JP4274337B2 - Method for surface hardening of metallic materials using electric discharge phenomenon - Google Patents

Method for surface hardening of metallic materials using electric discharge phenomenon Download PDF

Info

Publication number
JP4274337B2
JP4274337B2 JP14743699A JP14743699A JP4274337B2 JP 4274337 B2 JP4274337 B2 JP 4274337B2 JP 14743699 A JP14743699 A JP 14743699A JP 14743699 A JP14743699 A JP 14743699A JP 4274337 B2 JP4274337 B2 JP 4274337B2
Authority
JP
Japan
Prior art keywords
metal material
high hardness
electric discharge
hardened
hardness component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14743699A
Other languages
Japanese (ja)
Other versions
JP2000336424A (en
Inventor
一男 澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LTT Bio Pharma Co Ltd
Original Assignee
LTT Bio Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LTT Bio Pharma Co Ltd filed Critical LTT Bio Pharma Co Ltd
Priority to JP14743699A priority Critical patent/JP4274337B2/en
Publication of JP2000336424A publication Critical patent/JP2000336424A/en
Application granted granted Critical
Publication of JP4274337B2 publication Critical patent/JP4274337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は放電現象を利用した金属材料の表面高硬化方法に係り、 詳しくは放電現象を利用し、金属材料の表面内部に高硬化層を形成し、各種金属製機械部品の摩耗による劣化を防止する金属材料表面内部の高硬化層形成方法に関するものである。
【0002】
【従来の技術】
現在、金属材料の表面硬度を高める手段として熱処理、メッキ処理、コーティング処理などが一般に知られ、かつ行われている。
【0003】
熱処理は1000℃以上の熱で金属材料を加熱し、油冷もしくは空冷により急冷することで組織状態を硬化させ硬度を高める、いわゆる焼入れ処理である。
また、メッキ処理、コーティング処理は金属材料表面に被覆材により硬化層を形成する方法である。
【0004】
【発明が解決しようとする課題】
しかし、上記の各処理は熱処理においては金属材料そのものの表面の加熱、急冷で該金属材料以外の物質を混入させることはなく、また、メッキ処理、コーティング処理は金属材料表面上に硬化被膜を形成させるだけであるから、摩擦による剥離、損耗を免れず、しかも処理設備も真空炉等が必要となって高価となり、更に処理するものがダイスの如き場合には液膜の膜厚が不均一となって特に底部では膜厚が薄くなってしまうなどの問題を有していた。
【0005】
本発明は上述の如き実状に対処し、上記各処理の改善をはかるべく、特に放電現象の利用に着目することにより金属材料の表面内部に高硬度物質を混入浸透させ、高硬度硬化層を形成して剥離が起こらず、十分な耐摩耗性を有し、設備も安価な新規な高硬度硬化層形成手段を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
即ち、上記目的に適合する本発明は、1つは金属材料表面の高硬化方法として炭化水素系加工油中に被加工金属材料面と電極を対向配置し、パルス電源より電極側をマイナスに接続し、金属材料側をプラスに接続して放電加工を施し、放電加工時の高温により電極を溶出すると共に、被加工金属材料表面を半溶解し、溶出した電極の構成成分が加工油の分解による炭素成分と化学的に結合して生成した高硬度成分を前記半溶解した金属材料表面に浸透させ、金属材料内部に該浸透した高硬度成分による高硬度硬化層を形成させ、さらに金属材料表面上にも高硬度成分を蓄積させ、のち、金属材料表面上に蓄積した上記硬化層を除去することを特徴とする。
【0007】
請求項2は上記発明の具体的な態様であり、パルス電源により発生した電圧により半溶解した金属材料への高硬度成分の浸透と、冷たい加工油による高硬度成分を取り込んだ金属材料の冷却凝固を繰り返し、焼き入れ状態で金属材料内に高硬度硬化層を形成し、更に金属材料表面上の高硬度成分を蓄積することを特徴とする。
【0009】
【発明の実施の形態】
以下、更に添付図面を参照し、本発明の詳細を説明する。
【0010】
図1は本発明方法を実施する放電加工法の1例を示す図であり、本発明は基本的に図に示すように加工液4、例えば誘電性の炭化水素系加工油中に加工処理しようとする被加工金属材料1と、電極2とを対向して配置し、電源パルス制御器3を設置してパルス電源より電極2側をマイナス(−)に接続し、一方、被加工金属材料1側をプラス(+)に接続して断続的な放電による火花を発生させて加工するものである。
【0011】
ここで、特に注目すべきことはパルス電源よりの接続であり、従来の通常の放電加工における接続が電極側がプラス(+)、被加工金属材料側がマイナス(−)であるのに対し、本発明においてはその逆として電極2側をマイナス(−)に接続し、被加工金属材料1側をプラス(+)に接続している。
これによって加工油4中で電極2と金属材料1を数ミクロンの距離に近づけると、金属材料1側、即ちプラス側からマイナス側の電極2へ電流密度の高い電子の流れが発生し、これが到達した地点では非常な高温となり、電極2は溶出し消耗して極間に放出される。同時にこのとき金属材料1も加熱され、金属材料表面が半溶解状態となる。
【0012】
また、上記放電の熱と共に前記電子の流れが加工油にぶつかることにより加工油4は分解され、炭化水素系加工油4の構成元素である炭素成分Cが負イオン化して、この負イオンと溶出した電極物質の構成成分が発生した熱により化学結合することで負イオン化した高硬度成分、例えば電極2がT系電極であるときはTC成分が、また電極2が窒化チタン電極であるときはチタンと共に溶出した窒素成分を含みTCN成分が生成される。
【0013】
次に上記放電の熱によって周辺の加工油が気化し、前記形成された高硬度成分と、金属材料1に圧力を及ぼし、形成された高硬度成分は上記圧力によって吹き飛ばされ、加工油4中に分散するものと、前記の半溶解した金属材料1内に浸透し取り込まれるものとに分かれる。
そして、溶けた電極成分が吹き飛ばされた後には冷たい加工油が流れ込み、高硬度成分を取り込んだ金属材料を冷やし固める。即ち、焼き入れた状態となる。
【0014】
かくしてパルス電源、通常、高周波パルス電源が用いられるが、このパルス電源により発生した電圧が溶解、凝固、溶解、凝固のサイクルで繰り返されることにより、金属材料1の内部に高硬度硬化層7が形成され、さらに金属材料表面上にも高硬度成分が蓄積され被膜5が形成される。
【0015】
以上のようにして金属材料表面上に20ミクロン程度の高硬度成分が蓄積された時点で放電現象のサイクルを打ち切り、金属材料表面上に蓄積された硬化被膜5を機械的に除去することで金属材料表面内層部に高硬度硬化層7を有する金属材料が完成する。
なお、金属材料表面上に形成された上記硬質被膜5には図示の如き放電痕6が残り、爾後の障害となるのでラップ加工で鏡面仕上げと同時に除去するようにする。
【0016】
以上は本発明における放電加工による高硬度硬化処理であるが、ここで溶出する電極に使用される金属としては、窒化チタン粉、窒化ジルコニウム粉、窒化バナジウム粉、窒化ニオブ粉、窒化タンタル粉、窒化クロム粉、窒化ケイ素粉、チタンカーバイト粉、ジルコンカーバイト粉、バナジウムカーバイト粉、ニオブカーバイト粉、タンタルカーバイト粉、モリブデンカーバイト粉、タングステンカーバイト粉、ホウ化チタン粉、ホウ化ジルコニウム粉、ホウ化ニオブ粉、ホウ化タンタル粉、ホウ化クロム粉、ホウ化モリブデン粉、ホウ化タングステン粉、ホウ化ランタン粉、ケイ化チタン粉、ケイ化ジルコニウム粉、ケイ化ニオブ粉、ケイ化タンタル粉、ケイ化クロム粉、ケイ化モリブデン粉、ケイ化タングステン粉などの各種金属粉を1種又は2種以上混合して圧縮成形し、半焼結状態で使用することができるが、チタン、タングステンカーバイト粉使用は最も実用的である。
【0017】
また、被加工金属材料としては超硬合金が一般的であるが、従来、焼入処理ができなかったステンレス(SUS304)やアルミ等にも簡単に硬化層を形成させることができる。
【0018】
また、金属材料の表面中層部への高硬度成分の浸透による高硬度硬化層7の深さは高周波パルス電源の強さを調整することにより適宜、調整することができ、通常、3〜10ミクロン程度、最大30ミクロン程度まで形成可能である。
【0019】
更に本発明の高硬度硬化方法は、他の既知の方法との組み合わせを排除するものではなく、例えば材質S45Cの熱処理をしていない材料に本発明処理を施してみると、HV400〜450ぐらいの硬度となるが、同じ材料に熱処理をした後、本発明処理を施すと、HV800〜1100になる。
また、熱処理をした後、本発明処理を施し、コーティング処理をすると、金属材料表面及び表面上両方に硬化層が存在することになり、耐摩耗は大きく向上する。
【0020】
次に本発明により硬化した金属材料の各表面の硬度及び耐摩耗性を他の鋼材及び超硬材と比較した結果を示す。
【0021】
表1は微小硬度計を用いて測定した硬度の比較であり、表2は金属材料上面にダイヤモンドパウダーを散布し上部より回転部材を押し付け加圧して回転させたときの金属材料面の摩擦による窪み深さの比較である。
【0022】
【表1】

Figure 0004274337
【0023】
【表2】
Figure 0004274337
【0024】
上記表1の対比より本発明により硬化処理を施した金属材料は、施さないものに比し大巾に硬度が増加し、非常に高い高度の表面硬化層が得られることが分かる。
また表2に示す耐摩耗試験例のように本発明処理を施した金属材料は処理を施さないものに比較し、大きく耐摩耗性が向上していることが確認された。
【0025】
【発明の効果】
本発明は以上のようにパルス電源より電極側をマイナスに接続し、金属材料側をプラスに接続して放電現象を利用し、加工油中にて金属材料の表面内部に高硬度物質を混入させ、高硬度硬化層を形成させるものであり、従来のメッキ、コーティングの如く金属材料表面に被膜を形成したものと異なり、金属材料内部に高硬度硬化層を形成させるため剥離が起こることがなく、しかも前記の如く硬度、耐摩耗性ともに大巾に改善し、部品、治工具、金型などの摩耗の激しい個所の摩耗による劣化を防止して、寿命を増大すると共に、更に設備も放電加工のみで簡単で、頗る安価であって処理に要する費用も少なくて済み、金属材料の表面硬化、耐摩耗性向上に極めて顕著な効果を有している。
【図面の簡単な説明】
【図1】本発明方法の基本原理を示す放電加工の説明図である。
【符号の説明】
1 被加工金属材料
2 電極
3 パルス電源
4 加工油
5 蓄積高硬度成分
7 高硬度硬化層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high surface hardening how metallic material utilizing a discharge phenomenon, specifically utilizing a discharge phenomenon, a high cured layer is formed on the inner surface of the metallic material, the deterioration due to various metal machine parts wear those related to high hardened layer formed how the internal metal surface to prevent.
[0002]
[Prior art]
Currently, heat treatment, plating treatment, coating treatment and the like are generally known and performed as means for increasing the surface hardness of metal materials.
[0003]
The heat treatment is a so-called quenching treatment in which the metal material is heated with heat of 1000 ° C. or higher and quenched by oil cooling or air cooling to harden the structure and increase the hardness.
The plating process and the coating process are methods for forming a hardened layer on the metal material surface with a coating material.
[0004]
[Problems to be solved by the invention]
However, in each of the above treatments, the surface of the metal material itself is not heated and rapidly cooled in the heat treatment, and substances other than the metal material are not mixed, and the plating treatment and coating treatment form a cured film on the surface of the metal material. Therefore, peeling and wear due to friction are unavoidable, and the processing equipment is also expensive due to the need for a vacuum furnace, etc.If the material to be processed is a die, the film thickness of the liquid film is uneven. In particular, the bottom portion has a problem that the film thickness becomes thin.
[0005]
In the present invention, in order to deal with the actual situation as described above, and to improve each of the above treatments, the high hardness substance is mixed and penetrated into the surface of the metal material by focusing particularly on the use of the discharge phenomenon to form a high hardness hardened layer. Accordingly, it is an object of the present invention to provide a novel high-hardness hardened layer forming means that does not cause peeling, has sufficient wear resistance, and has inexpensive equipment.
[0006]
[Means for Solving the Problems]
That is, according to the present invention that meets the above-mentioned purpose, as one of the high curing methods for the surface of the metal material, the metal material surface to be processed and the electrode are arranged opposite to each other in the hydrocarbon processing oil, and the electrode side is connected to the minus side from the pulse power source. In addition, the metal material side is connected to the positive side and electric discharge machining is performed, and the electrode is eluted at a high temperature during electric discharge machining, and the surface of the metal material to be processed is semi-dissolved. A high hardness component generated by chemically bonding with a carbon component is infiltrated into the surface of the semi-dissolved metal material to form a high hardness hardened layer by the infiltrated high hardness component inside the metal material, and further on the metal material surface. Further, it is characterized by accumulating a high hardness component and then removing the cured layer accumulated on the surface of the metal material.
[0007]
A second aspect of the present invention is a specific aspect of the invention, wherein the high hardness component penetrates into the metal material semi-dissolved by the voltage generated by the pulse power supply, and the metal material is cooled and solidified by incorporating the high hardness component by the cold working oil. Is repeated, and a hardened hard layer is formed in the metal material in a quenched state, and further, a high hardness component on the surface of the metal material is accumulated.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described below with reference to the accompanying drawings.
[0010]
FIG. 1 is a diagram showing an example of an electric discharge machining method for carrying out the method of the present invention. In the present invention, as shown in the figure, basically, machining is performed in a machining fluid 4, for example, a dielectric hydrocarbon-based machining oil. The metal material 1 to be processed and the electrode 2 are arranged to face each other, the power pulse controller 3 is installed, and the electrode 2 side from the pulse power source is connected to minus (−), while the metal material 1 to be processed 1 The side is connected to plus (+) to generate sparks due to intermittent discharge.
[0011]
What should be particularly noted here is the connection from the pulse power supply, and the connection in the conventional normal electric discharge machining is positive (+) on the electrode side and negative (−) on the metal material side to be processed, whereas the present invention In contrast, the electrode 2 side is connected to the minus (-) and the workpiece metal material 1 side is connected to the plus (+).
As a result, when the electrode 2 and the metal material 1 are brought close to a distance of several microns in the processing oil 4, an electron current having a high current density is generated from the metal material 1 side, that is, from the positive side to the negative side electrode 2. At this point, the temperature becomes extremely high, and the electrode 2 is eluted and consumed, and is discharged between the electrodes. At the same time, the metal material 1 is also heated, and the surface of the metal material is in a semi-dissolved state.
[0012]
Further, when the flow of electrons collides with the processing oil together with the heat of the electric discharge, the processing oil 4 is decomposed, and the carbon component C, which is a constituent element of the hydrocarbon processing oil 4, is negatively ionized, and the negative ions are eluted. high hardness component constituents and negative ionization by chemically bonded by heat generated in the electrode material, for example, T i C component when the electrode 2 is T i based electrodes, also the electrode 2 is a titanium nitride electrode time T i CN component comprises nitrogen components eluted with titanium is produced.
[0013]
Next, the processing oil in the vicinity is vaporized by the heat of the discharge, exerting pressure on the formed high hardness component and the metal material 1, and the formed high hardness component is blown off by the pressure, and into the processing oil 4. It is divided into one that is dispersed and one that penetrates and is taken into the semi-dissolved metal material 1.
Then, after the melted electrode component is blown away, cold working oil flows, and the metal material incorporating the high hardness component is cooled and hardened. That is, it is in a quenched state.
[0014]
Thus, a pulse power source, usually a high-frequency pulse power source, is used. By repeating the voltage generated by this pulse power source in the cycle of melting, solidifying, melting, and solidifying, a hardened hardened layer 7 is formed inside the metal material 1. Further, a high hardness component is accumulated on the surface of the metal material, and the coating 5 is formed.
[0015]
As described above, when a high hardness component of about 20 microns is accumulated on the surface of the metal material, the cycle of the discharge phenomenon is stopped, and the cured coating 5 accumulated on the surface of the metal material is mechanically removed to remove the metal. A metal material having the hardened hardened layer 7 in the material surface inner layer portion is completed.
The hard coating 5 formed on the surface of the metal material is left with a discharge mark 6 as shown in the figure, which becomes a hindrance after the removal, and is removed at the same time as the mirror finish by lapping.
[0016]
The above is a high-hardness hardening process by electric discharge machining in the present invention, but the metal used for the electrode eluted here is titanium nitride powder, zirconium nitride powder, vanadium nitride powder, niobium nitride powder, tantalum nitride powder, nitriding Chrome powder, silicon nitride powder, titanium carbide powder, zircon carbide powder, vanadium carbide powder, niobium carbide powder, tantalum carbide powder, molybdenum carbide powder, tungsten carbide powder, titanium boride powder, zirconium boride Powder, niobium boride powder, tantalum boride powder, chromium boride powder, molybdenum boride powder, tungsten boride powder, lanthanum boride powder, titanium silicide powder, zirconium silicide powder, niobium silicide powder, tantalum silicide Various metal powders such as powder, chromium silicide powder, molybdenum silicide powder, tungsten silicide powder, etc. Or a mixture of two or more compression molded, but can be used in semi-sintered state, titanium, tungsten carbide powder used is the most practical.
[0017]
In addition, a hard metal is generally used as a metal material to be processed, but a hardened layer can be easily formed on stainless steel (SUS304), aluminum, or the like that could not be hardened conventionally.
[0018]
Further, the depth of the hardened hardened layer 7 due to the penetration of the hardened component into the surface middle layer of the metal material can be appropriately adjusted by adjusting the strength of the high-frequency pulse power source, usually 3 to 10 microns. It can be formed up to about 30 microns.
[0019]
Furthermore, the high-hardness curing method of the present invention does not exclude combinations with other known methods. For example, when the present invention treatment is applied to a material that has not been heat-treated, the material S45C is about HV 400 to 450. Although it becomes hardness, if it heat-processes to the same material and performs this invention process, it will become HV800-1100.
In addition, when the present invention treatment is performed after the heat treatment and the coating treatment is performed, a hardened layer exists on both the metal material surface and the surface, and the wear resistance is greatly improved.
[0020]
Next, the results of comparing the hardness and wear resistance of each surface of the metal material hardened according to the present invention with other steel materials and cemented carbide materials will be shown.
[0021]
Table 1 shows a comparison of hardness measured using a micro hardness tester, and Table 2 shows a dent caused by friction on the metal material surface when diamond powder is applied to the upper surface of the metal material and the rotating member is pressed and rotated from above. It is a comparison of depth.
[0022]
[Table 1]
Figure 0004274337
[0023]
[Table 2]
Figure 0004274337
[0024]
From the comparison of Table 1 above, it can be seen that the metal material subjected to the curing treatment according to the present invention has a greatly increased hardness as compared with those not subjected to the treatment, and a very high degree of surface hardened layer can be obtained.
Moreover, it was confirmed that the wear resistance of the metal material subjected to the present invention treatment as shown in Table 2 is greatly improved as compared with the case where the treatment is not performed.
[0025]
【The invention's effect】
In the present invention, as described above, the electrode side of the pulse power supply is connected to the negative side, the metal material side is connected to the positive side, and the discharge phenomenon is utilized to mix a high-hardness substance in the surface of the metal material in the processing oil. Unlike the conventional plating and coating, which forms a coating on the surface of the metal material, a high hardness cured layer is formed inside the metal material so that no peeling occurs. Moreover, as described above, both hardness and wear resistance have been greatly improved to prevent deterioration due to wear of parts, jigs, tools, and other severely worn parts, extending the service life, and the equipment can only be used for electrical discharge machining. It is simple, inexpensive, requires less processing costs, and has a very remarkable effect on the surface hardening and wear resistance improvement of metal materials.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of electric discharge machining showing the basic principle of a method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Work metal material 2 Electrode 3 Pulse power supply 4 Processing oil 5 Accumulated high hardness component 7 High hardness hardening layer

Claims (2)

炭化水素系加工油中に被加工金属材料と電極を対向配置し、パルス電源より電極側をマイナスに接続し、金属材料側をプラスに接続して放電加工を施し、放電加工時の高温により電極を溶出すると共に、被加工金属材料表面を半溶解し、溶出した電極の構成成分が加工油の分解による炭素成分と化学的に結合して生成した高硬度成分を前記半溶解した金属材料表面に浸透させ、金属材料内部に該浸透した高硬度成分による高硬度硬化層を形成させ、さらに金属材料表面上にも高硬度成分を蓄積させ、のち、金属材料表面上に蓄積した上記高硬度成分を除去することを特徴とする放電現象を利用した金属材料の表面高硬化方法。In the hydrocarbon processing oil, the metal material to be processed and the electrode are placed facing each other, the electrode side is connected negatively from the pulse power supply, the metal material side is connected positively, and electric discharge machining is performed. In addition, the surface of the metal material to be processed is semi-dissolved. Infiltrate and form a hardened hardened layer by the infiltrated high hardness component inside the metal material, and further accumulate the high hardness component on the surface of the metal material, and then the above high hardness component accumulated on the surface of the metal material. A method for highly curing a surface of a metal material utilizing an electric discharge phenomenon, characterized by removing the surface. パルス電源により発生した電圧により半溶解した金属材料への高硬度成分の浸透と、冷たい加工油による高硬度成分を取り込んだ金属材料の冷却凝固を繰り返し、焼き入れ状態で金属材料内に高硬度硬化層を形成し、更に金属材料表面上の高硬度成分を蓄積する請求項1記載の放電現象を使用した金属材料の表面高硬化方法Repeated the penetration of high hardness components into the metal material semi-dissolved by the voltage generated by the pulse power supply and the cooling and solidification of the metal material incorporating the high hardness component by the cold processing oil, hardened in the metal material in the quenched state 2. A method of highly curing a surface of a metal material using an electric discharge phenomenon according to claim 1, wherein a layer is formed and a high hardness component on the surface of the metal material is accumulated.
JP14743699A 1999-05-27 1999-05-27 Method for surface hardening of metallic materials using electric discharge phenomenon Expired - Fee Related JP4274337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14743699A JP4274337B2 (en) 1999-05-27 1999-05-27 Method for surface hardening of metallic materials using electric discharge phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14743699A JP4274337B2 (en) 1999-05-27 1999-05-27 Method for surface hardening of metallic materials using electric discharge phenomenon

Publications (2)

Publication Number Publication Date
JP2000336424A JP2000336424A (en) 2000-12-05
JP4274337B2 true JP4274337B2 (en) 2009-06-03

Family

ID=15430299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14743699A Expired - Fee Related JP4274337B2 (en) 1999-05-27 1999-05-27 Method for surface hardening of metallic materials using electric discharge phenomenon

Country Status (1)

Country Link
JP (1) JP4274337B2 (en)

Also Published As

Publication number Publication date
JP2000336424A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
Tsai et al. EDM performance of Cr/Cu-based composite electrodes
JP3363284B2 (en) Electrode for electric discharge machining and metal surface treatment method by electric discharge
JPH05148615A (en) Treatment for surface of metallic material
KR20050058995A (en) Rotor and coating method therefor
JP5121933B2 (en) Discharge surface treatment method
JP3271836B2 (en) Surface treatment method for aluminum and its alloys by submerged discharge
CN107974682A (en) A kind of method that die casting surface peening and reparation remanufacture
JP3627784B2 (en) Discharge surface treatment method
JP4274337B2 (en) Method for surface hardening of metallic materials using electric discharge phenomenon
JP4575924B2 (en) Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
US6793982B1 (en) Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
JP5547864B2 (en) Discharge surface treatment method and apparatus
Nowicki et al. New possibilities of machining and electrodischarge alloying of free-form surfaces
JP3627088B2 (en) Discharge surface treatment method and object to be processed formed by the method
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
JP3596272B2 (en) Discharge surface treatment apparatus and discharge surface treatment method using the same
Das et al. Surface alloying of titanium di-boride (TiB2) and silicon carbide (SiC) on aluminium al 5052 using electric discharge processing
KR100466271B1 (en) Method and system of treatmenting surface
WO2008010263A1 (en) Process for producing electrode for discharge surface treatment and method of discharge surface treatment
JP2005008942A (en) Surface treatment method
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JP3421479B2 (en) Manufacturing method of functionally graded material
RU2304185C1 (en) Strengthening coating with reinforcing effect application method
Kumari Study of TiC coating on different type steel by electro discharge coating
JP4320523B2 (en) ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees