JP6360245B1 - Sintering setter and method for producing the same - Google Patents
Sintering setter and method for producing the same Download PDFInfo
- Publication number
- JP6360245B1 JP6360245B1 JP2017215245A JP2017215245A JP6360245B1 JP 6360245 B1 JP6360245 B1 JP 6360245B1 JP 2017215245 A JP2017215245 A JP 2017215245A JP 2017215245 A JP2017215245 A JP 2017215245A JP 6360245 B1 JP6360245 B1 JP 6360245B1
- Authority
- JP
- Japan
- Prior art keywords
- pore
- particles
- firing
- setter
- matrix material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000005245 sintering Methods 0.000 title 1
- 239000002245 particle Substances 0.000 claims abstract description 100
- 238000010304 firing Methods 0.000 claims abstract description 64
- 239000011159 matrix material Substances 0.000 claims abstract description 45
- 238000005507 spraying Methods 0.000 claims abstract description 40
- 239000011148 porous material Substances 0.000 claims abstract description 39
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 20
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 20
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229920000728 polyester Polymers 0.000 claims abstract description 13
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011733 molybdenum Substances 0.000 claims abstract description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000010937 tungsten Substances 0.000 claims abstract description 11
- 229910052582 BN Inorganic materials 0.000 claims abstract description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract 3
- 239000000463 material Substances 0.000 claims description 37
- 239000011248 coating agent Substances 0.000 claims description 34
- 238000000576 coating method Methods 0.000 claims description 34
- 238000002156 mixing Methods 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 11
- 230000002950 deficient Effects 0.000 abstract description 4
- 238000006748 scratching Methods 0.000 abstract description 4
- 230000002393 scratching effect Effects 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 description 28
- 239000000843 powder Substances 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 20
- 238000007751 thermal spraying Methods 0.000 description 13
- 239000011521 glass Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005469 granulation Methods 0.000 description 6
- 230000003179 granulation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000011163 secondary particle Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000003405 preventing effect Effects 0.000 description 3
- 239000003870 refractory metal Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/067—Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Structural Engineering (AREA)
- Coating By Spraying Or Casting (AREA)
- Furnace Charging Or Discharging (AREA)
Abstract
【課題】被焼成物と反応を生じたり当該被焼成物にキズを与えたりすることによる不良品の発生を防止することができる焼成用セッターおよびその製造方法を提供する。
【解決手段】モリブデン(Mo)またはタングステン(W)からなる基材1の被焼成物が載置される表面に、モリブデン(Mo)またはタングステン(W)からなるマトリックス材中に気孔生成粒子が分散された溶射皮膜2が形成されてなり、かつ上記気孔生成粒子は、六方晶窒化ホウ素(h−BN)、窒化バナジウム(VN)、炭化バナジウム(VC)またはポリエステルであるとともに、当該溶射皮膜における気孔生成物面積率が7.5〜35%の範囲になるように配合されている。
【選択図】図1Disclosed is a firing setter and a method for manufacturing the same, which can prevent the occurrence of defective products due to reaction with the object to be fired or scratching the object to be fired.
The pore-generating particles are dispersed in a matrix material made of molybdenum (Mo) or tungsten (W) on the surface of the substrate 1 made of molybdenum (Mo) or tungsten (W). And the pore-generating particles are hexagonal boron nitride (h-BN), vanadium nitride (VN), vanadium carbide (VC), or polyester, and pores in the thermal spray coating. It mix | blends so that a product area ratio may be in the range of 7.5 to 35%.
[Selection] Figure 1
Description
本発明は、セラミックス等の各種素材を焼成する際に用いられる焼成用セッターおよびその製造方法に関するものである。 The present invention relates to a setter for firing used when firing various materials such as ceramics and a method for producing the same.
一般に、セラミックパッケージ等のセラミックス製品は、予め製品形状に成形されたアルミナや窒化アルミなどのセラミックスを、焼成用セッター上に載置して、1500〜1700℃の高温であって中性あるいは弱還元性または真空雰囲気下において焼成することによって製造されている。 In general, ceramic products such as ceramic packages are obtained by placing ceramics such as alumina or aluminum nitride, which have been molded into a product shape, on a setter for firing at a high temperature of 1500 to 1700 ° C. and neutral or weak reduction. Or by firing in a vacuum atmosphere.
この際に、上記焼成用セッターとしては、製品セラミックスと反応し難い酸化物セラミックス、窒化物セラミックスあるいはモリブデン(Mo)やタングステン(W)等の耐火金属を平板状に形成したものが用いられている。 At this time, as the setter for firing, oxide ceramics, nitride ceramics, or refractory metals such as molybdenum (Mo) and tungsten (W) which are difficult to react with product ceramics are used in a flat plate shape. .
ところが、上述したような過酷な焼成条件下においては、上記焼成用セッターと製品セラミックスとの反応による不具合の発生を確実に回避することが困難であった。また、焼成過程で上記セラミックスから排出されるガラス成分等の液相やガス成分が焼成用セッターの表面に付着して凹凸が形成され、冷却時における上記セラミックス製品の収縮時に、その表面にキズを付けてしまうという問題点もあった。 However, under the severe firing conditions as described above, it has been difficult to reliably avoid the occurrence of defects due to the reaction between the firing setter and the product ceramics. In addition, liquid phase and gas components such as glass components discharged from the ceramic during the firing process adhere to the surface of the setter for firing, forming irregularities, and scratching the surface of the ceramic product during shrinkage during cooling There was also a problem of attaching.
そこで、例えば下記特許文献1〜3に見られるように、実際には焼成用セッターの上に敷き粉と呼ばれる数十〜数百μmの炭化物(TiC、SiC等)、窒化物(BN、AlN等)、耐火金属(Mo、W等)の粉末を敷き詰めて、当該敷き粉上に上記セラミックスを載置して焼成する方法が多く採用されていた。 Therefore, for example, as can be seen in the following Patent Documents 1 to 3, carbides (TiC, SiC, etc.) and nitrides (BN, AlN, etc.) of tens to hundreds of μm that are actually called spread powder on the setter for firing. ), Refractory metal (Mo, W, etc.) powder is spread, and the ceramics are placed on the spread powder and fired.
このような焼成用セッター上に敷き粉を敷き詰める方法は、当該敷き粉の材質や粒度を適切に選定すれば、比較的に容易に適用でき、所望の反応防止効果を得ることができる。 Such a method of spreading the spread on the setter for firing can be applied relatively easily if the material and particle size of the spread are appropriately selected, and a desired reaction preventing effect can be obtained.
しかしながら、上記敷き粉は、基本的に1回ごとの焼成で新しいものに敷き替える必要が有り、その手間や敷き粉のコストが嵩んで経済性に劣るという問題点があった。加えて、敷き粉の一部が製品セラミックス側や焼成用セッター側に固着することがあり、これらの除去にも手間を要するとともに、場合によってはセラミックス製品や焼成用セッターに不良を引き起こすこともあった。 However, there is a problem that the above-mentioned bed powder basically needs to be replaced with a new one by firing each time, and the labor and cost of the bed powder are increased, resulting in poor economic efficiency. In addition, some of the bed powder may stick to the product ceramics side or the setter side for firing, and it may take time to remove these, and in some cases, it may cause defects in the ceramic product or the setter for firing. It was.
本発明は、上記事情に鑑みてなされたもので、被焼成物と反応を生じたり当該被焼成物にキズを与えたりすることによる不良品の発生を防止することができる焼成用セッターおよびその製造方法を提供することを課題とするものである。 The present invention has been made in view of the above circumstances, and a setter for firing capable of preventing the occurrence of defective products due to reaction with the object to be fired or scratching the object to be fired. It is an object to provide a method.
上記課題を解決するため、請求項1に記載の本発明に係る焼成用セッターは、モリブデン(Mo)またはタングステン(W)からなる基材の表面に、モリブデン(Mo)またはタングステン(W)からなるマトリックス材中に気孔生成粒子が分散された溶射皮膜が形成されてなり、かつ上記気孔生成粒子は、六方晶窒化ホウ素(h−BN)、窒化バナジウム(VN)、炭化バナジウム(VC)またはポリエステルであるとともに、上記溶射皮膜において上記気孔生成粒子及び気孔が占める面積の割合である気孔生成物面積率が7.5〜35%の範囲であることを特徴とするものである。 In order to solve the above problems, the setter for firing according to the present invention described in claim 1 is made of molybdenum (Mo) or tungsten (W) on the surface of a substrate made of molybdenum (Mo) or tungsten (W). A spray coating in which pore generating particles are dispersed in a matrix material is formed, and the pore generating particles are hexagonal boron nitride (h-BN), vanadium nitride (VN), vanadium carbide (VC), or polyester. with some, in which the proportion der Ru pore product area ratio of the area of the pores formed particles and pores occupied in the thermal spray coating, characterized in range der Rukoto of 7.5 to 35%.
また、請求項2に記載の発明は、請求項1に記載の発明において、上記溶射皮膜の厚さ寸法は、30〜500μmであることを特徴とするものである。 The invention described in claim 2 is characterized in that, in the invention described in claim 1, the thickness dimension of the sprayed coating is 30 to 500 μm.
ここで、溶射皮膜における上記気孔生成物面積率とは、「溶射皮膜の観測エリアの全面積」に対する「熱処理後に空孔になると考えられるものの面積」の割合を百分率(%)で表したものであり、上記「熱処理後に空孔になると考えられるものの面積」とは、溶射皮膜中に存在する気孔生成粒子の面積と、溶射皮膜形成時にマトリックス材の積層欠陥やガス分の残留などに起因して形成される気孔の面積との和である。 Here, the pore product area ratio in the thermal spray coating is the percentage (%) of the ratio of “the area of what is considered to be vacancies after heat treatment” to “the total area of the spray coating observation area”. Yes, the above-mentioned “area of what is considered to be pores after heat treatment” refers to the area of pore-generating particles present in the sprayed coating, the stacking fault of the matrix material and the residual gas content during the formation of the sprayed coating. It is the sum of the area of the pores formed.
請求項3に記載の本発明に係る焼成用セッターの製造方法は、モリブデン(Mo)またはタングステン(W)からなる基材の表面に、モリブデン(Mo)またはタングステン(W)からなるマトリックス材粒子と、六方晶窒化ホウ素(h−BN)、窒化バナジウム(VN)、炭化バナジウム(VC)またはポリエステルからなる気孔生成粒子とを混合した溶射材を溶射することにより、上記マトリックス材粒子から形成されたマトリックス材中に上記気孔生成粒子が分散した溶射皮膜を形成してなり、かつ上記気孔生成粒子を、上記溶射材中に10〜70Vol%の割合で配合したことを特徴とするものである。 According to a third aspect of the present invention, there is provided a method for producing a setter for firing, comprising matrix particles made of molybdenum (Mo) or tungsten (W) on a surface of a substrate made of molybdenum (Mo) or tungsten (W). A matrix formed from the matrix material particles by spraying a thermal spray material mixed with pore-generating particles made of hexagonal boron nitride (h-BN), vanadium nitride (VN), vanadium carbide (VC) or polyester. A thermal spray coating in which the pore-generating particles are dispersed in the material is formed, and the pore-generating particles are blended in the sprayed material at a ratio of 10 to 70% by volume.
また、請求項4に記載の発明は、請求項3に記載の発明において、上記気孔生成粒子として、上記マトリックス材粒子よりも大きい粒径のものを用いることを特徴とするものである。 The invention described in claim 4 is characterized in that, in the invention described in claim 3, particles having a particle size larger than the matrix material particles are used as the pore-generating particles.
請求項1または2に記載の焼成用セッターおよび請求項3または4に記載の発明によって得られた焼成用セッターによれば、セラミックス等の被焼成物が載置される溶射皮膜のマトリックス材として、上記セラミックス等と反応し難いMoまたはWを用いているために、上記被焼成物との反応による不良品の発生を未然に防止することができる。 According to the setter for firing according to claim 1 or 2 and the setter for firing obtained by the invention according to claim 3 or 4, as a matrix material of a thermal spray coating on which a firing object such as ceramics is placed, Since Mo or W which does not easily react with the ceramics or the like is used, generation of defective products due to reaction with the object to be fired can be prevented in advance.
また、一般的に、セラミックス等を焼成するための焼成用セッターは、使用開始時に高温雰囲気下において空焼きが行われる。この空焼きは、通常セラミックス製品等を載置しない状態で焼成条件と同様の条件で行われ、当該焼成条件には、バインダーを除去するために本焼成の前に行う脱脂も含まれる。そして、本発明に係る焼成用セッターにおいては、上記空焼き時に、溶射皮膜中の気孔生成粒子が酸化されることにより溶融開始温度が低下して揮散し、これにより上記溶射皮膜中に上記気孔生成粒子の種類と配合率に対応した容積の空孔が形成される。 In general, firing setters for firing ceramics and the like are baked in a high temperature atmosphere at the start of use. This baking is usually performed under the same conditions as the firing conditions without placing a ceramic product or the like, and the firing conditions include degreasing performed before the main firing in order to remove the binder. And, in the setter for firing according to the present invention, the pore-generating particles in the sprayed coating are oxidized and volatilized by the oxidation of the pore-generating particles in the sprayed coating, thereby volatilizing the pores in the sprayed coating. Holes with a volume corresponding to the type and blending ratio of the particles are formed.
また、上記使用開始時における空焼きによらず、別途使用前に当該焼成用セッターに対して同様の熱処理を施すことにより、溶射皮膜中に同様の空孔を形成することができる。 そして、セラミックス等の被焼成物を載置して焼成を行う際に、これらの空孔によって上記被焼成物から排出されるガラス成分等の液相やガス成分をトラップすることにより、これらガラス成分等が焼成用セッターの表面へ付着することを回避することができ、この結果冷却時のセラミックス製品にキズを付けることも防止することができる。 Moreover, the same void | hole can be formed in a sprayed coating by performing the same heat processing with respect to the said setter for baking before use separately irrespective of the empty baking at the time of the said use start. And, when placing the firing object such as ceramics and firing, these glass components are trapped by trapping the liquid phase and gas components such as the glass component discharged from the firing object through these holes. Can be prevented from adhering to the surface of the setter for firing. As a result, it is possible to prevent the ceramic product from being scratched during cooling.
この際に、上記気孔生成粒子としては、耐火金属であってマトリックス材となるMoまたはWと複合して基材表面に溶射できる材料であること、また溶射によって形成された溶射皮膜中に溶射前のサイズおよび結晶構造を概ね維持したまま残留できるものであることが必要である。加えて、溶射後の空焼き等の熱処理によって、当該気孔生成粒子のほぼ全量が揮散して気孔に変換できるもの、具体的には上記熱処理時における酸化開始温度が低く、その酸化物の融点、揮発温度が低いものであることが重要である。 At this time, the pore-generating particles are a refractory metal that is a material that can be thermally sprayed on the surface of the substrate in combination with Mo or W as a matrix material, and before spraying in a sprayed coating formed by spraying. It is necessary to be able to remain while maintaining the size and crystal structure of the film. In addition, by heat treatment such as air baking after thermal spraying, almost all of the pore-generating particles can be volatilized and converted to pores, specifically, the oxidation start temperature during the heat treatment is low, the melting point of the oxide, It is important that the volatilization temperature is low.
本発明者等は、様々な検証実験の結果、後述する実施例において示すように、このような条件に合致する気孔生成粒子として、六方晶窒化ホウ素(h−BN)、窒化バナジウム(VN)および炭化バナジウム(VC)を見出した。 As a result of various verification experiments, the present inventors, as shown in examples described later, as hexagonal boron nitride (h-BN), vanadium nitride (VN) and pore-generating particles that meet such conditions. Vanadium carbide (VC) was found.
また、同様に、他の気孔生成粒子として、上記材料とは異質であるものの、ポリエステルが、熱伝導率が極端に低く、比熱も大きいことからMoのような高融点材料との複合溶射でも皮膜中にしっかりと残留し、揮発温度も充分低いために上述した気孔生成に有効であるとの知見も得た。 Similarly, as other pore-generating particles, polyester is extremely different from the above materials, but polyester is extremely low in thermal conductivity and high in specific heat, so it can be coated even with composite spraying with a high melting point material such as Mo. It was also found that it remains in the inside and the volatilization temperature is sufficiently low, so that it is effective for the pore generation described above.
そして、本発明によれば、これらのh−BN、VN、VCまたはポリエステルからなる気孔生成粒子を用いているために、上述した空焼き等の熱処理によって、溶射皮膜中のほとんどの粒子が離脱して、基本的に溶射前の粒子サイズの気孔を形成することにより、焼成用セッターの機能および性能に必要な気孔率および気孔サイズを得ることができる。 According to the present invention, since the pore-generating particles made of these h-BN, VN, VC or polyester are used, most of the particles in the sprayed coating are detached by the heat treatment such as the above-mentioned baking. Basically, by forming pores having a particle size before thermal spraying, the porosity and pore size necessary for the function and performance of the setter for firing can be obtained.
ここで、上記検証実験においては、上記気孔生成粒子を、溶射皮膜における気孔生成物面積率が7.5〜35%の範囲になるように配合することにより、所望の効果が得られることが判明した。また、製造時においては、マトリックス材粒子と気孔生成粒子とを混合した溶射材中の上記気孔生成粒子の配合率を10〜70Vol%とすることにより、このような溶射皮膜を安定的に基材表面に形成し得ることが判明した。 Here, in the verification experiment, it was found that the desired effect can be obtained by blending the pore-generating particles so that the pore product area ratio in the thermal spray coating is in the range of 7.5 to 35%. did. Further, at the time of production, such a sprayed coating can be stably formed on the substrate by setting the mixing ratio of the pore generating particles in the sprayed material in which the matrix material particles and the pore generating particles are mixed to 10 to 70 Vol%. It has been found that it can form on the surface.
すなわち、上記配合率が10Vol%に満たないと、上記溶射皮膜中に上記反応防止効果を奏し得る容積の気孔を形成させることができず、逆に上記配合率が70Vol%を超えると相対的にマトリックス材の量が少なすぎて皮膜強度が低下し、脱落、摩滅あるいは剥離等の不具合を生じてしまい不適当であった。 That is, when the mixing ratio is less than 10 Vol%, pores having a volume capable of exhibiting the reaction preventing effect cannot be formed in the sprayed coating, and conversely when the mixing ratio exceeds 70 Vol%. Since the amount of the matrix material was too small, the film strength was lowered, causing problems such as falling off, abrasion or peeling, which was inappropriate.
さらに、上記溶射皮膜の厚さ寸法は、請求項2に記載の発明のように、30〜500μmとすることが好ましい。上記厚さ寸法が30μmに満たないと、同様に上記反応防止効果を奏し得る容積の気孔が形成できないおそれがあり、500μmを超えても上記効果に変わりが無く、コストアップのみを生じて不経済だからである。 Furthermore, it is preferable that the thickness dimension of the said sprayed coating shall be 30-500 micrometers like the invention of Claim 2. If the thickness dimension is less than 30 μm, there is a possibility that pores having a volume capable of exhibiting the above-mentioned reaction prevention effect may not be formed. Even if the thickness exceeds 500 μm, the above effect remains unchanged, resulting in only an increase in cost. That's why.
また、請求項3に記載の発明において、マトリックス材粒子と気孔生成粒子を複合させて溶射することにより、マトリックス材粒子を溶融させて上記基材の表面にマトリックス材を形成させる際に、気孔生成粒子が極力その形状を保持し得るように、請求項4に記載の発明のように、上記気孔生成粒子として、上記マトリックス材粒子よりも大きい粒径のものを用いることが好ましい。 Further, in the invention according to claim 3, when the matrix material particles and the pore-generating particles are combined and sprayed, the matrix material particles are melted to form the matrix material on the surface of the substrate. In order to maintain the shape of the particles as much as possible, it is preferable to use particles having a larger particle size than the matrix material particles as the pore-generating particles as in the invention described in claim 4.
図1(a)は、本発明に係る焼成用セッターの一実施形態を示すもので、この焼成用セッターは、MoまたはWからなる基材1の被焼成物が載置される表面に、溶射皮膜2が形成されたものである。また、図1(b)は、他の実施形態を示すもので、上記基材1の両面に溶射皮膜2が形成されたものである。 Fig.1 (a) shows one Embodiment of the setter for baking which concerns on this invention, and this setter for baking is sprayed on the surface by which the to-be-fired thing of the base material 1 which consists of Mo or W is mounted. The film 2 is formed. Moreover, FIG.1 (b) shows other embodiment, and the sprayed coating 2 is formed in both surfaces of the said base material 1. FIG.
ここで、溶射皮膜2は、MoまたはWからなるマトリックス材中に、h−BN、VN、VCまたはポリエステルからなる気孔生成粒子が分散されたもので、気孔生成粒子は、上述した溶射皮膜2おける気孔生成物面積率が7.5〜35%の範囲になるように配合されている。また、この溶射皮膜2は、厚さ寸法が30〜500μmに形成されている。 Here, the thermal spray coating 2 is one in which pore-generating particles made of h-BN, VN, VC or polyester are dispersed in a matrix material made of Mo or W. It is blended so that the pore product area ratio is in the range of 7.5 to 35%. The thermal spray coating 2 is formed to have a thickness dimension of 30 to 500 μm.
次に、図2に基づいて、本発明に係る焼成用セッターの製造方法の一実施形態について説明する。
先ず、縦横寸法が数十〜数百mmであって厚さ寸法が数mmのMo製またはW製の平板状の基材1を作成し、当該基材1の表面に溶射皮膜2を形成するための前処理としての粗面化処理を施す。この粗面化処理としては、ブラスト処理、ウオータージェット処理、酸処理などを用いることができる。
Next, based on FIG. 2, one Embodiment of the manufacturing method of the setter for baking which concerns on this invention is described.
First, a Mo or W flat plate-like base material 1 having a length and width dimensions of several tens to several hundreds of millimeters and a thickness of several millimeters is created, and a thermal spray coating 2 is formed on the surface of the base material 1. A roughening treatment is performed as a pretreatment for the purpose. As the surface roughening treatment, blast treatment, water jet treatment, acid treatment, or the like can be used.
他方、上記溶射皮膜2の原料となるマトリックス材粒子としてMo粉末またはW粉末を、また気孔生成粒子として、h−BN粉末、VN粉末、VC粉末またはポリエステル粉末を準備する。この際に、上記気孔生成粒子として、平均粒径が数μm〜数十μmであって、かつMo粉末またはW粉末よりも粒径が大きいものを用いることが好ましい。 On the other hand, Mo powder or W powder is prepared as matrix material particles as a raw material of the thermal spray coating 2, and h-BN powder, VN powder, VC powder or polyester powder is prepared as pore-generating particles. At this time, it is preferable to use the pore-generating particles having an average particle diameter of several μm to several tens of μm and a particle diameter larger than that of the Mo powder or the W powder.
また、上記マトリックス材粒子と気孔生成粒子との配合割合は、上記気孔生成粒子が後述する溶射材中に10〜70Vol%の範囲となるように調整する。 The blending ratio of the matrix material particles and the pore-generating particles is adjusted so that the pore-generating particles are in the range of 10 to 70 Vol% in the thermal spray material described later.
次いで、これらマトリックス材粒子および気孔生成粒子を、極力成分の偏析が無く、均一に分散させると共に溶射装置へ安定的に供給可能な形状およびサイズにするため造粒する。そして、この造粒においては、マトリックス材粒子と気孔生成粒子とが複合された2次粒子が、球状に近いものであって粒径が数十μmになるように造粒する。この造粒には、各種の造粒法を用いることができるが、経済性および量産性に優れるスプレー造粒法が好適である。 Next, the matrix material particles and the pore-generating particles are granulated so as to have a shape and size that can be uniformly dispersed and stably supplied to the thermal spraying apparatus with as little segregation of components as possible. In this granulation, the secondary particles in which the matrix material particles and the pore-generating particles are combined are granulated so as to be nearly spherical and have a particle size of several tens of μm. Various granulation methods can be used for this granulation, but a spray granulation method excellent in economic efficiency and mass productivity is preferable.
このようにして、マトリックス材粒子および気孔生成粒子が均一に複合配合された2次粒子からなる溶射材を溶射装置に供給して、被焼成物の載置面となる基材1の片面または両面に溶射皮膜2を形成させることにより、図1(a)または図1(b)に示した焼成用セッターが完成する。 In this way, one or both sides of the base material 1 serving as a mounting surface for the object to be fired are supplied to the thermal spraying apparatus by applying a thermal spray material comprising secondary particles in which matrix material particles and pore-generating particles are uniformly compounded. By forming the thermal spray coating 2 on, the setter for firing shown in FIG. 1 (a) or FIG. 1 (b) is completed.
なお、上記溶射装置としては、溶射皮膜2においてマトリックス材となるMo、Wおよび気孔生成粒子であるh−BN、VN、VCが、いずれも2000℃を超す高融点材料であり、また気孔生成粒子であるポリエステルも高比熱、低熱伝導率の難溶融性であるために、高温熱源で熱流制御性に優れたプラズマ方式の溶射装置を用いることが好ましい。 In addition, as said thermal spraying apparatus, Mo, W used as a matrix material in the thermal spray coating 2 and h-BN, VN, VC which are pore-generating particles are all high melting point materials exceeding 2000 ° C., and pore-generating particles. Since the polyester, which has a high specific heat and low thermal conductivity, is hardly fusible, it is preferable to use a plasma type thermal spraying apparatus that is a high-temperature heat source and excellent in heat flow controllability.
図3は、上記プラズマ方式の溶射装置によって基材1の表面に溶射皮膜2が形成された焼成用セッターにおける上記溶射皮膜2の断面を拡大して示すもので、符号3がマトリックス材、符号4が気孔生成粒子であり、符号5は溶射皮膜2の形成時に、一般的に生じるマトリックス材の積層欠陥やガス分の残留などに起因して形成される気孔である。 FIG. 3 shows an enlarged cross section of the thermal spray coating 2 in the setter for firing in which the thermal spray coating 2 is formed on the surface of the substrate 1 by the plasma type thermal spraying apparatus. Is a pore-generating particle, and reference numeral 5 is a pore formed due to a stacking fault of a matrix material or a residual gas component that is generally generated when the sprayed coating 2 is formed.
このようにして得られた焼成用セッターによれば、セラミックス等の被焼成物が載置される溶射皮膜のマトリックス材3として、上記セラミックス等と反応し難いMoまたはWを用いているために、上記被焼成物との反応による不良品の発生を未然に防止することができる。 According to the setter for firing obtained in this manner, Mo or W, which hardly reacts with the ceramics or the like, is used as the matrix material 3 of the thermal spray coating on which the firing object such as ceramics is placed. Generation | occurrence | production of the inferior goods by reaction with the said to-be-baked material can be prevented beforehand.
この際に、特に上記マトリックス材粒子として、基材1と同じ素材のものを用いれば、基材1に対する溶射皮膜2のマトリックス材3の密着性を高めることができるとともに、両者の熱膨張率が同じであるために、熱応力の緩和効果も得ることができる。 At this time, in particular, if the same material as the base material 1 is used as the matrix material particles, the adhesion of the matrix material 3 of the thermal spray coating 2 to the base material 1 can be enhanced, and the coefficient of thermal expansion of both is high. Since they are the same, a thermal stress relaxation effect can also be obtained.
しかも、上記構成からなる焼成用セッターによれば、使用開始時に高温雰囲気下において空焼きが行われた際等に、溶射皮膜2中の気孔生成粒子4が酸化されることにより溶融開始温度が低下して揮散し、これにより図4に示すように、溶射皮膜2中に上記気孔生成粒子4が変換された気孔と上記気孔5とを合わせた容積の空孔4´を形成することができる。 In addition, according to the setter for firing having the above-described configuration, the melting start temperature is lowered by oxidation of the pore-generating particles 4 in the thermal spray coating 2 when, for example, air baking is performed in a high-temperature atmosphere at the start of use. Thus, as shown in FIG. 4, voids 4 ′ having a volume of the pores in which the pore-generating particles 4 are converted and the pores 5 can be formed in the thermal spray coating 2.
そして、上記空孔4´において、上記被焼成物から排出されるガラス成分等の液相やガス成分をトラップすることにより、上記ガラス成分等が焼成用セッターの表面へ付着して、冷却時に製品セラミックスにキズを付けることも防止することができる。 And in said void | hole 4 ', by trapping the liquid phase and gas components, such as a glass component discharged | emitted from the said to-be-fired object, the said glass component etc. will adhere to the surface of the setter for baking, and a product is cooled at the time of cooling. It is also possible to prevent the ceramics from being scratched.
また、特に図1(b)に示した焼成用セッターにおいては、基材1の両面に溶射皮膜2を形成しているために、上記溶射皮膜2の表面を被焼成物の載置面として交互に使用することにより、常に載置されていない面の溶射皮膜2を空焼きと同様の状態にすることができる。この結果、液相やガス成分をトラップした空孔4´を順次再生して、劣化を防止することにより使用寿命を延ばすことが可能になる。 Further, in particular, in the firing setter shown in FIG. 1B, since the thermal spray coating 2 is formed on both surfaces of the base material 1, the surface of the thermal spray coating 2 is alternately used as a mounting surface for the object to be fired. By using this, the sprayed coating 2 on the surface that is not always placed can be brought into a state similar to that of air baking. As a result, it is possible to prolong the service life by sequentially regenerating the holes 4 ′ trapping the liquid phase and gas components to prevent deterioration.
なお、上記実施形態や実施例においては、本発明に係る焼成用セッターの溶射皮膜に空孔4´を形成する方法として、主として使用開始時における空焼きを挙げたが、これによらず、別途使用前に当該焼成用セッターに対して同様の熱処理を施すことにより、溶射皮膜2中に同様の空孔4´を形成することができる。 In the above-described embodiments and examples, as a method of forming the pores 4 ′ in the sprayed coating of the setter for firing according to the present invention, the firing at the start of use is mainly mentioned. By subjecting the firing setter to the same heat treatment before use, the same hole 4 ′ can be formed in the thermal spray coating 2.
また、本発明に係る焼成用セッターの対象となる被焼成物としても、上述したセラミックパッケージ等のセラミックス製品に限らず、超硬合金や金属焼結部品等にも同様に用いることができる。 Further, the object to be fired which is the target of the firing setter according to the present invention is not limited to the above-described ceramic products such as the ceramic package, but can be similarly used for cemented carbide, metal sintered parts, and the like.
図6に示す本発明に係る実施例1〜8の焼成用セッターと、図7に示す比較例1〜6の焼成用セッターを作成した。
これらの焼成用セッターにおける基材としては、図6および図7に示す材質であって、かつ寸法が各々縦120mm、横80mm、厚さ2mmの平板状のものを用いた。
The setter for baking of Examples 1-8 which concerns on this invention shown in FIG. 6 and the setter for baking of Comparative Examples 1-6 shown in FIG. 7 were created.
As the base material in these setters for firing, the materials shown in FIGS. 6 and 7 and having dimensions of 120 mm in length, 80 mm in width, and 2 mm in thickness were used.
次いで、実施例1〜8の焼成用セッターにおいては、基材の両面に図6の溶射処理の欄に示す配合比率のマトリックス材粒子と気孔生成粒子とを造粒して得られた溶射材を溶射して溶射皮膜を形成した。ここで、マトリックス材粒子としては、いずれも平均粒径が2μmのMo粉末を用い、気孔生成粒子としては平均粒径が5μmのBN粉末、VN粉末、VC粉末、または平均粒径が20μmのポリエステル粉末を用いた。 Next, in the setters for firing of Examples 1 to 8, the thermal spray material obtained by granulating the matrix material particles and the pore-generating particles having the blending ratio shown in the column of thermal spray treatment in FIG. Thermal spraying was performed to form a thermal spray coating. Here, Mo powder having an average particle diameter of 2 μm is used as matrix material particles, and BN powder, VN powder, VC powder, or polyester having an average particle diameter of 20 μm is used as pore-generating particles. Powder was used.
そして、これらマトリックス材粒子および気孔生成粒子をスプレー造粒法によって造粒し、これによって得られた2次粒子径が10μm〜63μmの造粒粉を、溶射装置(METCO F4プラズマ溶射装置)に供給して、上記基材の両面にいずれも厚さ寸法が100μmの溶射皮膜を形成した。 These matrix material particles and pore-generating particles are granulated by spray granulation, and the resulting granulated powder having a secondary particle diameter of 10 μm to 63 μm is supplied to a thermal spraying device (METCO F4 plasma spraying device). A sprayed coating having a thickness of 100 μm was formed on both surfaces of the substrate.
これに対して、図7に示すように、比較例1、2は、溶射皮膜を形成しないものであり、比較例3は、基材の両面に純Mo粉末(平均粒径10μm)のみを上記実施例と同じ溶射装置によって溶射して溶射皮膜を形成したものである。また、比較例4、5、6は、それぞれ基材の表面に同図の溶射処理の欄に示す配合比率のマトリックス材粒子と気孔生成粒子とを溶射したものである。 On the other hand, as shown in FIG. 7, Comparative Examples 1 and 2 do not form a sprayed coating, and Comparative Example 3 only contains pure Mo powder (average particle size 10 μm) on both sides of the substrate. A thermal spray coating is formed by thermal spraying using the same thermal spraying apparatus as in the example. In Comparative Examples 4, 5, and 6, the matrix material particles and the pore-generating particles having the blending ratio shown in the column of the thermal spraying process in FIG.
ここで、比較例4、5、6においては、マトリックス材粒子として平均粒径が2μmのMo粉末を用い、気孔生成粒子として平均粒径が5μmのBN粉末、SiC粉末またはTiC粉末を用い、上記実施例と同様に、上記マトリックス材粒子および気孔生成粒子をスプレー造粒法によって造粒して、得られた2次粒子径が10μm〜63μmの造粒粉を、溶射装置(METCO F4プラズマ溶射装置)に供給して、上記基材表面に溶射した。 Here, in Comparative Examples 4, 5, and 6, Mo powder having an average particle size of 2 μm is used as the matrix material particles, and BN powder, SiC powder, or TiC powder having an average particle size of 5 μm is used as the pore-generating particles. In the same manner as in the examples, the matrix material particles and the pore-generating particles are granulated by a spray granulation method, and the resulting granulated powder having a secondary particle diameter of 10 μm to 63 μm is sprayed with a spraying device (METCO F4 plasma spraying device). ) And sprayed onto the substrate surface.
この際に、比較例4、5においては、評価対象となる溶射皮膜を形成させることが出来なかった。また、比較例6においては、基材の両面に厚さ寸法が100μmの溶射皮膜を形成した。 At this time, in Comparative Examples 4 and 5, it was not possible to form the sprayed coating to be evaluated. Moreover, in the comparative example 6, the sprayed coating whose thickness dimension is 100 micrometers was formed on both surfaces of the base material.
次いで、実施例1〜8および比較例3、5について、形成された溶射皮膜における気孔生成物面積率を測定した。上記気孔生成物面積率は、走査顕微鏡(JSM IT100、日本電子株式会社製)によって観測した溶射皮膜の断面組織を、画像解析ソフト(A像くん、旭化成エンジニアリング株式会社製)を用いて5視野を測定し、その平均値を測定値とした。 Subsequently, the pore product area ratio in the formed thermal spray coating was measured for Examples 1 to 8 and Comparative Examples 3 and 5. The area ratio of the pore product was determined by using a cross-sectional structure of the sprayed coating observed with a scanning microscope (JSM IT100, manufactured by JEOL Ltd.) using 5 image fields using image analysis software (A Image-kun, manufactured by Asahi Kasei Engineering Co., Ltd.). The average value was measured as the measured value.
次いで、実施例1〜8および比較例3、5の焼成用セッターを、被焼成物を積載しない状態で700℃の温度雰囲気下で脱脂した後、1600℃の温度雰囲気下で空焼きを行い、当該空焼き後の溶射皮膜における気孔率を、上記気孔生成物面積率の測定に用いたものと同じ走査顕微鏡および画像解析ソフト等によって測定した。 Next, after degreasing the firing setters of Examples 1 to 8 and Comparative Examples 3 and 5 in a temperature atmosphere of 700 ° C. in a state where the object to be fired is not loaded, air baking is performed in a temperature atmosphere of 1600 ° C., The porosity of the sprayed coating after baking was measured by the same scanning microscope and image analysis software as those used for the measurement of the pore product area ratio.
このようにして空焼き処理した実施例1〜8および比較例3、5の焼成用セッター並びに比較例1、2の焼成用セッターを用いて、アルミナ質セラミックパッケージ(ガラス成分(CaO−SiO2−MgO+α系)3%添加)を被焼成物(セラミックス製品)として、非酸化性雰囲気(N2−H2雰囲気)において1600℃で焼成した。そして、この焼成工程を複数回実施して、被焼成物(製品)におけるキズの発生や焼成用セッターとの反応の有無を観察した。 Using the firing setters of Examples 1 to 8 and Comparative Examples 3 and 5 and the firing setters of Comparative Examples 1 and 2 and the firing setters of Comparative Examples 1 and 2 thus fired, an alumina ceramic package (glass component (CaO-SiO 2 − (MgO + α system) 3% addition) was fired at 1600 ° C. in a non-oxidizing atmosphere (N 2 —H 2 atmosphere) as a fired article (ceramic product). And this baking process was implemented in multiple times, and the presence or absence of the generation | occurrence | production of the flaw in a to-be-fired thing (product) and the reaction with the setter for baking was observed.
上記観察の結果、図6に見られるように、実施例1〜8の焼成用セッターにおいては、いずれも被焼成物(製品)との反応による不具合の発生は全く無く、特に実施例1〜3、5〜8の焼成用セッターにあっては50回の焼成を行っても被焼成物(製品)にキズを生じることがなかった。また、気孔生成粒子の配合率が本発明の下限の10Vol%である実施例4の焼成用セッターにおいても、35回の焼成までは被焼成物(製品)にキズを生じることがなかった。 As a result of the above observation, as seen in FIG. 6, in the setters for firing of Examples 1 to 8, there is no problem due to reaction with the object to be fired (product). In the setters for firing 5 to 8, no damage was caused to the object to be fired (product) even after firing 50 times. Moreover, even in the setter for firing of Example 4 in which the blending ratio of the pore-generating particles was 10 Vol%, which is the lower limit of the present invention, scratches were not generated on the material to be fired (product) until 35 firings.
これに対して、図7に見られるように、比較例1のように基材としてセラミック等と反応し難いMoを用いた場合においても、そのままセラミックスの焼成に用いると、焼成過程で排出されるガラス成分やガス成分が焼成用セッターの表面に付着し、セッター表面に凹凸が生じることにより、数回の焼成で被焼成物(製品)の表面にキズを付けてしまうこと、および比較例2のように、基材としてアルミナを用いた場合には、1回の焼成で被焼成物(製品)と反応という不具合現象を生じることが判る。 On the other hand, as shown in FIG. 7, even when Mo which does not easily react with ceramics or the like is used as a base material as in Comparative Example 1, if it is used as it is for firing ceramics, it is discharged during the firing process. A glass component or a gas component adheres to the surface of the setter for firing, and unevenness is generated on the setter surface, so that the surface of the object to be fired (product) is scratched by firing several times. As described above, when alumina is used as the base material, it can be seen that a problem of reaction with an object to be fired (product) occurs in one firing.
また、比較例3のように、基材の表面にマトリックス材となるMo粒子を溶射した場合には、図5に見られるように、溶射皮膜2の形成時に、一般的に生じるマトリックス材の積層欠陥やガス分の残留などに起因して気孔5が4.80%の面積率で形成されている。しかしながら、上記溶射皮膜2には、気孔生成粒子が含まれていないために、空焼きを行った後においても、溶射皮膜中の気孔率は5.40%と殆ど増加することが無く(図8参照)、この結果上記気孔5が充分な効果を発揮することができず、7回の焼成によって被焼成物(製品)にキズが発生してしまった。 In addition, when Mo particles serving as a matrix material are sprayed on the surface of the base material as in Comparative Example 3, as shown in FIG. The pores 5 are formed with an area ratio of 4.80% due to defects and residual gas components. However, since the above-mentioned sprayed coating 2 does not contain pore-generating particles, the porosity in the sprayed coating hardly increases to 5.40% even after air baking (FIG. 8). As a result, the pores 5 could not exert a sufficient effect, and the fired product (product) was scratched by firing 7 times.
さらに、比較例4のように、マトリックス材粒子Moと気孔生成粒子BNとを造粒して溶射した場合においても、気孔生成粒子BNの配合率が80%と多すぎると、相対的にマトリックス材の量が少なすぎて皮膜強度が低下し、溶射皮膜を形成することができなかった。 Furthermore, even when the matrix material particles Mo and the pore-generating particles BN are granulated and sprayed as in Comparative Example 4, if the blending ratio of the pore-generating particles BN is too high as 80%, the matrix material is relatively The amount of the coating was too small to reduce the coating strength, and a sprayed coating could not be formed.
また、比較例5のように、気孔生成粒子としてSiC粉末を用いた場合には、配合率が本願発明において特定する範囲内であるものの、溶射中にマトリックス材粒子Moと反応を生じてSiCの残留量が少なくなり、この結果、所望の溶射皮膜を形成することができなかった。 Further, as in Comparative Example 5, when SiC powder was used as the pore-generating particles, the compounding rate was within the range specified in the present invention, but reaction with the matrix material particles Mo occurred during thermal spraying, and the SiC As a result, the desired amount of the sprayed coating could not be formed.
これに対して、比較例6のように、Moをマトリックス材粒子とし、TiCを添加して溶射した場合は、空焼きによって溶射皮膜中のTiCが十分に飛散せずに、図7および図8に見られるように、溶射皮膜中の気孔率が大きくならず、所望とする気孔が形成されない結果、早期に被焼成物(製品)にキズが発生したものと考えられる。 On the other hand, as in Comparative Example 6, when Mo was used as matrix material particles and TiC was added and sprayed, TiC in the sprayed coating was not sufficiently scattered by baking, and FIG. 7 and FIG. As can be seen from the above, the porosity in the thermal spray coating does not increase, and the desired pores are not formed. As a result, it is considered that the fired product (product) was damaged early.
以上のように、上記実施例からも明らかなように、本願発明に係る実施例1〜8の焼成用セッターによれば、溶射皮膜のマトリックス材として、セラミックス等と反応し難いMoまたはWを用いているために、被焼成物(製品)との反応による不良品の発生を未然に防止することができる。 As described above, as is clear from the above examples, according to the firing setters of Examples 1 to 8 according to the present invention, Mo or W that hardly reacts with ceramics or the like is used as the matrix material of the thermal spray coating. Therefore, it is possible to prevent the occurrence of defective products due to the reaction with the object to be fired (product).
加えて、溶射皮膜における気孔生成物面積率が7.5〜35%の範囲となるように、基材表面への溶射材中にh−BN、VN、VCまたはポリエステルからなる気孔生成粒子を10〜70Vol%の割合で分散させて基材表面に溶射しているために、使用開始時における空焼き等の熱処理によって溶射皮膜中に所望とする容積の空孔を形成することができ、当該空孔によって被焼成物(製品)から排出されるガラス成分等の液相やガス成分をトラップすることにより、これらガス成分等の焼成用セッターの表面への付着に起因して冷却時の製品セラミックスにキズを付けることも防止することができる。 In addition, 10 pore-generating particles made of h-BN, VN, VC or polyester in the sprayed material on the substrate surface so that the pore product area ratio in the sprayed coating is in the range of 7.5 to 35%. Since it is dispersed at a rate of ˜70 Vol% and sprayed onto the surface of the base material, a desired volume of pores can be formed in the thermal spray coating by heat treatment such as air baking at the start of use. By trapping the liquid phase and gas components such as glass components discharged from the object to be fired (product) through the holes, the product ceramics at the time of cooling are caused by the adhesion of these gas components to the surface of the setter for firing. Scratching can also be prevented.
1 基材
2 溶射皮膜
3 マトリックス材
4 気孔生成粒子
4´ 空孔
DESCRIPTION OF SYMBOLS 1 Base material 2 Thermal spray coating 3 Matrix material 4 Pore production | generation particle | grains 4 'Hole
Claims (4)
かつ上記気孔生成粒子は、六方晶窒化ホウ素(h−BN)、窒化バナジウム(VN)、炭化バナジウム(VC)またはポリエステルであるとともに、
上記溶射皮膜において上記気孔生成粒子及び気孔が占める面積の割合である気孔生成物面積率が7.5〜35%の範囲であることを特徴とする焼成用セッター。 On the surface of a base material made of molybdenum (Mo) or tungsten (W), a thermal spray coating in which pore-generating particles are dispersed in a matrix material made of molybdenum (Mo) or tungsten (W) is formed.
The pore-generating particles are hexagonal boron nitride (h-BN), vanadium nitride (VN), vanadium carbide (VC) or polyester,
Firing setter proportion der Ru pore product area ratio of the area of the pores formed particles and pores occupied in the thermal spray coating, characterized in range der Rukoto of 7.5 to 35%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017215245A JP6360245B1 (en) | 2017-11-08 | 2017-11-08 | Sintering setter and method for producing the same |
PCT/JP2018/007457 WO2019092894A1 (en) | 2017-11-08 | 2018-02-28 | Firing setter and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017215245A JP6360245B1 (en) | 2017-11-08 | 2017-11-08 | Sintering setter and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6360245B1 true JP6360245B1 (en) | 2018-07-18 |
JP2019085619A JP2019085619A (en) | 2019-06-06 |
Family
ID=62904996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017215245A Active JP6360245B1 (en) | 2017-11-08 | 2017-11-08 | Sintering setter and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6360245B1 (en) |
WO (1) | WO2019092894A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7192754B2 (en) * | 2019-12-09 | 2022-12-20 | Jfeスチール株式会社 | Cured monolithic refractory and method for producing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02200766A (en) * | 1989-01-27 | 1990-08-09 | Toho Kinzoku Kk | Molybdenum tray and its production |
JPH111757A (en) * | 1997-04-14 | 1999-01-06 | Toshiba Ceramics Co Ltd | Jig for burning in nonoxidizing atmosphere |
JP2004281392A (en) * | 2003-02-25 | 2004-10-07 | Allied Material Corp | High melting point metal material with oxide coated layer, its manufacturing method, and board for sintering by using it |
JP2005139554A (en) * | 2001-06-18 | 2005-06-02 | Shin Etsu Chem Co Ltd | Heat-resistant coated member |
-
2017
- 2017-11-08 JP JP2017215245A patent/JP6360245B1/en active Active
-
2018
- 2018-02-28 WO PCT/JP2018/007457 patent/WO2019092894A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02200766A (en) * | 1989-01-27 | 1990-08-09 | Toho Kinzoku Kk | Molybdenum tray and its production |
JPH111757A (en) * | 1997-04-14 | 1999-01-06 | Toshiba Ceramics Co Ltd | Jig for burning in nonoxidizing atmosphere |
JP2005139554A (en) * | 2001-06-18 | 2005-06-02 | Shin Etsu Chem Co Ltd | Heat-resistant coated member |
JP2004281392A (en) * | 2003-02-25 | 2004-10-07 | Allied Material Corp | High melting point metal material with oxide coated layer, its manufacturing method, and board for sintering by using it |
Also Published As
Publication number | Publication date |
---|---|
WO2019092894A1 (en) | 2019-05-16 |
JP2019085619A (en) | 2019-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI400358B (en) | Thermal spray powder and method for forming a thermal spray coating | |
CN109321803B (en) | Heating element with porous ceramic coating | |
TWI669282B (en) | Refractory for cast steel and platform for sliding nozzle device | |
JP2012132071A (en) | Method for preventing volatilization loss in high temperature apparatus | |
JP6926095B2 (en) | Material for thermal spraying | |
JPWO2018052129A1 (en) | Thermal spray material | |
JP6360245B1 (en) | Sintering setter and method for producing the same | |
TWI779071B (en) | Material for thermal spray, thermal spray coating using the same and manufacture methods thereof | |
JPWO2020090832A1 (en) | Manufacturing method of silicon nitride substrate and silicon nitride substrate | |
JP2007081218A (en) | Member for vacuum device | |
JPH11236286A (en) | Production of boron carbide coating | |
JP6168518B2 (en) | Crucible for metal deposition | |
US20090053533A1 (en) | Corrosion-resistant member and process of producing the same | |
JP2005097722A (en) | Corrosion resistant member, and method for manufacturing the same | |
JP4800990B2 (en) | Electrostatic chuck | |
JP2005139554A (en) | Heat-resistant coated member | |
JP2016084256A (en) | Aluminum nitride sintered compact, component for semiconductor manufacturing, and method for producing the aluminum nitride sintered compact | |
JP7122206B2 (en) | thermal spray film | |
JP2005281032A (en) | Graphite tray for sintering | |
JPH10253259A (en) | Material of roller for roller hearth furnace and manufacture thereof | |
JP6027712B2 (en) | Thermal spray member and manufacturing method thereof | |
JP3043917B2 (en) | Rolls for heat treatment furnaces with excellent peel resistance, wear resistance, and build-up resistance | |
JPH11314984A (en) | Tool material for calcination | |
JP2008038228A (en) | Tray for sintering | |
KR20240145683A (en) | Workpiece coating method of semiconductor inspection equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171108 |
|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20180129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180621 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6360245 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |