JP2008069403A - Anti-oxidation coating structure and coating method of heat-resistant alloy - Google Patents

Anti-oxidation coating structure and coating method of heat-resistant alloy Download PDF

Info

Publication number
JP2008069403A
JP2008069403A JP2006248846A JP2006248846A JP2008069403A JP 2008069403 A JP2008069403 A JP 2008069403A JP 2006248846 A JP2006248846 A JP 2006248846A JP 2006248846 A JP2006248846 A JP 2006248846A JP 2008069403 A JP2008069403 A JP 2008069403A
Authority
JP
Japan
Prior art keywords
alloy
layer
film
oxide
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006248846A
Other languages
Japanese (ja)
Inventor
Isao Iwanaga
功 岩永
Yuji Naruse
祐治 成瀬
Giichi Matsumura
義一 松村
Ryohei Tanaka
良平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chokoon Zairyo Kenkyusho Kk, Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Chokoon Zairyo Kenkyusho Kk
Priority to JP2006248846A priority Critical patent/JP2008069403A/en
Publication of JP2008069403A publication Critical patent/JP2008069403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant alloy having a coating structure superior in anti-oxidation, by suppressing the peeling of a surface oxide layer for intercepting oxygen from the alloy and the progress of oxidation. <P>SOLUTION: In the anti-oxidation coating structure of the heat-resistant alloy, a first layer alloy film for preventing diffusion is formed on the surface of the heat-resistant alloy as needed, and on the first layer alloy film, a second layer composite film, in which oxide fibers and particles are dispersed in an alloy layer containing at least Al or Si, is formed. Specially in the case where the heat-resistant alloy is a niobium-based alloy, the first layer alloy film is made to contain Re and at least two kinds of elements forming a stable phase with Re, and the second layer film is made to be a film, in which oxide fibers and oxide particles are scattered in an alloy layer containing at least Al and at least one kind of Cr and Ni. Here, as the fibers, oxide-based ceramic fibers having an aspect ratio of 2-1,000 or whiskers are used; and as the particles, oxide-based ceramic particles of an average size of 1-50 μm are used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガスタービン、ジェットエンジン等に用いられるニオブ基合金等の耐熱合金に係り、とくに基材表面に高温酸化を抑制するための皮膜が形成された耐熱合金の耐酸化被覆構造とその被覆方法に関する。   TECHNICAL FIELD The present invention relates to a heat-resistant alloy such as a niobium-based alloy used in gas turbines, jet engines, etc., and in particular, an oxidation-resistant coating structure of a heat-resistant alloy in which a film for suppressing high-temperature oxidation is formed on a substrate surface and the coating thereof Regarding the method.

近年、発電用ガスタービン運転温度の一層の高温化が求められ、従来からタービン部材として多用されているNi基合金よりも、使用温度限界の高い新たな耐熱材料が必要となっている。このような材料の一つとして、ニオブ(Nb)系の耐熱材料、例えば固溶強化型又は析出強化型のNb合金やNb−Al系金属間化合物等(本発明では、これらをニオブ基合金という)が注目されている。   In recent years, a further increase in operating temperature of a gas turbine for power generation has been demanded, and a new heat-resistant material having a higher use temperature limit is required than Ni-based alloys that have been widely used as turbine members. One of such materials is a niobium (Nb) -based heat-resistant material such as a solid solution strengthened or precipitation strengthened Nb alloy or Nb-Al intermetallic compound (in the present invention, these are called niobium-based alloys). ) Is attracting attention.

これらのニオブ基合金は高温強度に優れるが、いずれも高温域例えば800℃以上の温度域ではきわめて酸化され易く、ガスタービンのような高温の酸化性雰囲気下でそのまま使用することは困難であり、耐酸化を目的とするコーティングについて種々の検討がなされている。   These niobium-based alloys are excellent in high-temperature strength, but all of these niobium-based alloys are very easily oxidized in a high temperature range, for example, a temperature range of 800 ° C. or higher, and are difficult to use as they are in a high-temperature oxidizing atmosphere such as a gas turbine. Various studies have been made on coatings aimed at oxidation resistance.

従来から、高温酸化性雰囲気下で使用する金属部材の耐熱・耐酸化被覆として、CrやAlの拡散層を形成する方法や、セラミックコーティングする方法が検討されている。とくにNi基合金においては、遮熱コーティング(Thermal Barrier Coating:TBC)と呼ばれる方法が主流になっている。これは基材表面に金属結合層と、その表面にセラミックスの遮熱層を積層してなるもので、金属結合層にはMCrAlY合金(M=Ni,Coなど)が、遮熱層にはZrO2を主成分とするセラミックスが用いられることが多い。 Conventionally, a method of forming a diffusion layer of Cr or Al or a method of ceramic coating has been studied as a heat-resistant / oxidation-resistant coating for a metal member used in a high-temperature oxidizing atmosphere. Particularly in Ni-based alloys, a method called thermal barrier coating (TBC) has become the mainstream. This is formed by laminating a metal bond layer on the substrate surface and a ceramic heat shield layer on the surface. The metal bond layer is MCrAlY alloy (M = Ni, Co, etc.), and the heat shield layer is ZrO. Ceramics mainly composed of 2 are often used.

ニオブ基合金の耐酸化被覆としては、Irの表面被覆層、又はIrの表面被覆層とその下側にTa,Re,Wのうちの1種以上を主成分とする拡散防止層とが形成されたNb合金耐熱部材が開示されている(下記特許文献1)。また、基材表面にIrを真空蒸着すると同時にAlイオン照射を行い、Ir−Al合金からなる被覆層を形成する耐酸化被覆層の製造方法が開示されている(下記特許文献2)。   As the oxidation-resistant coating of the niobium-based alloy, an Ir surface coating layer or an Ir surface coating layer and a diffusion prevention layer mainly composed of one or more of Ta, Re, and W are formed below the Ir surface coating layer. An Nb alloy heat-resistant member is disclosed (Patent Document 1 below). Also disclosed is a method for producing an oxidation-resistant coating layer in which Ir is vacuum-deposited on the surface of the substrate and simultaneously irradiated with Al ions to form a coating layer made of an Ir—Al alloy (Patent Document 2 below).

また、本発明者らも、先に耐熱性に加えて耐酸化性にも優れた二オブ基合金の耐熱部材について提案している(下記特許文献3)。この耐熱部材は、二オブ基合金基材の表面に、構成元素の拡散を防ぐためのRe基合金からなる第一層(拡散防止層)皮膜と、さらにその表面に酸化物皮膜(Al23又はSiO2)を形成するためのAl又はSiを供給するAl基合金又はSi基合金からなる第二層(酸化防止層)皮膜との、2層の耐酸化皮膜を有するものである。 In addition, the present inventors have also proposed a heat-resistant member of a two-obtain base alloy that is excellent in oxidation resistance in addition to heat resistance (Patent Document 3 below). This heat-resistant member has a first layer (diffusion prevention layer) film made of a Re-based alloy for preventing the diffusion of constituent elements on the surface of a two-bobium-based alloy substrate, and an oxide film (Al 2 O) on the surface. 3 or SiO 2 ) and a second layer (antioxidation layer) film made of an Al-based alloy or an Si-based alloy that supplies Al or Si to form a two-layer oxidation-resistant film.

特開平10−140333号公報Japanese Patent Laid-Open No. 10-14333 特開平10−140347号公報Japanese Patent Laid-Open No. 10-140347 WO02/27067A1(特願2002−530827)WO02 / 27067A1 (Japanese Patent Application 2002-53027) 柴田、市橋:岐阜県製品技術研究所研究報告No.4,2003Shibata, Ichihashi: Gifu Prefectural Research Institute of Product Technology No. 4,2003

本発明者らが既に提案した上記の2層皮膜を有する二オブ基合金は、耐酸化皮膜の酸素遮断性と耐拡散性を兼ね備え、耐熱性に加えて耐酸化性にも優れる。とくに、Re基合金の中間被覆層を設けることにより、これが表面皮膜と基材間の元素の拡散を抑制するため、耐酸化皮膜の変質を防ぐことができ、皮膜の耐久性が確保される。しかし、本発明の対象である二オブ基合金は、実用金属材料として最も耐熱性に優れるニッケル基合金でも対応できない、1200℃以上の温度域での使用を目的とするものである。かかる超高温域では、表面に形成されるAl23と内部合金との熱膨張率の差によって皮膜がはく離し易くなり、これによる酸化の進行が無視できなくなることが知見された。 The two-obtain base alloy having the above-mentioned two-layer coating previously proposed by the present inventors has both oxygen barrier properties and diffusion resistance of the oxidation-resistant coating, and is excellent in oxidation resistance in addition to heat resistance. In particular, by providing an intermediate coating layer of an Re-based alloy, this suppresses the diffusion of elements between the surface film and the base material, so that alteration of the oxidation resistant film can be prevented, and the durability of the film is ensured. However, the niobium-based alloy that is the subject of the present invention is intended for use in a temperature range of 1200 ° C. or higher, which is not compatible with a nickel-based alloy having the highest heat resistance as a practical metal material. It has been found that in such an ultra-high temperature range, the coating is easily peeled off due to the difference in thermal expansion coefficient between Al 2 O 3 formed on the surface and the internal alloy, and the progress of oxidation due to this is not negligible.

本発明者らは、この対策のために、短繊維またはウィスカー形状の酸化物を酸化防止層に添加することにより、表面に形成するAl23またはSiO2酸化膜と内部合金間の連結作用が働いて、熱膨張率の差によるはく離、ひいては酸化の進行を著しく抑制できることを見出し、先に特許出願した(特願2005−072639)。 In order to solve this problem, the present inventors added a short fiber or whisker-shaped oxide to the antioxidant layer, thereby connecting the Al 2 O 3 or SiO 2 oxide film formed on the surface and the inner alloy. It has been found that separation due to the difference in thermal expansion coefficient, and thus the progress of oxidation, can be remarkably suppressed, and a patent application has been filed earlier (Japanese Patent Application No. 2005-072639).

この方法は、酸化防止層(Al23またはSiO2酸化物膜を生成する)に3体積%以上の酸化物繊維を添加するというもので、1350℃以下の温度域では、繊維のくさび止め効果で酸化物膜のはく離を顕著に軽減し、酸化の進行を抑制できることが確かめられている。
しかしその後の検討で、より高温域(例えば1500℃程度の温度域)で耐酸化性機能を発揮させるためには、酸化防止層合金への酸化物繊維の添加量を多くする必要があることが知見された。また、繊維の含有率が高くなりすぎると、焼結が難しくなる傾向にある。このため、緻密な酸化防止層の形成が困難になり、これに伴い1500℃程度の温度域では、繊維の含有率が例えば20体積%以上になると酸化が促進されて逆効果になるという問題が生じることが判明した。
したがって、より高温域で耐酸化性機能を十分に発揮させるためには、酸化物膜のはく離防止に関して、さらなる改良が必要である。
This method is to add 3% by volume or more of oxide fiber to the antioxidant layer (which produces an Al 2 O 3 or SiO 2 oxide film). In the temperature range of 1350 ° C. or less, the fiber is prevented from being wedged. It has been confirmed that the effect can remarkably reduce the peeling of the oxide film and suppress the progress of oxidation.
However, in subsequent studies, it may be necessary to increase the amount of oxide fiber added to the antioxidant layer alloy in order to exhibit the oxidation resistance function in a higher temperature range (for example, a temperature range of about 1500 ° C.). It was discovered. Moreover, if the fiber content is too high, sintering tends to be difficult. For this reason, it becomes difficult to form a dense antioxidant layer. Accordingly, in a temperature range of about 1500 ° C., if the fiber content is, for example, 20% by volume or more, the oxidation is promoted to have an adverse effect. It was found to occur.
Therefore, in order to sufficiently exhibit the oxidation resistance function in a higher temperature range, further improvement is necessary with respect to prevention of peeling of the oxide film.

そこで本発明は、耐熱合金とくにニオブ基合金の基材表面にAl基合金又はSi基合金からなる酸化防止層を有する耐熱部材、又は基材表面にRe基合金からなる拡散防止層と、さらにその表面に前記酸化防止層との2層の耐酸化被覆構造を有する耐熱部材において、最外面に形成されるAl23皮膜又はSiO2皮膜と内部合金との熱膨張率の差による皮膜のはく離やき裂の発生を、より厳しい温度条件でも防止することのできる手段を提供することを課題としている。すなわち、前述した先の出願よりもより高温域(例えば1500℃程度以上)においても、熱膨張に起因する酸化膜のはく離とこれによる酸化の進行を抑制することのできる、さらに改良された手段を提供することを課題としている。 Accordingly, the present invention provides a heat-resistant member having an oxidation-resistant layer made of an Al-based alloy or Si-based alloy on the surface of a heat-resistant alloy, particularly a niobium-based alloy, or a diffusion-preventing layer made of a Re-based alloy on the surface of the substrate. In a heat-resistant member having a two-layer oxidation-resistant coating structure with the antioxidant layer on the surface, peeling of the film due to the difference in thermal expansion coefficient between the Al 2 O 3 film or SiO 2 film formed on the outermost surface and the internal alloy It is an object to provide means capable of preventing the occurrence of cracks even under more severe temperature conditions. That is, a further improved means capable of suppressing the exfoliation of the oxide film due to thermal expansion and the progress of oxidation due to thermal expansion even in a higher temperature range (for example, about 1500 ° C. or higher) than the previous application described above. The issue is to provide.

本発明者らは各種の皮膜はく離防止策を検討した結果、表面の酸化防止層に繊維に加えて酸化物の粒子を添加することにより、表面に形成されるAl23又はSiO2の酸化物膜と内部合金との熱膨張率の差による皮膜はく離を抑制し、繊維による酸化物膜と内部合金との連結作用がより確実に働き、酸化の進行を抑制する効果がさらに大きくなることを見出した。
この知見に基く本発明の耐熱合金の耐酸化被覆構造の第一は、耐熱合金の基材表面に、少なくともAl又はSiを含む合金層中に酸化物の繊維および粒子が分散された耐酸化皮膜が形成されていることを特徴とするものである。
As a result of studying various anti-peeling measures, the present inventors have added oxidation particles in addition to fibers to the surface anti-oxidation layer to oxidize Al 2 O 3 or SiO 2 formed on the surface. The film peeling due to the difference in thermal expansion coefficient between the material film and the inner alloy is suppressed, the connecting action of the oxide film by the fiber and the inner alloy works more reliably, and the effect of suppressing the progress of oxidation is further increased. I found it.
The first of the oxidation-resistant coating structure of the heat-resistant alloy of the present invention based on this knowledge is an oxidation-resistant film in which oxide fibers and particles are dispersed in an alloy layer containing at least Al or Si on the surface of the base material of the heat-resistant alloy. Is formed.

また、本発明の耐熱合金の耐酸化被覆構造の第二は、耐熱合金の基材表面に、拡散防止を目的とする第一層の合金皮膜が形成され、さらにその表面に、少なくともAl又はSiを含む合金層中に酸化物の繊維および粒子が分散された第二層の皮膜が形成されていることを特徴とするものである。   In the second of the oxidation resistant coating structure of the heat resistant alloy of the present invention, a first layer alloy film for preventing diffusion is formed on the surface of the base material of the heat resistant alloy, and at least Al or Si is further formed on the surface. A second layer film in which oxide fibers and particles are dispersed is formed in an alloy layer containing.

上記の第二の耐酸化被覆構造においては、耐熱合金がニオブ基合金である場合に、前記第一層の合金皮膜が、一般式Re1-a-bab(式中、MはCr,Ni,Alのうち1種以上の元素、RはNb,Mo,W,Hf,Cのうち1種以上の元素、a,bはそれぞれM,Rの原子比である)で表される組成を有するものであり、かつ前記第二層皮膜が、少なくともAlを含みCrとNiのうちの1種以上を含む合金層中に、酸化物の粒子および繊維が分散されたものであることが好ましい。 In a second oxidation coating structure described above, when heat-resistant alloy is a niobium-based alloy, an alloy film of the first layer, in the general formula Re 1-ab M a R b ( wherein, M represents Cr, One or more elements of Ni and Al, R is one or more elements of Nb, Mo, W, Hf, and C, and a and b are atomic ratios of M and R, respectively). It is preferable that the second layer film is one in which oxide particles and fibers are dispersed in an alloy layer containing at least Al and at least one of Cr and Ni.

このニオブ基合金の耐酸化被覆構造においては、前記第一層の合金皮膜が、一般式Re1-d-ede(式中、TはCrとSiのうちの1種以上の元素、RはNb,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、d,eはそれぞれT,Rの原子比である)で表される組成を有するものであり、かつ前記第二層皮膜が、少なくともSiを含みMo,W,Nbのうちの1種以上を含む合金層中に、酸化物の繊維および粒子が分散されたものであってもよい。 In the oxidation-resistant coating structure of the niobium-based alloy, the alloy film of the first layer has a general formula Re 1-de T d R e (where T is one or more elements of Cr and Si, R Is one or more elements selected from the group consisting of Nb, Mo, W, Hf, Zr and C, and d and e are atomic ratios of T and R, respectively. In addition, the second layer coating may be one in which oxide fibers and particles are dispersed in an alloy layer containing at least Si and at least one of Mo, W, and Nb.

上記の耐酸化被覆構造のいずれにおいても、前記繊維が、酸化物系セラミックスの繊維又はウィスカーからなる群より選ばれた1種又は2種以上であって、平均アスペクト比2〜1,000の短繊維又はウィスカーからなり、かつ第二層皮膜中の繊維の含有率が3〜15体積%であることが好ましい。
また、前記酸化物の粒子は、酸化物系セラミックス粉末のうちの1種又は2種以上であって、平均粒径が1〜50μmの粒子からなり、かつ第二層皮膜中の酸化物粒子の含有率が5〜40体積%であることが好ましい。
さらに、これらの酸化物繊維と酸化物粒子の含有率の和についても、20〜50体積%であることが好ましい。
なお、上記酸化物の繊維および粒子は、その耐熱温度に応じて適宜組み合わせて用いることができる。
In any of the above oxidation-resistant coating structures, the fibers are one or more selected from the group consisting of oxide ceramic fibers or whiskers, and have an average aspect ratio of 2 to 1,000. It is preferable that it consists of a fiber or a whisker, and the content rate of the fiber in a 2nd layer membrane | film | coat is 3-15 volume%.
The oxide particles are one or more of oxide-based ceramic powders, and are composed of particles having an average particle diameter of 1 to 50 μm, and the oxide particles in the second layer film The content is preferably 5 to 40% by volume.
Furthermore, the sum of the content ratios of these oxide fibers and oxide particles is preferably 20 to 50% by volume.
Note that the fibers and particles of the oxide can be used in appropriate combination depending on the heat resistant temperature.

本発明の耐熱合金の被覆方法の第一は、上記第一の耐酸化被覆構造を形成する方法であって、耐熱合金の基材表面に、少なくともAl又はSiを含む金属粉末と酸化物の繊維および粒子とをバインダー中に分散させた塗料の塗膜を形成し、次いでこの塗膜中の前記金属粉末を焼結させる熱処理を施すことを特徴とするものである。   The first heat-resistant alloy coating method of the present invention is a method for forming the first oxidation-resistant coating structure, wherein the heat-resistant alloy base material surface includes at least Al or Si-containing metal powder and oxide fibers. In addition, a coating film of a paint in which particles and particles are dispersed in a binder is formed, and then heat treatment is performed to sinter the metal powder in the coating film.

また、本発明の耐熱合金の被覆方法の第二は、上記第二の耐酸化被覆構造を形成する方法であって、耐熱合金の基材表面に前記第一層の合金皮膜を形成し、
さらにその表面に、少なくともAl又はSiを含む金属粉末と酸化物の粒子および繊維とをバインダー中に分散させた塗料の塗膜を形成し、次いでこの塗膜中の前記金属粉末を焼結させる熱処理を施すことを特徴とするものである。
The second heat-resistant alloy coating method of the present invention is a method of forming the second oxidation-resistant coating structure, wherein the first layer alloy film is formed on the surface of the heat-resistant alloy substrate,
Further, a heat treatment for forming a coating film of a paint in which metal powder containing at least Al or Si and oxide particles and fibers are dispersed in a binder on the surface and then sintering the metal powder in the coating film It is characterized by giving.

上記の被覆方法のいずれにおいても、前記熱処理に際し、2種以上の金属粉末を燃焼合成法により反応させて、金属間化合物を生成させてもよい。   In any of the above coating methods, two or more metal powders may be reacted by a combustion synthesis method to generate an intermetallic compound during the heat treatment.

本発明により、基材表面にAl基合金又はSi基合金からなる酸化防止層を有するニオブ基合金、又は基材表面にRe基合金からなる拡散防止層と、さらにその表面に前記酸化防止層との2層の耐酸化皮膜を有するニオブ基合金において、最外面に形成されるAl23又はSiO2皮膜中に含まれる繊維のくさび止め効果と、酸化防止層中への酸化物の粒子および繊維の添加によって、この層と最表面の酸化物層との熱膨張率の差を小さくする効果とにより、酸化物層皮膜のはく離やき裂の発生を防止することができ、とくに高温域で、これらの皮膜欠陥に起因する酸化の進行を抑制する効果が大きい。
本発明の耐酸化被覆構造は、ニオブ基合金の場合にとくに有用であるが、その他の耐熱合金、例えばニッケル基、クロム基、コバルト基、モリブデン基等の合金にも適用することができる。
According to the present invention, a niobium-based alloy having an antioxidant layer made of an Al-based alloy or Si-based alloy on the substrate surface, or a diffusion-preventing layer made of a Re-based alloy on the substrate surface, and the antioxidant layer on the surface thereof In the niobium-based alloy having the two-layered oxidation-resistant film, the wedge-preventing effect of the fibers contained in the Al 2 O 3 or SiO 2 film formed on the outermost surface, the oxide particles in the antioxidant layer, and Due to the effect of reducing the difference in coefficient of thermal expansion between this layer and the outermost oxide layer by the addition of fibers, it is possible to prevent the peeling of the oxide layer film and the occurrence of cracks, especially at high temperatures. The effect of suppressing the progress of oxidation due to these film defects is great.
The oxidation-resistant coating structure of the present invention is particularly useful in the case of niobium-based alloys, but can also be applied to other heat-resistant alloys such as nickel-base, chromium-base, cobalt-base, and molybdenum-base alloys.

図1は、本発明のニオブ基合金の耐酸化被覆構造を示す断面模式図である。この耐酸化被覆は2層の皮膜からなり、下側の第一層皮膜2は合金皮膜であり、上側の第二層皮膜3は、合金層中に酸化物の粒子4および繊維5が分散された複合材料の皮膜である。第二層皮膜3は、合金層中に酸化物のもとになる金属元素(Al又はSi)を含有していて、これが雰囲気中の酸化性ガスにより酸化され、表面に酸化物層(Al23又はSiO2)を生成することにより、雰囲気中の酸素や窒素等の非金属元素を遮断する。一方、第一層皮膜2は基材1と第二層皮膜3の間の元素の拡散防止を主な目的とする。 FIG. 1 is a schematic cross-sectional view showing an oxidation resistant coating structure of a niobium-based alloy according to the present invention. The oxidation-resistant coating is composed of two layers, the lower first layer coating 2 is an alloy coating, and the upper second layer coating 3 has oxide particles 4 and fibers 5 dispersed in the alloy layer. This is a composite film. The second layer film 3 contains a metal element (Al or Si) that becomes an oxide in the alloy layer, which is oxidized by an oxidizing gas in the atmosphere, and an oxide layer (Al 2 on the surface). By generating O 3 or SiO 2 ), non-metallic elements such as oxygen and nitrogen in the atmosphere are blocked. On the other hand, the first layer coating 2 is mainly intended to prevent the diffusion of elements between the substrate 1 and the second layer coating 3.

図2は、上記の耐酸化被覆構造を有するニオブ基合金を高温大気に曝露した後の皮膜の変化を示す断面模式図である。図に見られるように、第二層の合金皮膜3の表面に緻密な酸化物層6が形成される。この酸化物層6は、主にAl23又はSiO2からなっており、層厚が小さくても、元素の遮断能は大きい。第一層皮膜2は、Reを含む高温できわめて安定な相であり、拡散を抑制する効果が大きいため、熱拡散による第二層皮膜3の分解・変質を防止することができる。 FIG. 2 is a schematic cross-sectional view showing the change in the coating after the niobium-based alloy having the above oxidation-resistant coating structure is exposed to high-temperature air. As can be seen in the figure, a dense oxide layer 6 is formed on the surface of the alloy film 3 of the second layer. The oxide layer 6 is mainly made of Al 2 O 3 or SiO 2 , and has a high element blocking ability even if the layer thickness is small. Since the first layer film 2 is a very stable phase containing Re and has a large effect of suppressing diffusion, it is possible to prevent the second layer film 3 from being decomposed or altered by thermal diffusion.

まず、本発明の耐酸化被覆構造において、第二層皮膜3中に酸化物の粒子4および繊維5を分散させる理由について説明する。この第二層皮膜3は、表面に生成した酸化物層6がはく離等により脱落を起こした場合に、合金層が露出した表面で、Al又はSiが酸化されて酸化物層6が再生されるため、自己補修の機能を有している。しかしながら、この酸化物層6と合金層(第二層皮膜)3本体との熱膨張率の差がきわめて大きいため、非常にはく離し易い。そこで、酸化物の粒子4および繊維5を含有させることにより、第二層の熱膨張率が低下して、最表面の酸化物層の熱膨張率との差が小さくなる。さらに繊維5は、最表面の酸化物層6にき裂・はく離が生じても、くさび止め効果によって、最表面の酸化物層6の脱落を防止し、これを繋ぎ止める効果を有するため、酸化物層のはく離による酸化の進行を抑制し、これにより第二層皮膜3の耐久性を確保することが可能になる。   First, the reason why the oxide particles 4 and the fibers 5 are dispersed in the second layer coating 3 in the oxidation resistant coating structure of the present invention will be described. When the oxide layer 6 formed on the surface of the second layer film 3 is detached due to peeling or the like, the oxide layer 6 is regenerated by oxidizing Al or Si on the surface where the alloy layer is exposed. Therefore, it has a self-repair function. However, since the difference in coefficient of thermal expansion between the oxide layer 6 and the alloy layer (second layer coating) 3 main body is extremely large, it is very easy to separate. Therefore, by including the oxide particles 4 and the fibers 5, the thermal expansion coefficient of the second layer is lowered, and the difference from the thermal expansion coefficient of the outermost oxide layer is reduced. Further, the fiber 5 has an effect of preventing the outermost oxide layer 6 from falling off by the wedge-preventing effect even if the outermost oxide layer 6 is cracked or peeled off. It is possible to suppress the progress of oxidation due to the peeling of the physical layer, thereby ensuring the durability of the second layer coating 3.

このように酸化物の粒子4の添加により、第二層皮膜3の熱膨張率が低下する事例について説明する。図3は、線膨張係数測定装置(測定試験片長さ20mm)によって得られたデータで、基材及び各層皮膜の主要組成に相当する合金、酸化物粒子含有Al−Ni合金及びアルミナの線膨張整数の比較を示す図である。
図に見られるように、最表面の酸化物層6の構成物質であるアルミナの熱膨張率に比して、第二層皮膜3に相当する50atm%Al−Ni合金の熱膨張率は大きく、とくに1300℃以上の高温域でその差が大きくなっている。これが酸化物層6がはく離する主な原因と考えられる。
An example in which the thermal expansion coefficient of the second layer coating 3 is reduced by the addition of the oxide particles 4 will be described. FIG. 3 is data obtained by a linear expansion coefficient measuring apparatus (measurement specimen length 20 mm), and is an integer corresponding to the main composition of the base material and each layer coating, an oxide particle-containing Al—Ni alloy, and the linear expansion integer of alumina. It is a figure which shows comparison of these.
As seen in the figure, the thermal expansion coefficient of the 50 atm% Al—Ni alloy corresponding to the second layer film 3 is large compared to the thermal expansion coefficient of alumina which is a constituent material of the outermost oxide layer 6. In particular, the difference is large at a high temperature range of 1300 ° C. or higher. This is considered to be the main cause of the oxide layer 6 peeling off.

一方、50Al−Ni合金にアルミナ粒子を添加すると、その熱膨張率が次第に低下し、とくにアルミナ粒子を50%程度添加すると、アルミナとの熱膨張率の差が顕著に小さくなることが知れる。これは、添加粒子(アルミナ)自体が酸化物層構成物質(アルミナ)と同じ熱膨張率を持つことの他に、添加粒子が1種のクッションの作用をして熱膨張を抑えるという作用があるのでないかと推測される。その結果酸化物層6を第二層皮膜3からはく離し難くすることが期待される。   On the other hand, it is known that when alumina particles are added to a 50Al—Ni alloy, the coefficient of thermal expansion gradually decreases, and particularly when about 50% of alumina particles are added, the difference in coefficient of thermal expansion from alumina is significantly reduced. This is because the additive particles (alumina) itself has the same thermal expansion coefficient as that of the oxide layer constituent material (alumina), and the additive particles act as a kind of cushion to suppress the thermal expansion. I guess that. As a result, it is expected that the oxide layer 6 is difficult to peel off from the second layer film 3.

第二層皮膜3の合金層の組成は、酸化物形成元素がAlの場合(以下、Al系という)とSiの場合(以下、Si系という)に大別される。Al系での合金層は、少なくともAlを含み、かつCrとNiのうちの1種以上を含む。Alは表面に緻密な酸化物皮膜を形成するために必要な元素であり、CrとNiのうちの1種以上は、Alとの間に高温で安定な相(合金又は金属間化合物)を形成するため必要な元素である。一方、Si系での合金層は、少なくともSiを含み、かつMo,W,Nbのうちの1種以上を含む。この場合は、Siが酸化物皮膜形成元素で、Mo,W,Nbのうちの1種以上が、Siとの間に高温で安定な相(合金又は金属間化合物)を形成する元素である。   The composition of the alloy layer of the second layer coating 3 is roughly divided into a case where the oxide forming element is Al (hereinafter referred to as Al-based) and a case where it is Si (hereinafter referred to as Si-based). The Al-based alloy layer contains at least Al, and contains one or more of Cr and Ni. Al is an element necessary for forming a dense oxide film on the surface, and at least one of Cr and Ni forms a stable phase (alloy or intermetallic compound) at high temperature with Al. It is a necessary element to do. On the other hand, the Si-based alloy layer includes at least Si and includes one or more of Mo, W, and Nb. In this case, Si is an oxide film forming element, and at least one of Mo, W, and Nb is an element that forms a stable phase (alloy or intermetallic compound) with Si at a high temperature.

第二層皮膜3の合金層中に分散させる繊維としては、酸化物系セラミックスの繊維又はウィスカーのうちの1種又は2種以上を、その耐熱温度に応じて用いることができる。酸化物系セラミックスとしては、アルミナ系、高シリカ系、アルミナ−シリカ系、シリケート(ガラス)系、ジルコニア系の繊維や、繊維化可能な各種金属酸化物の繊維を用いることができる。   As the fiber to be dispersed in the alloy layer of the second layer coating 3, one or more of oxide ceramic fibers or whiskers can be used depending on the heat resistant temperature. As the oxide-based ceramics, alumina-based, high-silica-based, alumina-silica-based, silicate (glass) -based, zirconia-based fibers, and fibers of various metal oxides that can be made into fibers can be used.

本発明においては、繊維として平均アスペクト比が2〜1,000の短繊維又はウィスカーを用いることが好ましい。その理由は、長繊維を薄い皮膜中に分散させることはきわめて困難であり、短繊維の方が第二層皮膜中に均一に分散させることが容易なためでる。
後述するように、合金層の原料粉末と繊維とを混合して焼結させるので、強化繊維の径は、原料粉末の粒径と同程度又はそれ以下であることが好ましい。上記のいずれの繊維でも、数〜数十ミクロンの極細繊維を入手することは可能であるから、おおむね原料粉末の粒径と同程度の繊維を用いることができる。また、ウィスカーの径は通常数ミクロン程度以下であるから、本発明においてとくに好適である。
ウィスカーとしては、例えばアルミナ、チタン酸カリウム、ホウ酸アルミニウム、マグネシア、酸化亜鉛等の非金属のウィスカーを用いることができる。
In the present invention, it is preferable to use short fibers or whiskers having an average aspect ratio of 2 to 1,000 as the fibers. This is because it is extremely difficult to disperse long fibers in a thin film, and short fibers are easier to disperse uniformly in the second layer film.
As will be described later, since the raw material powder of the alloy layer and the fiber are mixed and sintered, the diameter of the reinforcing fiber is preferably about the same as or smaller than the particle size of the raw material powder. Since any of the above-mentioned fibers can obtain ultrafine fibers of several to several tens of microns, fibers having a particle size almost the same as that of the raw material powder can be used. Moreover, since the diameter of a whisker is usually about several microns or less, it is particularly suitable in the present invention.
As the whisker, for example, non-metallic whiskers such as alumina, potassium titanate, aluminum borate, magnesia, and zinc oxide can be used.

一方、第二層皮膜3の合金層中に分散させる酸化物粒子としては、酸化物系セラミックス粉末のうちの1種又は2種以上を、用いることができる。酸化物系セラミックスとしては、アルミナ系、高シリカ系、アルミナ−シリカ系、シリケート(ガラス)系、ジルコニア系の各種金属酸化物の粉末を用いることができる。
本発明においては、酸化物粉末として平均粒径が1〜50μmの粒子であることが好ましい。その理由は、後述するように、合金層の原料粉末と酸化物粉末とを混合して焼結させるので、酸化物粉末の径は、原料粉末の粒径と同程度又はそれ以上であることが、焼結を容易にする上で好ましいためである。
On the other hand, as the oxide particles dispersed in the alloy layer of the second layer coating 3, one or more of the oxide ceramic powders can be used. As oxide ceramics, powders of various metal oxides of alumina, high silica, alumina-silica, silicate (glass), and zirconia can be used.
In the present invention, the oxide powder is preferably a particle having an average particle diameter of 1 to 50 μm. The reason is that, as will be described later, since the raw material powder of the alloy layer and the oxide powder are mixed and sintered, the diameter of the oxide powder may be equal to or larger than the particle diameter of the raw material powder. This is because it is preferable for facilitating sintering.

さらに、第二層皮膜中の酸化物繊維の含有率が3〜15体積%、酸化物粒子の含有率が5〜40体積%、かつ酸化物繊維と酸化物粒子の含有率の和が20〜50体積%であることが好ましい。酸化物繊維と酸化物粒子の含有率が上記の範囲未満では、繊維による強化および熱膨張率差の低減からなる酸化膜のはく離抑制の複合効果が不十分である。また、酸化物繊維と酸化物粒子の含有率が上記の範囲を超えると、焼結時に緻密な皮膜生成が困難になり、これに伴い酸化が促進されて逆効果となる。なお、これらの酸化物繊維および粒子は、その耐熱温度に応じて適宜組み合わせて用いることができる。
また、第二層皮膜の合金層中の酸化物形成元素(Al又はSi)の原子比はとくに限定を要しないが、0.05〜0.95であることが好ましい。
Furthermore, the content rate of the oxide fiber in the second layer coating is 3 to 15% by volume, the content rate of the oxide particle is 5 to 40% by volume, and the sum of the content rate of the oxide fiber and the oxide particle is 20 to 20%. It is preferably 50% by volume. When the content ratio of the oxide fiber and the oxide particle is less than the above range, the combined effect of suppressing peeling of the oxide film, which is strengthened by the fiber and reduced in the difference in thermal expansion coefficient, is insufficient. Moreover, when the content rate of an oxide fiber and an oxide particle exceeds said range, it will become difficult to produce | generate a precise | minute film | membrane at the time of sintering, and in connection with this, oxidation will be accelerated | stimulated and it will have an adverse effect. These oxide fibers and particles can be used in appropriate combination depending on the heat resistant temperature.
Further, the atomic ratio of the oxide-forming element (Al or Si) in the alloy layer of the second layer film is not particularly limited, but is preferably 0.05 to 0.95.

次に、第一層皮膜2の構成物質及び機能は、前記特許文献3の場合と同様であり、その好ましい組成はAl系とSi系で相違する。Al系では、一般式Re1-a-bab(ここで、Reはレニウムで、MはCr,NiおよびAlよりなる群から選ばれた1種又は2種以上の元素、RはNb,Mo,W,Hf,ZrおよびCよりなる群から選ばれた1種又は2種以上の元素で、a,bはそれぞれM,Rの原子比である。)で表される組成であることが好ましい。
一方、Si系では、一般式Re1-d-ede(式中、TはCrとSiのうちの1種以上の元素、RはNi,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、d,eはそれぞれT,Rの原子比である)で表わされる組成あることが好ましい。
Next, the constituent material and function of the first layer coating 2 are the same as in the case of Patent Document 3, and the preferred composition is different between Al-based and Si-based. The Al-based, with the general formula Re 1-ab M a R b ( where, Re is rhenium, M is Cr, 1 or two or more elements selected from the group consisting of Ni and Al, R is Nb, 1 or 2 or more elements selected from the group consisting of Mo, W, Hf, Zr and C, and a and b are atomic ratios of M and R, respectively). preferable.
On the other hand, in the Si-based, in the general formula Re 1-de T d R e ( wherein, T 1 or more elements of the Cr and Si, R is the group consisting of Ni, Mo, W, Hf, from Zr and C It is preferable that the composition is represented by one or more elements selected from the group consisting of d and e each having an atomic ratio of T and R).

Al系、Si系いずれの場合も、Reは拡散防止の主要な役割をする元素である。第一層の合金皮膜を3元系以上の組成物で構成する理由は、第二層皮膜の合金層中の元素のみならず、基材中の元素も予め第一層皮膜に含ませておき、しかも成分ごとに各相における化学ポテンシャルを等しくしておくことによって、拡散を防止するためである。これにより、耐酸化被覆の分解・変質を抑制することができ、皮膜の耐久性を大幅に向上させることができる。
また、Al系における元素MとR、及びSi系における元素TとRは、いずれもReとの間に高温で安定な相を形成する元素が好ましく、例えば、Re−Cr−Ni系のシグマ相や、Re−(Nb,Mo,W)系のシグマ相又はカイ相等の金属間化合物相が好適である。
In both Al and Si systems, Re is an element that plays a major role in preventing diffusion. The reason why the first layer alloy film is composed of a ternary or higher composition is that not only the elements in the alloy layer of the second layer film but also the elements in the base material are included in the first layer film in advance. In addition, diffusion is prevented by keeping the chemical potential in each phase equal for each component. Thereby, decomposition | disassembly and quality change of an oxidation-resistant coating can be suppressed, and durability of a film | membrane can be improved significantly.
Further, the elements M and R in the Al system and the elements T and R in the Si system are preferably elements that form a stable phase with Re at a high temperature. For example, a Re—Cr—Ni sigma phase In addition, an intermetallic compound phase such as a Re- (Nb, Mo, W) -based sigma phase or chi-phase is preferable.

本発明の被覆方法は、上述のような耐酸化被覆構造を形成するためのものである。以下、図1に示すような2層の皮膜を形成する場合について説明する。まず、基材表面に第一層の合金皮膜を形成する方法は、従来から実用化されている各種の方法のいずれかによればよい。例えばPVD法、CVD法、溶射法、電解被覆法、拡散注入法等のいずれであってもよく、また、これらを組み合わせて用いてもよい。   The coating method of the present invention is for forming an oxidation resistant coating structure as described above. Hereinafter, a case where a two-layered film as shown in FIG. 1 is formed will be described. First, the method of forming the first layer alloy film on the substrate surface may be any of various methods that have been put to practical use. For example, any of PVD method, CVD method, thermal spraying method, electrolytic coating method, diffusion injection method and the like may be used, or a combination thereof may be used.

一方、第二層の複合皮膜(合金層中に酸化物粒子および繊維が分散された皮膜)を基材表面に形成するという技術は、従来あまり実例がなく、かかる技術が確立されているとは言いがたい。本発明者らは、種々検討の結果、所定成分の金属又は合金粉末と酸化物粉末および繊維とをバインダー中に分散させた塗料を調製し、これを基材表面に塗布して塗膜を形成し、その後この塗膜を熱処理して、金属又は合金粉末を焼結させる方法が適切なことを知見した。これにより、酸化物粒子および繊維が金属粉末と固結して、十分な強度の皮膜を形成することができる。なお、当然ながら、熱処理中にバインダー成分の大部分は分解、揮散する。バインダーについてはとくに限定を要しないが、有機物系のバインダーを用いることができ、塗膜を形成し易いように、粘性、基材への付着性、乾燥性等を考慮して適宜選択すればよい。   On the other hand, the technology of forming a second layer composite coating (a coating in which oxide particles and fibers are dispersed in an alloy layer) on the surface of a base material has not been very practical and has been established. It's hard to say. As a result of various studies, the present inventors prepared a coating material in which a predetermined component of metal or alloy powder, oxide powder and fiber are dispersed in a binder, and applied this to the substrate surface to form a coating film. Then, it was found that a method of heat-treating the coating film and sintering the metal or alloy powder was appropriate. Thereby, oxide particle | grains and a fiber solidify with a metal powder and can form a membrane | film | coat with sufficient intensity | strength. Of course, most of the binder component decomposes and volatilizes during the heat treatment. The binder is not particularly limited, but an organic binder can be used and may be appropriately selected in consideration of viscosity, adhesion to a substrate, drying property, etc. so that a coating film can be easily formed. .

この塗膜の熱処理に際しては、燃焼合成法により金属間化合物の合成を行うこともできる。燃焼合成法は、2種以上の金属粉末を加熱・反応させて、その反応熱も利用して金属間化合物の合成や焼結体の製造を行うもので、近年ではこれを金属材料上の皮膜形成に応用しようとする報告例もある(前記非特許文献1)。 後記実施例に示すように、上記の第二層皮膜がAl系の場合には、AlとNiの金属粉末から燃焼合成法より、Ni−Al系の金属間化合物を合成し、その際の発熱も利用し(必要により外部からも加熱して)、金属粉末粒子と酸化物粒子および繊維の焼結を進行させることができる。   In the heat treatment of the coating film, an intermetallic compound can be synthesized by a combustion synthesis method. In the combustion synthesis method, two or more kinds of metal powders are heated and reacted, and the reaction heat is used to synthesize an intermetallic compound and produce a sintered body. There is also a report example to be applied to formation (Non-Patent Document 1). As shown in the examples described later, when the second layer film is an Al-based film, a Ni-Al-based intermetallic compound is synthesized from a metal powder of Al and Ni by a combustion synthesis method. Can also be used (heated from the outside if necessary) to advance the sintering of the metal powder particles, oxide particles and fibers.

Nb−5Mo−5W−Cr(モル%)の組成を持つNb基合金をアーク溶解法によりAr雰囲気中で溶製した。原料としては、Nbについては99.99%、Mo、WとCrについては99.9%の粉末あるいは粒状のものを用いた。溶製した合金を1気圧のAr気流中に、1800℃において24時間にわたって加熱して、均質化熱処理とした。その後20×20×2(厚さ)mmの試験片母材を切り出して、被覆処理に供した。
第一層皮膜の形成には、まず母材の表面に塩化レニウムを含む溶融塩化物浴から厚さ5μmの金属Reを、電析させた。続いて、フェロクロム粉末とともにアルミナるつぼに埋め込み、1×10-3Paの真空中において1300℃で10h保持することによりCr蒸気の拡散処理を行い、厚さ約10μmの第一層合金皮膜とした。
An Nb-based alloy having a composition of Nb-5Mo-5W-Cr (mol%) was melted in an Ar atmosphere by an arc melting method. As the raw material, 99.99% powder or granular material was used for Nb and 99.9% for Mo, W, and Cr. The melted alloy was heated in a 1 atm Ar stream at 1800 ° C. for 24 hours to obtain a homogenization heat treatment. Thereafter, a test piece base material of 20 × 20 × 2 (thickness) mm was cut out and subjected to a coating treatment.
To form the first layer film, first, metal Re having a thickness of 5 μm was electrodeposited from a molten chloride bath containing rhenium chloride on the surface of the base material. Subsequently, it was embedded in an alumina crucible together with the ferrochrome powder, and Cr vapor diffusion treatment was carried out by holding at 1300 ° C. in a vacuum of 1 × 10 −3 Pa for 10 hours to obtain a first layer alloy film having a thickness of about 10 μm.

次に、同一モル%のAlとNiの純金属粉に、Al23短繊維を約1〜20体積%およびAl23粉末粒子(平均粒径φ15μm)約3〜50体積%を表1のような組み合わせで添加しミルを用いて均一に分散させた後、これに有機バインダーとしてパラフィン10重量%を加えて混合したものを約100℃に加熱溶解し、上記試験片母材に塗布した。
この試料を、静水圧プレス後、水素中で一旦550℃に1時間保定して燃焼焼結反応により50Al−Ni(モル%)金属間化合物に合金化焼結した後、有機物を除去するため900℃で10h脱脂を行った。次に、この試料をアルミナ粉とともに1200℃、15min、30MPaのホットプレス処理により、約100μm厚さの、繊維及び粒子を含む50Al−Ni(モル%)合金の第二層耐酸化合金皮膜を形成し、被覆処理を完了した。
Next, about 1 to 20% by volume of Al 2 O 3 short fibers and about 3 to 50% by volume of Al 2 O 3 powder particles (average particle diameter φ15 μm) are represented in the same mol% of Al and Ni pure metal powder. After adding a combination of 1 and uniformly dispersing using a mill, 10 wt% of paraffin added as an organic binder and mixing the mixture is heated to about 100 ° C and applied to the base material of the test piece. did.
In order to remove organic matter, the sample was held at 550 ° C. in hydrogen for 1 hour after hydrostatic pressing and alloyed and sintered to 50Al—Ni (mol%) intermetallic compound by a combustion sintering reaction. Degreasing was carried out at 10 ° C. for 10 hours. Next, this sample is hot-pressed with alumina powder at 1200 ° C., 15 min, 30 MPa to form a second layer oxidation-resistant alloy film of 50 Al—Ni (mol%) alloy containing fibers and particles having a thickness of about 100 μm. And the coating process was completed.

この比較材として、上記と同様に厚さ約10μmの第一層Re−Cr合金皮膜を施した試験片に、Ni電気めっきを行った後、Fe−Al合金粉末とともにアルミナるつぼに埋め込み、1×10-3Paの真空中において1000℃で20h保持してAl蒸気拡散処理することで、約100μm厚さの、繊維及び粒子を含まない50Al−Ni(モル%)合金の第二層耐酸化合金皮膜の被覆処理を行った。 As a comparison material, Ni electroplating was performed on a test piece having a first layer Re—Cr alloy film having a thickness of about 10 μm as described above, and then embedded in an alumina crucible together with Fe—Al alloy powder. Second layer oxidation-resistant alloy of 50Al-Ni (mol%) alloy that does not contain fibers and particles and is about 100 μm thick by holding Al vapor diffusion treatment at 1000 ° C. for 20 hours in a vacuum of 10 −3 Pa The film was coated.

以上の工程による被覆処理を行った本発明の試験片(本発明材)および比較材を、1500℃の静止大気中で100時間加熱して、酸化処理を行った。その結果、本発明材および比較材ともに、図2に示すように、基材表面の第一層合金皮膜2、第二層耐酸化合金皮膜3が積層し、最表面に酸化物層(Al、O)6が形成された二オブ基合金耐熱部材が得られた。ここで、本発明材では、第二層耐酸化合金皮膜中のAlの優先酸化に伴い、表面に形成するAl23酸化膜中の一部耐酸化合金層側にはAl23短繊維が包含されていた。 The test piece of the present invention (the material of the present invention) and the comparative material subjected to the coating treatment according to the above steps were heated in a static atmosphere at 1500 ° C. for 100 hours to be oxidized. As a result, as shown in FIG. 2, the first material alloy film 2 and the second layer oxidation-resistant alloy film 3 on the surface of the base material are laminated together and the oxide layer (Al, A two-batter base heat-resistant member in which O) 6 was formed was obtained. Here, in the material of the present invention, along with the preferential oxidation of Al in the second layer oxidation resistant alloy film, a part of the oxidation resistant alloy layer in the Al 2 O 3 oxide film formed on the surface has a short Al 2 O 3 short. Fiber was included.

本発明及び比較材の成膜後の第二層耐酸化合金皮膜の繊維及び粒子の含有量、および酸化処理後の表面酸化物層(ほぼ全量がAl23で構成)のはく離比率・酸化増量を、表1に示す。表中、繊維及び粒子の含有量が好ましい範囲内のものを、備考欄に「本発明」と表示し、好ましい範囲から外れているものを「比較例」と表示している。
なお、ここではく離比率とは、以下の定義で表す。
はく離比率 =(はく離Al23量 ÷ 全Al23量)×100
The fiber and particle content of the second layer oxidation resistant alloy film after film formation of the present invention and the comparative material, and the peeling ratio / oxidation of the surface oxide layer (almost all composed of Al 2 O 3 ) after the oxidation treatment The increase is shown in Table 1. In the table, those in which the fiber and particle content is within the preferred range are indicated as “present invention” in the remarks column, and those outside the preferred range are indicated as “comparative examples”.
Here, the separation ratio is represented by the following definition.
Peeling ratio = (peeled Al 2 O 3 content ÷ total Al 2 O 3 content) x 100

Figure 2008069403
Figure 2008069403

以上の結果から、第二層への繊維含有の場合、Al23短繊維の含有率がわずか3体積%でも、併せてAl23粒子を20体積%含有させれば、1500℃の静止大気中で100時間加熱後において、はく離比率、すなわち密着性が著しく改善されたことがわかる。
先願の例では、酸化温度が1350℃の場合は、Al23短繊維のみ(Al23粒子なし)3%の添加ではく離率が大幅に改善されたが、酸化温度1500℃の場合は、Al23短繊維のみでははく離改善効果は小さかった。また、予備的検討において、繊維無しで粒子のみ添加した場合は、1500℃においてはく離率が高かった。これは繊維によるくざび止め効果が無いためと推測される。Al23粒子とAl23短繊維を複合添加することによって、1500℃でもはく離率の大幅な改善が可能になることが知れた。
From the above results, in the case of containing fibers in the second layer, even if the content of Al 2 O 3 short fibers is only 3% by volume, if 20% by volume of Al 2 O 3 particles are contained together, It can be seen that after 100 hours of heating in a static atmosphere, the peeling ratio, that is, the adhesion, was remarkably improved.
In the example of the prior application, when the oxidation temperature was 1350 ° C., the separation rate was significantly improved by adding only 3% Al 2 O 3 short fibers (without Al 2 O 3 particles), but the oxidation temperature was 1500 ° C. In the case, only the Al 2 O 3 short fibers had a small peeling improvement effect. In preliminary examination, when only particles were added without fibers, the peeling rate was high at 1500 ° C. This is presumed to be due to the absence of the effect of preventing the fibers from being wedged. It has been known that the peeling rate can be significantly improved even at 1500 ° C. by adding a composite of Al 2 O 3 particles and Al 2 O 3 short fibers.

一方、Al23短繊維の含有率が3体積%でも、併せてAl23粒子を50体積%含有させた場合は、はく離比率は小さくて良好であるが、酸化が非常に進行した。これは、酸化物含有量が多くなり過ぎたことにより充填密度が低下し、酸化をむしろ促進させたためと推定される。表1に示すように、酸化物繊維と粒子は適正量を組み合わせることにより、酸化膜の密着性向上効果が得られることがわかった。 On the other hand, even when the content of Al 2 O 3 short fibers was 3% by volume, when 50% by volume of Al 2 O 3 particles were contained together, the peeling ratio was small and good, but oxidation proceeded very much. . This is presumed to be due to the fact that the packing density decreased due to excessive oxide content, and rather promoted oxidation. As shown in Table 1, it was found that the oxide fiber and particles can be combined with appropriate amounts to obtain an effect of improving the adhesion of the oxide film.

本発明の耐熱合金の耐酸化被覆構造の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the oxidation-resistant coating structure of the heat-resistant alloy of this invention. 本発明の耐熱合金を高温大気に曝露した後の皮膜の変化を示す断面模式図である。It is a cross-sectional schematic diagram which shows the change of the film | membrane after exposing the heat-resistant alloy of this invention to high temperature air | atmosphere. 基材及び各層皮膜の主要組成からなる合金、粒子添加50Al−Ni、アルミナの線膨張率の比較を示す図である。It is a figure which shows the comparison of the linear expansion coefficient of the alloy which consists of a main composition of a base material and each layer membrane | film | coat, particle | grain addition 50Al-Ni, and an alumina.

符号の説明Explanation of symbols

1 基材
2 第一層皮膜(拡散防止層)
3 第二層皮膜(酸化防止層)
4 酸化物粒子
5 酸化物繊維
6 酸化物層
1 Base material 2 First layer coating (diffusion prevention layer)
3 Second layer coating (antioxidation layer)
4 Oxide particle 5 Oxide fiber 6 Oxide layer

Claims (7)

耐熱合金の基材表面に、少なくともAl又はSiを含む合金層中に酸化物の繊維および粒子が分散された耐酸化皮膜が形成されていることを特徴とする耐熱合金の耐酸化被覆構造。   An oxidation-resistant coating structure for a heat-resistant alloy, wherein an oxidation-resistant film in which oxide fibers and particles are dispersed in an alloy layer containing at least Al or Si is formed on the surface of the base material of the heat-resistant alloy. 耐熱合金の基材表面に、拡散防止を目的とする第一層の合金皮膜が形成され、さらにその表面に、少なくともAl又はSiを含む合金層中に酸化物の繊維および粒子が分散された第二層の皮膜が形成されていることを特徴とする耐熱合金の耐酸化被覆構造。   A first layer alloy film for preventing diffusion is formed on the surface of the base material of the heat-resistant alloy, and oxide fibers and particles are dispersed on the surface of the alloy layer containing at least Al or Si. An oxidation resistant coating structure of a heat resistant alloy, characterized in that a two-layered film is formed. 前記耐熱合金がニオブ基合金であり、前記第一層の合金皮膜が、一般式Re1-a-bab(式中、MはCr,Ni,Alのうち1種以上の元素、RはNb,Mo,W,Hf,Cのうち1種以上の元素、a,bはそれぞれM,Rの原子比である)で表される組成を有するものであり、かつ前記第二層皮膜が、少なくともAlを含みCrとNiのうちの1種以上を含む合金層中に、酸化物の繊維および粒子が分散されたものである請求項2記載の耐酸化被覆構造。 The heat resistant alloy is a niobium-based alloy, an alloy film of the first layer, in the general formula Re 1-ab M a R b ( wherein, M represents Cr, Ni, 1 or more elements of Al, R is One or more elements of Nb, Mo, W, Hf, and C, a and b are each an atomic ratio of M and R), and the second layer coating is 3. The oxidation resistant coating structure according to claim 2, wherein oxide fibers and particles are dispersed in an alloy layer containing at least Al and at least one of Cr and Ni. 前記耐熱合金がニオブ基合金であり、前記第一層の合金皮膜が、一般式Re1-d-ede(式中、TはCrとSiのうちの1種以上の元素、RはNb,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、d,eはそれぞれT,Rの原子比である)で表される組成を有するものであり、かつ前記第二層皮膜が、少なくともSiを含みMo,W,Nbのうちの1種以上を含む合金層中に、酸化物の繊維および粒子が分散されたものである請求項2記載の耐酸化被覆構造。 The heat-resistant alloy is a niobium-based alloy, and the alloy film of the first layer has a general formula Re 1-de T d R e (where T is one or more elements of Cr and Si, and R is Nb And at least one element selected from the group consisting of Mo, W, Hf, Zr and C, wherein d and e are atomic ratios of T and R, respectively, and 3. The oxidation-resistant coating according to claim 2, wherein the second layer coating is obtained by dispersing oxide fibers and particles in an alloy layer containing at least Si and at least one of Mo, W, and Nb. Construction. 前記繊維が、酸化物系セラミックスの繊維又はウィスカーからなる群より選ばれた1種又は2種以上であって、平均アスペクト比2〜1,000の短繊維又はウィスカーからなり、又前記粒子が酸化物系セラミックスの粒子からなる群より選ばれた1種又は2種以上であって、平均粒径1〜50μmの粒子からなり、かつ第二層皮膜中の酸化物繊維の含有率が3〜15体積%、酸化物粒子の含有率が5〜40体積%、かつ酸化物繊維と酸化物粒子の含有率の和が20〜50体積%である請求項1乃至4のいずれかに記載の耐酸化被覆構造。   The fibers are one or more selected from the group consisting of oxide ceramic fibers or whiskers, and are composed of short fibers or whiskers having an average aspect ratio of 2 to 1,000, and the particles are oxidized. 1 type or 2 types or more selected from the group consisting of particles of physical ceramics, consisting of particles having an average particle size of 1 to 50 μm, and a content ratio of oxide fibers in the second layer coating of 3 to 15 5. The oxidation resistance according to claim 1, wherein the volume percentage is 5 to 40 volume%, and the sum of the percentage content of oxide fibers and oxide particles is 20 to 50 volume%. Covering structure. 請求項1記載の耐酸化被覆構造を形成する方法であって、耐熱合金の基材表面に、少なくともAl又はSiを含む金属粉末と酸化物の繊維および粒子とをバインダー中に分散させた塗料の塗膜を形成し、次いでこの塗膜中の前記金属粉末を焼結させる熱処理を施すことを特徴とする耐熱合金の被覆方法。   A method for forming an oxidation-resistant coating structure according to claim 1, wherein a coating material is obtained by dispersing metal powder containing at least Al or Si and oxide fibers and particles in a binder on the surface of a base material of a heat-resistant alloy. A heat-resistant alloy coating method comprising forming a coating film, and then performing a heat treatment for sintering the metal powder in the coating film. 請求項2乃至5のいずれかに記載の耐酸化被覆構造を形成する方法であって、耐熱合金の基材表面に前記第一層の合金皮膜を形成し、
さらにその表面に、少なくともAl又はSiを含む金属粉末と酸化物繊維および粒子とをバインダー中に分散させた塗料の塗膜を形成し、次いでこの塗膜中の前記金属粉末を焼結させる熱処理を施すことを特徴とする耐熱合金の被覆方法。
A method for forming an oxidation resistant coating structure according to any one of claims 2 to 5, wherein an alloy film of the first layer is formed on a surface of a base material of a heat resistant alloy,
Further on the surface of the heat treatment, to form a coating film of paint and fibers and particles of oxide and metal powder containing at least Al or Si dispersed in a binder, and then to sinter the metal powder in the coating film A method for coating a heat-resistant alloy, characterized in that:
JP2006248846A 2006-09-14 2006-09-14 Anti-oxidation coating structure and coating method of heat-resistant alloy Pending JP2008069403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248846A JP2008069403A (en) 2006-09-14 2006-09-14 Anti-oxidation coating structure and coating method of heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248846A JP2008069403A (en) 2006-09-14 2006-09-14 Anti-oxidation coating structure and coating method of heat-resistant alloy

Publications (1)

Publication Number Publication Date
JP2008069403A true JP2008069403A (en) 2008-03-27

Family

ID=39291248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248846A Pending JP2008069403A (en) 2006-09-14 2006-09-14 Anti-oxidation coating structure and coating method of heat-resistant alloy

Country Status (1)

Country Link
JP (1) JP2008069403A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010056553A2 (en) * 2008-11-10 2010-05-20 Wisconsin Alumni Research Foundation Low-temperature synthesis of integrated coatings for corrosion resistance
WO2014010547A1 (en) * 2012-07-09 2014-01-16 新日鐵住金株式会社 Composite roll and rolling method
CN105386113A (en) * 2015-11-05 2016-03-09 北京师范大学 Preparing method of titanium-based material surface composite antibacterial coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010056553A2 (en) * 2008-11-10 2010-05-20 Wisconsin Alumni Research Foundation Low-temperature synthesis of integrated coatings for corrosion resistance
WO2010056553A3 (en) * 2008-11-10 2010-08-26 Wisconsin Alumni Research Foundation Low-temperature synthesis of integrated coatings for corrosion resistance
US8795845B2 (en) 2008-11-10 2014-08-05 Wisconsin Alumni Research Foundation Low-temperature synthesis of integrated coatings for corrosion resistance
WO2014010547A1 (en) * 2012-07-09 2014-01-16 新日鐵住金株式会社 Composite roll and rolling method
KR20140142334A (en) * 2012-07-09 2014-12-11 신닛테츠스미킨 카부시키카이샤 Composite roll and rolling method
KR101642215B1 (en) 2012-07-09 2016-07-22 신닛테츠스미킨 카부시키카이샤 Composite roll and rolling method
US9676015B2 (en) 2012-07-09 2017-06-13 Nippon Steel & Sumitomo Metal Corporation Composite rolling mill roll and rolling method
CN105386113A (en) * 2015-11-05 2016-03-09 北京师范大学 Preparing method of titanium-based material surface composite antibacterial coating

Similar Documents

Publication Publication Date Title
EP2083097B1 (en) Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
US8043717B2 (en) Combustion turbine component having rare earth CoNiCrAl coating and associated methods
US8039117B2 (en) Combustion turbine component having rare earth NiCoCrAl coating and associated methods
JP5645093B2 (en) Ni-base superalloy member provided with heat-resistant bond coat layer
JP2009242836A (en) Alloy material having high temperature corrosion-resistance, heat-shielding coating material, turbine member and gas turbine
JP2006257451A (en) Structure of oxidation-resistant coating formed on heat-resistant alloy and coating method
JP2012132099A (en) Niobium-based alloy heat-resistant material
US7867626B2 (en) Combustion turbine component having rare earth FeCrAI coating and associated methods
US8043718B2 (en) Combustion turbine component having rare earth NiCrAl coating and associated methods
JP2008069403A (en) Anti-oxidation coating structure and coating method of heat-resistant alloy
JP3413096B2 (en) Heat resistant member and method of manufacturing the same
JP2006219740A (en) Niobium-based alloy heat resistant member having excellent oxidation resistance
JPH1161438A (en) Heat shielding coating member and its production
JP4492855B2 (en) Thermal barrier coating member and manufacturing method thereof
JP4313459B2 (en) High temperature exposed member and manufacturing method thereof
JP3332847B2 (en) Heat resistant member and method of manufacturing heat resistant member
JPWO2003038151A1 (en) ReCrNi alloy coating for diffusion barrier
JP2004250788A (en) Film depositing method
JP2021123771A (en) Heat resistant alloy member, manufacturing method of the same, high temperature apparatus and manufacturing method of the same
EP0198078A1 (en) Process for applying coatings to metals and resulting product
WO2018222036A1 (en) Self-healing particles for high temperature ceramics
JP3410955B2 (en) Heat resistant member and method of manufacturing the same
JP4189676B2 (en) Heat-resistant covering material
KR20120044712A (en) Manufacturing method of mo-si-b alloy with high oxidation resistance and product of mo-si-b alloy by using the same
Chandio Processing, Characterisation and Oxidation Study of the Nickel Aluminides (βNiAl) for Thermal Barrier Coating Applications