリコン層(B)の一部が露出するように、前記レジストを除去する工程と、露出した前記ポリシリコン層(B)のポリシリコン、および分離部のポリシリコン層(B)のポリシリコンを除去し、残存する前記ポリシリコン層(B)にて前記SOI層より厚さの厚いソース部およびドレイン部を形成する工程と、前記ポリシリコンを除去した後に前記レジストを除去し、前記ゲート上部の酸化膜を除去する工程と、を順次含むことを特徴とする完全空乏型SOI−MOSトランジスタの製造方法である。
<3> 前記ポリシリコンの堆積により前記ポリシリコン層(A)および前記ポリシリコン層(B)を形成する方法が、CVD法であることを特徴とする<1>または<2>に記載の完全空乏型SOI−MOSトランジスタの製造方法である。
本発明によれば、スループットを向上させることが可能で、短チャネル効果を抑制しつつソースドレイン抵抗の低い完全空乏型SOI−MOSトランジスタの製造方法を提供することができる。
〔完全空乏型SOI−MOSトランジスタ〕
完全空乏型SOI−MOSトランジスタは、図1に示すように、半導体基板(好ましくはSOI基板)1上にBOX層2を介してSOI層8およびゲート電極6が順次形成され、SOI層8の側方の領域に、ポリシリコンの堆積によって形成されたソースドレイン部(ソース部4aおよびドレイン部4b)が設けられ、SOI層8がソースドレイン部の厚さより小さくなるように形成されている。
ソース・ドレイン部をポリシリコンによって形成することで、電子の移動度が高まりソースドレイン抵抗が低くなって、オン電流を向上させることができる。ポリシリコンは、例えば、アモルファスシリコン等よりも移動度が大きいため、上記のような効果が顕著に現れると考えられる。
また、SOI層8とゲート電極6との間には、ゲート酸化膜7が形成され、当該ゲート電極6の側方には、ソースドレイン部との接触を防ぐためのサイドウォール5が形成されている。ソースドレイン部の外側には、素子分離を行うための分離酸化膜3が形成されている。
ここで、「SOI」とは、「Silicon On Insulator」の略であり、一般的には、絶縁膜上に薄いシリコン単結晶層を形成した半導体基板、あるいはこの基板に形成されるデバイスをいう。MOSトランジスタをSOIで形成すると、特性の改善や寄生容量の低減が図れ、低電圧での動作が可能となり、低電力デバイスを実現できる。
従って、本明細書において「SOI層」とは、半導体基板の絶縁膜上等に形成されたシリコン薄膜を意味する。
また、SOI層を完全空乏型とすることで、部分空乏型に比べて低電圧化と負荷容量の低減を同時に実現できる利点がある。
SOI層の厚さは、ソースドレイン部の厚さより小さくなっている。SOI層の厚さを薄くすることで、ゲート電極の微細化による短チャネル効果の問題を解決することができる。
上記効果は、種々の条件などにもよるが、SOI層が35nm程度以下の場合に顕著に見られる。
SOI層の厚さは、短チャネル効果とソースドレイン抵抗との関係を考慮して、特にソースドレイン部の厚さの20〜80%であることが好ましい。
また、前記ソースドレイン部におけるソース電極及びドレイン電極、並びにゲート電極は、図2に示すように、シリサイド化されていることが好ましい(図2中、符号9a、9b、9c)。シリサイド化することで、ソースドレイン抵抗をさらに低くすることができる。
以上、完全空乏型SOI−MOSトランジスタについて、図1および図2を参照しながら説明したが、上記構成に限定されず、公知の知見に基いて、種々の変更を加えることができる。
例えば、ゲート電極材料としてポリシリコンを使用することが好ましいが、用途によっては、閾値制御のためにSiGe等の仕事関数差の異なる電極を使用してもよい。
〔完全空乏型SOI−MOSトランジスタの製造方法〕
以下、本発明の完全空乏型SOI−MOSトランジスタの製造方法について、図3〜図13を参照して説明する。
まず、Si基板31上にBOX層32およびSOI層33が順次形成されたSOI基板(図3(A))のSOI層33を酸化(図3(B))して、その表面に酸化膜34を形成する。酸化の度合いは、SOI層33の膜厚が10〜40nm(好ましくは10〜30nm)となるように調整することが好ましい。その後、図3(C)に示すように酸化膜34を除去する。このようにして、SOI層33を所望の厚みとしたSOI基板が作製される。
SOI層33の表面にパッド酸化処理を施して、図4(A)に示すように酸化膜35を形成する。その後、ゲート部(ゲート電極が形成される箇所)、ソース部およびドレイン部に相当する部分に窒化膜36を形成する(図4(B))。窒化膜36をマスクとして、LOCOS酸化処理を施す(図4(C))。この処理により窒化膜36のない部分だけが酸化されるので、酸化膜の厚みが大きくなり、BOX32と接続する分離酸化膜37が形成される。その後、窒化膜36を除去して、各トランジスタごとに分離されたSOI層33が形成される。
図5(A)に示すように、SOI層33についてゲート酸化を行いゲート酸化膜38を形成する。その後、閾値制御用インプラウインドウホトリソグラフィー(図5(B))、レジスト39を設けた後の閾値電圧制御用イオン注入(図5(C))およびレジスト除去(図5(D))を順次行う。
なお、閾値制御用インプラウインドウホトリソグラフィー、閾値電圧制御用インプラでは、PMOSおよびNMOSのいずれかにより、不純物の種類などの条件を適宜設定する。
レジスト除去した酸化膜(分離酸化膜37およびゲート酸化膜38)上にゲート電極となるポリシリコンを堆積させて、ポリシリコン層40(ポリシリコン層(A))を形成する(図6(A))。ゲート電極となるポリシリコンと分離するため、ポリシリコン層40上にSiOからなる酸化膜41を形成する(図6(B))。
この酸化膜41の厚さは、後述するサイドウォールエッチングを行ったときに、ゲート酸化膜とともに剥離しないように、ゲート酸化膜38より充分に厚くする必要がある。具体的には、ゲート酸化膜38の1〜5倍の厚さとすることが好ましい。
次に、ゲートインプラホト(ゲート不純物イオン注入領域の開口)およびゲートインプラ(図6(C))を行い、ゲートパターニングを行って、表面に酸化膜41が形成されたポリシリコン層40がゲート領域に形成される(図6(D))。
図7(A)に示すように、ポリシリコン層40の側面にシリコン窒化膜等からなるサイドウォール42を形成する。その後、ソースドレイン部とするためのポリシリコンを全面に堆積させて、ポリシリコン層43(ポリシリコン層(B))を形成する(図7(B))。
なお、本発明において、ポリシリコンは、CVD法により堆積させることができる。CVD法の具体的な条件としては、620℃程度で0.2Torr(26.6Pa)程度とし、SiHガス等を使用する条件を採用することが好ましい。
ポリシリコン層43を形成した後、レジスト44を形成して、ホト・エッチ(フォトリソおよびエッチング工程)を用いたパターニングにより、分離酸化膜37上の不要なポリシリコンを除去する(図7(C))。
次に、レジストエッチによりレジスト44の高さを低くし、ゲート部の一部を露出させる(図8(A))。ゲートのポリシリコンと全面に堆積されるポリシリコンとの間に容量が発生してしまうことを防止するため、これらの間の距離はできるだけ大きくする必要がある。
ゲート部の一部を露出させる量は、ポリシリコン層の厚さやその他の設定条件により異なるが、ゲートの高さの半分以上とすることが好ましい。上限としては、ソースドレイン部におけるポリシリコン層43の半導体基板31と平行な面から20nm程度とすることが好ましい。
なお、ポリシリコン層40上には酸化膜41が形成されているため、ゲート電極となるポリシリコンが所定の範囲を超えてエッチングされことがない。従って、ゲート電極の高さなどを所望の範囲に制御よく設定することができる。
ポリシリコン40上に酸化膜41が形成された状態で、レジスト44から露出したポリシリコン層43のポリシリコンをエッチングにより除去する(図8(B))。その後、ポリシリコン層43上に残ったレジスト44の除去を行う(図8(C))。
本発明では、ポリシリコン層43のポリシリコンのエッチングを2回に分けて行っている(図7(C)および図8(B))。これは、図7(C)のエッチングよりも図8(B)のエッチングの方が、選択性などのエッチング条件が厳しいものとなっているためである。すなわち、エッチングを2回に分けることで、図8(B)のエッチング条件をより細かく設定できる。
レジスト44を除去した後、図9(A)に示すように、ゲート上の酸化膜41をエッチングにより除去する。
当該エッチングを施すことで、最終的にソースドレイン部のみにポリシリコンが堆積した構成となる。その後、レジスト45を設けソースドレインインプラなどを行い(図9(B))、活性化RTAを行う(図10(A))。
活性化RTAをおこなった後は、必要に応じてシリサイド化を行ってもよい。具体的には、図10(B)に示すように、表面にCoを析出させて、シリサイド化(符号46に相当)を施しCo選択エッチングを行えばよい(図10(C))。
必要に応じてシリサイド化を行った後は、NSGデポ(図11(A))、ソースドレインコンタクトホト・エッチ(図11(B))、ゲートコンタクトホト・エッチ(図11(C))を順次施して、本発明の完全空乏型SOI−MOSトランジスタが製造される。
以上のような製造方法によれば、ポリシリコン層(A)(B)の形成にエピタキシャル成長法を使用しないため、スループットを向上させることが可能となる。
上記した本発明の製造方法で、ゲート上のポリシリコン層(B)の一部を露出させるその他の方法として、図7(C)および図8に示す工程に代えて、図12のような工程を適用してもよい。
すなわち、図12(A)に示すように、レジスト44を設けてパターニングを行った後、図12(B)に示すように、ゲートの一部が露出するようにパターニングしてレジスト44の除去を行う。その後、ポリシリコンエッチングを行って露出したゲート上のポリシリコンだけを選択的に除去して、ポリシリコン層43上に残ったレジスト44を除去する(図12(C))。
図7(C)および図8に示す工程では、分離部のポリシリコン除去は、Self−alignで行われる反面、レジストエッチングの膜厚制御が困難である。一方、図12に示す工程では、これを通常のパターニングで行うため、ゲートとのアライメントさえ注意すれば、当該レジストエッチングの制御が不要となる。その結果、より簡易な条件で各処理を施すことが可能で、スループットを向上させることができる。
また、その他の構成として、ゲート上のポリシリコン層(B)の一部が露出するように、レジストを除去する工程を経た後、露出したポリシリコン層(B)のポリシリコン、および分離部のポリシリコン層(B)のポリシリコンをまとめて除去してもよい。
すなわち、図7(C)および図8に示す工程に代えて、図13(A)のように、レジスト44のみパターニングした後、ゲート上のポリシリコン層(B)の一部が露出するように、レジストエッチングを行い(図13(B))、露出していたゲート上のポリシリコン層43のポリシリコン、および分離部(分離酸化膜37上の露出部)のポリシリコン層のポリシリコンの除去を一緒に行ってもよい(図13(C))。かかる工程は、図12の工程についても適用することができる。
このようにすれば、ポリシリコンのエッチング工程を1回減らすことが可能となり、より迅速に本発明の完全空乏型SOIトランジスタを製造することができるので、さらにスループットを向上させることができる。
なお、ここでは、nMOSだけの工程を説明したが、pMOSのゲートおよびelevated−source/drain部を同時に作製することが可能である。ソースドレインインプラ等、nMOSとpMOSとで異なる工程は、通常のホトによる方法でnMOSとpMOSとに打ち分けられる。従って、本製造方法は、CMOSへの応用が可能である。
完全空乏型SOI−MOSトランジスタの例を示す断面概略図である。 図1に示す完全空乏型SOI−MOSトランジスタにシリサイド化を施した例を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 本発明の一実施形態に係る完全空乏型SOI−MOSトランジスタの製造方法の一工程を示す断面概略図である。 従来の完全空乏型SOI−MOSトランジスタの例を示す断面概略図である。
符号の説明
1・・・半導体基板
2・・・BOX層
3・・・分離酸化膜
4a・・・ソース部
4b・・・ドレイン部
5・・・サイドウォール
6・・・ゲート電極
7・・・ゲート酸化膜
8・・・SOI層

Claims (3)

  1. 半導体基板上にSOI層を形成し、前記SOI層上に酸化膜を形成し、ゲート部、ソース部およびドレイン部に相当する部分に窒化膜を形成した後、該窒化膜をマスクとして酸化処理を施して前記窒化膜以外の部分に酸化膜を形成し、分離部を形成した後、前記窒化膜と前記SOI層上の酸化膜とを除去する工程と、
    前記分離部を形成し前記窒化膜と前記SOI層上の酸化膜とを除去した後に、少なくとも前記SOI層上にポリシリコンを堆積してポリシリコン層(A)を形成し、該ポリシリコン層(A)上にSiO2からなる酸化膜を形成する工程と、
    前記酸化膜を形成した後に、ゲート部以外をエッチングして前記SOI層上に前記ポリシリコン層(A)と前記酸化膜とを順次有するゲートを作製する工程と、
    前記ゲートを作製した後に、前記ポリシリコン層(A)側面にサイドウォールを形成してから、ソース部およびドレイン部を形成するためのポリシリコンを堆積してポリシリコン層(B)を形成する工程と、
    レジストによりパターニングを行って前記分離部のポリシリコン層(B)のポリシリコンを除去する工程と、
    前記ゲート上のポリシリコン層(B)の一部が露出するように、前記レジストを除去する工程と、
    露出した前記ポリシリコン層(B)のポリシリコンを除去し、残存する前記ポリシリコン層(B)にて前記SOI層より厚さの厚いソース部およびドレイン部を形成する工程と、
    前記ポリシリコンを除去した後に前記レジストを除去し、前記ゲート上部の酸化膜を除去する工程と、
    を順次含むことを特徴とする完全空乏型SOI−MOSトランジスタの製造方法。
  2. 半導体基板上にSOI層を形成し、前記SOI層上に酸化膜を形成し、ゲート部、ソース部およびドレイン部に相当する部分に窒化膜を形成した後、該窒化膜をマスクとして酸化処理を施して前記窒化膜以外の部分に酸化膜を形成し、分離部を形成した後、前記窒化膜と前記SOI層上の酸化膜とを除去する工程と、
    前記分離部を形成し前記窒化膜と前記SOI層上の酸化膜とを除去した後に、少なくとも該SOI層上にポリシリコンを堆積してポリシリコン層(A)を形成し、該ポリシリコン層(A)上にSiO2からなる酸化膜を形成する工程と、
    前記酸化膜を形成した後に、ゲート部以外をエッチングして前記SOI層上に前記ポリシリコン層(A)と前記酸化膜とを順次有するゲートを作製する工程と、
    前記ゲートを作製した後に、前記ポリシリコン層(A)側面にサイドウォールを形成してから、ソース部およびドレイン部を形成するためのポリシリコンを堆積してポリシリコン層(B)を形成する工程と、
    レジストによりパターニングを行い、前記ゲート上のポリシリコン層(B)の一部が露出するように、前記レジストを除去する工程と、
    露出した前記ポリシリコン層(B)のポリシリコン、および分離部のポリシリコン層(B)のポリシリコンを除去し、残存する前記ポリシリコン層(B)にて前記SOI層より厚さの厚いソース部およびドレイン部を形成する工程と、
    前記ポリシリコンを除去した後に前記レジストを除去し、前記ゲート上部の酸化膜を除去する工程と、
    を順次含むことを特徴とする完全空乏型SOI−MOSトランジスタの製造方法。
  3. 前記ポリシリコンの堆積により前記ポリシリコン層(A)および前記ポリシリコン層(B)を形成する方法が、CVD法であることを特徴とする請求項1または2に記載の完全空乏型SOI−MOSトランジスタの製造方法。
JP2006221443A 2006-08-15 2006-08-15 完全空乏型soi−mosトランジスタの製造方法 Expired - Fee Related JP4284344B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221443A JP4284344B2 (ja) 2006-08-15 2006-08-15 完全空乏型soi−mosトランジスタの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221443A JP4284344B2 (ja) 2006-08-15 2006-08-15 完全空乏型soi−mosトランジスタの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002238169A Division JP2004079790A (ja) 2002-08-19 2002-08-19 完全空乏型soi−mosトランジスタおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2006352154A JP2006352154A (ja) 2006-12-28
JP4284344B2 true JP4284344B2 (ja) 2009-06-24

Family

ID=37647579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221443A Expired - Fee Related JP4284344B2 (ja) 2006-08-15 2006-08-15 完全空乏型soi−mosトランジスタの製造方法

Country Status (1)

Country Link
JP (1) JP4284344B2 (ja)

Also Published As

Publication number Publication date
JP2006352154A (ja) 2006-12-28

Similar Documents

Publication Publication Date Title
US7871869B2 (en) Extremely-thin silicon-on-insulator transistor with raised source/drain
JP4110085B2 (ja) 二重ゲート型電界効果トランジスタの製造方法
US8012820B2 (en) Ultra-thin SOI CMOS with raised epitaxial source and drain and embedded SiGe PFET extension
US7989296B2 (en) Semiconductor device and method of manufacturing same
US7087471B2 (en) Locally thinned fins
US7141476B2 (en) Method of forming a transistor with a bottom gate
US7701010B2 (en) Method of fabricating transistor including buried insulating layer and transistor fabricated using the same
US20060091432A1 (en) Damascene gate field effect transistor with an internal spacer structure
JP4119663B2 (ja) 非エピタキシャル隆起型ソース/ドレインおよび自己整合型ゲートを有するcmos構造と製造方法
JP2005019996A (ja) ハイブリッド・プレーナおよびFinFETCMOSデバイス
JP2000277745A (ja) ダブルゲート集積回路及びその製造方法
JP2011035393A (ja) 埋め込み拡張領域を有するsoiトランジスタ、及びその形成方法
WO2014056277A1 (zh) 半导体结构及其制造方法
WO2011147062A1 (zh) 半导体结构及其制造方法
KR100506823B1 (ko) 반도체 장치의 제조 방법
US7244988B2 (en) Semiconductor apparatus and method of manufacturing the same
US7648880B2 (en) Nitride-encapsulated FET (NNCFET)
US20080093669A1 (en) Semiconductor device and method of manufacturing the same
US20070138554A1 (en) Full depletion SOI-MOS transistor
US7718497B2 (en) Method for manufacturing semiconductor device
JP4284344B2 (ja) 完全空乏型soi−mosトランジスタの製造方法
JP4434832B2 (ja) 半導体装置、及びその製造方法
JP2003086799A (ja) 半導体装置及びその製造方法
US20060270127A1 (en) Method of forming dual gate variable VT device
JP2007165617A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees