JP2004281392A - High melting point metal material with oxide coated layer, its manufacturing method, and board for sintering by using it - Google Patents
High melting point metal material with oxide coated layer, its manufacturing method, and board for sintering by using it Download PDFInfo
- Publication number
- JP2004281392A JP2004281392A JP2004049276A JP2004049276A JP2004281392A JP 2004281392 A JP2004281392 A JP 2004281392A JP 2004049276 A JP2004049276 A JP 2004049276A JP 2004049276 A JP2004049276 A JP 2004049276A JP 2004281392 A JP2004281392 A JP 2004281392A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- metal material
- film layer
- refractory metal
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005245 sintering Methods 0.000 title claims abstract description 71
- 239000007769 metal material Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 238000002844 melting Methods 0.000 title claims abstract description 38
- 230000008018 melting Effects 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 125
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 46
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000011733 molybdenum Substances 0.000 claims abstract description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 30
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 19
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 18
- 239000010937 tungsten Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 15
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims abstract description 11
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 10
- 239000000292 calcium oxide Substances 0.000 claims abstract description 9
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 9
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 9
- 239000010410 layer Substances 0.000 claims description 138
- 239000003870 refractory metal Substances 0.000 claims description 62
- 239000000843 powder Substances 0.000 claims description 37
- 239000011247 coating layer Substances 0.000 claims description 34
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 25
- 230000003746 surface roughness Effects 0.000 claims description 13
- 239000000853 adhesive Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 7
- 238000007750 plasma spraying Methods 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 12
- 238000001816 cooling Methods 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 40
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 28
- 238000000034 method Methods 0.000 description 17
- 238000003466 welding Methods 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- 239000002344 surface layer Substances 0.000 description 13
- 239000012298 atmosphere Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000013074 reference sample Substances 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 229910000951 Aluminide Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- UTDLAEPMVCFGRJ-UHFFFAOYSA-N plutonium dihydrate Chemical compound O.O.[Pu] UTDLAEPMVCFGRJ-UHFFFAOYSA-N 0.000 description 1
- FLDALJIYKQCYHH-UHFFFAOYSA-N plutonium(IV) oxide Inorganic materials [O-2].[O-2].[Pu+4] FLDALJIYKQCYHH-UHFFFAOYSA-N 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Furnace Charging Or Discharging (AREA)
- Non-Insulated Conductors (AREA)
- Powder Metallurgy (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は、部品を焼結する際に用いる酸化物皮膜層を備えた焼結用板とその製造方法及び酸化物皮膜層を備えた高融点金属材料とその製造方法に関する。 The present invention relates to a sintering plate provided with an oxide film layer used for sintering a part, a method for manufacturing the same, a high melting point metal material provided with an oxide film layer, and a method for manufacturing the same.
近年、金属射出成形(Metal Injection Molding、以下、MIMと呼ぶ)による鉄系、銅系、タングステン系の焼結材料及び部品の生産が実用化され、それに伴い焼結用板への機能要求が高まってきた。 In recent years, the production of iron-based, copper-based, and tungsten-based sintered materials and components by metal injection molding (hereinafter, referred to as MIM) has been put to practical use, and with this, functional requirements for sintering plates have increased. Have been.
従来では、焼結用板はアルミナ、シリカなどの耐火物を使用される場合が多い。 Conventionally, refractories such as alumina and silica are often used for sintering plates.
しかし、アルミナ、シリカなどの耐火物では熱衝撃や被処理物による重量変形に耐えるために板厚さを、例えば、10〜15mmにしなければならない。また、この厚い耐火物を使用すると焼結物の積載、焼結量が限定される上に焼結時の炉の昇温に膨大なエネルギーを必要とし、また、板の小さな熱伝導により降温するために長時間要した。ここで、本明細書において、被処理物とは、焼結もしくは熱処理されるものを呼ぶ。 However, in the case of refractories such as alumina and silica, the plate thickness must be set to, for example, 10 to 15 mm in order to withstand thermal shock and weight deformation due to an object to be processed. In addition, when this thick refractory is used, the loading and sintering of the sinter is limited, and in addition to requiring a huge amount of energy to raise the temperature of the furnace during sintering, the temperature is lowered by the small heat conduction of the plate. It took a long time to do so. Here, in this specification, an object to be processed is one that is sintered or heat-treated.
これらを解決する為に、板厚さが薄く被処理物の積載量体積を増量出来、且つ従来の耐火物の特性を維持している焼結用板が要求されてきた。 In order to solve these problems, there has been a demand for a sintering plate having a small plate thickness and capable of increasing the volume of a load to be processed and maintaining the characteristics of a conventional refractory.
モリブデン、タングステン等の高融点金属材料からなる板材は、耐火物としての特性には優れている。 A plate made of a high melting point metal material such as molybdenum and tungsten has excellent characteristics as a refractory.
従来、耐熱性を備えた板材としては、特許文献1、特許文献2、及び特許文献3に提案されたモリブデン板がある。ここで、特許文献1においては、ドープ剤を添加しない純モリブデン材料であって、円板面の大きさが15mm〜150mmで、厚さ方向に厚さの1/5以上を占める結晶粒を備えたモリブデン板が開示されている。 Conventionally, as a plate material having heat resistance, there is a molybdenum plate proposed in Patent Literature 1, Patent Literature 2, and Patent Literature 3. Here, Patent Document 1 discloses a pure molybdenum material to which a dopant is not added, which has a disk surface size of 15 mm to 150 mm and has crystal grains occupying 1/5 or more of the thickness in the thickness direction. A molybdenum plate is disclosed.
また、特許文献2及び3においては、板厚方向と実質的に垂直方向に配列したランタン酸化物を含むMo板が開示され、特に、特許文献3には、結晶粒子がインターロッキング構造を呈しているものが開示されている。 Patent Documents 2 and 3 disclose Mo plates containing a lanthanum oxide arranged substantially perpendicular to the plate thickness direction. In Patent Document 3, in particular, Patent Document 3 discloses that the crystal grains have an interlocking structure. Are disclosed.
しかしながら、モリブデン板材をMIM等の焼結用にMIM成形品と接触させて用いたときには、モリブデン板材表面に被処理物が溶融付着してしまい、焼結部品として歩留まりが極めて悪いものであった。 However, when the molybdenum plate material is used in contact with an MIM molded product for sintering such as MIM, an object to be processed is melt-adhered to the surface of the molybdenum plate material, and the yield as a sintered component is extremely poor.
そのために、モリブデン表面に接着防止層を備えたモリブデン板が提案されている(例えば、特許文献4及び5、参照)。ここで、特許文献4には、ランタン又はランタン酸化物をドープしたMo板材料をAl、Cr、Tiの内の少なくとも一種とアルミナとの混合粉末中に埋め込んで還元熱処理を行うことで、Mo板材料の表面に金属元素を拡散させた後、酸化雰囲気中で熱処理することで、表面に接着防止層としての酸化物層を形成したものが開示されている。 For this purpose, molybdenum plates having an anti-adhesion layer on the surface of molybdenum have been proposed (for example, see Patent Documents 4 and 5). Here, Patent Document 4 discloses that a Mo plate material doped with lanthanum or a lanthanum oxide is embedded in a mixed powder of alumina and at least one of Al, Cr, and Ti, and subjected to a reduction heat treatment. A material in which a metal element is diffused on the surface of a material and then heat-treated in an oxidizing atmosphere to form an oxide layer as an anti-adhesion layer on the surface is disclosed.
また、特許文献5には、純Mo板表面に、アルミナ等のセラミックスのプラズマ溶射法によって、モリブデン粉末と、これに続くアルミナ粉末の溶射によって、モリブデン表面に、モリブデンとアルミナの複合層を介してアルミナ層を形成することが開示されている。 Further, in Patent Document 5, molybdenum powder is sprayed on the surface of a pure Mo plate by a plasma spraying method of ceramics such as alumina, followed by spraying alumina powder on the molybdenum surface through a composite layer of molybdenum and alumina. It is disclosed to form an alumina layer.
また、特許文献6には、高融点金属からなる基体に、シリサイドまたはアルミナイドからなる酸化保護層を形成し、酸化保護層との間に酸化物からなる反応遮断層をプラズマジェットにより形成することが開示されている。 Patent Document 6 discloses that an oxidation protection layer made of silicide or aluminide is formed on a substrate made of a high melting point metal, and a reaction blocking layer made of an oxide is formed between the oxidation protection layer and the oxidation protection layer by plasma jet. It has been disclosed.
従来では、MIMなどによる鉄系、銅系、タングステン系の材料及び部品は焼結する際に使用する板として、アルミナ、シリカなどの耐火物が使用される場合とモリブデン、タングステンなどの耐高温材料が使用される場合とがある。 Conventionally, iron-based, copper-based, and tungsten-based materials and parts made by MIM and the like are used when sintering a refractory such as alumina or silica, or a high-temperature-resistant material such as molybdenum or tungsten. May be used.
前者のアルミナ、シリカなどの耐火物が使用される場合は、熱衝撃や被処理物による重量変形に耐えるために板厚さを、例えば、10〜15mmにしなければならなかった。そのため、板厚が厚いと被処理物のチャージ量が減少するのと、焼結時の昇温には多大なエネルギーを要するのに加え、その小さな熱伝導と大きな比熱のために、冷め難く冷却に長時間要するという問題があった。 When the former refractory material such as alumina or silica is used, the plate thickness has to be set to, for example, 10 to 15 mm in order to withstand thermal shock and weight deformation due to the object to be treated. Therefore, when the plate thickness is large, the charge amount of the object to be treated is reduced, and in addition to requiring a large amount of energy to raise the temperature during sintering, it is difficult to cool due to its small heat conduction and large specific heat. For a long time.
後者では、焼結時に被処理物と板が接着するため、アルミナなどの粉末やシート状のものを介在し使用していたが、アルミナ粉などが、被処理物に焼き着いたりして作業前後の処置に多大な労力を要していた。 In the latter case, the powder to be processed adheres to the plate at the time of sintering, so powders such as alumina or sheet-like materials are used interposed. Treatment required a great deal of effort.
また、モリブデン板は大気中で500℃以上に加熱されるとその酸化が著しく、大気中での焼結に使用できなかった。 Further, when the molybdenum plate was heated to 500 ° C. or more in the atmosphere, its oxidation was remarkable and could not be used for sintering in the atmosphere.
また、被処理物の溶融付着の防止のために、上記特許文献4及び5に示されるように、夫々モリブデン板材表面に、被処理物の溶融付着を防止を目的としたセラミック層もしくは酸化物層を形成したものも提案されているが、その工程が複雑で手間がかかるものであった。 In addition, as disclosed in Patent Documents 4 and 5, a ceramic layer or an oxide layer for the purpose of preventing the melt adhesion of the object to be treated is provided on the surface of the molybdenum plate material to prevent the melt adhesion of the object. Has been proposed, but the process is complicated and time-consuming.
また、複数の表面層の最上層にMoがある場合は、MIM製品と溶融付着してしまう。更に下地にMoを含む層を溶射している為、最上層にMoが無い層を作製しても、Moが拡散などにより最表面に出易く、MIM製品との溶融付着防止の効果が得られない場合がある。 Further, if Mo is present in the uppermost layer of the plurality of surface layers, it will melt and adhere to the MIM product. Furthermore, since a layer containing Mo is sprayed on the underlayer, even if a layer having no Mo is formed on the uppermost layer, Mo easily spreads to the outermost surface due to diffusion or the like, and the effect of preventing fusion and adhesion to the MIM product is obtained. May not be.
本発明の一技術的課題は、MIM製品焼結時に被処理物の溶融付着を防止する機能を有し板厚さを薄くすることで、加熱及び冷却に使われるエネルギーを大幅に節約することが可能で経済的効果が大きい高融点金属材料を提供することにある。 One technical problem of the present invention is to reduce the thickness of a sheet having a function of preventing the adhesion of an object to be processed during sintering of a MIM product, thereby greatly saving energy used for heating and cooling. An object of the present invention is to provide a refractory metal material which is possible and has a large economic effect.
また、本発明のもう一つの技術的課題は、酸化物皮膜層をポーラスで且つ平滑にすることで脱バインダー性と焼結性の両方の機能を持たせることが出来る高融点金属材料を提供することにある。ここで、優れた焼結性を有するとは、焼結体がスムーズで平坦で、焼結密度が高いことをいう。焼結密度が低い要因としては、焼結収縮の際の摩擦抵抗が大きいという要因がある。 Another technical object of the present invention is to provide a high melting point metal material which can have both functions of debinding and sintering by making the oxide film layer porous and smooth. It is in. Here, having excellent sinterability means that the sintered body is smooth and flat and has a high sintering density. A factor that the sintering density is low is a factor that the friction resistance at the time of sintering shrinkage is large.
また、本発明の更にもう一つの技術的課題は、前記高融点金属材料を製造する方法を提供することにある。 Still another object of the present invention is to provide a method for manufacturing the refractory metal material.
また、本発明の別の一つの技術的課題は、アルミナ等の粉末状の接着防止剤が製品に付着することがなく、後処理が不要となり経済的効果がある焼結用板を提供することにある。 Another technical problem of the present invention is to provide a sintering plate which has no economical effect since a powdery anti-adhesive such as alumina does not adhere to a product and no post-treatment is required. It is in.
また、本発明の別のもう一つの技術的課題は、下地素材が鉄系材料を焼結する際に、それに含まれるNiなどの成分と反応することがなく、板材の性能を劣化させることがない焼結用板を提供することにある。 Another technical problem of the present invention is that when a base material sinters an iron-based material, it does not react with components such as Ni contained in the base material, thereby deteriorating the performance of the plate material. There is no need to provide a sintering plate.
また、本発明の他の一つの技術的課題は、大気中でも使用可能となるモリブデン等の板材を用いた高融点金属材料を提供することにある。 Another technical object of the present invention is to provide a high melting point metal material using a plate material such as molybdenum which can be used even in the atmosphere.
また、本発明の他のもう一つの技術的課題は、前記高融点金属材料を製造する方法を提供することにある。 Another technical object of the present invention is to provide a method for manufacturing the refractory metal material.
さらに、本発明の他のさらにもう一つの技術的課題は、前記高融点金属材料を用いた焼結用板を提供することにある。 Still another object of the present invention is to provide a sintering plate using the refractory metal material.
上記課題を解決するために、本発明の酸化物皮膜層を備えた高融点金属材料では、モリブデン、タングステン、モリブデン基及びタングステン基合金の内の一種を備えた金属材料に於いて、少なくとも一つの面にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアのうちこれらの少なくとも一種または2種以上の酸化物を混合したものが溶着された酸化物層を備え、前記酸化物層は、前記少なくとも一つの面全体を覆うことで、下地素材の露出していないことを特徴としている。 In order to solve the above-mentioned problems, in a high melting point metal material provided with an oxide film layer of the present invention, at least one of a metal material having one of molybdenum, tungsten, molybdenum-based, and tungsten-based alloys On the surface, alumina, silica, zirconia, yttria, titania, magnesia, and an oxide layer in which a mixture of two or more oxides of these oxides of calcia are provided, and the oxide layer, the oxide layer, It is characterized in that the base material is not exposed by covering at least one entire surface.
また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料において、前記酸化物粉末の内の少なくとも1種の酸化物粉末の粒度が10μm以下であり、当該粉末の粒度に依存した温度で熱処理することにより得られたことを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in the refractory metal material provided with the oxide film layer, the particle size of at least one oxide powder of the oxide powder is 10 μm or less, and depends on the particle size of the powder. A high melting point metal material provided with an oxide film layer, which is obtained by performing a heat treatment at a predetermined temperature.
また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料に於いて、前記酸化物皮膜層の厚さが10〜300μmであることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in the refractory metal material having the oxide film layer, the oxide film layer has a thickness of 10 to 300 μm. A refractory metal material is obtained.
また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料において、前記酸化物皮膜層の表面がポーラス状であり、その表面粗さがRa20μm以下、Rmax150μm以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in the refractory metal material provided with the oxide film layer, the surface of the oxide film layer is porous, and the surface roughness is Ra 20 μm or less and Rmax 150 μm or less. A refractory metal material having an oxide film layer is obtained.
また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料において、前記金属材料は、板形状を備え、母材となる板の表面状態において、その表面粗さがRa20μm以下、Rmax150μm以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in the high melting point metal material provided with the oxide film layer, the metal material has a plate shape, and in a surface state of a plate serving as a base material, the surface roughness is Ra 20 μm or less, A high-melting-point metal material having an oxide film layer having a Rmax of 150 μm or less can be obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料において、前記金属材料は焼結に用いられることを特徴とする酸化物皮膜層を備えた焼結用板が得られる。 According to the present invention, in the refractory metal material provided with any one of the oxide film layers, the metal material is used for sintering, wherein the metal material is used for sintering. A plate is obtained.
また、本発明によれば、少なくとも一つの面にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアのうちこれらの少なくとも一種または2種以上の酸化物を混合したものが溶着されている板材であって、前記板材の組成が純度99.9%以上の耐高温変形特性を有するモリブデン板で、当該モリブデン板の内部に含まれる円板状結晶粒の大きさが円板面の短径に対する長径の比が4以下で、その円板面の大きさが直径15〜150mmであり、且つ厚さ方向の大きさが材料厚さの1/5以上の結晶粒により形成されていることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, a plate material in which at least one of alumina, silica, zirconia, yttria, titania, magnesia, and calcia mixed with at least one or two or more of these oxides is welded Wherein the composition of the plate material is a molybdenum plate having a high-temperature deformation resistance of 99.9% or more, wherein the size of the disk-shaped crystal grains contained in the molybdenum plate is smaller than the minor axis of the disk surface. The ratio of the major axis is 4 or less, the size of the disk surface is 15 to 150 mm in diameter, and the size in the thickness direction is formed of crystal grains of 1/5 or more of the material thickness. A refractory metal material having an oxide film layer is obtained.
また、本発明によれば、少なくとも一つの面以上にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、及びカルシアのうちこれらの少なくとも一種または2種以上の酸化物を混合したものが溶着されている板材であって、板材の組成が、重量比で0.1〜1.0%未満のランタン又はランタン酸化物と残部がモリブデンからなり、実質的に一定方向に伸長してなる組織を有し、高温における変形量の少ないことを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Also, according to the present invention, at least one of alumina, silica, zirconia, yttria, titania, magnesia, and calcia mixed with at least one or more of these oxides is welded. A plate material, wherein the composition of the plate material is composed of lanthanum or lanthanum oxide in a weight ratio of less than 0.1 to less than 1.0% and molybdenum, and has a structure that extends in a substantially constant direction, A refractory metal material provided with an oxide film layer characterized by a small amount of deformation at a high temperature is obtained.
また、本発明によれば、前記酸化物皮膜層を備えた高融点金属材料において、前記板材の組織が、一定方向に伸長して再結晶化しているインターロッキング構造を呈する結晶粒子を有し、加工性及び耐高温変形性に優れていることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in the refractory metal material provided with the oxide film layer, the structure of the plate material has crystal grains exhibiting an interlocking structure that is elongated in a certain direction and recrystallized, A refractory metal material provided with an oxide film layer characterized by excellent workability and high-temperature deformation resistance can be obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料において、前記金属材料は焼結に用いられることを特徴とする酸化物皮膜層を備えた焼結用板が得られる。 According to the present invention, in the refractory metal material provided with any one of the oxide film layers, the metal material is used for sintering, wherein the metal material is used for sintering. A plate is obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料において、前記酸化物皮膜層はプラズマ溶射により形成されていることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 According to the present invention, in the refractory metal material provided with any one of the oxide film layers, the oxide film layer includes an oxide film layer, which is formed by plasma spraying. A refractory metal material is obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料において、前記酸化物皮膜層は、溶着する酸化物をスラリー状にし塗布またはスプレー乾燥後、溶着する酸化物の粒度に依存した温度で焼き付け溶融処理を施すことにより板材表面に形成されていることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in the high melting point metal material provided with any one of the oxide film layers, the oxide film layer is formed by oxidizing the oxide to be deposited in a slurry state, coating or spray-drying, and then depositing the oxidized oxide. By performing baking and melting treatment at a temperature depending on the particle size of the product, a high melting point metal material provided with an oxide film layer formed on the surface of the plate material can be obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料において、前記酸化物皮膜層は、耐高温接着剤により酸化物皮膜を形成し、熱処理を施すことで溶着させて形成されていることを特徴とする酸化物皮膜層を備えた高融点金属材料が得られる。 Further, according to the present invention, in the refractory metal material provided with any one of the oxide film layers, the oxide film layer is formed by forming an oxide film with a high-temperature resistant adhesive and performing heat treatment. A refractory metal material having an oxide film layer characterized by being formed by welding is obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料を製造する方法であって、溶着する酸化物をスラリー状にし塗布またはスプレー乾燥後、溶着する酸化物の粒度に依存した温度で焼き付け溶融処理を施すことにより、板材表面に酸化物皮膜層を形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 Further, according to the present invention, there is provided a method for producing a refractory metal material provided with any one of the above-mentioned oxide film layers, wherein the oxide to be welded is formed into a slurry, coated or spray-dried, and then deposited. By performing baking and melting treatment at a temperature dependent on the particle size of the above, a method for producing a refractory metal material provided with an oxide film layer, characterized by forming an oxide film layer on the surface of a sheet material, is obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料を製造する方法であって、前記酸化物皮膜層をプラズマ溶射により形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 Further, according to the present invention, there is provided a method for producing a refractory metal material provided with any one of the oxide film layers, wherein the oxide film layer is formed by plasma spraying. A method for producing a refractory metal material having a coating layer is obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料を製造する方法であって、耐高温接着剤により酸化物皮膜を形成し、熱処理を施すことで溶着させて前記酸化物皮膜層を形成することを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 Further, according to the present invention, there is provided a method for producing a refractory metal material provided with any one of the above oxide film layers, wherein the oxide film is formed with a high-temperature resistant adhesive, and the heat treatment is performed to perform the welding. Thus, a method for producing a high melting point metal material provided with an oxide film layer, wherein the oxide film layer is formed.
また、本発明によれば、前記いずれか一つに記載の酸化物皮膜層を備えた高融点金属材料を製造する方法であって、少なくとも1種の酸化物粉末の粒度が10μm以下であることを特徴とする酸化物皮膜層を備えた高融点金属材料の製造方法が得られる。 According to the present invention, there is provided a method for producing a refractory metal material provided with the oxide film layer according to any one of the above, wherein the particle size of at least one kind of oxide powder is 10 μm or less. Thus, a method for producing a high melting point metal material having an oxide film layer is obtained.
また、本発明によれば、前記いずれか一つの酸化物皮膜層を備えた高融点金属材料の製造方法において、前記酸化物皮膜を備えた高融点金属材料が焼結に用いられることを特徴とする酸化物皮膜層を備えた焼結用板の製造方法が得られる。 Further, according to the present invention, in the method for producing a refractory metal material provided with any one of the oxide film layers, the refractory metal material provided with the oxide film is used for sintering. A method for manufacturing a sintering plate provided with an oxide film layer is obtained.
本発明によれば、MIM製品焼結時に被処理物の溶融付着を防止する機能を有し板厚さを薄くすることで、加熱及び冷却に使われるエネルギーを大幅に節約することが可能で経済的効果が大きい高融点金属材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to save the energy used for heating and cooling greatly by making the board | substrate thin and having the function which prevents the fusion | melting adhesion of a to-be-processed object at the time of MIM product sintering, and it is economical Refractory metal material having a large effect can be provided.
また、本発明によれば、酸化物皮膜層をポーラスで且つ平滑にすることで脱バインダー性と焼結性の両方の機能を持たせることが出来る高融点金属材料を提供することができる。ここで、優れた焼結性を有するとは、焼結体がスムーズで平坦で、焼結密度が高いことをいう。焼結密度が低い要因としては、焼結収縮の際の摩擦抵抗が大きいという要因がある。 Further, according to the present invention, it is possible to provide a high-melting-point metal material capable of having both functions of debinding and sintering by making the oxide film layer porous and smooth. Here, having excellent sinterability means that the sintered body is smooth and flat and has a high sintering density. A factor that the sintering density is low is a factor that the friction resistance at the time of sintering shrinkage is large.
また、本発明によれば、前記高融点金属材料を製造する方法を提供することができる。 Further, according to the present invention, it is possible to provide a method for producing the refractory metal material.
また、本発明によれば、アルミナ等の粉末状の接着防止剤が製品に付着することがなく、後処理が不要となり経済的効果がある焼結用板を提供することができる。 Further, according to the present invention, it is possible to provide a sintering plate which has no economical effect because a powdery anti-adhesive agent such as alumina does not adhere to a product and no post-treatment is required.
また、本発明によれば、下地素材が鉄系材料を焼結する際に、それに含まれるNiなどの成分と反応することがなく、板材の性能を劣化させることがない焼結用板を提供することができる。 Further, according to the present invention, there is provided a sintering plate that does not react with components such as Ni contained in a base material when sintering an iron-based material and does not deteriorate the performance of the plate material. can do.
また、本発明によれば、大気中でも使用可能となるモリブデン等の板材を用いた高融点金属材料を提供することができる。 Further, according to the present invention, it is possible to provide a high melting point metal material using a plate material such as molybdenum which can be used even in the atmosphere.
また、本発明によれば、前記高融点金属材料を製造する方法を提供することができる。 Further, according to the present invention, it is possible to provide a method for producing the refractory metal material.
さらに、本発明によれば、前記高融点金属材料を用いた焼結用板を提供することができる。 Further, according to the present invention, a sintering plate using the high melting point metal material can be provided.
まず、本発明を更に詳しく説明する。 First, the present invention will be described in more detail.
本発明では、高融点金属材料として、耐高温材料であるモリブデン、タングステン及びそれらの合金にアルミナ、シリカ、ジルコニア、イットリア、チタニア、マグネシア、カルシアのうち、これらの少なくとも一種または2種以上を混合した酸化物粉末が溶着されて酸化物皮膜層が形成されており、また、その溶着面は下地素材であるモリブデン(Mo)、タングステン(W)、及びそれらの合金が完全に被覆されている構成である。高融点金属材料は、本願明細書においては焼結に用いられる高融点金属部材として述べられているが、高融点金属部材はトレー、箱、コンテナ、床板等の形態で用いられても良い。また、本願明細書において、焼結とは、一般に呼ばれる焼成も含む。 In the present invention, as a high melting point metal material, high-temperature resistant materials such as molybdenum, tungsten and alloys thereof are mixed with at least one or two or more of alumina, silica, zirconia, yttria, titania, magnesia, and calcia. Oxide powder is welded to form an oxide film layer, and the welded surface has a structure in which molybdenum (Mo), tungsten (W), which is a base material, and an alloy thereof are completely covered. is there. Although the high melting point metal material is described in the present specification as a high melting point metal member used for sintering, the high melting point metal member may be used in the form of a tray, a box, a container, a floor plate, or the like. In the specification of the present application, sintering also includes firing which is generally called.
この溶着方法としては、高温処理による焼き付け、溶射または耐高温接着剤による付着方法がある。これにより、耐高温変形材料を使用することで板厚は、従来のアルミナ、シリカなどの耐火物では10〜15mmであったのに対し、本発明では、1〜2mm程度で可能となり被処理物との接触部分には、前記酸化物がMo板上に強固に付着しているものである。この際使用する酸化物のうち少なくとも1種の酸化物粉末の粒度を10μm以下にすることで、酸化物の焼結性が向上し、融点以下の温度でもMo板に酸化物層を緻密に密着させることが出来る。 As the welding method, there are a baking method by a high temperature treatment, a thermal spraying method, and an adhesion method using a high temperature resistant adhesive. By using a high-temperature deformation resistant material, the thickness of a conventional refractory such as alumina and silica was 10 to 15 mm, whereas the present invention enabled the thickness to be about 1 to 2 mm. The oxide is firmly attached to the Mo plate at the contact portion with the Mo. By making the particle size of at least one oxide powder of the oxide used at this time 10 μm or less, the sinterability of the oxide is improved, and the oxide layer is closely adhered to the Mo plate even at a temperature below the melting point. Can be made.
尚、本明細書において、粒度10μm以下を微粒粉、10μmよりおおきな粉末を粗粒粉と夫々呼ぶ。 In the present specification, particles having a particle size of 10 μm or less are referred to as fine powders, and powders larger than 10 μm are referred to as coarse powders.
次に、本発明の実施の形態について、図面を参照しながら高融点金属材料としてMo焼結用板を例示するが、本発明はこれに限定されるものではないことは勿論である。 Next, an embodiment of the present invention will be described with reference to the drawings with reference to the drawings, as an example of a Mo sintering plate as a refractory metal material. However, it is needless to say that the present invention is not limited to this.
また、本発明の実施の形態においては、酸化物はアルミナ(Al2O3)、ジルコニア(ZrO2)、イットリア(Y2O3)、チタニア(TiO2)、マグネシア(MgO)、カルシア(CaO)を例示しているが、本発明はこれに限定されるものではなく、被処理物との反応による溶融付着物を考慮して低級酸化物(例えば、チタニア(TiO2等)や、複合酸化物(例えば、アルミナ−チタニア(Al2TiO5)の形態をとっても良い。 In the embodiment of the present invention, the oxide is alumina (Al 2 O 3 ), zirconia (ZrO 2 ), yttria (Y 2 O 3 ), titania (TiO 2 ), magnesia (MgO), calcia (CaO) However, the present invention is not limited to this, and a lower oxide (for example, titania (TiO 2 or the like) or a composite oxide, objects (e.g., alumina - may take the form of titania (Al 2 TiO 5).
図1乃至図3に示すように、付着している前記酸化物の表面はポーラス状または被処理物との接触部にガスが侵入できる程度の隙間を形成することができる。 As shown in FIGS. 1 to 3, the surface of the attached oxide can be porous or have a gap that allows gas to enter a contact portion with the object to be processed.
図4及び図5に示すように、固着している前記酸化物の表面は平滑度を呈していることが必要となる。 As shown in FIGS. 4 and 5, the surface of the fixed oxide needs to have smoothness.
図6及び図7に示すように、皮膜層を研磨することで、更に良好なMIM焼結体を得ることができる。 As shown in FIGS. 6 and 7, by polishing the coating layer, a better MIM sintered body can be obtained.
ここで、図7(a)に示すように、表面を研磨した本発明の試料8(後に説明)とは異なり、図7(b)に示す参考例に係る試料17(後に詳しく説明)の場合、大きな凹凸があるため、MIM焼結体に表面粗さが転写してしまい、製品として使用できないことがある。 Here, as shown in FIG. 7A, unlike the sample 8 of the present invention whose surface has been polished (described later), the sample 17 according to the reference example shown in FIG. Due to the large irregularities, the surface roughness is transferred to the MIM sintered body, which may not be used as a product.
また、本発明では、温度が1000℃〜1850℃以下の高温領域で使用できる。また、これらの酸化物の表面は平滑で且つポーラスな状態を呈しており、平滑度は焼結時の収縮の抵抗を最小減に留め、ポーラスな状態は脱バインダー時のガス抜け効率を良くすることで、焼結性が向上する。 Further, in the present invention, it can be used in a high temperature region where the temperature is 1000C to 1850C or lower. The surface of these oxides is smooth and porous, and the smoothness minimizes the shrinkage resistance during sintering, and the porous state improves the outgassing efficiency during debinding. Thereby, sinterability is improved.
また、前述したように、酸化物からなる酸化物皮膜層の溶着面は下地素材であるモリブデン、タングステン、モリブデン基及びタングステン基合金による金属材料を被覆している。 In addition, as described above, the welding surface of the oxide film layer made of oxide is coated with a metal material such as molybdenum, tungsten, a molybdenum-based alloy, and a tungsten-based alloy, which are base materials.
ここで、本発明において、下地素材が露出していない被覆と、下地素材の露出が酸化物皮膜層の単位面積の1%以下であることを示している。その理由は、下地素材の露出が酸化物皮膜層の単位面積の1%を超える場合、被処理物との反応が進みやすく、溶融付着や、Mo板の特性を著しく低下させ易くなり、下地素材が実質的に露出していないとはいえないからである。 Here, in the present invention, it is shown that the coating in which the base material is not exposed and that the exposure of the base material is 1% or less of the unit area of the oxide film layer. The reason is that, when the exposure of the base material exceeds 1% of the unit area of the oxide film layer, the reaction with the object to be processed is apt to proceed, and the adhesion of the melt and the properties of the Mo plate are apt to be remarkably reduced. Is not substantially not exposed.
従って、従来では鉄系材料の焼結においては、それに含まれるNiなどの成分が、焼結板を構成するMoと反応し、Mo板の性能を著しく劣化させていたが本発明では、Mo板等の素材の露出がないために、Mo板の性能劣化がなく使用可能とするものである。 Therefore, conventionally, in the sintering of an iron-based material, components such as Ni contained therein react with Mo constituting the sintered plate and significantly degrade the performance of the Mo plate. Since there is no exposure of such a material, the Mo plate can be used without performance deterioration.
前述した特許文献5の「モリブデントレイおよびその製法」として示されている方法では、モリブデントレイに耐熱性セラミックスからなるコーティング層が形成されている構成を備えているが、その内容では、コーティング層はモリブデントレイや敷板などの部品同士の接着防止を目的としており、基板の全表面に形成する必要はなく、少なくとも使用時に他のトレイその他の物品に接触する部分に形成しておけばよいと記載されている。従って、被処理物の溶融付着を防止を目的としたものではない。 The method described as “Molybdenum tray and method for producing the same” in Patent Document 5 described above has a configuration in which a coating layer made of a heat-resistant ceramic is formed on the molybdenum tray. It is intended to prevent adhesion between components such as molybdenum trays and floor boards, and it is not necessary to form them on the entire surface of the board, but it is necessary to form them at least on the parts that come into contact with other trays and other articles during use. ing. Therefore, it is not intended to prevent the adherence of the object to be melted.
これに対して、本発明では、接着防止は目的であり効果の一つでもあるが、さらに微粒の酸化物を用いることでその溶着面は下地素材であるモリブデン、タングステン、及びそれらの合金が完全に被覆され、基板と被処理物との反応を防止する機能が加わる。 On the other hand, in the present invention, the purpose of preventing adhesion is one of the effects and one of the effects, but by using fine oxide, the welding surface is completely covered with molybdenum, tungsten, and their alloys as the base material. And a function of preventing a reaction between the substrate and the object to be processed is added.
又、前述した従来技術である特許文献5には、Mo板上へMo粉末とセラミック粉末を混合した溶射膜を作製し、最上層部が実質的に耐熱性セラミックスの層となっていることが望ましく、これにより被処理物や治具同士の接着防止を狙っている。このように複数層もしくは濃度勾配のついたコーティング層を作製する為にはコストがかさんでしまうという欠点を備えていた。 Also, in the above-mentioned Patent Document 5, which is a conventional technique, a sprayed film in which Mo powder and ceramic powder are mixed on a Mo plate is produced, and the uppermost layer is substantially a layer of heat-resistant ceramic. Desirably, this aims at preventing the adhesion between the workpiece and the jig. The production of a plurality of layers or a coating layer having a concentration gradient as described above has a disadvantage of increasing the cost.
これに対して、本発明では、使用する酸化物の少なくとも一つは酸化物粉末の粒度を10μm以下にする事で、酸化物の焼結性が向上し複数層重ねなくとも、特許文献5で示されるコーティング層の剥離強度15〜20kg/mm2と同等で、且つ、表面にMoが露出が無く、被処理物が接着しないコーティング層を得ることが出来る。 On the other hand, in the present invention, at least one of the oxides used has a particle size of the oxide powder of 10 μm or less, so that the sinterability of the oxide is improved and even if a plurality of layers are not stacked, Patent Document 5 It is possible to obtain a coating layer having the same peel strength of 15 to 20 kg / mm 2 as the coating layer shown, having no Mo exposed on the surface, and not adhering to the object to be treated.
又、前述した従来技術である特許文献5では、溶射したコーティング層を1500℃以上で熱処理すると記載されているが、モリブデン基板とコーティング層の熱膨張差で、溶射コーティング層に亀裂が入り下地が露出することがある。この亀裂により露出したMoと被処理物が反応してしまい、板への接着または板材の性能が劣化することがあるという欠点を有した。特に、特許文献5中では原子炉用燃料の二酸化ウランや二酸化プルトニウムなどの酸化物ペレットの焼結に着目した発明であり、露出したMoへの影響は少ない。しかし、MIMなど金属製品の焼結や、金属及び酸化性雰囲気などMo板材に影響を及ぼすような雰囲気中での長期間繰り返し使用は出来ない。 Also, in the above-mentioned Patent Document 5, which is a prior art, it is described that the thermally sprayed coating layer is heat-treated at 1500 ° C. or more. May be exposed. The exposed Mo reacts with the object to be processed due to the cracks, and has a disadvantage that the adhesion to the plate or the performance of the plate material may be deteriorated. In particular, Patent Document 5 focuses on the sintering of oxide pellets such as uranium dioxide and plutonium dioxide of nuclear reactor fuel, and has little effect on exposed Mo. However, sintering of a metal product such as MIM or repeated use in an atmosphere that affects the Mo plate material such as a metal and oxidizing atmosphere cannot be performed for a long time.
これに対して、本発明では、この基板の露出を防止し、幅広い材質の被処理物、例えば、NiなどMoと反応しやすい成分を含む物も焼結出来、且つ経済的な焼結用板を提供することができるものである。 On the other hand, in the present invention, the substrate is prevented from being exposed, and a wide range of materials to be processed, for example, a material containing a component that easily reacts with Mo, such as Ni, can be sintered. Can be provided.
前述した従来技術である特許文献6の「高融点金属用酸化保護層」として示されている方法では、2〜35%のモリブデンなどの金属材料が配合されているシリサイドまたはアルミナイドからなる酸化保護層と、高融点金属からなる基体の中間にプラズマジェットにより反応遮断層を形成することが開示されているが、その内容ではあくまで、基体の酸化防止と、その酸化防止層と基体との反応防止を目的としており、被処理物との融着防止を目的としたものではない。 In the method described as the “oxidation protection layer for high melting point metal” in Patent Document 6 which is the above-mentioned prior art, the oxidation protection layer made of silicide or aluminide containing 2 to 35% of a metal material such as molybdenum. It is disclosed that a reaction blocking layer is formed by a plasma jet in the middle of a substrate made of a high melting point metal, but the content is merely to prevent oxidation of the substrate and to prevent reaction between the oxidation preventing layer and the substrate. It is not intended to prevent fusion with the workpiece.
これに対して、本発明では、最表面層は酸化物層であり、被処理物に合わせ任意に選ぶことで、被処理物と下地素材の付着防止機能を有している。さらに、下地素材の露出が酸化物被覆層の単位面積の1%以下であることで、酸化やMoと反応するNi等のガス成分によるMo板の性能劣化が無く使用可能となる。 On the other hand, in the present invention, the outermost surface layer is an oxide layer, and has an anti-adhesion function between the object to be processed and the base material by being arbitrarily selected according to the object to be processed. Furthermore, since the exposure of the base material is 1% or less of the unit area of the oxide coating layer, the Mo plate can be used without deterioration of performance of the Mo plate due to oxidation or a gas component such as Ni reacting with Mo.
次に本発明の焼結用板の製造の具体例について図8(a)及び図8(b)を参照しながら説明する。なお、図8(a)及び図8(b)は酸化物(Al2O3)の粉末粒度における熱処理後の表面状態の比較写真である。 Next, a specific example of the production of the sintering plate of the present invention will be described with reference to FIGS. 8 (a) and 8 (b). FIGS. 8A and 8B are comparison photographs of the surface state of the oxide (Al 2 O 3 ) after heat treatment with respect to the powder particle size.
まず、本発明の試料1〜12について説明する。 First, Samples 1 to 12 of the present invention will be described.
耐高温変形特性を有する高融点金属材料、例えばモリブデン板(板厚み1.5mm×巾150mm×長さ300mm)を表面の活性化と溶着物の密着性を向上させるためホ−ニングなどの方法で表面粗さを粗くし、ここではその表面粗さがRa4μm、Rmax50μmとした。 A high melting point metal material having high temperature deformation resistance, for example, a molybdenum plate (a thickness of 1.5 mm × a width of 150 mm × a length of 300 mm) is activated by a method such as honing to activate the surface and improve the adhesion of the deposited material. The surface roughness was increased, and the surface roughness was set to Ra 4 μm and Rmax 50 μm.
溶着する酸化物の粉末を下記表1及び表2に示した組成で計量し、シェーカーミキサーまたはヘンシェルミキサーにより充分に混合した。ここで使用する酸化物粉末は図8(a)及び図8(b)に示すように同一熱処理温度でも、酸化物の粒度により溶融状態が異なることが明らかになった。もし、酸化物粉末が微粒であるならば、低温で溶融することができるようになる。ここでは、使用する酸化物粉末のうち少なくとも1種類は10μm以下の微粉末を使用した。またここでの組成は使用温度等を考慮し任意に選ぶことが出来る。 The powder of the oxide to be welded was weighed according to the composition shown in Tables 1 and 2 below, and thoroughly mixed by a shaker mixer or a Henschel mixer. As shown in FIGS. 8 (a) and 8 (b), the oxide powder used here has a different melting state depending on the particle size of the oxide even at the same heat treatment temperature. If the oxide powder is fine, it can be melted at a low temperature. Here, at least one of the oxide powders used was a fine powder of 10 μm or less. The composition here can be arbitrarily selected in consideration of the use temperature and the like.
次に、これらの粉末をエタノール中へ分散しスラリー状にして目的とするモリブデン板に吹付けなどにより均一に塗布した。 Next, these powders were dispersed in ethanol, made into a slurry, and uniformly applied to a target molybdenum plate by spraying or the like.
また、本発明の例における板反りの判定は、非特許文献1の「3.3平たん度」に基づき判定を行った。 In addition, in the example of the present invention, the board warpage was determined based on “3.3 flatness” in Non-Patent Document 1.
本発明の酸化物皮膜層において、種々の酸化物粉末に応じて、組成、熱処理条件を変えることができる。 In the oxide film layer of the present invention, the composition and heat treatment conditions can be changed according to various oxide powders.
例えば、表面層の組成がジルコニア20wt%(質量%)から50wt%(試料2では43%)で残部が実質的にアルミナからなり、1500℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。 For example, an oxide film layer in which the composition of the surface layer is 20 wt% (mass%) of zirconia to 50 wt% (43% in sample 2) and the balance is substantially alumina, and the surface layer is welded through heat treatment at 1500 ° C. or more. Can be obtained.
また、表面層の組成がチタニア1wt%から40wt%(試料3では2.5%)で残部が実質的にアルミナからなり、1500℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。 Further, the composition of the surface layer is from 1 wt% to 40 wt% of titania (2.5% in the case of sample 3), and the remainder is substantially composed of alumina, and has an oxide film layer formed by welding the surface layer through heat treatment at 1500 ° C. or more. A sintered Mo plate can be obtained.
また、表面層の組成がシリカ20wt%から30wt%(試料4では22%)で残部が実質的にアルミナからなり、1500℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。 The composition of the surface layer is from 20 wt% to 30 wt% of silica (22% in sample 4), and the balance is substantially made of alumina. The resulting Mo plate can be obtained.
また、表面層の組成がイットリア5wt%から20wt%(試料5では6%)で残部が実質的にジルコニアからなり、1800℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。 Further, the composition of the surface layer is 5 wt% to 20 wt% (6% in the case of sample 5) of yttria, and the balance is substantially made of zirconia, and is provided with an oxide film layer in which the surface layer is welded through heat treatment at 1800 ° C. or more. The resulting Mo plate can be obtained.
表面層の組成がマグネシア25wt%から35wt%(試料6では29%)で残部が実質的にアルミナからなり、1800℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。 For sintering, the surface layer has a composition of 25 wt% to 35 wt% of magnesia (29% in sample 6), and the remainder substantially consists of alumina, and is provided with an oxide film layer in which the surface layer is welded through heat treatment at 1800 ° C. or more. An Mo plate can be obtained.
また、表面層の組成がカルシア4wt%から30wt%(試料7では29%)で残部が実質的にアルミナからなり、1800℃以上の熱処理を経て表面層を溶着した酸化物皮膜層を備えた焼結用Mo板を得ることができる。 In addition, the composition of the surface layer was 4 wt% to 30 wt% of calcia (29% in the case of sample 7), and the balance was substantially made of alumina, and was provided with an oxide film layer having the surface layer deposited by heat treatment at 1800 ° C. or more. The resulting Mo plate can be obtained.
また、試料12では、それぞれ別のスラリー状の酸化物を1層ずつ重ねて塗布、乾燥し2層の皮膜層とした。この場合、密着性を向上させるため、第1層目は母材となる板の熱膨張率に、より近い酸化物を選択するのが好ましく、最上層は被処理物との反応による溶着を考慮して選択するのが好ましい。 In the case of Sample 12, different slurry-like oxides were applied one by one and applied and dried to form two coating layers. In this case, in order to improve the adhesiveness, it is preferable to select an oxide closer to the coefficient of thermal expansion of the plate as the base material for the first layer, and consider the welding by reaction with the object to be processed for the uppermost layer. It is preferable to select them.
本発明においては、例えばMo板では、第1層目はMoの熱膨張率約5.0(x10−6/℃)に近いA12O3−2.5%TiO2(熱膨張率約5.3(x10−6/℃)とした。 In the present invention, for example, in the case of a Mo plate, the first layer is made of Al 2 O 3 -2.5% TiO 2 having a thermal expansion coefficient of about 5.0 (× 10 −6 / ° C.) (a thermal expansion coefficient of about 5). 0.3 (× 10 −6 / ° C.).
塗布後は、溶着する酸化物の粒度に依存した温度、ここでは、1500℃で2時間以上焼き付け処理を施すことで板表面の凹凸に食い込み、溶着させた。溶着した表面特性は、下記表1、2及び図8(a)及び図8(b)に示す写真に示すとおり平滑度とポーラス状の両方を兼ね備えている板が作製できた。なお、表2と後で述べる表3及び表4においては、被焼結物は、本明細書で述べている被処理物に相当する。 After the application, baking was performed at a temperature dependent on the particle size of the oxide to be welded, in this case, at 1500 ° C. for 2 hours or more, so as to penetrate into the unevenness of the plate surface and weld. As shown in Tables 1 and 2 below and the photographs shown in FIGS. 8 (a) and 8 (b), a plate having both smoothness and a porous shape was produced. In Table 2 and Tables 3 and 4 described later, the object to be sintered corresponds to the object to be processed described in this specification.
また、さらに酸化物皮膜層の表面に研磨を施すことで、より平滑且つポーラス状の酸化物皮膜層を得ることが出来た。 Further, by polishing the surface of the oxide film layer, a smoother and more porous oxide film layer could be obtained.
次に、参考例の試料13−19について説明する。 Next, a sample 13-19 of a reference example will be described.
試料13として本発明例と同様なMo板にAl2O3−43%ZrO2の皮膜層を8μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 Sample 13 was prepared by applying a coating layer of Al 2 O 3 -43% ZrO 2 to a Mo plate similar to the example of the present invention at 8 μm and performing a baking treatment in the same manner as the example of the present invention.
試料14として、本発明例と同様なMo板にAl2O3−43%ZrO2の皮膜層を350μm塗布、本発明例と同様に焼付け処理を施したものを作製した。しかし、Mo板から皮膜層が剥離するとともに、数mm以上の反りが発生し、焼結用板として使用できなかった。 As the sample 14, the present invention examples similar Mo plate 350μm coated a coating layer of Al 2 O 3 -43% ZrO 2 to to produce a that has been subjected in the same manner as in baking and invention sample. However, the coating layer peeled off from the Mo plate, and warpage of several mm or more occurred, so that it could not be used as a sintering plate.
試料15として、本発明例と同様なMo板に30μmのAl2O3を使用しAl2O3−43%ZrO2の皮膜層を100μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 As sample 15, the present invention example and the film layer of Al 2 O 3 -43% ZrO 2 using Al 2 O 3 of 30μm in the same manner as Mo plate to 100μm coated, was subjected to the same as baking and invention sample Things were made.
試料16として本発明例と同様なMo板に30μmのAl2O3のみを使用した皮膜層を100μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 Sample 16 was prepared by applying a 100 μm coating layer using only 30 μm Al 2 O 3 to the same Mo plate as in the example of the present invention, and performing a baking treatment in the same manner as in the example of the present invention.
試料17としてMo板の表面を更に粗し表面粗さをRa21μm、Rmaxが160μmとし、その表面にAl2O3−43%ZrO2の皮膜層を100μm塗布したものを作製した。 Sample 17 was prepared by further roughening the surface of the Mo plate to have a surface roughness of Ra 21 μm and an Rmax of 160 μm, and coating the surface with a 100 μm coating layer of Al 2 O 3 -43% ZrO 2 .
試料18として本発明の例と同様なMo板に皮膜層を塗布しないものを作製した。 Sample 18 was prepared in the same manner as in the example of the present invention, except that the Mo layer was not coated with a coating layer.
試料19として本発明例と同様なMo板に30μmのAl2O3と3.5μmのMo粉末を使用しAl2O3−50%Moの皮膜層を100μm塗布し、本発明例と同様に焼付け処理を施したものを作製した。 As a sample 19, the same Mo plate as in the example of the present invention was coated with 100 μm of a coating layer of Al 2 O 3 -50% Mo using 30 μm of Al 2 O 3 and 3.5 μm of Mo powder. The thing which performed the baking process was produced.
次に、比較試料20−21について説明する。 Next, the comparative sample 20-21 will be described.
比較例に係る試料20として、現状使用している厚さ10mmのAl2O3板を用意した。 As a sample 20 according to the comparative example, an Al 2 O 3 plate having a thickness of 10 mm which is currently used was prepared.
比較例に係る試料21として、組織制御していないMo板に30μmのAl2O3のみを使用した皮膜層を100μm溶射により作製した。 As a sample 21 according to a comparative example, a coating layer using only 30 μm of Al 2 O 3 was formed on a Mo plate whose structure was not controlled by 100 μm spraying.
図9(a)に示す本発明の例では、1枚の板(T1.5mm×150mm×300mm)13の上に直径20mm、高さ10mmのFe系MIM成型体11を50ヶ並べ、板外周囲に直径10mm、高さ15mmのスペーサー15を並べ、同様の射出成型体の載ったMo板を6段重ねた。その6段重ねたMo板を、炉開口部17が開口幅170mm、高さ100mmであるメッシュベルト炉に挿入し、水素雰囲気中1350℃で、2時間の焼結処理を行い、MIM焼結体を得た。 In the example of the present invention shown in FIG. 9A, 50 Fe-based MIM molded bodies 11 each having a diameter of 20 mm and a height of 10 mm are arranged on a single plate (T1.5 mm × 150 mm × 300 mm) 13. Spacers 15 having a diameter of 10 mm and a height of 15 mm were arranged around the periphery, and six Mo plates on which similar injection molded bodies were placed were stacked. The 6-stage stacked Mo plates are inserted into a mesh belt furnace having a furnace opening 17 having an opening width of 170 mm and a height of 100 mm, and subjected to a sintering process at 1350 ° C. for 2 hours in a hydrogen atmosphere to obtain a MIM sintered body. Got.
図9(b)に示す比較例に係る試料20では、T10mm×150mm×300mmのAl2O3板19上に、同様に並べ、4段重ねとした。 The sample 20 according to the comparative example shown in FIG. 9B was similarly arranged on a T10 mm × 150 mm × 300 mm Al 2 O 3 plate 19 to form a four-stage stack.
通常のAl2O3板を使用した比較例に係る試料20と比べ製品のチャージ量がl.5倍となりまた、炉の電力使用量も約70%に低減することが出来た。 Compared with the sample 20 according to the comparative example using a normal Al 2 O 3 plate, the charge amount of the product is l. The power consumption of the furnace was reduced to about 70%.
焼結後得られたMIM焼結体はMo板への被処理物の溶融付着無く、表面状態も良好であった。また、Mo板も新たな反りは発生せず、皮膜層の剥離も無く繰り返し使用が可能であった。 The MIM sintered body obtained after sintering had no fusion of the object to be processed to the Mo plate and had a good surface state. Also, the Mo plate did not generate any new warpage, and could be repeatedly used without peeling of the coating layer.
上記参考例に係る試料13、15−19および比較例に係る試料20、21も同様に製品をのせ焼結処理を行った。ただし比較例に係る試料20はAl2O3の板厚が厚い為、4段重ねとした。 Samples 13 and 15-19 according to the above reference example and samples 20 and 21 according to the comparative example were similarly loaded with a product and subjected to sintering. However, the sample 20 according to the comparative example had a large thickness of Al 2 O 3 , and thus was stacked in four steps.
その結果、参考試料13においては皮膜層の膜厚が薄いため、Moが露出している部分がありMIM焼結体がMo板に被処理物が溶融付着する部分が発生し、製品として使用できなかった。この試料を150倍のマイクロスコープで観察し、その画像を画像解析した結果、Mo板の露出部分は単位面積の約2%であった。 As a result, in the reference sample 13, since the film thickness of the coating layer is small, there is a portion where Mo is exposed, and a portion where the object to be processed is melt-adhered to the Mo plate of the MIM sintered body occurs, and the sample can be used as a product. Did not. This sample was observed with a microscope of 150 times magnification, and the image was subjected to image analysis. As a result, the exposed portion of the Mo plate was about 2% of the unit area.
また、参考試料15、16においては皮膜層に粗い粉末をのみ使用したため、Mo板への密着性が悪く剥離しやすくなり、焼結体表面に皮膜層が付着してしまい製品として使用できなかった。 Further, in Reference Samples 15 and 16, since only coarse powder was used for the film layer, the adhesion to the Mo plate was poor and the film was easily peeled off, and the film layer adhered to the surface of the sintered body and could not be used as a product. .
また、試料17においてはMIM焼結体表面に皮膜層表面の粗さが転写してしまい製品として使用することが出来なかった。 Further, in Sample 17, the roughness of the film layer surface was transferred to the surface of the MIM sintered body, so that it could not be used as a product.
また、比較例に係る試料18においては皮膜層が無い為、MoとMIM焼結体が溶融付着してしまい製品として使用できなかった。 Further, in the sample 18 according to the comparative example, since there was no coating layer, Mo and the MIM sintered body were melt-adhered and could not be used as a product.
また、試料19においては皮膜層中及び表面にMoが露出している為MIM焼結体が溶着してしまい製品として使用できなかった。 Further, in Sample 19, Mo was exposed in the film layer and on the surface, so that the MIM sintered body was welded and could not be used as a product.
また、比較例に係る試料20においては得られるMIM焼結体は良好であるが、炉へのチャージ量が少なくまた電気使用量も多い為、コストアップとなってしまった。 In the sample 20 according to the comparative example, the obtained MIM sintered body was good, but the amount of charge to the furnace was small and the amount of electricity used was large, resulting in an increase in cost.
また、比較例に係る試料21においてはMoの組織を制御しておらず、更に粗い粉末のみを使用しているため、MIM焼結中に新たな反りが発生すると共に、皮膜層が剥離しMIM焼結体に付着してしまうため、繰り返し使用することが出来なかった。 Further, in the sample 21 according to the comparative example, the structure of Mo was not controlled, and only the coarser powder was used. Therefore, new warpage occurred during MIM sintering, and the coating layer was peeled off and MIM was peeled off. Since it adhered to the sintered body, it could not be used repeatedly.
なお、参考試料及び、比較例に係る試料においてはMo板への被処理物の溶融付着の発生、Mo板の新たな反り発生、皮膜層の剥離などにより、繰り返し使用することが出来なかった。 In addition, the reference sample and the sample according to the comparative example could not be repeatedly used due to the occurrence of fusion of the object to be processed to the Mo plate, the generation of a new warp of the Mo plate, the peeling of the coating layer, and the like.
例えば、図7(a)及び図7(b)に示すように、本発明の試料8は、皮膜層を研磨したものであるが、参考例にかかわる試料17の場合、大きな凹凸があるため、MIM焼結体に表面粗さが転写してしまい、製品として使用できない。 For example, as shown in FIGS. 7A and 7B, the sample 8 of the present invention has a polished film layer. In the case of the sample 17 according to the reference example, since the sample 17 has large irregularities, The surface roughness is transferred to the MIM sintered body and cannot be used as a product.
次に、本発明の例と同様に粒径約1μmのアルミナ(Al2O3)と30μmのチタニア(TiO2)を混合した粉末を使用し、溶射により皮膜層を作製し1500℃で2時間熱処理したところ下地の露出のない皮膜層が得られ、これを使用してMIM焼結体を作製したところ、本発明の例と同様に良好なMIM焼結体を得ることができた。また、前記の他の酸化物も同様であった。 Next, in the same manner as in the example of the present invention, a coating layer was formed by thermal spraying using a powder obtained by mixing alumina (Al 2 O 3 ) having a particle size of about 1 μm and titania (TiO 2 ) having a size of 30 μm, and the coating layer was formed at 1500 ° C. for 2 hours. As a result of the heat treatment, a film layer having no exposed base layer was obtained, and a MIM sintered body was produced using the film layer. As a result, a good MIM sintered body was obtained as in the example of the present invention. The same applies to the other oxides described above.
また、本発明例と同様に50μmの皮膜層を作製した後、更に粒径約3μmのジルコニア(ZrO2)と30μmのイットリア(Y2O3)を混合した粉末を使用し、溶射により50μmの皮膜層を作製し1500℃で2時間熱処理することで、トータル100μmの皮膜層を作製した。この板を使用してMIM焼結体を作製したところ、本発明例と同様に良好なMIM焼結体を得ることができた。また、更に前記の他酸化物の組み合わせでも同様であった。さらに、前記とは逆に本発明の溶射による皮膜層を先に作製した場合でも同様の結果であった。 Further, after forming a 50 μm coating layer in the same manner as in the present invention, a powder obtained by further mixing zirconia (ZrO 2 ) having a particle size of about 3 μm and yttria (Y 2 O 3 ) having a particle diameter of 30 μm was used, and sprayed to a thickness of 50 μm. A coating layer was prepared and heat-treated at 1500 ° C. for 2 hours to prepare a coating layer having a total thickness of 100 μm. When an MIM sintered body was manufactured using this plate, a good MIM sintered body could be obtained as in the case of the present invention. The same applies to the combination of the other oxides. Further, contrary to the above, the same result was obtained even when the coating layer formed by thermal spraying of the present invention was prepared first.
また、本発明の例と同様に粒径約1μmのアルミナ(Al2O3)と30μmジルコニア(ZrO2)を混合した粉末を使用し、これに耐高温接着剤を混ぜてMo板に塗布したのち1500℃で2時間熱処理したところ、上記同様に下地の露出のない皮膜層が得られ、これを使用してMIM焼結体を作製したところ、本発明の例と同様に良好なMIM焼結体を得ることができた。また、前記の他酸化物も同様であった。ここで、本発明においては、上記耐高温接着剤として、耐火性セラミックと無機ポリマーを主成分として物を使用したが、これに限ったものではなく、高温での接着性を有するものであれば、他のものも使用できることは勿論である。 Further, similarly to the example of the present invention, a powder obtained by mixing alumina (Al 2 O 3 ) having a particle diameter of about 1 μm and zirconia (ZrO 2 ) having a particle diameter of about 1 μm was used, and a high-temperature adhesive was mixed with the powder and applied to a Mo plate. After that, a heat treatment was performed at 1500 ° C. for 2 hours to obtain a film layer without exposing the underlayer in the same manner as described above. Using this, a MIM sintered body was produced. I got the body. The other oxides were the same. Here, in the present invention, as the high temperature resistant adhesive, a material containing a refractory ceramic and an inorganic polymer as main components was used.However, the present invention is not limited to this. Of course, other things can also be used.
本発明例に係る試料2における1μmのアルミナ(Al2O3)と30μmジルコニア(ZrO2)43%を溶着したMo板を用いて大気中での耐酸化テストを行った。酸化テストは、被覆品は全面被覆とし、脱バインダーが行われる条件600℃大気中5時間で行い、その時のMo板重量減量を消耗率とした。結果、コーティングを施さない99.9%Mo板ではMoの昇華が進み消耗率は20〜25%に達した。また、従来の溶射方法で作製したMo板では消耗率は5〜10%に達した。 An oxidation resistance test in the atmosphere was performed using a Mo plate obtained by welding 1 μm of alumina (Al 2 O 3 ) and 30 μm of zirconia (ZrO 2 ) 43% in Sample 2 according to the present invention. The oxidation test was carried out in the atmosphere at 600 ° C. for 5 hours in a condition where the binder was removed, and the weight loss of the Mo plate at that time was taken as the consumption rate. As a result, in the 99.9% Mo plate without coating, the sublimation of Mo progressed and the consumption rate reached 20 to 25%. Further, the wear rate of the Mo plate manufactured by the conventional thermal spraying method reached 5 to 10%.
これに対し、上記本発明の試料2における1μmのアルミナ(Al2O3)と30μmジルコニア(ZrO2)43%を溶着したMo板では消耗率は1%未満であった。 On the other hand, the consumption rate was less than 1% in the Mo plate in which the 1 μm alumina (Al 2 O 3 ) and the 30 μm zirconia (ZrO 2 ) 43% in the sample 2 of the present invention were welded.
上記実施の形態から明らかなように、少なくとも一種の粉末の粒度が10μm以下であることで、下地の露出のない皮膜層が得られ耐酸化特性の優れる焼結用板を得ることができた。 As is clear from the above embodiment, when the particle size of at least one kind of powder is 10 μm or less, a coating layer having no exposed base was obtained, and a sintering plate having excellent oxidation resistance was obtained.
次に、本発明の焼結用板の金属材料として、モリブデンの代わりにタングステンを用いて同様に検討した。その結果、下記表3、4に示すように、タングステンにおいてもモリブデンと同様の特性が得られた。なお、表中において、本発明例は試料22−33、参考例に係る試料は、試料34−40である。また、被焼結物は、被処理物と同等である。 Next, the same examination was performed using tungsten instead of molybdenum as the metal material of the sintering plate of the present invention. As a result, as shown in Tables 3 and 4 below, properties similar to molybdenum were obtained also in tungsten. In the table, the examples of the present invention are samples 22 to 33, and the samples according to the reference examples are samples 34 to 40. The object to be sintered is equivalent to the object to be processed.
以上、説明したように、本発明によれば、従来においては焼結用板としてアルミナ、シリカなどの耐火物を使用した場合は、板厚さが10〜15mm程度必要とされていたが、例えばモリブデン板に酸化物を溶着した場合、1〜2mm程度の板厚さで被処理物を焼結するという目的を達成することが出来、且つ、加熱及び冷却に使われるエネルギーを大幅に節約することが可能で経済的効果が大きい焼結用板を得ることができる。 As described above, according to the present invention, conventionally, when a refractory such as alumina or silica is used as a sintering plate, the plate thickness is required to be about 10 to 15 mm. When an oxide is deposited on a molybdenum plate, the object of sintering the object to be processed with a plate thickness of about 1 to 2 mm can be achieved, and the energy used for heating and cooling can be significantly reduced. And a sintering plate having a large economic effect can be obtained.
また、本発明によれば、酸化物皮膜層をポーラスで且つ平滑にすることで脱バインダー性と焼結性の両方の機能を持たせることが出来る高融点金属材料と、その製造方法と、それを用いた焼結用板を得ることができる。 Further, according to the present invention, a refractory metal material capable of having both functions of debinding and sintering by making an oxide film layer porous and smooth, a method for producing the same, Can be obtained.
また、本発明によれば、酸化物が溶着されているため製品にアルミナなどが付着することがなく、後処理が不要となりまた焼結製品の品質も向上し経済的効果がある高融点金属材料とその製造方法とそれを用いた焼結用板を提供することができる。 Further, according to the present invention, since the oxide is welded, no alumina or the like adheres to the product, no post-treatment is required, and the quality of the sintered product is improved, so that the high melting point metal material has an economic effect. And a method for producing the same and a sintering plate using the same.
また、本発明によれば、溶着面は下地素材であるモリブデン、タングステン、及びそれらの合金が露出していないで、従来では鉄系材料ではそれに含まれるNiなどの成分がMoと反応し、Mo板の性能を著しく劣化させていたが、本発明では前記構成によりMo板の性能劣化がなく使用できる高融点金属材料と、その製造方法と、それを用いた焼結用板を提供することができる。 According to the present invention, the welding surface does not expose molybdenum, tungsten, and their alloys, which are base materials. Conventionally, in an iron-based material, components such as Ni contained therein react with Mo, and Although the performance of the plate has been significantly deteriorated, the present invention provides a high melting point metal material which can be used without deterioration of the performance of the Mo plate by the above configuration, a method for producing the same, and a sintering plate using the same. it can.
また、本発明によれば、モリブデン板の場合、大気中では500℃以上で酸化が著しく使用できなかったが、全面に酸化物皮膜層を溶着することで大気中でも使用可能となる高融点金属材料とその製造方法と、それを用いた焼結用板を得ることができる。この場合、好ましくは皮膜層は50μmから300μmと厚いことが有効である。 Further, according to the present invention, in the case of a molybdenum plate, oxidation could not be used remarkably at 500 ° C. or higher in the air, but a high melting point metal material which can be used in the air by welding an oxide film layer over the entire surface. And a manufacturing method thereof, and a sintering plate using the same. In this case, it is effective that the coating layer is preferably as thick as 50 μm to 300 μm.
以上説明した通り、本発明に係る高融点金属材料及びそれを用いた焼結用板は、MIM焼結体等の製造に用いる焼結用板に最適である。 As described above, the refractory metal material according to the present invention and the sintering plate using the same are most suitable for a sintering plate used for manufacturing a MIM sintered body or the like.
また、本発明に係る高融点金属材料の製造方法は、前記した焼結用板として用いる高融点金属材料の製造に最適である。 The method for producing a high melting point metal material according to the present invention is most suitable for producing the high melting point metal material used as the sintering plate described above.
11 MIM成型体
15 スペーサー
17 炉開口部
19 Al2O3板
11 MIM Molded Body 15 Spacer 17 Furnace Opening 19 Al 2 O 3 Plate
Claims (18)
The method for producing a refractory metal material provided with an oxide film layer according to any one of claims 14 to 17, wherein the refractory metal material provided with the oxide film is used for sintering. A method for producing a sintering plate having a characteristic oxide film layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004049276A JP4276558B2 (en) | 2003-02-25 | 2004-02-25 | High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003047980 | 2003-02-25 | ||
JP2004049276A JP4276558B2 (en) | 2003-02-25 | 2004-02-25 | High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004281392A true JP2004281392A (en) | 2004-10-07 |
JP4276558B2 JP4276558B2 (en) | 2009-06-10 |
Family
ID=33301733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004049276A Expired - Lifetime JP4276558B2 (en) | 2003-02-25 | 2004-02-25 | High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4276558B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102626845A (en) * | 2012-03-27 | 2012-08-08 | 苏州先端稀有金属有限公司 | Molybdenum lanthanum alloy tray processing method |
WO2013183329A1 (en) | 2012-06-07 | 2013-12-12 | 株式会社アライドマテリアル | Heat-resistant molybdenum alloy |
JP2018503045A (en) * | 2014-11-21 | 2018-02-01 | プランゼー エスエー | Charging equipment for heat treatment of tantalum capacitors |
CN108101530A (en) * | 2017-12-29 | 2018-06-01 | 无锡天宝电机有限公司 | A kind of motor magnetic material and preparation method thereof |
JP6360245B1 (en) * | 2017-11-08 | 2018-07-18 | 新和工業株式会社 | Sintering setter and method for producing the same |
KR20200105930A (en) * | 2019-02-14 | 2020-09-09 | 엔지케이 인슐레이터 엘티디 | Firing jig |
JP2021155781A (en) * | 2020-03-26 | 2021-10-07 | 日立金属株式会社 | Method of producing r-t-b-based sintered magnet |
-
2004
- 2004-02-25 JP JP2004049276A patent/JP4276558B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102626845A (en) * | 2012-03-27 | 2012-08-08 | 苏州先端稀有金属有限公司 | Molybdenum lanthanum alloy tray processing method |
WO2013183329A1 (en) | 2012-06-07 | 2013-12-12 | 株式会社アライドマテリアル | Heat-resistant molybdenum alloy |
JP2018503045A (en) * | 2014-11-21 | 2018-02-01 | プランゼー エスエー | Charging equipment for heat treatment of tantalum capacitors |
JP6360245B1 (en) * | 2017-11-08 | 2018-07-18 | 新和工業株式会社 | Sintering setter and method for producing the same |
WO2019092894A1 (en) * | 2017-11-08 | 2019-05-16 | 新和工業株式会社 | Firing setter and production method therefor |
JP2019085619A (en) * | 2017-11-08 | 2019-06-06 | 新和工業株式会社 | Sintering setter and method for manufacturing the same |
CN108101530A (en) * | 2017-12-29 | 2018-06-01 | 无锡天宝电机有限公司 | A kind of motor magnetic material and preparation method thereof |
KR20200105930A (en) * | 2019-02-14 | 2020-09-09 | 엔지케이 인슐레이터 엘티디 | Firing jig |
KR102407421B1 (en) | 2019-02-14 | 2022-06-10 | 엔지케이 인슐레이터 엘티디 | firing jig |
JP2021155781A (en) * | 2020-03-26 | 2021-10-07 | 日立金属株式会社 | Method of producing r-t-b-based sintered magnet |
JP7439610B2 (en) | 2020-03-26 | 2024-02-28 | 株式会社プロテリアル | Manufacturing method of RTB based sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
JP4276558B2 (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7332228B2 (en) | Coated refractory metal plate having oxide surface layer, and setter which uses the same and which is used in sintering | |
US3975165A (en) | Graded metal-to-ceramic structure for high temperature abradable seal applications and a method of producing said | |
US6753085B2 (en) | Heat-resistant coated member | |
TWI564266B (en) | A laminated structure, a member for a semiconductor manufacturing apparatus, and a method for manufacturing the laminated structure | |
KR100756619B1 (en) | Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body | |
CN104736274B (en) | Manufacture refractory metal part | |
CN113597665B (en) | High density corrosion resistant layer arrangement for electrostatic chuck | |
JP3830382B2 (en) | Ceramic sintered body and method for producing the same | |
JP2004281392A (en) | High melting point metal material with oxide coated layer, its manufacturing method, and board for sintering by using it | |
KR20200105930A (en) | Firing jig | |
JP7465771B2 (en) | Compound sintered body, semiconductor manufacturing equipment member, and method for manufacturing compound sintered body | |
KR102638851B1 (en) | Non-adhesive protective coating method | |
WO1993024925A1 (en) | Ceramic substrate and its manufacture, and substrate vacuum-clamping device using ceramic vacuum-clamping board | |
JP5290267B2 (en) | Ceramic substrate firing buffer sheet and method for producing ceramic substrate using the same | |
JP2004262712A (en) | Firing tool | |
JP4771513B2 (en) | Heat-resistant covering material | |
EP3995234B1 (en) | Method for producing oxidation-resistant alloy | |
JP2005170729A (en) | Baking container | |
JP2005281032A (en) | Graphite tray for sintering | |
JP2828582B2 (en) | Surface-coated silicon nitride heat-resistant member | |
JPH07150205A (en) | Functionally gradient film and its production | |
KR20240133452A (en) | Multi-layer non-adhesive protective coating method | |
JP2004168598A (en) | Heat resistant coated member, method for manufacturing the same and treatment method using the member | |
JP2002362985A (en) | Member coated with ceramic and method of manufacturing the same | |
JPH0817450A (en) | Method for manufacturing separator for solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090212 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090306 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4276558 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140313 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |