JP4284336B2 - 清浄気体加熱装置及び基板乾燥装置 - Google Patents

清浄気体加熱装置及び基板乾燥装置 Download PDF

Info

Publication number
JP4284336B2
JP4284336B2 JP2006167268A JP2006167268A JP4284336B2 JP 4284336 B2 JP4284336 B2 JP 4284336B2 JP 2006167268 A JP2006167268 A JP 2006167268A JP 2006167268 A JP2006167268 A JP 2006167268A JP 4284336 B2 JP4284336 B2 JP 4284336B2
Authority
JP
Japan
Prior art keywords
gas
gas heating
clean gas
clean
tube member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006167268A
Other languages
English (en)
Other versions
JP2007335720A (ja
Inventor
一美 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kasei Co Ltd
Original Assignee
Toho Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kasei Co Ltd filed Critical Toho Kasei Co Ltd
Priority to JP2006167268A priority Critical patent/JP4284336B2/ja
Publication of JP2007335720A publication Critical patent/JP2007335720A/ja
Application granted granted Critical
Publication of JP4284336B2 publication Critical patent/JP4284336B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、半導体製造装置におけるウェハ等の基板の乾燥処理に用いられる清浄気体加熱装置およびそれを用いた基板乾燥装置に関する。
従来、この種の清浄気体加熱装置を用いたウェハ乾燥装置としては、種々構造のものが知られている。例えば、特許文献1に開示されるような基板乾燥装置では、エッチング処理液を用いて処理が行われた基板の一例である半導体ウェハを、処理槽内に収容された純水中に浸積させてその洗浄処理を行った後、処理槽の純水液面上方の空間内に窒素ガスをキャリアとしてイソプロピルアルコール(以降、IPAという。)を蒸気として供給するとともに、処理槽底部より純水を排水させることにより、純水液面より上方にウェハを露出させ、供給されているIPA蒸気が露出されたウェハの表面に付着している水滴と置換されることで、ウェハ表面が酸素に触れて自然酸化することなく、乾燥させるようにしている。
しかしながら、このような従来の装置構成においては、表面に微細パターンが形成されたウェハでは、パターンが微細になるほどパターン内に入り込んだ水分がIPAに置換されないで残存する場合が生じ得、その結果、ウェハを完全に乾燥させることができない場合がある。
このようなウェハの乾燥が不十分となるような問題を改善するため、例えば、特許文献2に開示されているような清浄気体加熱装置が、従来の乾燥装置において装備されて用いられている。この従来の清浄気体加熱装置は、例えば清浄気体として清浄窒素ガスをヒータにより所望の温度に加熱した状態で、処理槽内にて露出されたウェハに向けて噴射するように供給し、ウェハの乾燥を促進させるというような装置である。この加熱装置においては、清浄化された気体が取り扱われるため、清浄化雰囲気での使用に適した材料である石英ガラス管(透明石英ガラス管)が用いられ、石英ガラス管の外側を取り囲むように配置されたハロゲンヒータにより、石英ガラス管内を通過して供給される窒素ガスの加熱が行われる。ハロゲンヒータより照射される赤外線は、石英ガラス管及び窒素ガスにほとんど吸収されることなく透過してしまうため、石英ガラス管内にSiCからなるガス通過管を設け、赤外線の照射によりガス通過管自体が加熱されることにより、このガス通過管を介して、その内部を通過する窒素ガスの加熱が行われている。
特公平6−103686号公報 特開平6−349812号公報
しかしながら、上記構造の従来の清浄気体加熱装置においては、清浄気体に対してパーティクル等の混入を抑制するという観点から石英ガラス管が用いられているが、加熱源であるハロゲンヒータより放射される赤外線はこのような石英ガラス管は透過してしまい、さらに窒素ガス自体も赤外線の照射によっては直接的な加熱はほとんど行うことはできない。そのため、このような赤外線の照射により直接的に加熱することができるSiCからなるガス通過管を窒素ガスが通過する石英ガラス管内に配置して、ガス通過管を介して間接的に窒素ガスの加熱を行う必要がある。
近年、このようなウェハに形成されるパターンは、さらに微細化されつつあり、これまで問題とならないような大きさのパーティクルや不純物の付着を抑制する必要が生じている。上述の従来の清浄気体加熱装置にて用いられているSiCからなるガス通過管の表面からは、“C”が不純物となって清浄窒素ガスに混入し、乾燥処理されるウェハの表面に付着する恐れがあり、清浄気体を用いての乾燥処理を行うことができない場合があるという問題がある。
