JP4276558B2 - High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same - Google Patents

High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same Download PDF

Info

Publication number
JP4276558B2
JP4276558B2 JP2004049276A JP2004049276A JP4276558B2 JP 4276558 B2 JP4276558 B2 JP 4276558B2 JP 2004049276 A JP2004049276 A JP 2004049276A JP 2004049276 A JP2004049276 A JP 2004049276A JP 4276558 B2 JP4276558 B2 JP 4276558B2
Authority
JP
Japan
Prior art keywords
oxide film
film layer
metal material
refractory metal
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004049276A
Other languages
Japanese (ja)
Other versions
JP2004281392A (en
Inventor
芳竹 深谷
泰 吉田
昌宏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP2004049276A priority Critical patent/JP4276558B2/en
Publication of JP2004281392A publication Critical patent/JP2004281392A/en
Application granted granted Critical
Publication of JP4276558B2 publication Critical patent/JP4276558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、部品を焼結する際に用いる酸化物皮膜層を備えた焼結用板とその製造方法及び酸化物皮膜層を備えた高融点金属材料とその製造方法に関する。   The present invention relates to a sintering plate provided with an oxide film layer used for sintering a component, a method for producing the same, a refractory metal material provided with an oxide film layer, and a method for producing the same.

近年、金属射出成形(Metal Injection Molding、以下、MIMと呼ぶ)による鉄系、銅系、タングステン系の焼結材料及び部品の生産が実用化され、それに伴い焼結用板への機能要求が高まってきた。   In recent years, production of iron-based, copper-based, tungsten-based sintered materials and parts by metal injection molding (Metal Injection Molding, hereinafter referred to as MIM) has been put into practical use, and functional requirements for the sintering plate have increased accordingly. I came.

従来では、焼結用板はアルミナ、シリカなどの耐火物を使用される場合が多い。   Conventionally, a refractory material such as alumina or silica is often used for the sintering plate.

しかし、アルミナ、シリカなどの耐火物では熱衝撃や被処理物による重量変形に耐えるために板厚さを、例えば、10〜15mmにしなければならない。また、この厚い耐火物を使用すると焼結物の積載、焼結量が限定される上に焼結時の炉の昇温に膨大なエネルギーを必要とし、また、板の小さな熱伝導により降温するために長時間要した。ここで、本明細書において、被処理物とは、焼結もしくは熱処理されるものを呼ぶ。   However, in the case of refractory materials such as alumina and silica, the plate thickness must be, for example, 10 to 15 mm in order to withstand thermal shock and weight deformation due to the object to be processed. In addition, when this thick refractory is used, the amount of sintered material to be loaded and the amount of sintering are limited, and enormous energy is required to raise the temperature of the furnace during sintering, and the temperature is lowered by the small heat conduction of the plate. It took a long time for. Here, in this specification, the object to be processed refers to an object to be sintered or heat treated.

これらを解決する為に、板厚さが薄く被処理物の積載量体積を増量出来、且つ従来の耐火物の特性を維持している焼結用板が要求されてきた。   In order to solve these problems, there has been a demand for a sintering plate having a small plate thickness and capable of increasing the load capacity volume of an object to be processed and maintaining the characteristics of a conventional refractory.

モリブデン、タングステン等の高融点金属材料からなる板材は、耐火物としての特性には優れている。   A plate material made of a refractory metal material such as molybdenum or tungsten is excellent in characteristics as a refractory.

従来、耐熱性を備えた板材としては、特許文献1、特許文献2、及び特許文献3に提案されたモリブデン板がある。ここで、特許文献1においては、ドープ剤を添加しない純モリブデン材料であって、円板面の大きさが15mm〜150mmで、厚さ方向に厚さの1/5以上を占める結晶粒を備えたモリブデン板が開示されている。   Conventionally, as a plate material having heat resistance, there are molybdenum plates proposed in Patent Document 1, Patent Document 2, and Patent Document 3. Here, in patent document 1, it is a pure molybdenum material which does not add a doping agent, Comprising: The magnitude | size of a disk surface is 15 mm-150 mm, and the crystal grain which occupies 1/5 or more of thickness in the thickness direction is provided. A molybdenum plate is disclosed.

また、特許文献2及び3においては、板厚方向と実質的に垂直方向に配列したランタン酸化物を含むMo板が開示され、特に、特許文献3には、結晶粒子がインターロッキング構造を呈しているものが開示されている。   Patent Documents 2 and 3 disclose Mo plates containing lanthanum oxide arranged in a direction substantially perpendicular to the plate thickness direction. In particular, Patent Document 3 discloses that crystal grains exhibit an interlocking structure. Is disclosed.

しかしながら、モリブデン板材をMIM等の焼結用にMIM成形品と接触させて用いたときには、モリブデン板材表面に被処理物が溶融付着してしまい、焼結部品として歩留まりが極めて悪いものであった。   However, when the molybdenum plate material is used in contact with an MIM molded product for sintering such as MIM, the object to be processed melts and adheres to the surface of the molybdenum plate material, and the yield as a sintered part is extremely poor.

そのために、モリブデン表面に接着防止層を備えたモリブデン板が提案されている(例えば、特許文献4及び5、参照)。ここで、特許文献4には、ランタン又はランタン酸化物をドープしたMo板材料をAl、Cr、Tiの内の少なくとも一種とアルミナとの混合粉末中に埋め込んで還元熱処理を行うことで、Mo板材料の表面に金属元素を拡散させた後、酸化雰囲気中で熱処理することで、表面に接着防止層としての酸化物層を形成したものが開示されている。   Therefore, a molybdenum plate provided with an adhesion preventing layer on the molybdenum surface has been proposed (see, for example, Patent Documents 4 and 5). Here, in Patent Document 4, a Mo plate material doped with lanthanum or lanthanum oxide is embedded in a mixed powder of at least one of Al, Cr, and Ti and subjected to a reduction heat treatment, whereby a Mo plate is obtained. A material in which an oxide layer as an adhesion preventing layer is formed on the surface by diffusing a metal element on the surface of the material and then performing heat treatment in an oxidizing atmosphere is disclosed.

また、特許文献5には、純Mo板表面に、アルミナ等のセラミックスのプラズマ溶射法によって、モリブデン粉末と、これに続くアルミナ粉末の溶射によって、モリブデン表面に、モリブデンとアルミナの複合層を介してアルミナ層を形成することが開示されている。   Further, in Patent Document 5, a pure Mo plate surface is sprayed with a ceramic powder such as alumina, and a molybdenum powder and subsequently an alumina powder is sprayed onto the molybdenum surface with a composite layer of molybdenum and alumina. Forming an alumina layer is disclosed.

また、特許文献6には、高融点金属からなる基体に、シリサイドまたはアルミナイドからなる酸化保護層を形成し、酸化保護層との間に酸化物からなる反応遮断層をプラズマジェットにより形成することが開示されている。   In Patent Document 6, an oxidation protective layer made of silicide or aluminide is formed on a substrate made of a refractory metal, and a reaction blocking layer made of oxide is formed between the oxide protective layer by a plasma jet. It is disclosed.

従来では、MIMなどによる鉄系、銅系、タングステン系の材料及び部品は焼結する際に使用する板として、アルミナ、シリカなどの耐火物が使用される場合とモリブデン、タングステンなどの耐高温材料が使用される場合とがある。   Conventionally, iron-based, copper-based, tungsten-based materials and parts made of MIM, etc., are used when a refractory such as alumina or silica is used as a plate, and high-temperature resistant materials such as molybdenum, tungsten, etc. May be used.

前者のアルミナ、シリカなどの耐火物が使用される場合は、熱衝撃や被処理物による重量変形に耐えるために板厚さを、例えば、10〜15mmにしなければならなかった。そのため、板厚が厚いと被処理物のチャージ量が減少するのと、焼結時の昇温には多大なエネルギーを要するのに加え、その小さな熱伝導と大きな比熱のために、冷め難く冷却に長時間要するという問題があった。   When the former refractory such as alumina or silica is used, the plate thickness must be, for example, 10 to 15 mm in order to withstand thermal shock and weight deformation due to the object to be processed. Therefore, if the plate thickness is thick, the charge amount of the object to be processed decreases, and in addition to requiring a great deal of energy to raise the temperature during sintering, cooling is difficult to cool due to its small heat conduction and large specific heat. There was a problem that it took a long time.

後者では、焼結時に被処理物と板が接着するため、アルミナなどの粉末やシート状のものを介在し使用していたが、アルミナ粉などが、被処理物に焼き着いたりして作業前後の処置に多大な労力を要していた。   In the latter case, the object to be treated and the plate adhere to each other during sintering, so powders such as alumina and sheet-like materials were used, but alumina powder or the like stuck to the object to be treated before and after work. It took a lot of effort to deal with this.

また、モリブデン板は大気中で500℃以上に加熱されるとその酸化が著しく、大気中での焼結に使用できなかった。   Further, when the molybdenum plate was heated to 500 ° C. or higher in the air, its oxidation was remarkable and could not be used for sintering in the air.

また、被処理物の溶融付着の防止のために、上記特許文献4及び5に示されるように、夫々モリブデン板材表面に、被処理物の溶融付着を防止を目的としたセラミック層もしくは酸化物層を形成したものも提案されているが、その工程が複雑で手間がかかるものであった。   Further, in order to prevent melt adhesion of the object to be processed, as shown in Patent Documents 4 and 5, a ceramic layer or an oxide layer for the purpose of preventing the object to be melted and adhered on the surface of the molybdenum plate material, respectively. However, the process is complicated and time-consuming.

また、複数の表面層の最上層にMoがある場合は、MIM製品と溶融付着してしまう。更に下地にMoを含む層を溶射している為、最上層にMoが無い層を作製しても、Moが拡散などにより最表面に出易く、MIM製品との溶融付着防止の効果が得られない場合がある。   Further, when Mo is present in the uppermost layer of the plurality of surface layers, it melts and adheres to the MIM product. Further, since the layer containing Mo is sprayed on the base, even if a layer without Mo is formed on the uppermost layer, Mo is likely to come out on the outermost surface due to diffusion or the like, and the effect of preventing fusion adhesion with MIM products is obtained. There may not be.

特開昭61−143548号公報JP-A 61-143548 特開昭63−157832号公報Japanese Unexamined Patent Publication No. 63-155782 特開昭63−192850号公報JP 63-192850 A 特開2002−47581号公報JP 2002-47581 A 特開平2−200766号公報Japanese Patent Laid-Open No. 2-200766 特表2000−516666号公報JP 2000-516666 Gazette JIS H4483−1984「3.3平たん度」JIS H4483-1984 “3.3 Flatness”

本発明の一技術的課題は、MIM製品焼結時に被処理物の溶融付着を防止する機能を有し板厚さを薄くすることで、加熱及び冷却に使われるエネルギーを大幅に節約することが可能で経済的効果が大きい高融点金属材料を提供することにある。   One technical problem of the present invention is that the energy used for heating and cooling can be greatly saved by reducing the thickness of the plate with the function of preventing melt adhesion of the workpiece during sintering of the MIM product. An object of the present invention is to provide a refractory metal material that is possible and has a large economic effect.

また、本発明のもう一つの技術的課題は、酸化物皮膜層をポーラスで且つ平滑にすることで脱バインダー性と焼結性の両方の機能を持たせることが出来る高融点金属材料を提供することにある。ここで、優れた焼結性を有するとは、焼結体がスムーズで平坦で、焼結密度が高いことをいう。焼結密度が低い要因としては、焼結収縮の際の摩擦抵抗が大きいという要因がある。   Another technical problem of the present invention is to provide a refractory metal material capable of having both functions of debinding and sintering by making the oxide film layer porous and smooth. There is. Here, having excellent sinterability means that the sintered body is smooth and flat and has a high sintering density. As a factor of low sintering density, there is a factor of high frictional resistance during sintering shrinkage.

また、本発明の更にもう一つの技術的課題は、前記高融点金属材料を製造する方法を提供することにある。   Another technical object of the present invention is to provide a method for producing the refractory metal material.

また、本発明の別の一つの技術的課題は、アルミナ等の粉末状の接着防止剤が製品に付着することがなく、後処理が不要となり経済的効果がある焼結用板を提供することにある。   Another technical problem of the present invention is to provide a sintering plate that is economically effective since no powdery adhesion inhibitor such as alumina adheres to the product and no post-treatment is required. It is in.

また、本発明の別のもう一つの技術的課題は、下地素材が鉄系材料を焼結する際に、それに含まれるNiなどの成分と反応することがなく、板材の性能を劣化させることがない焼結用板を提供することにある。   Another technical problem of the present invention is that when the base material sinters the iron-based material, it does not react with components such as Ni contained therein, and the performance of the plate material is deteriorated. There is no need to provide a sintering plate.

また、本発明の他の一つの技術的課題は、大気中でも使用可能となるモリブデン等の板材を用いた高融点金属材料を提供することにある。   Another technical problem of the present invention is to provide a refractory metal material using a plate material such as molybdenum that can be used in the atmosphere.

また、本発明の他のもう一つの技術的課題は、前記高融点金属材料を製造する方法を提供することにある。   Another technical problem of the present invention is to provide a method for producing the refractory metal material.

さらに、本発明の他のさらにもう一つの技術的課題は、前記高融点金属材料を用いた焼結用板を提供することにある。   Still another technical problem of the present invention is to provide a sintering plate using the refractory metal material.

上記課題を解決するために、本発明の酸化物皮膜層を備えた高融点金属材料では、モリブデン、タングステン、モリブデン基及びタングステン基合金の内から選ばれた高融点金属からなる板材の、少なくとも一つの面にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアの内の一種の酸化物粉末、または2種以上の酸化物粉末を混合したものが溶着されている酸化物皮膜層を備えた高融点金属材料であって、前記酸化物皮膜層による前記高融点金属材料の露出が単位面積の1%以下で、且つポーラス状であることを特徴としている。 In order to solve the above-mentioned problems, in the refractory metal material provided with the oxide film layer of the present invention, at least one plate material made of refractory metal selected from molybdenum, tungsten, molybdenum base and tungsten base alloy is used. one of the alumina surface, with silica, zirconia, yttria, titania, magnesia, and a kind of oxide powder or two or more oxide coating layer obtained by mixing the oxide powder are welding, of the calcia The refractory metal material is characterized in that exposure of the refractory metal material by the oxide film layer is 1% or less of a unit area and is porous .

また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料において、
前記酸化物皮膜層の厚さが10〜300μmであることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。
Further, according to the present invention, in the refractory metal material provided with the oxide film layer,
A refractory metal material having an oxide film layer is obtained, wherein the oxide film layer has a thickness of 10 to 300 μm.

また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料において、前記酸化物皮膜層のポーラス状の表面粗さがRa20μm以下、Rmax150μm以下に研磨が施されていることを特徴とする酸化物皮膜層を備えた高融点金属材料。 Further, according to the present invention, in the refractory metal material provided with any one of the oxide film layers, a porous surface roughness of the oxide film layer is polished to Ra 20 μm or less and Rmax 150 μm or less. A refractory metal material provided with an oxide film layer.

また、本発明によれば、前記いずれか一つの記載の酸化物皮膜層を備えた高融点金属材料において、前記高融点金属材料の表面粗さがRa20μm以下、Rmax150μm以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in any one of the above high melting point metal material having an oxide film layer described, the refractory metal materials surface roughness of Ra20μm less, and equal to or less than Rmax150μm A refractory metal material having an oxide film layer to be obtained is obtained.

また、本発明によれば、少なくとも一つの面にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアのこれらの少なくとも一種または2種以上の酸化物を混合したものが溶着されている板材であって、前記板材の組成が純度99.9%以上の耐高温変形特性を有するモリブデン板で、当該モリブデン板の内部に含まれる円板状結晶粒の大きさが円板面の短径に対する長径の比が4以下で、その円板面の大きさが直径15〜150mmであり、且つ厚さ方向の大きさが材料厚さの1/5以上の結晶粒により形成され、前記酸化物皮膜層による前記板材の少なくとも一面の露出が単位面積の1%以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, plate alumina on at least one surface, silica, zirconia, yttria, titania, magnesia, and a mixture of these at least one or more oxides of calcia is welded The composition of the plate material is a molybdenum plate having a high temperature deformation resistance with a purity of 99.9% or more, and the size of the disk-like crystal grains contained in the molybdenum plate is relative to the minor axis of the disk surface. The oxide film is formed of crystal grains having a major axis ratio of 4 or less, a disc surface size of 15 to 150 mm in diameter, and a size in the thickness direction of 1/5 or more of the material thickness. The refractory metal material provided with the oxide film layer is characterized in that the exposure of at least one surface of the plate material by the layer is 1% or less of the unit area .

また、本発明によれば、少なくとも一つの面以上にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアのうちこれらの少なくとも一種または2種以上の酸化物を混合したものが溶着されている板材であって、前記板材の組成が、重量比で0.1〜1.0%未満のランタン又はランタン酸化物と残部がモリブデンからなり、実質的に一定方向に伸長してなる組織を有し、高温における変形量の少なく、前記酸化物皮膜層による前記板材の少なくとも一面の露出が単位面積の1%以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, at least one surface or more of alumina, silica, zirconia, yttria, titania, magnesia, and calcia mixed with at least one of these or two or more oxides is welded. It is a board | plate material, Comprising: The composition of the said board | plate material has a structure | tissue which consists of a lanthanum or lanthanum oxide less than 0.1-1.0% by weight ratio, and the remainder consists of molybdenum, and expand | extends in a substantially fixed direction. There is obtained a refractory metal material having an oxide film layer, wherein the deformation amount at a high temperature is small and at least one surface of the plate material exposed by the oxide film layer is 1% or less of a unit area .

また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料において、前記板材の組織が、一定方向に伸長して再結晶化しているインターロッキング構造を呈する結晶粒子を有し、加工性及び耐高温変形性に優れていることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。   Further, according to the present invention, in the refractory metal material provided with the oxide film layer, the structure of the plate material has crystal particles exhibiting an interlocking structure that is recrystallized by extending in a certain direction, A refractory metal material having an oxide film layer characterized by excellent workability and high temperature deformation resistance can be obtained.

また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料において、前記高融点金属材料は焼結に用いられることを特徴とする酸化物皮膜層を備えた焼結用板が得られる。 According to the present invention, in the refractory metal material provided with any one of the oxide film layers, the refractory metal material is used for sintering. A ligation plate is obtained.

また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料を製造する方法であって、前記酸化物粉末の内の少なくとも1種の酸化物粉末の粒度が10μm以下であり、当該粉末の粒度に依存した温度で熱処理することにより得られたことを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 In addition, according to the present invention, there is provided a method for producing a refractory metal material having any one of the oxide film layers, wherein a particle size of at least one of the oxide powders is 10 μm. A method for producing a refractory metal material having an oxide film layer, which is obtained by heat treatment at a temperature depending on the particle size of the powder, is obtained.

また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料の製造方法において、前記溶着する酸化物をスラリー状にし塗布またはスプレー乾燥後、溶着する酸化物の粒度に依存した温度で焼き付け溶融処理を施すことにより、板材表面に酸化物皮膜層を形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 Further, according to the present invention, in the method for producing a refractory metal material provided with the oxide film layer, the oxide to be deposited is made into a slurry and applied or spray-dried, and the temperature depends on the particle size of the oxide to be deposited. By carrying out baking and melting treatment, a method for producing a refractory metal material having an oxide film layer, which is characterized in that an oxide film layer is formed on the surface of a plate material, is obtained.

また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料の製造方法において、前記酸化物皮膜層をプラズマ溶射により形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 Further, according to the present invention, in the method for producing a refractory metal material provided with the oxide film layer, the oxide film layer is formed by plasma spraying. A method for producing a metal material is obtained.

また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料の製造方法において、耐高温接着剤により酸化物皮膜を形成し、熱処理を施すことで溶着させて前記酸化物皮膜層を形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 Further, according to the present invention, in the method for producing a refractory metal material provided with the oxide film layer, the oxide film layer is formed by forming an oxide film with a high-temperature-resistant adhesive and applying heat treatment to the oxide film layer. Thus, a method for producing a refractory metal material having an oxide film layer characterized in that is formed.

また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料の製造方法において、前記酸化物皮膜を備えた高融点金属材料が焼結に用いられることを特徴とする酸化物皮膜層を備えた焼結用板の製造方法が得られる。 According to the present invention, in the method for producing a refractory metal material having any one of the oxide film layers, the refractory metal material having the oxide film layer is used for sintering. The manufacturing method of the board for sintering provided with the oxide membrane | film | coat layer made into is obtained.

本発明によれば、MIM製品焼結時に被処理物の溶融付着を防止する機能を有し板厚さを薄くすることで、加熱及び冷却に使われるエネルギーを大幅に節約することが可能で経済的効果が大きい高融点金属材料を提供することができる。   According to the present invention, it is possible to greatly save energy used for heating and cooling by reducing the thickness of a plate having a function of preventing fusion of a workpiece to be processed during sintering of an MIM product. It is possible to provide a refractory metal material having a large effect.

また、本発明によれば、酸化物皮膜層をポーラスで且つ平滑にすることで脱バインダー性と焼結性の両方の機能を持たせることが出来る高融点金属材料を提供することができる。ここで、優れた焼結性を有するとは、焼結体がスムーズで平坦で、焼結密度が高いことをいう。焼結密度が低い要因としては、焼結収縮の際の摩擦抵抗が大きいという要因がある。   Further, according to the present invention, it is possible to provide a refractory metal material capable of having both functions of debinding and sintering by making the oxide film layer porous and smooth. Here, having excellent sinterability means that the sintered body is smooth and flat and has a high sintering density. As a factor of low sintering density, there is a factor of high frictional resistance during sintering shrinkage.

また、本発明によれば、前記高融点金属材料を製造する方法を提供することができる。   Moreover, according to this invention, the method of manufacturing the said refractory metal material can be provided.

また、本発明によれば、アルミナ等の粉末状の接着防止剤が製品に付着することがなく、後処理が不要となり経済的効果がある焼結用板を提供することができる。   In addition, according to the present invention, it is possible to provide a sintering plate that is economically effective because a powdery adhesion inhibitor such as alumina does not adhere to the product, and no post-treatment is required.

また、本発明によれば、下地素材が鉄系材料を焼結する際に、それに含まれるNiなどの成分と反応することがなく、板材の性能を劣化させることがない焼結用板を提供することができる。   In addition, according to the present invention, when a base material sinters an iron-based material, a sintering plate that does not react with components such as Ni contained therein and does not deteriorate the performance of the plate material is provided. can do.

また、本発明によれば、大気中でも使用可能となるモリブデン等の板材を用いた高融点金属材料を提供することができる。   In addition, according to the present invention, it is possible to provide a refractory metal material using a plate material such as molybdenum that can be used in the atmosphere.

また、本発明によれば、前記高融点金属材料を製造する方法を提供することができる。   Moreover, according to this invention, the method of manufacturing the said refractory metal material can be provided.

さらに、本発明によれば、前記高融点金属材料を用いた焼結用板を提供することができる。   Furthermore, according to the present invention, a sintering plate using the refractory metal material can be provided.

まず、本発明を更に詳しく説明する。   First, the present invention will be described in more detail.

本発明では、高融点金属材料として、耐高温材料であるモリブデン、タングステン及びそれらの合金にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、カルシアのうち、これらの少なくとも一種または2種以上を混合した酸化物粉末が溶着されて酸化物皮膜層が形成されており、また、その溶着面は下地素材であるモリブデン(Mo)、タングステン(W)、及びそれらの合金が完全に被覆されている構成である。高融点金属材料は、本願明細書においては焼結に用いられる高融点金属部材として述べられているが、高融点金属部材はトレー、箱、コンテナ、床板等の形態で用いられても良い。また、本願明細書において、焼結とは、一般に呼ばれる焼成も含む。   In the present invention, molybdenum, tungsten and alloys thereof, which are high-temperature resistant materials, are mixed with at least one or two or more of alumina, silica, zirconia, yttria, titania, magnesia, and calcia as refractory metal materials. Oxide powder is deposited to form an oxide film layer, and the weld surface is completely covered with molybdenum (Mo), tungsten (W), and their alloys, which are the base materials. is there. Although the refractory metal material is described as a refractory metal member used for sintering in the present specification, the refractory metal member may be used in the form of a tray, a box, a container, a floor board, or the like. In the present specification, the term “sintering” includes generally called firing.

この溶着方法としては、高温処理による焼き付け、溶射または耐高温接着剤による付着方法がある。これにより、耐高温変形材料を使用することで板厚は、従来のアルミナ、シリカなどの耐火物では10〜15mmであったのに対し、本発明では、1〜2mm程度で可能となり被処理物との接触部分には、前記酸化物がMo板上に強固に付着しているものである。この際使用する酸化物のうち少なくとも1種の酸化物粉末の粒度を10μm以下にすることで、酸化物の焼結性が向上し、融点以下の温度でもMo板に酸化物層を緻密に密着させることが出来る。   As this welding method, there are a baking method by high temperature treatment, a thermal spraying method or an adhesion method using a high temperature resistant adhesive. As a result, by using a high-temperature deformation resistant material, the plate thickness is 10 to 15 mm in the conventional refractory materials such as alumina and silica. The oxide is firmly attached on the Mo plate at the contact portion. By making the particle size of at least one oxide powder of the oxide used at this time 10 μm or less, the sinterability of the oxide is improved, and the oxide layer is closely adhered to the Mo plate even at a temperature below the melting point. It can be made.

尚、本明細書において、粒度10μm以下を微粒粉、10μmよりおおきな粉末を粗粒粉と夫々呼ぶ。   In the present specification, a particle size of 10 μm or less is referred to as a fine powder, and a powder larger than 10 μm is referred to as a coarse powder.

次に、本発明の実施の形態について、図面を参照しながら高融点金属材料としてMo焼結用板を例示するが、本発明はこれに限定されるものではないことは勿論である。   Next, regarding the embodiment of the present invention, a Mo sintering plate is illustrated as a refractory metal material with reference to the drawings, but the present invention is not limited to this.

また、本発明の実施の形態においては、酸化物はアルミナ(Al)、ジルコニア(ZrO)、イットリア(Y)、チタニア(TiO)、マグネシア(MgO)、カルシア(CaO)を例示しているが、本発明はこれに限定されるものではなく、被処理物との反応による溶融付着物を考慮して低級酸化物(例えば、チタニア(TiO等)や、複合酸化物(例えば、アルミナ−チタニア(AlTiO)の形態をとっても良い。 In the embodiment of the present invention, the oxide is alumina (Al 2 O 3 ), zirconia (ZrO 2 ), yttria (Y 2 O 3 ), titania (TiO 2 ), magnesia (MgO), calcia (CaO). However, the present invention is not limited to this, and lower oxides (for example, titania (such as TiO 2 )) and composite oxidation are considered in consideration of melted deposits due to reaction with the object to be processed. It may take the form of an article (for example, alumina-titania (Al 2 TiO 5 )).

図1乃至図3に示すように、付着している前記酸化物の表面はポーラス状または被処理物との接触部にガスが侵入できる程度の隙間を形成することができる。   As shown in FIGS. 1 to 3, the surface of the attached oxide can be porous or can form a gap that allows gas to enter the contact portion with the object to be processed.

図4及び図5に示すように、固着している前記酸化物の表面は平滑度を呈していることが必要となる。   As shown in FIGS. 4 and 5, the surface of the fixed oxide needs to exhibit smoothness.

図6及び図7に示すように、皮膜層を研磨することで、更に良好なMIM焼結体を得ることができる。   As shown in FIGS. 6 and 7, a better MIM sintered body can be obtained by polishing the coating layer.

ここで、図7(a)に示すように、表面を研磨した本発明の試料8(後に説明)とは異なり、図7(b)に示す参考例に係る試料17(後に詳しく説明)の場合、大きな凹凸があるため、MIM焼結体に表面粗さが転写してしまい、製品として使用できないことがある。   Here, as shown in FIG. 7A, unlike the sample 8 of the present invention whose surface is polished (described later), the sample 17 according to the reference example shown in FIG. 7B is described in detail later. Because of the large unevenness, the surface roughness is transferred to the MIM sintered body, which may not be used as a product.

また、本発明では、温度が1000℃〜1850℃以下の高温領域で使用できる。また、これらの酸化物の表面は平滑で且つポーラスな状態を呈しており、平滑度は焼結時の収縮の抵抗を最小減に留め、ポーラスな状態は脱バインダー時のガス抜け効率を良くすることで、焼結性が向上する。   Moreover, in this invention, it can be used in the high temperature area | region whose temperature is 1000 to 1850 degreeC. In addition, the surface of these oxides is smooth and porous, and the smoothness minimizes the resistance to shrinkage during sintering, and the porous state improves the gas removal efficiency during debinding. This improves the sinterability.

また、前述したように、酸化物からなる酸化物皮膜層の溶着面は下地素材であるモリブデン、タングステン、モリブデン基及びタングステン基合金による金属材料を被覆している。   Further, as described above, the welding surface of the oxide film layer made of an oxide coats a metal material made of molybdenum, tungsten, a molybdenum base, and a tungsten base alloy as a base material.

ここで、本発明において、下地金属が露出していない被覆とは、下地となる高融点金属からなる板材の露出が酸化物被覆層の単位面積の1%以下であることを示している。 In the present invention, the coating base metal is not exposed, it indicates that exposure of the plate material made of a refractory metal to be a base is less than 1% of the unit area of the oxide coating layer.

従って、従来では鉄系材料の焼結においては、それに含まれるNiなどの成分が、焼結板を構成するMoと反応し、Mo板の性能を著しく劣化させていたが本発明では、Mo板等の素材の露出がないために、Mo板の性能劣化がなく使用可能とするものである。   Therefore, conventionally, in the sintering of an iron-based material, components such as Ni contained therein reacted with Mo constituting the sintered plate, and the performance of the Mo plate was significantly deteriorated. Therefore, the Mo plate can be used without any performance deterioration.

前述した特許文献5の「モリブデントレイおよびその製法」として示されている方法では、モリブデントレイに耐熱性セラミックスからなるコーティング層が形成されている構成を備えているが、その内容では、コーティング層はモリブデントレイや敷板などの部品同士の接着防止を目的としており、基板の全表面に形成する必要はなく、少なくとも使用時に他のトレイその他の物品に接触する部分に形成しておけばよいと記載されている。従って、被処理物の溶融付着を防止を目的としたものではない。   In the method shown as “Molybdenum tray and its manufacturing method” in Patent Document 5 described above, the molybdenum tray has a structure in which a coating layer made of heat-resistant ceramics is formed. It is intended to prevent adhesion of parts such as molybdenum trays and floorboards, and it is not necessary to form on the entire surface of the substrate, and it should be formed at least on the part that comes into contact with other trays or other objects during use. ing. Therefore, it is not intended to prevent melt adhesion of the object to be processed.

これに対して、本発明では、接着防止は目的であり効果の一つでもあるが、さらに微粒の酸化物を用いることでその溶着面は下地素材であるモリブデン、タングステン、及びそれらの合金が完全に被覆され、基板と被処理物との反応を防止する機能が加わる。   On the other hand, in the present invention, the prevention of adhesion is an object and one of the effects. However, by using a fine oxide, the weld surface is completely made of molybdenum, tungsten, and alloys thereof as the base material. A function of preventing the reaction between the substrate and the object to be processed is added.

又、前述した従来技術である特許文献5には、Mo板上へMo粉末とセラミック粉末を混合した溶射膜を作製し、最上層部が実質的に耐熱性セラミックスの層となっていることが望ましく、これにより被処理物や治具同士の接着防止を狙っている。このように複数層もしくは濃度勾配のついたコーティング層を作製する為にはコストがかさんでしまうという欠点を備えていた。   Further, in Patent Document 5, which is the above-described prior art, a sprayed film in which Mo powder and ceramic powder are mixed on a Mo plate is prepared, and the uppermost layer portion is substantially a heat-resistant ceramic layer. Desirably, this aims to prevent adhesion of workpieces and jigs. Thus, in order to produce a coating layer having a plurality of layers or a concentration gradient, there is a disadvantage that the cost is increased.

これに対して、本発明では、使用する酸化物の少なくとも一つは酸化物粉末の粒度を10μm以下にする事で、酸化物の焼結性が向上し複数層重ねなくとも、特許文献5で示されるコーティング層の剥離強度15〜20kg/mmと同等で、且つ、表面にMoが露出が無く、被処理物が接着しないコーティング層を得ることが出来る。 On the other hand, in the present invention, at least one of the oxides to be used is obtained by reducing the particle size of the oxide powder to 10 μm or less, so that the sinterability of the oxide is improved and the plurality of layers are not stacked. It is possible to obtain a coating layer having a peel strength of 15 to 20 kg / mm 2 equivalent to that of the coating layer to be displayed and having no Mo exposed on the surface and to which the object to be processed does not adhere.

又、前述した従来技術である特許文献5では、溶射したコーティング層を1500℃以上で熱処理すると記載されているが、モリブデン基板とコーティング層の熱膨張差で、溶射コーティング層に亀裂が入り下地が露出することがある。この亀裂により露出したMoと被処理物が反応してしまい、板への接着または板材の性能が劣化することがあるという欠点を有した。特に、特許文献5中では原子炉用燃料の二酸化ウランや二酸化プルトニウムなどの酸化物ペレットの焼結に着目した発明であり、露出したMoへの影響は少ない。しかし、MIMなど金属製品の焼結や、金属及び酸化性雰囲気などMo板材に影響を及ぼすような雰囲気中での長期間繰り返し使用は出来ない。   In addition, Patent Document 5 which is the above-described prior art describes that the thermal sprayed coating layer is heat-treated at 1500 ° C. or more. However, the thermal sprayed coating layer is cracked due to a difference in thermal expansion between the molybdenum substrate and the coating layer, and the base is covered. May be exposed. Mo exposed due to the crack reacts with the object to be processed, resulting in a defect that adhesion to the plate or performance of the plate material may be deteriorated. In particular, Patent Document 5 is an invention that focuses on the sintering of oxide pellets such as uranium dioxide and plutonium dioxide, which are fuels for nuclear reactors, and has little influence on the exposed Mo. However, it cannot be used repeatedly for a long period of time in an atmosphere that affects the Mo plate material such as sintering of metal products such as MIM and metal and oxidizing atmosphere.

これに対して、本発明では、この基板の露出を防止し、幅広い材質の被処理物、例えば、NiなどMoと反応しやすい成分を含む物も焼結出来、且つ経済的な焼結用板を提供することができるものである。   On the other hand, in the present invention, the substrate is prevented from being exposed, and a wide range of materials to be processed, for example, a material containing a component that easily reacts with Mo such as Ni can be sintered, and an economical sintering plate. Can be provided.

前述した従来技術である特許文献6の「高融点金属用酸化保護層」として示されている方法では、2〜35%のモリブデンなどの金属材料が配合されているシリサイドまたはアルミナイドからなる酸化保護層と、高融点金属からなる基体の中間にプラズマジェットにより反応遮断層を形成することが開示されているが、その内容ではあくまで、基体の酸化防止と、その酸化防止層と基体との反応防止を目的としており、被処理物との融着防止を目的としたものではない。   In the method shown as “Oxidation protective layer for refractory metal” in Patent Document 6 as the prior art described above, an oxidation protective layer made of silicide or aluminide in which a metal material such as molybdenum of 2 to 35% is mixed. In addition, it is disclosed that a reaction blocking layer is formed by a plasma jet in the middle of a substrate made of a refractory metal. However, the content is only to prevent the oxidation of the substrate and the reaction between the antioxidant layer and the substrate. The purpose is not to prevent fusion with the object to be processed.

これに対して、本発明では、最表面層は酸化物層であり、被処理物に合わせ任意に選ぶことで、被処理物と下地素材の付着防止機能を有している。さらに、下地素材の露出が酸化物被覆層の単位面積の1%以下であることで、酸化やMoと反応するNi等のガス成分によるMo板の性能劣化が無く使用可能となる。   On the other hand, in the present invention, the outermost surface layer is an oxide layer, and has an adhesion preventing function between the object to be processed and the base material by arbitrarily selecting it according to the object to be processed. Further, since the exposure of the base material is 1% or less of the unit area of the oxide coating layer, the Mo plate can be used without being deteriorated due to oxidation or a gas component such as Ni that reacts with Mo.

次に本発明の焼結用板の製造の具体例について図8(a)及び図8(b)を参照しながら説明する。なお、図8(a)及び図8(b)は酸化物(Al)の粉末粒度における熱処理後の表面状態の比較写真である。 Next, a specific example of production of the sintering plate of the present invention will be described with reference to FIGS. 8 (a) and 8 (b). FIGS. 8A and 8B are comparative photographs of the surface state after the heat treatment in the powder particle size of the oxide (Al 2 O 3 ).

まず、本発明の試料1〜12について説明する。   First, samples 1 to 12 of the present invention will be described.

耐高温変形特性を有する高融点金属材料、例えばモリブデン板(板厚み1.5mm×巾150mm×長さ300mm)を表面の活性化と溶着物の密着性を向上させるためホ−ニングなどの方法で表面粗さを粗くし、ここではその表面粗さがRa4μm、Rmax50μmとした。   In order to improve the surface activation and adhesion of the welded material, a refractory metal material having high temperature deformation resistance, such as a molybdenum plate (plate thickness 1.5 mm × width 150 mm × length 300 mm), is honed. The surface roughness was increased, and here the surface roughness was Ra 4 μm and Rmax 50 μm.

溶着する酸化物の粉末を下記表1及び表2に示した組成で計量し、シェーカーミキサーまたはヘンシェルミキサーにより充分に混合した。ここで使用する酸化物粉末は図8(a)及び図8(b)に示すように同一熱処理温度でも、酸化物の粒度により溶融状態が異なることが明らかになった。もし、酸化物粉末が微粒であるならば、低温で溶融することができるようになる。ここでは、使用する酸化物粉末のうち少なくとも1種類は10μm以下の微粉末を使用した。またここでの組成は使用温度等を考慮し任意に選ぶことが出来る。   The oxide powder to be welded was weighed according to the composition shown in the following Tables 1 and 2, and thoroughly mixed by a shaker mixer or a Henschel mixer. As shown in FIGS. 8 (a) and 8 (b), the oxide powder used here was found to have different melting states depending on the oxide particle size even at the same heat treatment temperature. If the oxide powder is fine, it can be melted at low temperatures. Here, at least one of the oxide powders used was a fine powder of 10 μm or less. The composition here can be arbitrarily selected in consideration of the operating temperature and the like.

次に、これらの粉末をエタノール中へ分散しスラリー状にして目的とするモリブデン板に吹付けなどにより均一に塗布した。   Next, these powders were dispersed in ethanol, made into a slurry, and uniformly applied to the target molybdenum plate by spraying or the like.

また、本発明の例における板反りの判定は、非特許文献1の「3.3平たん度」に基づき判定を行った。   Further, the determination of the plate warpage in the example of the present invention was performed based on “3.3 Flatness” of Non-Patent Document 1.

本発明の酸化物皮膜層において、種々の酸化物粉末に応じて、組成、熱処理条件を変えることができる。   In the oxide film layer of the present invention, the composition and heat treatment conditions can be changed according to various oxide powders.

例えば、表面層の組成がジルコニア20wt%(質量%)から50wt%(試料2では43%)で残部が実質的にアルミナからなり、1500℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。   For example, the composition of the surface layer is 20 wt% (mass%) of zirconia to 50 wt% (43% in the sample 2) and the balance is substantially made of alumina, and the oxide film layer is formed by depositing the surface layer through heat treatment at 1500 ° C. or higher. The sintering Mo board provided with can be obtained.

また、表面層の組成がチタニア1wt%から40wt%(試料3では2.5%)で残部が実質的にアルミナからなり、1500℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。   In addition, the composition of the surface layer is 1 to 40% by weight of titania (2.5% in the sample 3), and the balance is substantially made of alumina, and the oxide film layer is provided by welding the surface layer through heat treatment at 1500 ° C. or higher. A sintered Mo plate can be obtained.

また、表面層の組成がシリカ20wt%から30wt%(試料4では22%)で残部が実質的にアルミナからなり、1500℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。   Further, the composition of the surface layer is 20 wt% to 30 wt% of silica (22% in the sample 4), the balance is substantially made of alumina, and the oxide film layer is provided with the oxide film layer deposited by heat treatment at 1500 ° C. or higher. A binding Mo plate can be obtained.

また、表面層の組成がイットリア5wt%から20wt%(試料5では6%)で残部が実質的にジルコニアからなり、1800℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。   Moreover, the composition of the surface layer is yttria 5 wt% to 20 wt% (6% in the sample 5), and the balance is substantially made of zirconia, and the sintered body is provided with an oxide film layer in which the surface layer is deposited through heat treatment at 1800 ° C. or higher. A binding Mo plate can be obtained.

表面層の組成がマグネシア25wt%から35wt%(試料6では29%)で残部が実質的にアルミナからなり、1800℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。   The composition of the surface layer is magnesia 25 wt% to 35 wt% (29% in the sample 6), the balance is substantially made of alumina, and the oxide film layer having the surface layer welded through heat treatment at 1800 ° C. or higher is used for sintering. A Mo plate can be obtained.

また、表面層の組成がカルシア4wt%から30wt%(試料7では29%)で残部が実質的にアルミナからなり、1800℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。    Moreover, the composition of the surface layer is calcia 4 wt% to 30 wt% (29% in the sample 7), and the balance is substantially made of alumina. A binding Mo plate can be obtained.

また、試料12では、それぞれ別のスラリー状の酸化物を1層ずつ重ねて塗布、乾燥し2層の皮膜層とした。この場合、密着性を向上させるため、第1層目は母材となる板の熱膨張率に、より近い酸化物を選択するのが好ましく、最上層は被処理物との反応による溶着を考慮して選択するのが好ましい。   Further, in Sample 12, two layers of different slurry-like oxides were applied and dried to form two coating layers. In this case, in order to improve adhesion, it is preferable to select an oxide closer to the thermal expansion coefficient of the base plate as the first layer, and the uppermost layer considers welding due to reaction with the workpiece. It is preferable to select them.

本発明においては、例えばMo板では、第1層目はMoの熱膨張率約5.0(x10−6/℃)に近いA1−2.5%TiO(熱膨張率約5.3(x10−6/℃)とした。 In the present invention, for example, in the Mo plate, the first layer is about A1 2 O 3 -2.5% TiO 2 ( coefficient of thermal expansion close to about 5.0 thermal expansion coefficient of Mo (x10 -6 / ℃) 5 .3 (x10 −6 / ° C.).

塗布後は、溶着する酸化物の粒度に依存した温度、ここでは、1500℃で2時間以上焼き付け処理を施すことで板表面の凹凸に食い込み、溶着させた。溶着した表面特性は、下記表1、2及び図8(a)及び図8(b)に示す写真に示すとおり平滑度とポーラス状の両方を兼ね備えている板が作製できた。なお、表2と後で述べる表3及び表4においては、被焼結物は、本明細書で述べている被処理物に相当する。   After the application, a baking treatment was performed at a temperature depending on the particle size of the oxide to be welded, here, 1500 ° C. for 2 hours or more, so that the surface was uneven and welded. As shown in the following Tables 1 and 2 and the photographs shown in FIGS. 8A and 8B, the welded surface characteristics were able to produce a plate having both smoothness and porous shape. In Table 2 and Tables 3 and 4 described later, the object to be sintered corresponds to the object to be processed described in this specification.

また、さらに酸化物皮膜層の表面に研磨を施すことで、より平滑且つポーラス状の酸化物皮膜層を得ることが出来た。   Furthermore, a smoother and more porous oxide film layer could be obtained by further polishing the surface of the oxide film layer.

次に、参考例の試料13−19について説明する。   Next, Reference Sample 13-19 will be described.

試料13として本発明例と同様なMo板にAl−43%ZrOの皮膜層を8μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 As a sample 13, an Al 2 O 3 -43% ZrO 2 coating layer of 8 μm was applied to the same Mo plate as in the present invention, and a baking treatment was performed in the same manner as in the present invention.

試料14として、本発明例と同様なMo板にAl−43%ZrOの皮膜層を350μm塗布、本発明例と同様に焼付け処理を施したものを作製した。しかし、Mo板から皮膜層が剥離するとともに、数mm以上の反りが発生し、焼結用板として使用できなかった。 Sample 14 was prepared by applying a coating layer of 350 μm of Al 2 O 3 -43% ZrO 2 to a Mo plate similar to the example of the present invention and baking the same as in the example of the present invention. However, the coating layer peeled off from the Mo plate and warpage of several mm or more occurred, and it could not be used as a sintering plate.

試料15として、本発明例と同様なMo板に30μmのAlを使用しAl−43%ZrOの皮膜層を100μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 As sample 15, 30 μm of Al 2 O 3 was used on the same Mo plate as in the example of the present invention, and a coating layer of Al 2 O 3 -43% ZrO 2 was applied to 100 μm, followed by baking treatment in the same manner as in the example of the present invention. Things were made.

試料16として本発明例と同様なMo板に30μmのAlのみを使用した皮膜層を100μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 As a sample 16, 100 μm of a coating layer using only 30 μm of Al 2 O 3 was applied to a Mo plate similar to that of the present invention, and a baking treatment was performed in the same manner as the present example.

試料17としてMo板の表面を更に粗し表面粗さをRa21μm、Rmaxが160μmとし、その表面にAl−43%ZrOの皮膜層を100μm塗布したものを作製した。 Sample 17 was prepared by further roughening the surface of the Mo plate to have a surface roughness of Ra 21 μm, Rmax of 160 μm, and a coating layer of Al 2 O 3 -43% ZrO 2 on the surface of 100 μm.

試料18として本発明の例と同様なMo板に皮膜層を塗布しないものを作製した。   Sample 18 was prepared by applying a coating layer to a Mo plate similar to the example of the present invention.

試料19として本発明例と同様なMo板に30μmのAlと3.5μmのMo粉末を使用しAl−50%Moの皮膜層を100μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 As a sample 19, 30 μm of Al 2 O 3 and 3.5 μm of Mo powder were used on the same Mo plate as in the example of the present invention, and a coating layer of Al 2 O 3 -50% Mo was applied to 100 μm. What was baked was produced.

次に、比較試料20−21について説明する。   Next, the comparative sample 20-21 will be described.

比較例に係る試料20として、現状使用している厚さ10mmのAl板を用意した。 As the sample 20 according to the comparative example, an Al 2 O 3 plate having a thickness of 10 mm that is currently used was prepared.

比較例に係る試料21として、組織制御していないMo板に30μmのAlのみを使用した皮膜層を100μm溶射により作製した。 As a sample 21 according to the comparative example, a coating layer using only 30 μm of Al 2 O 3 was prepared by 100 μm thermal spraying on a Mo plate whose structure was not controlled.

図9(a)に示す本発明の例では、1枚の板(T1.5mm×150mm×300mm)13の上に直径20mm、高さ10mmのFe系MIM成型体11を50ヶ並べ、板外周囲に直径10mm、高さ15mmのスペーサー15を並べ、同様の射出成型体の載ったMo板を6段重ねた。その6段重ねたMo板を、炉開口部17が開口幅170mm、高さ100mmであるメッシュベルト炉に挿入し、水素雰囲気中1350℃で、2時間の焼結処理を行い、MIM焼結体を得た。   In the example of the present invention shown in FIG. 9A, 50 Fe-based MIM moldings 11 having a diameter of 20 mm and a height of 10 mm are arranged on a single plate (T1.5 mm × 150 mm × 300 mm) 13 and are out of the plate. Spacers 15 having a diameter of 10 mm and a height of 15 mm were arranged around the periphery, and six stages of Mo plates on which similar injection molded bodies were placed were stacked. The six-layered Mo plates were inserted into a mesh belt furnace having a furnace opening 17 having an opening width of 170 mm and a height of 100 mm, and subjected to a sintering treatment at 1350 ° C. for 2 hours in a hydrogen atmosphere, and an MIM sintered body Got.

図9(b)に示す比較例に係る試料20では、T10mm×150mm×300mmのAl板19上に、同様に並べ、4段重ねとした。 In the sample 20 according to the comparative example shown in FIG. 9B, the same arrangement was made on the Al 2 O 3 plate 19 of T10 mm × 150 mm × 300 mm to form a four-layer stack.

通常のAl板を使用した比較例に係る試料20と比べ製品のチャージ量がl.5倍となりまた、炉の電力使用量も約70%に低減することが出来た。 Compared with the sample 20 according to the comparative example using a normal Al 2 O 3 plate, the charge amount of the product is l. In addition, the power consumption of the furnace was reduced to about 70%.

焼結後得られたMIM焼結体はMo板への被処理物の溶融付着無く、表面状態も良好であった。また、Mo板も新たな反りは発生せず、皮膜層の剥離も無く繰り返し使用が可能であった。   The MIM sintered body obtained after sintering did not melt and adhere the object to be processed to the Mo plate, and the surface condition was also good. Also, the Mo plate did not generate new warp and could be used repeatedly without peeling of the coating layer.

上記参考例に係る試料13、15−19および比較例に係る試料20、21も同様に製品をのせ焼結処理を行った。ただし比較例に係る試料20はAlの板厚が厚い為、4段重ねとした。 Samples 13 and 15-19 according to the above reference example and samples 20 and 21 according to the comparative example were similarly subjected to the sintering process. However, since the sample 20 according to the comparative example has a thick plate thickness of Al 2 O 3 , it was formed into a four-layered structure.

その結果、参考試料13においては皮膜層の膜厚が薄いため、Moが露出している部分がありMIM焼結体がMo板に被処理物が溶融付着する部分が発生し、製品として使用できなかった。この試料を150倍のマイクロスコープで観察し、その画像を画像解析した結果、Mo板の露出部分は単位面積の約2%であった。   As a result, in the reference sample 13, since the film layer is thin, there is a portion where Mo is exposed, and the MIM sintered body has a portion where the object to be processed melts and adheres to the Mo plate, which can be used as a product. There wasn't. As a result of observing this sample with a 150-fold microscope and analyzing the image, the exposed portion of the Mo plate was about 2% of the unit area.

また、参考試料15、16においては皮膜層に粗い粉末をのみ使用したため、Mo板への密着性が悪く剥離しやすくなり、焼結体表面に皮膜層が付着してしまい製品として使用できなかった。   In Reference Samples 15 and 16, since only a coarse powder was used for the coating layer, the adhesion to the Mo plate was poor and it was easy to peel off, and the coating layer adhered to the surface of the sintered body and could not be used as a product. .

また、試料17においてはMIM焼結体表面に皮膜層表面の粗さが転写してしまい製品として使用することが出来なかった。   In Sample 17, the roughness of the surface of the coating layer was transferred to the surface of the MIM sintered body and could not be used as a product.

また、比較例に係る試料18においては皮膜層が無い為、MoとMIM焼結体が溶融付着してしまい製品として使用できなかった。   Moreover, in the sample 18 which concerns on a comparative example, since there was no film layer, Mo and a MIM sintered compact melt-adhered and it could not be used as a product.

また、試料19においては皮膜層中及び表面にMoが露出している為MIM焼結体が溶着してしまい製品として使用できなかった。   In Sample 19, Mo was exposed in the coating layer and on the surface, so that the MIM sintered body was welded and could not be used as a product.

また、比較例に係る試料20においては得られるMIM焼結体は良好であるが、炉へのチャージ量が少なくまた電気使用量も多い為、コストアップとなってしまった。   Further, in the sample 20 according to the comparative example, the obtained MIM sintered body is good, but the cost is increased because the amount of charge to the furnace is small and the amount of electricity used is also large.

また、比較例に係る試料21においてはMoの組織を制御しておらず、更に粗い粉末のみを使用しているため、MIM焼結中に新たな反りが発生すると共に、皮膜層が剥離しMIM焼結体に付着してしまうため、繰り返し使用することが出来なかった。   Further, in the sample 21 according to the comparative example, since the structure of Mo is not controlled and only a coarser powder is used, a new warp occurs during the MIM sintering, and the coating layer peels off and the MIM. Since it adheres to the sintered body, it could not be used repeatedly.

なお、参考試料及び、比較例に係る試料においてはMo板への被処理物の溶融付着の発生、Mo板の新たな反り発生、皮膜層の剥離などにより、繰り返し使用することが出来なかった。   Note that the reference sample and the sample according to the comparative example could not be used repeatedly due to the occurrence of melt adhesion of the workpiece to the Mo plate, the occurrence of a new warp of the Mo plate, the peeling of the coating layer, and the like.

例えば、図7(a)及び図7(b)に示すように、本発明の試料8は、皮膜層を研磨したものであるが、参考例にかかわる試料17の場合、大きな凹凸があるため、MIM焼結体に表面粗さが転写してしまい、製品として使用できない。   For example, as shown in FIG. 7 (a) and FIG. 7 (b), the sample 8 of the present invention is a film layer polished, but in the case of the sample 17 related to the reference example, there are large irregularities, The surface roughness is transferred to the MIM sintered body and cannot be used as a product.

次に、本発明の例と同様に粒径約1μmのアルミナ(Al)と30μmのチタニア(TiO)を混合した粉末を使用し、溶射により皮膜層を作製し1500℃で2時間熱処理したところ下地の露出のない皮膜層が得られ、これを使用してMIM焼結体を作製したところ、本発明の例と同様に良好なMIM焼結体を得ることができた。また、前記の他の酸化物も同様であった。 Next, as in the example of the present invention, using a powder obtained by mixing alumina (Al 2 O 3 ) having a particle diameter of about 1 μm and titania (TiO 2 ) having a diameter of about 30 μm, a coating layer was produced by thermal spraying, and the temperature was 1500 ° C. for 2 hours. When the heat treatment was performed, a coating layer having no underlying exposure was obtained, and when this was used to produce a MIM sintered body, a good MIM sintered body could be obtained as in the example of the present invention. The same applies to the other oxides.

また、本発明例と同様に50μmの皮膜層を作製した後、更に粒径約3μmのジルコニア(ZrO)と30μmのイットリア(Y)を混合した粉末を使用し、溶射により50μmの皮膜層を作製し1500℃で2時間熱処理することで、トータル100μmの皮膜層を作製した。この板を使用してMIM焼結体を作製したところ、本発明例と同様に良好なMIM焼結体を得ることができた。また、更に前記の他酸化物の組み合わせでも同様であった。さらに、前記とは逆に本発明の溶射による皮膜層を先に作製した場合でも同様の結果であった。 Further, after a 50 μm film layer was prepared in the same manner as in the present invention example, a powder in which zirconia (ZrO 2 ) having a particle size of about 3 μm and yttria (Y 2 O 3 ) having a particle size of about 3 μm was further used, A coating layer was prepared and heat-treated at 1500 ° C. for 2 hours to prepare a coating layer having a total thickness of 100 μm. When this plate was used to produce a MIM sintered body, a good MIM sintered body could be obtained in the same manner as in the examples of the present invention. The same applies to the combination of the other oxides. Further, contrary to the above, the same result was obtained even when the coating layer by thermal spraying of the present invention was prepared first.

また、本発明の例と同様に粒径約1μmのアルミナ(Al)と30μmジルコニア(ZrO)を混合した粉末を使用し、これに耐高温接着剤を混ぜてMo板に塗布したのち1500℃で2時間熱処理したところ、上記同様に下地の露出のない皮膜層が得られ、これを使用してMIM焼結体を作製したところ、本発明の例と同様に良好なMIM焼結体を得ることができた。また、前記の他酸化物も同様であった。ここで、本発明においては、上記耐高温接着剤として、耐火性セラミックと無機ポリマーを主成分として物を使用したが、これに限ったものではなく、高温での接着性を有するものであれば、他のものも使用できることは勿論である。 Similarly to the example of the present invention, a powder in which alumina (Al 2 O 3 ) having a particle diameter of about 1 μm and 30 μm zirconia (ZrO 2 ) is used, and a high temperature resistant adhesive is mixed and applied to the Mo plate. After heat treatment at 1500 ° C. for 2 hours, a coating layer with no underlying exposure was obtained as described above. Using this, a MIM sintered body was produced. As in the example of the present invention, good MIM sintering was achieved. I was able to get a body. The same applies to the other oxides. Here, in the present invention, as the high-temperature-resistant adhesive, a material mainly composed of a refractory ceramic and an inorganic polymer is used, but not limited to this, as long as it has adhesiveness at a high temperature. Of course, other types can be used.

本発明例に係る試料2における1μmのアルミナ(Al)と30μmジルコニア(ZrO)43%を溶着したMo板を用いて大気中での耐酸化テストを行った。酸化テストは、被覆品は全面被覆とし、脱バインダーが行われる条件600℃大気中5時間で行い、その時のMo板重量減量を消耗率とした。結果、コーティングを施さない99.9%Mo板ではMoの昇華が進み消耗率は20〜25%に達した。また、従来の溶射方法で作製したMo板では消耗率は5〜10%に達した。 An oxidation resistance test in the atmosphere was performed using a Mo plate in which 1 μm of alumina (Al 2 O 3 ) and 43 μm of zirconia (ZrO 2 ) 43% in Sample 2 according to the present invention were welded. The oxidation test was performed on the entire surface of the coated product, under the condition of removing the binder at 600 ° C. in the atmosphere for 5 hours, and the weight loss of the Mo plate at that time was defined as the consumption rate. As a result, in the 99.9% Mo plate without coating, Mo sublimation progressed and the consumption rate reached 20-25%. Further, the consumption rate of the Mo plate produced by the conventional thermal spraying method reached 5 to 10%.

これに対し、上記本発明の試料2における1μmのアルミナ(Al)と30μmジルコニア(ZrO)43%を溶着したMo板では消耗率は1%未満であった。 In contrast, the consumption rate of the Mo plate in which 1 μm alumina (Al 2 O 3 ) and 30 μm zirconia (ZrO 2 ) 43% were welded in the sample 2 of the present invention was less than 1%.

上記実施の形態から明らかなように、少なくとも一種の粉末の粒度が10μm以下であることで、下地の露出のない皮膜層が得られ耐酸化特性の優れる焼結用板を得ることができた。   As apparent from the above embodiment, when the particle size of at least one kind of powder is 10 μm or less, a coating layer without exposure of the underlying layer is obtained, and a sintering plate having excellent oxidation resistance can be obtained.

次に、本発明の焼結用板の金属材料として、モリブデンの代わりにタングステンを用いて同様に検討した。その結果、下記表3、4に示すように、タングステンにおいてもモリブデンと同様の特性が得られた。なお、表中において、本発明例は試料22−33、参考例に係る試料は、試料34−40である。また、被焼結物は、被処理物と同等である。   Next, the same study was conducted using tungsten instead of molybdenum as the metal material of the sintering plate of the present invention. As a result, as shown in Tables 3 and 4, the same characteristics as molybdenum were obtained for tungsten. In the table, the example of the present invention is sample 22-33, and the sample according to the reference example is sample 34-40. Further, the object to be sintered is equivalent to the object to be processed.

以上、説明したように、本発明によれば、従来においては焼結用板としてアルミナ、シリカなどの耐火物を使用した場合は、板厚さが10〜15mm程度必要とされていたが、例えばモリブデン板に酸化物を溶着した場合、1〜2mm程度の板厚さで被処理物を焼結するという目的を達成することが出来、且つ、加熱及び冷却に使われるエネルギーを大幅に節約することが可能で経済的効果が大きい焼結用板を得ることができる。   As described above, according to the present invention, conventionally, when a refractory such as alumina or silica is used as a sintering plate, a plate thickness of about 10 to 15 mm is required. When oxides are deposited on a molybdenum plate, the purpose of sintering the workpiece with a plate thickness of about 1 to 2 mm can be achieved, and the energy used for heating and cooling can be greatly saved. It is possible to obtain a sintering plate having a large economic effect.

また、本発明によれば、酸化物皮膜層をポーラスで且つ平滑にすることで脱バインダー性と焼結性の両方の機能を持たせることが出来る高融点金属材料と、その製造方法と、それを用いた焼結用板を得ることができる。   Further, according to the present invention, the refractory metal material capable of providing both functions of debinding and sintering by making the oxide film layer porous and smooth, a method for producing the same, and A sintering plate using can be obtained.

また、本発明によれば、酸化物が溶着されているため製品にアルミナなどが付着することがなく、後処理が不要となりまた焼結製品の品質も向上し経済的効果がある高融点金属材料とその製造方法とそれを用いた焼結用板を提供することができる。   In addition, according to the present invention, since the oxide is deposited, alumina or the like does not adhere to the product, post-treatment is not required, and the quality of the sintered product is improved, which has an economic effect and has a high melting point. And a manufacturing method thereof and a sintering plate using the same.

また、本発明によれば、溶着面は下地素材であるモリブデン、タングステン、及びそれらの合金が露出していないで、従来では鉄系材料ではそれに含まれるNiなどの成分がMoと反応し、Mo板の性能を著しく劣化させていたが、本発明では前記構成によりMo板の性能劣化がなく使用できる高融点金属材料と、その製造方法と、それを用いた焼結用板を提供することができる。   Further, according to the present invention, molybdenum, tungsten, and alloys thereof, which are base materials, are not exposed on the welding surface, and in the conventional iron-based materials, components such as Ni react with Mo, and Mo Although the performance of the plate was significantly deteriorated, the present invention provides a refractory metal material that can be used without any performance deterioration of the Mo plate, the manufacturing method thereof, and a sintering plate using the same. it can.

また、本発明によれば、モリブデン板の場合、大気中では500℃以上で酸化が著しく使用できなかったが、全面に酸化物皮膜層を溶着することで大気中でも使用可能となる高融点金属材料とその製造方法と、それを用いた焼結用板を得ることができる。この場合、好ましくは皮膜層は50μmから300μmと厚いことが有効である。   Further, according to the present invention, in the case of a molybdenum plate, oxidation could not be remarkably used at 500 ° C. or higher in the atmosphere, but a high melting point metal material that can be used in the atmosphere by depositing an oxide film layer on the entire surface. And the manufacturing method and the board for sintering using the same can be obtained. In this case, it is effective that the coating layer is preferably as thick as 50 μm to 300 μm.

以上説明した通り、本発明に係る高融点金属材料及びそれを用いた焼結用板は、MIM焼結体等の製造に用いる焼結用板に最適である。   As described above, the refractory metal material according to the present invention and the sintering plate using the same are most suitable as a sintering plate used for manufacturing an MIM sintered body or the like.

また、本発明に係る高融点金属材料の製造方法は、前記した焼結用板として用いる高融点金属材料の製造に最適である。   The method for producing a refractory metal material according to the present invention is most suitable for producing a refractory metal material used as the above-described sintering plate.

本発明の焼結用板の酸化物皮膜層の溶着面の一例の組織を示す顕微鏡写真(150倍)で、粗粒粉酸化物(Al−43wt%ZrO)による溶着面の状態を示す図である。State of the welding surface in microscopic photograph showing one example of the organization of the welding surface of the oxide film layer of the sintering plate (150-fold), by coarse powder oxide (Al 2 O 3 -43wt% ZrO 2) of the present invention FIG. 本発明の焼結用板の酸化物皮膜層の溶着面の一例の組織を示す顕微鏡写真(150倍)で、微粒粉酸化物(Al−43wt%ZrO)による溶着面の状態を示す図である。In microscopic photograph showing one example of the organization of the welding surface of the oxide film layer of the sintering plate of the present invention (150 times), the state of the welding surface by fine powder oxide (Al 2 O 3 -43wt% ZrO 2) FIG. 本発明の焼結用板の酸化物皮膜層の溶着面の一例の組織を示す顕微鏡写真(150倍)で、微粒粗粒混合酸化物(Al−43wt%ZrO)による溶着面の状態を示す図である。In microscopic photograph showing one example of the organization of the welding surface of the oxide film layer of the sintering plate of the present invention (150 times), the welding surface by fine grit mixed oxide (Al 2 O 3 -43wt% ZrO 2) It is a figure which shows a state. 溶着面の未研磨面の表面粗さ(Al)を示す図である。It shows the surface roughness of the unpolished surface of the welding surface (Al 2 O 3). 溶着面の研磨面の表面粗さ(Al)を示す図である。It shows the surface roughness of the polished surface of the welding surface (Al 2 O 3). 図5の溶着面の状態を示す写真である。It is a photograph which shows the state of the welding surface of FIG. (a)は本発明の試料8におけるMIM焼結体への皮膜層表面粗さの影響を模式的に示す図で、(b)は参考試料17におけるMIM焼結体への皮膜層表面粗さの影響を模式的に示す図である。(A) is a figure which shows typically the influence of the film layer surface roughness to the MIM sintered compact in the sample 8 of this invention, (b) is the film layer surface roughness to the MIM sintered compact in the reference sample 17. It is a figure which shows typically the influence of No .. (a)は酸化物(Al)の粉末粒度が75μmの熱処理温度1800℃の場合における熱処理後の表面の組織の状態を示す比較顕微鏡写真(150倍)で、(b)は酸化物(Al)の粉末粒度が1μmの熱処理温度1800℃の場合における熱処理後の表面の組織の状態を示す顕微鏡写真(150倍)である。(A) is a comparative micrograph (150 times) showing the state of the surface structure after heat treatment when the oxide (Al 2 O 3 ) powder particle size is 75 μm and the heat treatment temperature is 1800 ° C., (b) is the oxide a (Al 2 O 3) micrograph (150x) of the powder particle size indicates the state of the tissue surface after the heat treatment in the case of the heat treatment temperature of 1800 ° C. of 1μm of. (a)は本発明によるMIM焼結体の炉への挿入例を示す図、(b)は比較例に係る試料20の炉への挿入例を示す図である。(A) is a figure which shows the example of insertion in the furnace of the MIM sintered compact by this invention, (b) is a figure which shows the example of insertion in the furnace of the sample 20 which concerns on a comparative example.

符号の説明Explanation of symbols

11 MIM成型体
15 スペーサー
17 炉開口部
19 Al
11 MIM molding 15 Spacer 17 Furnace opening 19 Al 2 O 3 plate

Claims (13)

モリブデン、タングステン、モリブデン基及びタングステン基合金の内から選ばれた高融点金属からなる板材の、少なくとも一つの面にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアの内の一種の酸化物粉末、または2種以上の酸化物粉末を混合したものが溶着されている酸化物皮膜層を備えた高融点金属材料であって、
前記酸化物皮膜層による前記高融点金属材料の露出が単位面積の1%以下で、且つポーラス状であることを特徴とする酸化物皮膜層を備えた高融点金属材料。
A kind of oxide of alumina, silica, zirconia, yttria, titania, magnesia and calcia on at least one surface of a plate made of a refractory metal selected from molybdenum, tungsten, molybdenum base and tungsten base alloy A refractory metal material having an oxide film layer on which a powder or a mixture of two or more oxide powders is deposited ,
A refractory metal material comprising an oxide film layer, wherein the refractory metal material is exposed to the oxide film layer in a porous shape with an exposure of 1% or less of a unit area .
請求項1に記載の酸化物皮膜層を備えた高融点金属材料において、
前記酸化物皮膜層の厚さが10〜300μmであることを特徴とする酸化物皮膜層を備えた高融点金属材料。
In the refractory metal material comprising the oxide film layer according to claim 1,
A refractory metal material comprising an oxide film layer, wherein the oxide film layer has a thickness of 10 to 300 μm.
請求項1又は2に記載の酸化物皮膜層を備えた高融点金属材料において、前記酸化物皮膜層のポーラス状の表面粗さがRa20μm以下、Rmax150μm以下に研磨が施されていることを特徴とする酸化物皮膜層を備えた高融点金属材料。 In refractory metal material having an oxide film layer as claimed in claim 1 or 2, wherein the porous surface roughness of the oxide coating layer is Ra20μm less, and wherein the grinding is performed in the following Rmax150μm A high melting point metal material provided with an oxide film layer. 請求項1乃至3に記載の酸化物皮膜層を備えた高融点金属材料において、前記高融点金属材料の表面粗さがRa20μm以下、Rmax150μm以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料。 In refractory metal material having an oxide film layer as claimed in claims 1 to 3, wherein the refractory metal materials surface roughness of Ra20μm below, includes an oxide film layer, characterized in that at most Rmax150μm Refractory metal material. 少なくとも一つの面にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアのこれらの少なくとも一種または2種以上の酸化物を混合したものが溶着されている板材であって、前記板材の組成が純度99.9%以上の耐高温変形特性を有するモリブデン板で、当該モリブデン板の内部に含まれる円板状結晶粒の大きさが円板面の短径に対する長径の比が4以下で、その円板面の大きさが直径15〜150mmであり、且つ厚さ方向の大きさが材料厚さの1/5以上の結晶粒により形成され、前記酸化物皮膜層による前記板材の少なくとも一面の露出が単位面積の1%以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料。 Alumina on at least one surface, silica, zirconia, yttria, titania, a sheet material magnesia, and a mixture of these at least one or more oxides of calcia are welded, the composition of the plate Is a molybdenum plate having a high temperature deformation resistance with a purity of 99.9% or more, and the ratio of the major axis to the minor axis of the disc surface is 4 or less in the size of the disk-like crystal grains contained in the molybdenum plate, The size of the disk surface is 15 to 150 mm in diameter, and the size in the thickness direction is formed of crystal grains having a size of 1/5 or more of the material thickness , and at least one surface of the plate material by the oxide film layer. A refractory metal material provided with an oxide film layer, wherein the exposure is 1% or less of a unit area . 少なくとも一つの面以上にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアのうちこれらの少なくとも一種または2種以上の酸化物を混合したものが溶着されている板材であって、前記板材の組成が、重量比で0.1〜1.0%未満のランタン又はランタン酸化物と残部がモリブデンからなり、実質的に一定方向に伸長してなる組織を有し、高温における変形量の少なく、前記酸化物皮膜層による前記板材の少なくとも一面の露出が単位面積の1%以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料。 Alumina or at least one surface, silica, zirconia, yttria, titania, a sheet material magnesia, and a mixture of these at least one or two or more oxides of the calcia is welded, the plate The composition is a lanthanum or lanthanum oxide having a weight ratio of less than 0.1 to 1.0% and the balance consisting of molybdenum, and has a structure that extends substantially in a certain direction, with a small amount of deformation at a high temperature, A refractory metal material provided with an oxide film layer, wherein an exposure of at least one surface of the plate material by the oxide film layer is 1% or less of a unit area . 請求項に記載の酸化物皮膜層を備えた高融点金属材料において、前記板材の組織が、一定方向に伸長して再結晶化しているインターロッキング構造を呈する結晶粒子を有し、加工性及び耐高温変形性に優れていることを特徴とする酸化物皮膜層を備えた高融点金属材料。 The refractory metal material comprising the oxide film layer according to claim 6 , wherein the structure of the plate material has crystal particles exhibiting an interlocking structure that is recrystallized by extending in a certain direction, A refractory metal material having an oxide film layer characterized by excellent resistance to high temperature deformation. 請求項乃至の内のいずれか一つに記載の酸化物皮膜層を備えた高融点金属材料において、前記高融点金属材料は焼結に用いられることを特徴とする酸化物皮膜層を備えた焼結用板。 The refractory metal material comprising the oxide film layer according to any one of claims 5 to 7 , wherein the refractory metal material is used for sintering. Sintered plate. 請求項1乃至4記載の酸化物皮膜層を備えた高融点金属材料を製造する方法であって、前記酸化物粉末の内の少なくとも1種の酸化物粉末の粒度が10μm以下であり、当該粉末の粒度に依存した温度で熱処理することにより得られたことを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法 A method of manufacturing a claims 1 to 4 refractory metal material having an oxide film layer described, the particle size of at least one oxide powder of said oxide powder is at 10μm or less, the powder A method for producing a refractory metal material provided with an oxide film layer, characterized by being heat-treated at a temperature depending on the particle size. 請求項に記載の酸化物皮膜層を備えた高融点金属材料の製造方法において、前記溶着する酸化物をスラリー状にし塗布またはスプレー乾燥後、溶着する酸化物の粒度に依存した温度で焼き付け溶融処理を施すことにより、板材表面に酸化物皮膜層を形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法。 10. The method for producing a refractory metal material having an oxide film layer according to claim 9 , wherein the oxide to be deposited is made into a slurry and applied or spray dried, and then baked and melted at a temperature depending on the particle size of the oxide to be deposited. A method for producing a refractory metal material comprising an oxide film layer, characterized in that an oxide film layer is formed on the surface of a plate material by performing treatment. 請求項に記載の酸化物皮膜層を備えた高融点金属材料の製造方法において、前記酸化物皮膜層をプラズマ溶射により形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法。 The method for producing a refractory metal material having an oxide film layer according to claim 9 , wherein the oxide film layer is formed by plasma spraying. Production method. 請求項に記載の酸化物皮膜層を備えた高融点金属材料の製造方法において、耐高温接着剤により酸化物皮膜を形成し、熱処理を施すことで溶着させて前記酸化物皮膜層を形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法。 10. The method for producing a refractory metal material having an oxide film layer according to claim 9 , wherein the oxide film layer is formed by forming an oxide film with a high temperature resistant adhesive and applying heat treatment to the oxide film layer. The manufacturing method of the refractory metal material provided with the oxide film layer characterized by the above-mentioned. 請求項乃至12の内のいずれか一つに記載の酸化物皮膜層を備えた高融点金属材料の製造方法において、前記酸化物皮膜を備えた高融点金属材料が焼結に用いられることを特徴とする酸化物皮膜層を備えた焼結用板の製造方法。 The method for producing a refractory metal material comprising the oxide film layer according to any one of claims 9 to 12 , wherein the refractory metal material comprising the oxide film layer is used for sintering. The manufacturing method of the board for sintering provided with the oxide film layer characterized by these.
JP2004049276A 2003-02-25 2004-02-25 High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same Expired - Lifetime JP4276558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049276A JP4276558B2 (en) 2003-02-25 2004-02-25 High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003047980 2003-02-25
JP2004049276A JP4276558B2 (en) 2003-02-25 2004-02-25 High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same

Publications (2)

Publication Number Publication Date
JP2004281392A JP2004281392A (en) 2004-10-07
JP4276558B2 true JP4276558B2 (en) 2009-06-10

Family

ID=33301733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049276A Expired - Lifetime JP4276558B2 (en) 2003-02-25 2004-02-25 High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same

Country Status (1)

Country Link
JP (1) JP4276558B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626845B (en) * 2012-03-27 2015-06-03 苏州先端稀有金属有限公司 Molybdenum lanthanum alloy tray processing method
JP5394582B1 (en) 2012-06-07 2014-01-22 株式会社アライドマテリアル Molybdenum heat-resistant alloy
WO2016077853A1 (en) * 2014-11-21 2016-05-26 Plansee Se Charging device for the thermal treatment of tantalum capacitors
JP6360245B1 (en) * 2017-11-08 2018-07-18 新和工業株式会社 Sintering setter and method for producing the same
CN108101530B (en) * 2017-12-29 2021-06-01 无锡天宝电机有限公司 Magnetic material for motor and preparation method thereof
KR102407421B1 (en) * 2019-02-14 2022-06-10 엔지케이 인슐레이터 엘티디 firing jig
JP7439610B2 (en) 2020-03-26 2024-02-28 株式会社プロテリアル Manufacturing method of RTB based sintered magnet

Also Published As

Publication number Publication date
JP2004281392A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US7332228B2 (en) Coated refractory metal plate having oxide surface layer, and setter which uses the same and which is used in sintering
US3975165A (en) Graded metal-to-ceramic structure for high temperature abradable seal applications and a method of producing said
US6753085B2 (en) Heat-resistant coated member
KR101313470B1 (en) Heat Resistant Coated Member, Making Method, and Treatment Using the Same
JP4276558B2 (en) High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same
JPWO2007037431A1 (en) Sintered body, manufacturing method thereof, sliding member using the sintered body, film forming material, hot extrusion die, hot extrusion molding apparatus and hot extrusion using the hot extrusion die Molding method
KR101305451B1 (en) Method of fabrication of porous supported materials on metal structure and catalysts modules prepared by the same
KR20200105930A (en) Firing jig
CN116968397A (en) Tritium permeation-preventing layered composite material and preparation method thereof
TWI742348B (en) Sputtering target and sputtering target
JP3876176B2 (en) Ceramic composition for heat shielding coating film
JP2005139554A (en) Heat-resistant coated member
JP2008069403A (en) Anti-oxidation coating structure and coating method of heat-resistant alloy
JP2004262712A (en) Burning tool
JP2005281032A (en) Graphite tray for sintering
JP2005170729A (en) Container for firing
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP2006151710A (en) Heat resistant coated member
JP2014006031A (en) Electronic component burning tool and method of manufacturing the same
JP3394844B2 (en) Heat resistant material
JP2828582B2 (en) Surface-coated silicon nitride heat-resistant member
JP2004250788A (en) Film depositing method
JP2003306392A (en) Jig for heat-treating ceramic for electronic part and its manufacturing process
JPH02200766A (en) Molybdenum tray and its production
JP2023147562A (en) Burning jig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Ref document number: 4276558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250