従って、本発明の目的は、上記問題を解決することにあって、ウェハ等の基板の乾燥処理に用いられる清浄気体加熱装置において、微細パターンが形成された基板に対して、効率的に加熱された清浄気体をその高い清浄度を保ちながら供給して、乾燥処理を行うことができる清浄気体加熱装置及びそれを用いた基板乾燥装置を提供することにある。
上記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、清浄気体が導入される気体導入口と、上記気体導入口より管内に導入された上記清浄気体が管外へ吐出される気体吐出口とをその管壁に有し、不透明石英により形成された外管部材と、
上記外管部材のそれぞれの端部がその管壁の外面に連結されるとともに、その上記管壁の外面と上記外管部材の上記管壁の内面との間に気体加熱用空間が形成されるように、上記外管部材の内側に配置され、透明石英により形成された内管部材と、
上記内管部材の内側に挿入配置され、上記内管部材の上記管壁に向けて放射状に赤外線を放射する赤外線発生源とを備え、
上記赤外線発生源より放射された赤外線が、上記内管部材を透過して上記外管部材に照射されて、上記外管部材を加熱することにより、上記気体加熱用空間を通過する上記清浄気体が加熱されることを特徴とする清浄気体加熱装置を提供する。
本発明の第2態様によれば、上記外管部材において、上記気体吐出口は、上記気体導入口とは略反対側の上記管壁に形成され、
上記気体加熱用空間において、上記気体導入口と上記内管部材の上記管壁との間に、上記気体導入口より導入される上記清浄気体を、上記気体加熱用空間内に拡散させる拡散部材が備えられている第1態様に記載の清浄気体加熱装置を提供する。
本発明の第3態様によれば、上記外管部材において、上記気体吐出口は、上記気体導入口とは反対側の上記管壁に形成され、
上記気体加熱用空間において、上記気体吐出口と上記内管部材の上記管壁との間に、上記気体吐出口へ向かう上記清浄気体を上記気体加熱用空間内に拡散させる拡散部材が備えられている第1態様に記載の清浄気体加熱装置を提供する。
本発明の第4態様によれば、上記外管部材において、上記気体吐出口として上記管壁を貫通する複数の吹き出し孔が形成されている第1態様から第3態様のいずれか1つに記載の清浄気体加熱装置を提供する。
本発明の第5態様によれば、上記気体導入口の開口面積が、上記気体吐出口の開口面積よりも大きくなるように、上記外管が形成されている第1態様から第4態様のいずれか1つに記載の清浄気体加熱装置を提供する。
本発明の第6態様によれば、上記赤外線発生源は、ハロゲンランプである第1態様から第5態様のいずれか1つに記載の清浄気体加熱装置を提供する。
本発明の第7態様によれば、上記外管部材の上記管壁の外周面にその反射面が向かうように反射層が配置されている第1態様から第6態様のいずれか1つに記載の清浄気体加熱装置を提供する。
本発明の第8態様によれば、上記反射層の外面を覆うように、パーティクルの発生を抑制する保護膜がさらに配置されている第7態様に記載の清浄気体加熱装置を提供する。
本発明の第9態様によれば、上記不透明石英は、石英の内部に多数の気泡が混入されて形成されている第1態様から第8態様のいずれか1つに記載の清浄気体加熱装置を提供する。
本発明の第10態様によれば、上記不透明石英は、赤外線の透過率が、0.5%以下である第1態様から第9態様のいずれか1つに記載の清浄気体加熱装置を提供する。
本発明の第11態様によれば、その内部に基板が収容される処理室と、
上記気体吐出口より上記管外へ吐出された上記清浄気体が上記収容されている基板に向かうように、上記処理室内に配置された第1態様から第10態様のいずれか1つに記載の清浄気体加熱装置とを備えることを特徴とする基板乾燥装置を提供する。
本発明によれば、清浄気体加熱装置において、外管部材と内管部材の二重管構造が採用され、内管部材の内側に、赤外線を放射する赤外線発生源を配置させるとともに、内管部材を赤外線に対して透過性を有する透明石英にて構成し、外管部材を赤外線に対して不透過性を有する不透明石英にて構成することで、耐熱性及び清浄度環境にての使用性に優れるという石英の特性を効果的に利用して、清浄気体に対してパーティクルや不純物が混入されることを抑制しながら、清浄気体に対する効率的な加熱を行うことができる。
特に、不透明石英として、その表面に凹凸が形成された石英や他の成分が混入された石英を使用するのではなく、多数の微細な気泡が混入された石英が使用されることにより、赤外線の照射による石英の赤熱現象を生じさせることができるとともに、照射された赤外線の一部を輻射熱として放射(反射)させることができ、気体加熱空間内を通過する清浄気体に対する効果的な加熱を行うことができる。
従って、このような清浄気体加熱装置を用いることで、基板に対して高い清浄度が維持され、かつ所望の温度に加熱された清浄気体を吹き付けることができ、汚染が効果的に抑制された効率的な基板の乾燥処理を行うことが可能となる。
以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。
(第1実施形態)
本発明の第1の実施形態にかかる清浄気体加熱装置の一例であるクリーンガス加熱ユニット10の主要な構成を示す模式断面図(縦断面図)を図1に示し、図1のクリーンガス加熱ユニット10におけるA−A線模式断面図を図2に示す。このクリーンガス加熱ユニット10は、清浄化雰囲気中にて用いられる装置であって、予め清浄化されたクリーンガス(清浄気体)を所望の温度にまで加熱して吹き出すことで、この加熱ガスが吹き付けられた基板の一例である半導体ウェハ等の乾燥を促進させるような加熱装置である。なお、本明細書において、「清浄気体」とは、半導体装置製造工程等において要求される清浄化環境(クリーンルーム)にて使用可能なように、高性能(超高性能)フィルタ等を用いたフィルタリング等の手段により、含有されるパーティクルや不純物の除去処理が十分に施された気体のことである。このような清浄気体の例としては、例えば、クリーン窒素ガスやクリーンドライエアなどがある。
図1及び図2に示すように、クリーンガス加熱ユニット10は、耐熱性及び熱線遮断性に優れた不透明石英ガラスにより形成された筒状体2と、同じく不透明石英ガラスにより形成され、筒状体2のそれぞれの開放端部に固着された側板3とにより構成される外管部材1と、それぞれの側板3の中央付近に形成された開口部に挿入された状態で、それぞれの側板3に固着されて外管部材1の内側に配置され、耐熱性及び透光性に優れた透明石英ガラスにより形成された内管部材4とを備えている。すなわち、クリーンガス加熱ユニット10は、外管部材1と、この外管部材1よりも小さな径を有する内管部材4とによる二重管構造が採用されており、それぞれの端部が内管部材4に連結された状態における外管部材1の管壁の内面と、内管部材4の管壁外面との間に、それぞれの側板(端部密閉部材の一例である)3により密閉された気体加熱用空間の一例であるガス加熱空間Sが形成されている。
また、図1及び図2に示すように、外管部材1のその長手方向における略中央付近における図示上方側の管壁には、管内におけるガス加熱空間S内に清浄気体の一例である窒素ガス(クリーン窒素ガス)が導入される気体導入口の一例であるガス導入口5が形成されており、さらに、外管部材1において、ガス導入口5が形成されている管壁とは反対側の管壁、すなわち図示下方側の管壁には、ガス加熱空間Sにて加熱された窒素ガスが管外へ吐出される気体吐出口が、複数の小さな貫通孔である吹き出し孔6として形成されている。このように、外管部材1に、ガス導入口5と複数の吹き出し孔6とが備えられていることにより、ガス導入口5を通してガス加熱空間S内に導入された窒素ガスを、それぞれの吹き出し孔6を通してガス加熱空間Sから管外へ吐出させることが可能となっている。なお、図3に示すクリーンガス加熱ユニット10の模式下面図に示すように、外管部材1に形成されたそれぞれの吹き出し孔6は、同じ大きさ及び同じ配置間隔にて、外管部材1の長手方向に沿って配列されるように形成されている。
また、内管部材4の内側には、略棒形状を有する赤外線発生源の一例であるハロゲンランプヒータ7が挿入されて配置されている。このハロゲンランプヒータ7は、透明石英ガラスにて形成された内管部材4を透過するようにガス加熱空間Sに向けて、放射状に略均一に赤外線(赤外線エネルギ)を放射する機能を有している。また、図1に示すように、ハロゲンランプヒータ7には、所望の電力が供給されるように電力供給ユニット9に接続されており、供給される電力量に応じて、放射する赤外線の量を制御することが可能となっている。また、このようなハロゲンランプヒータ7は、加熱開始時に温度の立ち上がり時間が一般的な他のランプヒータ、シーズヒータ、及びニクロムヒータなどと比べて早く、また、加熱停止時の温度の立ち下がり時間も早いという特徴を有しており、加熱効率や温度の制御性に優れたランプヒータである。
また、図1及び図2に示すように、ガス加熱空間S内において、ガス導入口5が形成されている外管部材1の管壁と内管部材4の管壁との間には、ガス導入口5を通して管内に導入される窒素ガスをガス加熱空間S内に拡散させる略帯状の板部材である拡散部材8が設けられている。この拡散部材8は、例えば、耐熱性及び透光性に優れた透明石英ガラスにより形成されており、それぞれの端部が、側板3に固着されることで、ガス加熱空間S内に設置されている。
ここで、石英ガラス材料について説明する。まず、「不透明石英」とは、石英材料中に多数の微細な気泡が含有されるようにして形成された石英材料Pであり、石英材料中を透過しようとする赤外線Qが、多数の気泡Rの表面において非選択的に散乱、すなわち様々な方向に反射されるような特性を有する石英材料のことである(図4の模式説明図参照)。従って、不透明石英は、少なくとも赤外線に対しては、透過させることなく、照射された赤外線を遮断させる機能を有しており、本発明においては、例えば、赤外線に対する透過率が0.5%以下のものが不透明石英として用いられることが好ましい。なお、このような不透明石英において含有されている微細な気泡の直径は、赤外線が効果的に散乱される非選択的散乱が発生するように、赤外線の波長に対して十分に大きく形成されることが好ましく、例えば、30〜120μmの範囲の直径の気泡が用いられる。また、一般的な石英の真密度が2.2g/cmであるのに対して、不透明石英の密度は、2.0〜2.1g/cm程度となっている。また、このような不透明石英は、高純度のシリカ原料に発泡剤を混入させた状態で溶融させることで製造することができる。これに対して、「透明石英」とは、光の透過性が良好な石英であり、上述のような気泡が含有されていない、いわゆる従来から用いられている石英材料のことである。なお、いずれの石英材料も良好な耐熱性と清浄化環境での使用に適した特性を有している。
次に、このような透明石英(すなわち光透過性石英)と不透明石英(赤外線遮断性石英)との2種類の特性を有する石英を使い分けて構成されたクリーンガス加熱ユニット10において、窒素ガスを加熱する具体的な原理について以下に説明する。
まず、図1及び図2において、ガス導入口5より管内に導入された窒素ガスは、拡散部材8に衝突されることで乱流状態が積極的に促進され、ガス加熱空間S内に拡散される。このように拡散された窒素ガスは、ガス加熱空間S内において後述するように所望の温度に加熱されながら、ガス加熱空間S内における図示下方側に回り込み、それぞれの吹き出し孔6を通じて、加熱された窒素ガスとして管外へ吐出される。
一方、ハロゲンランプヒータ7よりは、赤外線が放射状に拡がるように放射され、この放射された赤外線が、透明石英ガラスにより形成されている内管部材4の管壁を透過し、さらにガス加熱空間S内に導入されている窒素ガスをも透過して、外管部材1へと照射される。なお、拡散部材8も透明石英ガラスにより形成されているため、赤外線が透過されることとなる。外管部材1は、その管壁が不透明石英ガラスにより形成されているため、図4の模式説明図に示すように、照射された赤外線Qが、不透明石英P中に含有されている多数の気泡Rの表面において様々な方向に反射、すなわち散乱される。この散乱により赤外線Qの一部は、不透明石英ガラスP、すなわち外管部材1において吸収され、外管部材1自体の温度が上昇され、いわゆる赤熱状態(例えば、オレンジ色あるいは赤色に光り輝く状態)とされる。一方、その他の赤外線Qは、輻射熱Tとなってガス加熱空間S内へ照射される。その結果、外管部材1の赤熱による伝熱と、外管部材1からの輻射熱Tとにより、ガス加熱空間S内を通過する窒素ガスの加熱が行われる。特に、ガス加熱空間Sにおいては、拡散部材8が設けられていることにより、乱流状態が積極的に形成されるため、この加熱がより効果的に行われる。このように加熱された窒素ガスが、ガス加熱空間Sよりそれぞれの吹き出し孔6を通過して、管外へ吐出される。
さらに、ガス加熱空間S内に拡散部材8が設けられていることにより、ガス加熱空間S内において、積極的に乱流状態が形成され、その結果、複数の吹き出し孔6の中で、ガス導入口5に近い吹き出し孔6より多量の窒素ガスが吐出され、ガス導入口5から離れた吹き出し孔6よりは少量の窒素ガスしか吐出されないというような不均一な吹き出し状態が発生することを抑制することができ、それぞれの吹き出し孔6より加熱された窒素ガスを略均一な状態で吹き出すことができる。
上記第1実施形態によれば、クリーンガス加熱ユニット10において、外管部材1と内管部材4の二重管構造とし、内管部材4の内側に、赤外線を放射するハロゲンランプヒータ7を配置させるとともに、内管部材4を赤外線に対して透過性を有する透明石英ガラスにて構成し、外管部材1を赤外線に対して不透過性を有する不透明石英ガラスにて構成することで、耐熱性及び清浄度環境にての使用性に優れるという石英の特性を効果的に利用して、清浄気体である窒素ガスに対してパーティクルや不純物が混入されることを抑制しながら、窒素ガスに対する効率的な加熱を行うことができる。
特に、不透明石英として、その表面に凹凸が形成された石英や他の成分が混入された石英を使用するのではなく、多数の微細な気泡が混入された石英が使用されることにより、赤外線の照射による石英の赤熱現象を生じさせることができるとともに、照射された赤外線の一部を輻射熱として放射(反射)させることができ、ガス加熱空間S内を通過する窒素ガスに対する効果的な加熱を行うことができる。
また、赤外線発生源であるハロゲンランプヒータ7は、内管部材4の内側に配置された構成が採用されているため、ハロゲンランプヒータ7の表面を保護するとともにガス加熱空間Sへのパーティクルの混入を防止しながら、赤外線の透過性に優れた透明石英ガラスを透過させた放射状に拡がる赤外線放射を実現することができ、効率的な加熱を行うことができる。
また、ガス加熱空間S内に導入された窒素ガスを拡散させる拡散部材8が備えられていることにより、ガス加熱空間S内において窒素ガスの流れを乱流状態とさせることができ、窒素ガスの均一な加熱を効率的に行うことができるとともに、それぞれの吹き出し孔6より略均一に窒素ガスを吐出させることができる。
なお、上記第1実施形態のクリーンガス加熱ユニット10が備えるそれぞれの構成部材は、上述にて説明したような構成のみに限定されるものではなく、その他様々な構成を採用することが可能である。上記第1実施形態のクリーンガス加熱ユニット10の構成部材の変形例について以下に説明する。
図1及び図2に示すクリーンガス加熱ユニット10においては、拡散部材8をガス導入口5と内管部材4との間に配置させているが、このような場合に代えて、例えば、図5の模式断面図に示すクリーンガス加熱ユニット10Aのように、それぞれの吹き出し孔6と内管部材4との間に拡散部材8Aを配置させることもできる。拡散部材8Aの配置をこのようにすることで、ガス加熱空間S内にて加熱された窒素ガスを、それぞれの吹き出し孔6から略均一に吐出させることができる。なお、図示しないが、ガス加熱空間S内において、ガス導入口5の近傍に拡散部材8を配置させるとともに、それぞれの吹き出し孔6の近傍にも拡散部材8Aを配置させるようにして、拡散による効果をさらに高めることもできる。
また、図3に示すクリーンガス加熱ユニット10においては、外管部材1にそれぞれの吹き出し孔6を略同じ間隔ピッチにて形成しているが、このような場合に代えて、例えば、図6の模式下面図に示すクリーンガス加熱ユニット10Bのように、複数の吹き出し孔6Aの間隔を、中央部分が疎であって両端部にいくに従って密になるように形成するような場合であってもよい。このようにそれぞれの吹き出し孔6Aを形成することにより、外管部材1の長手方向において、個々の吹き出し孔6Aよりの窒素ガスの吹き出し量をより均一なものにすることが可能となる。
また、このような吹き出し孔6、6Aの形状や大きさは、同一のものについてのみ限定されるものではなく、様々な大きさや形状を採用し得る。例えば、図7に示すクリーンガス加熱ユニット10Cのように、複数の吹き出し孔6Bの間隔ピッチを同じとしながら、吹き出し孔6Bの大きさを中央部近傍においては小さく、両端部にいくに従って大きくすることもできる。このようにそれぞれの吹き出し孔6Bの大きさを変えることでも、外管部材1の長手方向において、個々の吹き出し孔6Bよりの窒素ガスの吹き出し量の均一性を向上させることができる。
また、図8に示すクリーンガス加熱ユニット10Dのように、それぞれの吹き出し孔6Cの形状を丸孔形状でなく、複数の細長いスリット状に形成するような場合であってもよい。丸孔形状を採用する場合と同様に、スリット状の吹き出し孔6Cの数、幅w、長さl、間隔ピッチgは、窒素ガスの供給量や吹き出し速度などに応じて自在に設定することができる。また、スリット状の形状を採用する場合には、スリットの長さを大きくして、吹き出し孔を1個のみとすることも可能である。
なお、上記第1実施形態のクリーンガス加熱ユニット10においては、ガス導入口5が1個のみ形成される場合について説明したが、窒素ガスの流入量との関係で複数のガス導入口を設けることも可能である。
また、上記第1実施形態にクリーンガス加熱ユニット10等において、ガス導入口5の断面積の総和が、吹き出し孔6の断面積の総和よりも大きくすることにより、窒素ガスがガス加熱空間Sに滞留する時間が長くなり、窒素ガスの加熱効果がより増大させることが可能となる。
また、拡散部材8が透明石英ガラスにより形成されるような場合について説明したが、このような場合に代えて、拡散部材8が不透明石英ガラスにより形成されるような場合であってもよい。拡散部材8が不透明石英ガラスにより形成されているような場合にあっては、赤外線の照射により拡散部材8自体を加熱させることができ、拡散部材8を介して窒素ガスの加熱を行うことができる。
例えば、図12の模式断面図に示すクリーンガス加熱ユニット10Eのように、拡散部材8を不透明石英ガラスにより形成することで、このような加熱効果をより高めることが可能となる。さらに、図12に示すように、クリーンガス加熱ユニット10Eにおいて、内管部材4と外管部材1との間に、さらに別の複数の拡散部材8B(例えば、不透明石英ガラスにより形成)を配置させることで、ガス加熱空間S内において、窒素ガスを拡散させる効果をより高めることができる。このように拡散効果を高めることで、それぞれの拡散部材8及び8B、並びに外管部材1と、窒素ガスとの接触性を高めることができ、その結果、ガス加熱をより効率的に行うことが可能となる。なお、図12に示すクリーンガス加熱ユニット10Eにおいては、全ての拡散部材8及び8Bが不透明石英ガラスにて形成されるような場合について説明したが、このような場合に代えて、例えば、不透明石英ガラスにより形成された拡散部材と、透明石英ガラスにより形成された拡散部材とが混在するような場合や、全ての拡散部材が透明石英ガラスにより形成されるような場合であってもよい。
ここで、図1に示すクリーンガス加熱ユニット10の実施例として、加熱実験を行った実測データについて以下に説明する。ハロゲンランプヒータ7は定格出力4kWのものを供給電流を調整して2.4kWで使用した。ガス導入口5にガス導入管を接続して、清浄気体として例えば窒素ガスを毎分250リットルにて供給を行った。このとき、それぞれの吹き出し孔6から10cm離れた地点で測定すると、約60℃に昇温した窒素ガスが風速4m/秒で得られた。また、このときの外管部材1の管壁温度は125℃であった。また、このようなクリーンガス加熱ユニット10を使用して、IPA置換後の微細なパターンが形成されたウェハに、加熱された窒素ガスを噴射することにより、ウェハの乾燥を確実にすることができた。
(第2実施形態)
なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、本発明の第2の実施形態にかかる清浄気体加熱装置の一例であるクリーンガス加熱ユニット20の模式断面図(縦断面図)を図9に示す。本第2実施形態のクリーンガス加熱ユニット20は、外管部材1の管壁外面にその反射面が接するように反射膜21がさらに設けられている点において、上記第1実施形態のクリーンガス加熱ユニット10と異なる構成を有している。なお、この反射膜21以外の構成については、上記第1実施形態のクリーンガス加熱ユニット10と同じ構成を有しているため、同じ構成部材には、同じ参照番号を付することでその説明を省略する。
図9に示すように、反射膜21は、その反射面21aが内向きとして、外管部材1の管壁の外面全体を覆うように配置されている。この反射膜21は、例えば、アルミニウム、金、銅等を蒸着やスパッタリング等の手段を用いることで、管壁外面に形成することができる。また、この反射膜21は、その反射面21aにおいて照射される光や熱線を反射させる機能を有するものであり、その反射率がより高いものが用いられることが好ましい。
ハロゲンランプヒータ7により放射された赤外線のほとんどは、外管部材1により散乱や吸収され、外管部材1をほとんど透過しないが、僅かに一部透過した赤外線や、外管部材1の赤熱による輻射熱などを、反射膜21により外管部材1の内側に向けて反射させることができるため、ガス加熱空間Sにおける窒素ガスの加熱効率をさらに向上させることができる。
(第3実施形態)
次に、本発明の第3の実施形態にかかる清浄気体加熱装置の一例であるクリーンガス加熱ユニット30の模式断面図を図10に示す。図10に示すクリーンガス加熱ユニット30は、反射膜21の外周面全体を覆うように、さらに保護膜31が設けられている点において、上記第2実施形態のクリーンガス加熱ユニット20と相違しており、その他の構成は同様である。
クリーンガス加熱ユニット30等を半導体ウェハ等の乾燥に使用する場合には、吹き出される加熱ガスが清浄であることが要求され、クリーンガス加熱ユニット30そのものから、ウェハを汚染する不純物、例えば重金属やその他のパーティクルの発生があってはならない。保護膜31は、例えばフッ素系の樹脂を反射膜21の外周表面にコーティングしたもので、具体的には、PTFE(ポリテトラフルオロエチレン)やPFA(パーフルオロアルコキシアルカン)等をコーティングすることで形成することができる。このことによって、重金属やパーティクルの発生によるウェハの汚染を抑制することができ、半導体ウェハの乾燥装置等に用いるに好適である。
(第4実施形態)
次に、本発明の清浄気体加熱装置(例えば、上記第3実施形態のクリーンガス加熱ユニット30)が、基板の一例である半導体ウェハの洗浄やエッチング等の薬液による処理装置におけるウェハ乾燥装置(基板乾燥装置)40に備えられて用いられる実施形態について、本発明の第4の実施形態として以下に説明する。また、当該説明にあたって、ウェハ乾燥装置40の模式構成図を図11に示す。
図11に示すように、本第4実施形態のウェハ乾燥装置101は、半導体ウェハ42に対する洗浄やエッチング等の薬液処理がその内部空間において行われる処理槽40と、開放されている処理槽40の上部にヒンジを介して備えられ、開閉可能に処理槽40を閉止する開閉部41とを備え、複数の半導体ウェハ42が、ウェハキャリア43にセットされた状態で、図示されない手段で処理槽40の内部に載置されている。
また、図11に示すように、クリーンガス加熱ユニット30は、それぞれの半導体ウェハ42がセットされたウェハキャリア43の上方および左右に設置されている。上方に設置されているクリーンガス加熱ユニット30は、図示しない固定手段を介して開閉部41の内側に固定されており、ガス導入管45及び弁46を経由してクリーンガス供給源47に接続されている。また、ウェハキャリア43の左右方向に設置されているクリーンガス加熱ユニット30は、処理槽40の内部に図示しない固定手段を介して固定されており、ガス導入管48及び弁49を経由してクリーンガス供給源47に接続されている。クリーンガス供給源47より供給されるクリーンガスとしては、例えば窒素ガスまたはドライエアが使用される。
さらに、処理槽40の底部には、処理槽40内に供給されて収容された薬液や純水等を処理槽40外へ排出する液体排出口50と、供給されたガス等を排出するガス排出口51と、処理槽40内に液体を供給する液体供給口54とが設けられている。液体排出口50の先には弁56を介してポンプ52が接続され、図示しない廃液処理装置に接続されている。また、ガス排出口51の先には弁57を介してブロワー53が接続され、図示しない廃ガス処理装置に接続されている。また、液体供給口54は弁58及びポンプ55を介して、図示しない液体供給装置に接続されている。また、ウェハ乾燥装置101において、上記それぞれの弁46、49、56、57、及び58としては、例えば自動開閉弁が用いられており、制御装置60によりその開閉動作が制御される。また、それぞれのポンプ52、55、及びブロワー53の運転動作、並びにそれぞれのクリーンガス加熱ユニット30の運転動作も、制御装置60により互いの動作が関連付けられながら統括的に制御されている。
次に、このような構成を有するウェハ乾燥装置101において、半導体ウェハ42の乾燥処理を行う動作について説明する。まず、図11のウェハ乾燥装置101において、開閉部41を開けて処理槽40を開放させ、半導体ウェハ42がセットされたウェハキャリア43を処理槽40の内部に載置する。次に、液体供給口54から洗浄やエッチング等の薬液を処理槽40内に供給し、所定の洗浄やエッチング等の処理工程を行った後に、液体排出口50から薬液等を排出する。続いて、液体供給口54から純水を供給して純水洗浄を行った後に、液体排出口50から、洗浄後の純水を排出する。
次に、乾燥工程に入る。弁46、49を開いてクリーンガス供給源47から窒素ガス(あるいはドライエア)をそれぞれのクリーンガス加熱ユニット30に供給する。同時にクリーンガス加熱ユニット30内のハロゲンランプヒータに通電し、加熱された窒素ガスを半導体ウェハ42に吹き付ける。このとき、ガス排出口51の弁57を開き、ブロワー53により、処理槽40内の排気を行う。これによって半導体ウェハ42から除去された水分が、半導体ウェハ42に再付着することを防止する。以上の乾燥工程により、微細なパターンが形成された半導体ウェハであっても乾燥処理を確実に行うことができる。
この乾燥工程では半導体ウェハ42だけでなくウェハキャリア43も同時に乾燥することができる。また、図11ではクリーンガス加熱ユニット30を上方3箇所、左右4箇所の合計7台使用する場合について説明したが、必要に応じてクリーンガス加熱ユニットの設置台数や設置位置を増減あるいは変更することができる。また、図11では半導体ウェハ42を複数枚、ウェハキャリア43にセットした例を説明したが、半導体ウェハを一枚のみ枚葉処理することも可能である。さらに、取り扱われる基板は、半導体ウェハに限定されることなく、液晶パネル基板等のガラス基板にも適用することができる。
なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明の清浄気体加熱装置は、赤外線発生源として、例えばハロゲンランプヒータを加熱源としているため、熱容量が小さく、加熱処理時における昇温特性および降温特性に優れる。また、加熱される気体の接する領域がすべて石英で構成されているため、半導体ウェハ等の基板を汚染する恐れの無い清浄な加熱気体が得られる。そのため、微細なパターンが形成された半導体ウェハや半導体ウェハキャリアの乾燥の他、液晶パネルやPDPパネルのような大型のガラス基板の乾燥等に使用でき、産業上の利用価値が高い。
本発明の第1実施形態にかかるクリーンガス加熱ユニットの模式縦断面図。 図1のクリーンガス加熱ユニットにおけるA−A線模式断面図。 図1のクリーンガス加熱ユニットにおける模式下面図。 不透明石英ガラスにおいて、照射された赤外性が散乱される状態を説明する模式断面図。 上記第1実施形態の変形例にかかるクリーンガス加熱ユニットの模式断面図であって、吹き出し孔近傍に拡散部材が配置された状態を示す図。 上記第1実施形態の変形例にかかるクリーンガス加熱ユニットの模式下面図であって、その配置間隔が不均一とされた吹き出し孔を示す図。 上記第1実施形態の変形例にかかるクリーンガス加熱ユニットの模式下面図であって、その大きさが不均一とされた吹き出し孔を示す図。 上記第1実施形態の変形例にかかるクリーンガス加熱ユニットの模式下面図であって、スリット状に形成された吹き出し孔を示す図。 本発明の第2実施形態にかかるクリーンガス加熱ユニットの模式断面図。 本発明の第3実施形態にかかるクリーンガス加熱ユニットの模式断面図。 本発明の第4実施形態にかかるクリーンガス加熱ユニットが装備されたウェハ乾燥装置の模式構成図。 上記第1実施形態の変形例にかかるクリーンガス加熱ユニットの模式断面図であって、複数の拡散部材が配置された状態を示す図。
符号の説明
1 外管部材
2 筒状体
3 側板
4 内管部材
5 ガス導入口
6 吹き出し孔
7 ハロゲンランプヒータ
8 拡散部材
9 電源供給ユニット
10、20、30 クリーンガス加熱ユニット
21 反射膜
31 保護膜
40 処理槽
42 半導体ウェハ
43 ウェハキャリア
60 制御装置
101 ウェハ乾燥装置
P 不透明石英
Q 赤外線
R 気泡
S ガス加熱空間
T 輻射熱

Claims (11)

  1. 清浄気体が導入される気体導入口と、上記気体導入口より管内に導入された上記清浄気体が管外へ吐出される気体吐出口とをその管壁に有し、不透明石英により形成された外管部材と、
    上記外管部材のそれぞれの端部がその管壁の外面に連結されるとともに、その上記管壁の外面と上記外管部材の上記管壁の内面との間に気体加熱用空間が形成されるように、上記外管部材の内側に配置され、透明石英により形成された内管部材と、
    上記内管部材の内側に挿入配置され、上記内管部材の上記管壁に向けて放射状に赤外線を放射する赤外線発生源とを備え、
    上記赤外線発生源より放射された赤外線が、上記内管部材を透過して上記外管部材に照射されて、上記外管部材を加熱することにより、上記気体加熱用空間を通過する上記清浄気体が加熱されることを特徴とする清浄気体加熱装置。
  2. 上記外管部材において、上記気体吐出口は、上記気体導入口とは略反対側の上記管壁に形成され、
    上記気体加熱用空間において、上記気体導入口と上記内管部材の上記管壁との間に、上記気体導入口より導入される上記清浄気体を、上記気体加熱用空間内に拡散させる拡散部材が備えられている請求項1に記載の清浄気体加熱装置。
  3. 上記外管部材において、上記気体吐出口は、上記気体導入口とは反対側の上記管壁に形成され、
    上記気体加熱用空間において、上記気体吐出口と上記内管部材の上記管壁との間に、上記気体吐出口へ向かう上記清浄気体を上記気体加熱用空間内に拡散させる拡散部材が備えられている請求項1に記載の清浄気体加熱装置。
  4. 上記外管部材において、上記気体吐出口として上記管壁を貫通する複数の吹き出し孔が形成されている請求項1から3のいずれか1つに記載の清浄気体加熱装置。
  5. 上記気体導入口の開口面積が、上記気体吐出口の開口面積よりも大きくなるように、上記外管が形成されている請求項1から4のいずれか1つに記載の清浄気体加熱装置。
  6. 上記赤外線発生源は、ハロゲンランプである請求項1から5のいずれか1つに記載の清浄気体加熱装置。
  7. 上記外管部材の上記管壁の外周面にその反射面が向かうように反射層が配置されている請求項1から6のいずれか1つに記載の清浄気体加熱装置。
  8. 上記反射層の外面を覆うように、パーティクルの発生を抑制する保護膜がさらに配置されている請求項7に記載の清浄気体加熱装置。
  9. 上記不透明石英は、石英の内部に多数の気泡が混入されて形成されている請求項1から8のいずれか1つに記載の清浄気体加熱装置。
  10. 上記不透明石英は、赤外線の透過率が、0.5%以下である請求項1から9のいずれか1つに記載の清浄気体加熱装置。
  11. その内部に基板が収容される処理室と、
    上記気体吐出口より上記管外へ吐出された上記清浄気体が上記収容されている基板に向かうように、上記処理室内に配置された請求項1から10のいずれか1つに記載の清浄気体加熱装置とを備えることを特徴とする基板乾燥装置。
JP2006167268A 2006-06-16 2006-06-16 清浄気体加熱装置及び基板乾燥装置 Expired - Fee Related JP4284336B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167268A JP4284336B2 (ja) 2006-06-16 2006-06-16 清浄気体加熱装置及び基板乾燥装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167268A JP4284336B2 (ja) 2006-06-16 2006-06-16 清浄気体加熱装置及び基板乾燥装置

Publications (2)

Publication Number Publication Date
JP2007335720A JP2007335720A (ja) 2007-12-27
JP4284336B2 true JP4284336B2 (ja) 2009-06-24

Family

ID=38934881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167268A Expired - Fee Related JP4284336B2 (ja) 2006-06-16 2006-06-16 清浄気体加熱装置及び基板乾燥装置

Country Status (1)

Country Link
JP (1) JP4284336B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334728B2 (ja) * 2009-05-28 2013-11-06 京セラ株式会社 半導体ウエハ処理方法および半導体ウエハ乾燥装置
JP2013217589A (ja) * 2012-04-10 2013-10-24 Kihara Seisakusho:Kk 平行流乾燥機
KR101664157B1 (ko) * 2014-09-15 2016-10-13 비프론주식회사 디스플레이용 기판의 건조 장치
KR101647310B1 (ko) * 2014-12-29 2016-08-10 주식회사 케이씨엠텍 슬릿 노즐 타입의 에어나이프 유닛
CN114576966B (zh) * 2022-03-10 2023-05-09 湖南时远新材料科技有限公司 一种超滤膜加工用干燥装置及其工作方法

Also Published As

Publication number Publication date
JP2007335720A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
JP5766197B2 (ja) 基板を処理するための方法及び装置
US8701308B2 (en) Fluid heater, manufacturing method thereof, substrate processing apparatus including fluid heater, and substrate processing method
JP4284336B2 (ja) 清浄気体加熱装置及び基板乾燥装置
KR101897318B1 (ko) 기판 처리 장치
JP4753596B2 (ja) 基板処理装置
US20070298362A1 (en) Increased tool utilization/reduction in mwbc for uv curing chamber
US20120312336A1 (en) Liquid processing apparatus, liquid processing method and storage medium
JP2011190511A (ja) 加熱装置
KR20190117373A (ko) 기판 지지 유닛 및 이를 갖는 기판 처리 장치
KR20140026307A (ko) 웨이퍼 형상 물품의 액체 처리를 위한 방법 및 장치
CN114597158A (zh) 支撑单元和包括该支撑单元的基板处理装置
JP2022022142A (ja) 支持ユニット、これを含む基板処理装置
JP2015170609A (ja) 基板処理装置
JP2011061034A (ja) 基板処理装置
TWI819405B (zh) 支撐單元及用於處理基板之設備
KR102069944B1 (ko) 기판 처리 장치
US11798822B2 (en) Support unit, substrate treating apparatus including the same, and substrate treating method
JPH10312943A (ja) 温度制御装置
KR20180124267A (ko) 웨이퍼 가열장치
JP2000161779A (ja) 流体加熱装置
JP7323674B1 (ja) 薬液ヒーティング装置およびそれを備える基板処理システム
JP7386918B2 (ja) 支持ユニット及び基板処理装置
JP7492573B2 (ja) 薬液供給装置及び方法、そして、基板処理装置
US11765793B2 (en) Substrate treating apparatus
KR102683732B1 (ko) 지지 유닛 및 기판 처리 장치

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees