JP4268994B2 - Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator - Google Patents

Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator Download PDF

Info

Publication number
JP4268994B2
JP4268994B2 JP2007544237A JP2007544237A JP4268994B2 JP 4268994 B2 JP4268994 B2 JP 4268994B2 JP 2007544237 A JP2007544237 A JP 2007544237A JP 2007544237 A JP2007544237 A JP 2007544237A JP 4268994 B2 JP4268994 B2 JP 4268994B2
Authority
JP
Japan
Prior art keywords
gas
liquid
phase
inlet
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007544237A
Other languages
Japanese (ja)
Other versions
JPWO2007055386A1 (en
Inventor
和孝 度会
博 岩田
實明 中尾
徹矢 小森
直毅 鹿園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIREI INDUSTRIES CO., LTD.
University of Tokyo NUC
Original Assignee
NICHIREI INDUSTRIES CO., LTD.
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIREI INDUSTRIES CO., LTD., University of Tokyo NUC filed Critical NICHIREI INDUSTRIES CO., LTD.
Publication of JPWO2007055386A1 publication Critical patent/JPWO2007055386A1/en
Application granted granted Critical
Publication of JP4268994B2 publication Critical patent/JP4268994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0017Use of electrical or wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • B01D19/001Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/02Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/0069Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with degasification or deaeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Description

本発明は、例えば冷凍サイクルや蒸気サイクル等の熱機関の気液分離器に関し、詳細には、より一層の高性能化並びに小形化および高信頼性を図る技術に関する。 The present invention relates to a gas-liquid separator of a heat engine such as a refrigeration cycle or a steam cycle, and more particularly to a technique for further improving performance, downsizing, and high reliability.

例えば、冷凍サイクルで使用される気液分離器としては、重力によって液を溜めるタンクを用いたり、旋回流の遠心力によって液相を外壁に付着させ、重力によって液を回収する気液分離器等が用いられている。 また、上記気液分離を重力場のみならず微少重力あるいは無重力環境でも気液分離が出来るよう濡れ性の良い面と悪い面を作り、気液を分離することが出来るようにした提案もあるが、このものに於いては気液を効率良く分離する手段は開示されていなかった。換言すると気液が混合された状態で排出路2(本来なら気相主体)に供給されてしまっていた。 For example, as a gas-liquid separator used in a refrigeration cycle, a tank that collects liquid by gravity, a gas-liquid separator that collects liquid by gravity by attaching a liquid phase to the outer wall by centrifugal force of swirling flow, etc. Is used. In addition, there is a proposal that makes it possible to separate the gas and liquid by making good and bad wettability so that the gas-liquid separation can be performed not only in the gravitational field but also in the microgravity or weightless environment. In this product, no means for efficiently separating gas and liquid has been disclosed. In other words, the gas and liquid are mixed and supplied to the discharge path 2 (originally the gas phase main body).

かかる構成の気液分離器では、基本的に重力や遠心力などの体積力によって密度の大きい液相を分離する構造となっている。このため、気液分離器の設置位置や向きに自由度が少ない上、タンクや旋回流発生装置を用いるため大形の装置となっている。更には気液を効率良く分離する手段が示されていないものであった。 そこで、先に、発明者らは前記した課題を解決すべく、表面張力効果を用いることで、気液分離器をより高性能化並びに小形化することを目的とする発明の基本的構成および詳細構造の特許を出願した。
特許公開平11−3722号公報 特許公開2003−114293号公報 特許公開2002−204905号公報 特願2004−382493
The gas-liquid separator having such a structure basically has a structure in which a liquid phase having a high density is separated by a body force such as gravity or centrifugal force. For this reason, there are few degrees of freedom in the installation position and direction of a gas-liquid separator, and since it uses a tank and a swirl flow generator, it is a large-sized apparatus. Furthermore, no means for efficiently separating the gas and liquid has been shown. Therefore, in order to solve the above-described problems, the inventors first used the surface tension effect to improve the performance and miniaturization of the gas-liquid separator. Filed a patent for the structure.
Japanese Patent Publication No. 11-3722 Japanese Patent Publication No. 2003-114293 Japanese Patent Publication No. 2002-204905 Japanese Patent Application No. 2004-382493

従来の気液分離器では、密度の大きな液相を重力や遠心力などの体積力で分離する構造となっているため、体積力が支配的となるように設置方向と重力方向とをマッチングさせる必要があり、また、旋回流れや曲がり流れのような加速度を伴う流れを発生させるなどの工夫が必要であった。 Conventional gas-liquid separators have a structure that separates a high-density liquid phase with a bulk force such as gravity or centrifugal force, so the installation direction and the gravity direction are matched so that the bulk force is dominant. In addition, it was necessary to devise such as generating a flow with acceleration such as a swirling flow or a bending flow.

これらは、重力方向に距離を確保したタンクが必要である、あるいは旋回流れを用いる場合は旋回羽根が必要である。また、曲がり流れを発生させるために仕切り板によって流れの向きを変える必要がある。このため、装置が大形なものとなり、小形化が困難であった。また、濡れ性を利用する気液分離器にあっては液体を濡れ性の良い所に、気体を濡れ性の悪い所に効率良く供給する手段は開示されていなかった。 These require a tank that secures a distance in the direction of gravity, or a swirl vane when swirling flow is used. Moreover, in order to generate a bending flow, it is necessary to change the direction of the flow by the partition plate. For this reason, the apparatus becomes large and it is difficult to reduce the size. Moreover, in the gas-liquid separator using wettability, no means for efficiently supplying a liquid to a place with good wettability and a gas to a place with poor wettability has not been disclosed.

上記した気液分離器を小形化しようとする場合には、遠心力や重力等の体積力に対して粘性力や表面張力等の影響が無視できなくなるため、装置自体の気液分離特性が低下してしまうという問題があった。 また、前記課題を解決するために、先に発明者らが出願した表面張力効果を用いることで、気液分離器をより高性能化並びに小形化することを目的とする発明の特許では、求められる運転条件および冷媒流量に対し適切な仕様の気液分離装置を提供する具体的手段は開示されていなかったことに加え、安価で信頼性の高い高性能な仕様の気液分離器を提供する具体的手段は開示されていなかった。 When trying to reduce the size of the gas-liquid separator described above, the influence of viscous force and surface tension on the bulk force such as centrifugal force and gravity cannot be ignored, so the gas-liquid separation characteristics of the device itself are reduced. There was a problem of doing. Further, in order to solve the above-mentioned problem, an invention patent for the purpose of further improving the performance and miniaturization of the gas-liquid separator by using the surface tension effect previously filed by the inventors has sought. In addition to the fact that a specific means for providing a gas-liquid separator having an appropriate specification with respect to the operating conditions and the refrigerant flow rate was not disclosed, an inexpensive and reliable high-performance gas-liquid separator having high specifications is provided. No specific means were disclosed.

本発明は、先に出願した特願2004−382493を更に発展させ、表面張力効果を用いることで気液分離器をより高性能化並びに小形化することを目的とする気液分離器にあって、様々な運転条件で使用される各種冷凍サイクルや蒸気サイクル等の熱機関の気液分離器として、求められる運転条件および冷媒流量に対し適切な仕様の気液分離装置を提供し、また、求められる運転条件に対し安価で効率の良い気液分離性能を確保できる気液分離装置を提供することを目的とすることに加え、安価で信頼性の高い高性能な仕様の気液分離器を提供する具体的手段として、各部品間の相対的位置関係および安価な組み立て方法を提供することを目的とし、さらに、その気液分離器を空気調和機、冷蔵庫、冷凍庫、除湿機、ショーケース、自動販売機およびカーエアコン等の冷凍装置等への採用を提案するものである。   The present invention is a gas-liquid separator intended to further develop the previously filed Japanese Patent Application No. 2004-382493 and to improve the performance and miniaturization of the gas-liquid separator by using the surface tension effect. As a gas-liquid separator for heat engines such as various refrigeration cycles and steam cycles used in various operating conditions, we provide a gas-liquid separator with appropriate specifications for the required operating conditions and refrigerant flow rate. In addition to the purpose of providing a gas-liquid separation device that can ensure low-cost and efficient gas-liquid separation performance under the operating conditions, we provide a low-cost, reliable and high-performance gas-liquid separator As a specific means, it is intended to provide a relative positional relationship between each part and an inexpensive assembly method, and further, the gas-liquid separator is an air conditioner, refrigerator, freezer, dehumidifier, showcase, automatic Sales machine and is intended to propose the adoption of the refrigerating apparatus such as a car air conditioner or the like.

本発明(1)は、外郭を構成する外郭体(外郭体10−1)と、 気液二相流を導入可能な入口管(入口管5−1)と、 前記入口管(入口管5−1)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−1)と、 前記気液分離室(気液分離室1−1)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管6−1)と、 前記気液分離室(気液分離室1−1)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−1)とを有する気液分離器(気液分離装置)であって、 前記気液分離室(気液分離室1−1)は、 前記入口管(入口管5−1)からの気液二相流を導入するための入口空間(狭小空間12−1)と、 前記入口空間(狭小空間12−1)の下流に設けられた空間であって、前記入口空間(狭小空間12−1)よりも流路断面積が拡大した拡大空間(急拡大部3−1)と、 前記入口空間(狭小空間12−1)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−1)に向かう溝付き部(溝付き体4−1)とを有する気液分離器(気液分離装置)において、 ウエーバー数をWe、気液分離器(気液分離装置)に流入する気液二相流の質量流量をG、二相流の密度をρ、表面張力をσ、溝幅をb、該入口空間(狭小空間12−1)から溝(溝2−1)に流入する溝内流路断面積をSlとしたとき、

Figure 0004268994
としたことを特徴とする気液分離器(気液分離装置)である。The present invention (1) includes an outer body (outer body 10-1) constituting an outer shell, an inlet pipe (inlet pipe 5-1) capable of introducing a gas-liquid two-phase flow, and the inlet pipe (inlet pipe 5- 1) a gas-liquid separation chamber (gas-liquid separation chamber 1-1) for separating the gas-liquid two-phase flow into a gas phase and a liquid phase, which are in fluid communication with each other; and the gas-liquid separation chamber (gas-liquid separation chamber) 1-1) and a gas phase outlet pipe (gas phase outlet pipe 6-1) through which the separated gas phase is guided, which are in fluid communication with each other, and the gas-liquid separation chamber (gas-liquid separation chamber 1-1). A gas-liquid separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-1) through which the separated liquid phase is guided, which is communicated so as to be able to conduct fluid. (Gas-liquid separation chamber 1-1) includes an inlet space (narrow space 12-1) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-1), and the inlet space (narrow space). 1 2-1) is a space provided downstream of the inlet space (narrow space 12-1), and an enlarged space (rapidly enlarged portion 3-1) in which a flow passage cross-sectional area is larger than the inlet space ( Gas-liquid having a grooved part (grooved body 4-1) toward the liquid-phase outlet pipe (liquid-phase outlet pipe 7-1) to which a gas-liquid two-phase flow from the narrow space 12-1) is directly guided. In the separator (gas-liquid separator), the Weber number is We, the mass flow rate of the gas-liquid two-phase flow flowing into the gas-liquid separator (gas-liquid separator) is G, the density of the two-phase flow is ρ, and the surface tension is When σ, the groove width is b, and the channel cross-sectional area in the groove flowing into the groove (groove 2-1) from the inlet space (narrow space 12-1) is Sl,
Figure 0004268994
This is a gas-liquid separator (gas-liquid separator).

本発明(2)は、外郭を構成する外郭体(外郭体10−1)と、 気液二相流を入流(導入)可能な入口管(入口管5−1)と、 前記入口管(入口管5−1)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−1)と、 前記気液分離室(気液分離室1−1)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管6−1)と、 前記気液分離室(気液分離室1−1)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−1)とを有する気液分離器(気液分離装置)であって、 前記気液分離室(気液分離室1−1)は、 前記入口管(入口管5−1)からの気液二相流を導入するための入口空間(狭小空間12−1)と、 前記入口空間(狭小空間12−1)の下流に設けられた空間であって、前記入口空間(狭小空間12−1)よりも流路断面積が拡大した拡大空間(急拡大部3−1)と、 前記入口空間(狭小空間12−1)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−1)に向かう溝付き部(溝付き体4−1)とを有する気液分離器(気液分離装置)において、 前記溝付き部が、前記外郭体(外郭体10−1)と別体である、溝付き面をもつ溝付き体(溝付き体4−1)であることを特徴とする気液分離器(気液分離装置)である。 The present invention (2) includes an outer body (outer body 10-1) constituting an outer shell, an inlet pipe (inlet pipe 5-1) capable of entering (introducing) a gas-liquid two-phase flow, and the inlet pipe (inlet). A gas-liquid separation chamber (gas-liquid separation chamber 1-1) that separates the gas-liquid two-phase flow into a gas phase and a liquid phase, which are in fluid communication with the pipe 5-1), and the gas-liquid separation chamber (gas A gas phase outlet pipe (gas phase outlet pipe 6-1) through which the separated gas phase is guided, which is in fluid communication with the liquid separation chamber 1-1), and the gas-liquid separation chamber (gas-liquid separation chamber 1- 1) a gas-liquid separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-1) through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separator. The liquid separation chamber (gas-liquid separation chamber 1-1) includes an inlet space (narrow space 12-1) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-1), and the inlet space. An enlarged space (rapidly enlarged portion 3-1) which is a space provided downstream of the (narrow space 12-1) and has a channel cross-sectional area larger than that of the inlet space (narrow space 12-1); A grooved part (grooved body 4-1) toward the liquid phase outlet pipe (liquid phase outlet pipe 7-1), to which the gas-liquid two-phase flow from the inlet space (narrow space 12-1) is directly guided, In the gas-liquid separator (gas-liquid separator), the grooved portion is a separate body from the outer body (outer body 10-1) and has a grooved surface (grooved body 4-1). A gas-liquid separator (gas-liquid separator).

本発明(3)は、溝付き面をもつ溝付き体(溝付き体4−1)が、薄板を折り曲げて構成されたものであり、溝幅をb、溝深さをhとしたとき

Figure 0004268994
とした、前記発明(2)の気液分離器(気液分離装置)である。In the present invention (3), the grooved body (grooved body 4-1) having a grooved surface is formed by bending a thin plate, where the groove width is b and the groove depth is h.
Figure 0004268994
The gas-liquid separator (gas-liquid separator) of the invention (2).

本発明(4)は、溝(溝2−1)の表面が親水性処理されている、前記発明(1)〜(3)のいずれか一つの気液分離器(気液分離装置)である。 The present invention (4) is the gas-liquid separator (gas-liquid separator) according to any one of the inventions (1) to (3), wherein the surface of the groove (groove 2-1) is subjected to a hydrophilic treatment. .

本発明(5)は、前記気液分離器(気液分離装置)は、 前記外郭体(外郭体10−1)内に設置されていると共に、前記外郭体(外郭体10−1)と協同して前記入口空間(狭小空間12−1)を形成する、前記溝付き部(溝付き体4−1)の溝(溝2−1)先端と係合する段差部(段差部15−1)を備えた入口仕切り体(入り口仕切体16−1)を更に有しており、 前記入口仕切り体(入り口仕切体16−1)の溝(溝2−1)先端から上流側の長さをL1、溝(溝2−1)先端から下流側の段差部(段差部15−1)の長さをL2としたとき、

Figure 0004268994
とした、前記発明(1)〜(4)のいずれか一つの気液分離器(気液分離装置)である。In the present invention (5), the gas-liquid separator (gas-liquid separator) is installed in the outer body (outer body 10-1) and cooperates with the outer body (outer body 10-1). Then, a stepped portion (stepped portion 15-1) that engages with a groove (groove 2-1) tip of the grooved portion (grooved body 4-1) forming the inlet space (narrow space 12-1). The inlet partition body (entrance partition body 16-1) is further provided, and the upstream length from the tip of the groove (groove 2-1) of the inlet partition body (entrance partition body 16-1) is L1. When the length of the step part (step part 15-1) on the downstream side from the tip of the groove (groove 2-1) is L2,
Figure 0004268994
The gas-liquid separator (gas-liquid separator) according to any one of the inventions (1) to (4).

本発明(6)は、前記気液分離器(気液分離装置)は、 前記外郭体(外郭体10−1)内に設置されていると共に、前記外郭体(外郭体10−1)と協同して前記入口空間(狭小空間12−1)を形成する、前記溝付き部(溝付き体4−1)の溝(溝2−1)先端と係合する段差部(段差部15−1)を備えた入口仕切り体(入り口仕切体16−1)を更に有しており、 前記入口仕切り体(入り口仕切体16−1)の上流側外周と外郭体(外郭体10−1)との距離をH1、溝先端から外殻体との距離をH2としたとき、

Figure 0004268994
とした、前記発明(1)〜(5)のいずれか一つの気液分離器(気液分離装置)である。In the present invention (6), the gas-liquid separator (gas-liquid separator) is installed in the outer body (outer body 10-1) and cooperates with the outer body (outer body 10-1). Then, a stepped portion (stepped portion 15-1) that engages with a groove (groove 2-1) tip of the grooved portion (grooved body 4-1) forming the inlet space (narrow space 12-1). An inlet partition body (entrance partition body 16-1) provided with a distance between the outer periphery on the upstream side of the entrance partition body (entrance partition body 16-1) and the outer body body (outer body body 10-1). Is H1, and the distance from the groove tip to the outer shell is H2,
Figure 0004268994
The gas-liquid separator (gas-liquid separator) according to any one of the inventions (1) to (5).

本発明(7)は、前記入口管(入口管5−1)の内面に内面螺旋溝(内面螺旋溝35−1)が設けられている、前記発明(1)〜(6)のいずれか一つの気液分離器(気液分離装置)である。 The invention (7) is any one of the inventions (1) to (6), wherein an inner surface spiral groove (inner surface spiral groove 35-1) is provided on the inner surface of the inlet pipe (inlet pipe 5-1). One gas-liquid separator (gas-liquid separator).

本発明(8)は、前記入口管(入口管5−1)の出口側端を末広がりに広げた広がり部(広がり部38−1)を設けた、前記発明(1)〜(7)のいずれか一つの気液分離器(気液分離装置)である。 The present invention (8) is any one of the inventions (1) to (7), wherein a widened part (expanded part 38-1) is provided that widens the outlet side end of the inlet pipe (inlet pipe 5-1). This is one gas-liquid separator (gas-liquid separator).

本発明(9)は、前記入口仕切り体(入り口仕切体16−1)の上流部先端を円錐体とした、前記発明(5)〜(8)のいずれか一つの気液分離器(気液分離装置)である。 The present invention (9) is the gas-liquid separator according to any one of the inventions (5) to (8), wherein the upstream end of the inlet partition (entrance partition 16-1) is a cone. Separation device).

本発明(10)は、溝(溝2−1)の上流側の流入室の外郭体(外郭体10−1)内面に溝(溝2−1)の溝深さより深さの浅い導入溝(導入溝44−1)が設けられている、前記発明(1)〜(9)のいずれか一つの気液分離器(気液分離装置)である。 According to the present invention (10), an introduction groove (shallow depth is smaller than the groove depth of the groove (groove 2-1) on the inner surface of the outer body (outer body 10-1) of the inflow chamber upstream of the groove (groove 2-1). The gas-liquid separator (gas-liquid separator) according to any one of the inventions (1) to (9), wherein an introduction groove 44-1) is provided.

本発明(11)は、溝(溝2−1)の上流側の流入室の外郭体(外郭体10−1)内面に溝(溝2−1)の溝深さより厚さの薄い多孔質体(多孔質体47−1)が設けられている、前記発明(1)〜(9)のいずれか一つの気液分離器(気液分離装置)である。 In the present invention (11), the porous body is thinner on the inner surface of the outer body (outer body 10-1) of the inflow chamber upstream of the groove (groove 2-1) than the groove depth of the groove (groove 2-1). The gas-liquid separator (gas-liquid separator) according to any one of the inventions (1) to (9), wherein the (porous body 47-1) is provided.

本発明(12)は、液相出口管(液相出口管7−1)が複数設けられている、前記発明(1)〜(11)のいずれか一つの気液分離器(気液分離装置)である。 The gas-liquid separator (gas-liquid separator) according to any one of the inventions (1) to (11), wherein the present invention (12) is provided with a plurality of liquid-phase outlet pipes (liquid-phase outlet pipes 7-1). ).

本発明(13)は、前記発明(1)〜(12)のいずれか一つの気液分離器(気液分離装置)を空気調和機等の冷凍サイクル中に組み込んだことを特徴とする気液分離器(気液分離装置)を備えた冷凍装置である。 The present invention (13) is characterized in that the gas-liquid separator (gas-liquid separator) of any one of the inventions (1) to (12) is incorporated in a refrigeration cycle such as an air conditioner. A refrigeration apparatus including a separator (gas-liquid separator).

本発明(14)は、外郭を構成する外郭体(外郭体A10−2等)と、 気液二相流を導入可能な入口管(入口管5−2)と、 前記入口管(入口管5−2)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管6−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−2)とを有する気液分離器(気液分離器)であって、 前記気液分離室(気液分離室1−2)は、 前記入口管(入口管5−2)からの気液二相流を導入するための入口空間(狭小空間12−2)と、 前記入口空間(狭小空間12−2)の下流に設けられた空間であって、前記入口空間(狭小空間12−2)よりも流路断面積が拡大した拡大空間(急拡大部3−2)と、 前記入口空間(狭小空間12−2)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−2)に向かう溝付き部(溝付き体4−2)とを有する気液分離器(気液分離器)において、 前記入口空間(狭小空間12−2)よりも拡大した位置を基準とし、その基準位置から気液分離器(気液分離器)への二相流流入方向をプラス方向、その流れ方向と逆方向をマイナス方向とし、その基準位置から気相出口管(気相出口管6−2)の気相流入端位置までの距離をLとし、溝頂点仮想円の径をDtとしたとき、気相出口管(気相出口管6−2)の気相流入端位置を

Figure 0004268994
としたことを特徴とする気液分離器(気液分離器)である。The present invention (14) includes an outer body (outer body A10-2 and the like) constituting an outer shell, an inlet pipe (inlet pipe 5-2) capable of introducing a gas-liquid two-phase flow, and the inlet pipe (inlet pipe 5). -2), the gas-liquid separation chamber (gas-liquid separation chamber 1-2) separating the gas-liquid two-phase flow into a gas phase and a liquid phase, which are in fluid communication with each other, and the gas-liquid separation chamber (gas-liquid separation) A gas phase outlet pipe (gas phase outlet pipe 6-2) through which the separated gas phase is guided, which is in fluid communication with the chamber 1-2), and the gas-liquid separation chamber (gas-liquid separation chamber 1-2) A gas-liquid separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) through which the separated liquid phase is guided in fluid communication with the gas-liquid separator. The chamber (gas-liquid separation chamber 1-2) includes an inlet space (narrow space 12-2) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-2), and the inlet space (narrow space). Sky A space provided downstream of the space 12-2), and an expanded space (rapidly expanded portion 3-2) in which a flow passage cross-sectional area is larger than that of the inlet space (narrow space 12-2), and the inlet space A gas having a grooved portion (grooved body 4-2) toward the liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) to which a gas-liquid two-phase flow from (the narrow space 12-2) is directly guided. In a liquid separator (gas-liquid separator), a two-phase flow inflow from the reference position to the gas-liquid separator (gas-liquid separator) with the position larger than the inlet space (narrow space 12-2) as a reference. The direction is the plus direction, the direction opposite to the flow direction is the minus direction, the distance from the reference position to the gas-phase inlet end position of the gas-phase outlet pipe (gas-phase outlet pipe 6-2) is L, and the groove apex virtual circle Where Dt is the diameter of the gas phase inlet end of the gas phase outlet pipe (gas phase outlet pipe 6-2)
Figure 0004268994
This is a gas-liquid separator (gas-liquid separator).

本発明(15)は、外郭を構成する外郭体(外郭体A10−2等)と、 気液二相流を導入可能な入口管(入口管5−2)と、 前記入口管(入口管5−2)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管6−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−2)とを有する気液分離器(気液分離器)であって、 前記気液分離室(気液分離室1−2)は、 前記入口管(入口管5−2)からの気液二相流を導入するための入口空間(狭小空間12−2)と、 前記入口空間(狭小空間12−2)の下流に設けられた空間であって、前記入口空間(狭小空間12−2)よりも流路断面積が拡大した拡大空間(急拡大部3−2)と、 前記入口空間(狭小空間12−2)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−2)に向かう溝付き部(溝付き体4−2)とを有する気液分離器(気液分離器)において、 前記気液分離器(気液分離器)は、 前記外郭体(外郭体A10−2等)内に設置されていると共に、前記外郭体(外郭体A10−2等)と協同して前記入口空間(狭小空間12−2)を形成する、入口仕切り体(入り口仕切り体16−2)を更に有しており、 前記気相出口管(気相出口管6−2)内径部の気相流入端上部の入口仕切り体(入り口仕切り体16−2)位置から気相出口管(気相出口管6−2)の気相流入端内径部の距離をH、気相出口管(気相出口管6−2)の内径をdiとしたとき、

Figure 0004268994
としたことを特徴とする気液分離器(気液分離器)である。The present invention (15) includes an outer body (outer body A10-2 and the like) constituting an outer shell, an inlet pipe (inlet pipe 5-2) capable of introducing a gas-liquid two-phase flow, and the inlet pipe (inlet pipe 5). -2), the gas-liquid separation chamber (gas-liquid separation chamber 1-2) separating the gas-liquid two-phase flow into a gas phase and a liquid phase, which are in fluid communication with each other, and the gas-liquid separation chamber (gas-liquid separation) A gas phase outlet pipe (gas phase outlet pipe 6-2) through which the separated gas phase is guided, which is in fluid communication with the chamber 1-2), and the gas-liquid separation chamber (gas-liquid separation chamber 1-2) A gas-liquid separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) through which the separated liquid phase is guided in fluid communication with the gas-liquid separator. The chamber (gas-liquid separation chamber 1-2) includes an inlet space (narrow space 12-2) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-2), and the inlet space (narrow space). Sky A space provided downstream of the space 12-2), and an expanded space (abrupt expansion portion 3-2) in which a flow path cross-sectional area is larger than that of the inlet space (narrow space 12-2), and the inlet space A gas having a grooved portion (grooved body 4-2) toward the liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) to which a gas-liquid two-phase flow from (the narrow space 12-2) is directly guided. In the liquid separator (gas-liquid separator), the gas-liquid separator (gas-liquid separator) is installed in the outer body (outer body A10-2 etc.) and the outer body (outer body A10). -2 etc.) to further form an inlet partition (inlet partition 16-2) that forms the inlet space (narrow space 12-2), and the gas phase outlet pipe (gas phase outlet pipe) 6-2) From the position of the inlet partition (entrance partition 16-2) above the gas phase inlet end of the inner diameter portion to the gas phase outlet pipe (gas phase outlet) When the distance of the gas-phase inflow end inner diameter portion of the pipe 6-2) is H and the inner diameter of the gas-phase outlet pipe (gas-phase outlet pipe 6-2) is di,
Figure 0004268994
This is a gas-liquid separator (gas-liquid separator).

本発明(16)は、外郭を構成する外郭体(外郭体A10−2等)と、 気液二相流を導入可能な入口管(入口管5−2)と、 前記入口管(入口管5−2)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管6−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−2)とを有する気液分離器(気液分離器)であって、 前記気液分離室(気液分離室1−2)は、 前記入口管(入口管5−2)からの気液二相流を導入するための入口空間(狭小空間12−2)と、 前記入口空間(狭小空間12−2)の下流に設けられた空間であって、前記入口空間(狭小空間12−2)よりも流路断面積が拡大した拡大空間(急拡大部3−2)と、 前記入口空間(狭小空間12−2)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−2)に向かう溝付き部(溝付き体4−2)とを有する気液分離器(気液分離器)において、 前記気液分離器(気液分離器)は、 前記外郭体(外郭体A10−2等)内に設置されていると共に、前記外郭体(外郭体A10−2等)と協同して前記入口空間(狭小空間12−2)を形成する、入口仕切り体(入り口仕切り体16−2)を更に有しており、 気液分離室(気液分離室1−2)に対向する側の入口仕切り体(入り口仕切り体16−2)下面に、開放された中空部(中空部22)が設けられていることを特徴とする気液分離器(気液分離器)である。 The present invention (16) includes an outer body (outer body A10-2 and the like) constituting an outer shell, an inlet pipe (inlet pipe 5-2) capable of introducing a gas-liquid two-phase flow, and the inlet pipe (inlet pipe 5). -2), the gas-liquid separation chamber (gas-liquid separation chamber 1-2) separating the gas-liquid two-phase flow into a gas phase and a liquid phase, which are in fluid communication with each other, and the gas-liquid separation chamber (gas-liquid separation) A gas phase outlet pipe (gas phase outlet pipe 6-2) through which the separated gas phase is guided, which is in fluid communication with the chamber 1-2), and the gas-liquid separation chamber (gas-liquid separation chamber 1-2) A gas-liquid separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) through which the separated liquid phase is guided in fluid communication with the gas-liquid separator. The chamber (gas-liquid separation chamber 1-2) includes an inlet space (narrow space 12-2) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-2), and the inlet space ( A space provided downstream of the small space 12-2), and an enlarged space (abrupt expansion portion 3-2) in which a channel cross-sectional area is larger than that of the inlet space (the narrow space 12-2); It has a grooved part (grooved body 4-2) toward the liquid phase outlet pipe (liquid phase outlet pipe 7-2) to which the gas-liquid two-phase flow from the space (narrow space 12-2) is directly guided. In the gas-liquid separator (gas-liquid separator), the gas-liquid separator (gas-liquid separator) is installed in the outer body (outer body A10-2 etc.) and the outer body (outer body). A10-2, etc.) to form the inlet space (narrow space 12-2), and further includes an inlet partition (entrance partition 16-2), and a gas-liquid separation chamber (gas-liquid separation chamber) 1-2) The hollow part (hollow part 2) opened on the lower surface of the entrance partition (entrance partition 16-2) on the side facing to ) Is a gas-liquid separator (gas-liquid separator), characterized in that is provided.

本発明(17)は、外郭を構成する外郭体(外郭体A10−2等)と、 気液二相流を導入可能な入口管(入口管5−2)と、 前記入口管(入口管5−2)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管
6−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−2)とを有する気液分離器(気液分離器)であって、 前記気液分離室(気液分離室1−2)は、 前記入口管(入口管5−2)からの気液二相流を導入するための入口空間(狭小空間12−2)と、 前記入口空間(狭小空間12−2)の下流に設けられた空間であって、前記入口空間(狭小空間12−2)よりも流路断面積が拡大した拡大空間(急拡大部3−2)と、 前記入口空間(狭小空間12−2)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−2)に向かう溝付き部(溝付き体4−2)とを有する気液分離器(気液分離器)において、 前記気液分離器(気液分離器)は、 気液分離室(気液分離室1−2)の下流に気相と液相の流路を分離する、気相出口管(気相出口管6−2)を貫通して当該気相出口管(気相出口管6−2)に接合された、出口仕切り体(出口仕切り体8−2)を有していることを特徴とする気液分離器(気液分離器)である。
The present invention (17) includes an outer body (outer body A10-2 and the like) constituting an outer shell, an inlet pipe (inlet pipe 5-2) capable of introducing a gas-liquid two-phase flow, and the inlet pipe (inlet pipe 5). -2), the gas-liquid separation chamber (gas-liquid separation chamber 1-2) separating the gas-liquid two-phase flow into a gas phase and a liquid phase, which are in fluid communication with each other, and the gas-liquid separation chamber (gas-liquid separation) A gas phase outlet pipe (gas phase outlet pipe 6-2) through which the separated gas phase is guided, which is in fluid communication with the chamber 1-2), and the gas-liquid separation chamber (gas-liquid separation chamber 1-2) A gas-liquid separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) through which the separated liquid phase is guided in fluid communication with the gas-liquid separator. The chamber (gas-liquid separation chamber 1-2) includes an inlet space (narrow space 12-2) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-2), and the inlet space (narrow space). Sky A space provided downstream of the space 12-2), and an expanded space (abrupt expansion portion 3-2) in which a flow path cross-sectional area is larger than that of the inlet space (narrow space 12-2), and the inlet space A gas having a grooved portion (grooved body 4-2) toward the liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) to which a gas-liquid two-phase flow from (the narrow space 12-2) is directly guided. In the liquid separator (gas-liquid separator), the gas-liquid separator (gas-liquid separator) separates the gas-phase and liquid-phase flow channels downstream of the gas-liquid separation chamber (gas-liquid separation chamber 1-2). An outlet partition (exit partition 8-2) that penetrates the gas phase outlet pipe (gas phase outlet pipe 6-2) and is joined to the gas phase outlet pipe (gas phase outlet pipe 6-2). It is a gas-liquid separator (gas-liquid separator) characterized by having.

本発明(18)は、外郭を構成する外郭体(外郭体A10−2等)と、 気液二相流を入流(導入)可能な入口管(入口管5−2)と、 前記入口管(入口管5−2)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管6−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−2)とを有する気液分離器(気液分離器)であって、 前記気液分離室(気液分離室1−2)は、 前記入口管(入口管5−2)からの気液二相流を導入するための入口空間(狭小空間12−2)と、 前記入口空間(狭小空間12−2)の下流に設けられた空間であって、前記入口空間(狭小空間12−2)よりも流路断面積が拡大した拡大空間(急拡大部3−2)と、 前記入口空間(狭小空間12−2)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−2)に向かう溝付き部(溝付き体4−2)とを有する気液分離器(気液分離器)において、 前記気液分離器(気液分離器)は、 前記外郭体(外郭体A10−2等)内に設置されていると共に、前記外郭体(外郭体A10−2等)と協同して前記入口空間(狭小空間12−2)を形成する、入口仕切り体(入り口仕切り体16−2)と、 前記外郭体(外郭体A10−2等)内に設置されていると共に、気液分離室(気液分離室1−2)の下流に気相と液相の流路を分離する、気相出口管(気相出口管6−2)が貫通して当該気相出口管(気相出口管6−2)に接合された、出口仕切り体(出口仕切り体8−2)とを更に有していると共に、 前記溝付き部が、前記外郭体(外郭体A10−2等)と別体である、溝付き面をもつ溝付き体(溝付き体4−2)であり、 外郭体(外郭体A10−2等)と入口仕切り体(入り口仕切り体16−2)及び出口仕切り体(出口仕切り体8−2)とで溝付き体を挟み込むことにより、溝付き体(溝付き体4−2)が所定位置に固定されていることを特徴とする気液分離器(気液分離器)である。 The present invention (18) includes an outer body (outer body A10-2 and the like) constituting the outer shell, an inlet pipe (inlet pipe 5-2) capable of entering (introducing) a gas-liquid two-phase flow, and the inlet pipe ( A gas-liquid separation chamber (gas-liquid separation chamber 1-2) that separates the gas-liquid two-phase flow into a gas phase and a liquid phase, in fluid communication with the inlet pipe 5-2), and the gas-liquid separation chamber ( A gas-phase outlet pipe (gas-phase outlet pipe 6-2) through which the separated gas phase is guided, which is in fluid communication with the gas-liquid separation chamber 1-2), and the gas-liquid separation chamber (gas-liquid separation chamber 1) -2) and a liquid-phase separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) through which the separated liquid phase is guided in fluid communication. The gas-liquid separation chamber (gas-liquid separation chamber 1-2) includes an inlet space (narrow space 12-2) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-2), and the inlet An expansion space (rapid expansion portion 3-2) provided downstream of the space (narrow space 12-2) and having a channel cross-sectional area larger than that of the inlet space (narrow space 12-2); A grooved portion (grooved body 4-2) toward the liquid phase outlet pipe (liquid phase outlet pipe 7-2), to which a gas-liquid two-phase flow from the inlet space (narrow space 12-2) is directly guided; In the gas-liquid separator (gas-liquid separator), the gas-liquid separator (gas-liquid separator) is installed in the outer body (outer body A10-2 etc.) and the outer body ( An entrance partition (entrance partition 16-2) that forms the entrance space (narrow space 12-2) in cooperation with the exterior body A10-2, etc., and the inside of the exterior body (outside body A10-2, etc.) The gas-phase and liquid-phase flow paths are separated downstream of the gas-liquid separation chamber (gas-liquid separation chamber 1-2). An outlet partition body (exit partition body 8-2) in which the gas phase outlet pipe (gas phase outlet pipe 6-2) penetrates and is joined to the gas phase outlet pipe (gas phase outlet pipe 6-2); A grooved body (grooved body 4-2) having a grooved surface, wherein the grooved part is a separate body from the outer body (outer body A10-2, etc.), The grooved body (grooved body 4) is sandwiched between the (outer body A10-2 and the like), the inlet partition body (entrance partition body 16-2), and the outlet partition body (exit partition body 8-2). -2) is a gas-liquid separator (gas-liquid separator) which is fixed at a predetermined position.

本発明(19)は、外郭を構成する外郭体(外郭体A10−2等)と、 気液二相流を入流(導入)可能な入口管(入口管5−2)と、 前記入口管(入口管5−2)と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室(気液分離室1−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管(気相出口管6−2)と、 前記気液分離室(気液分離室1−2)と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管(液相出口管7−2)とを有する気液分離器(気液分離器)であって、 前記気液分離室(気液分離室1−2)は、 前記入口管(入口管5−2)からの気液二相流を導入するための入口空間(狭小空間12−2)と、 前記入口空間(狭小空間12−2)の下流に設けられた空間であって、前記入口空間(狭小空間12−2)よりも流路断面積が拡大した拡大空間(急拡大部3−2)と、 前記入口空間(狭小空間12−2)からの気液二相流が直接導かれる、前記液相出口管(液相出口管7−2)に向かう溝付き部(溝付き体4−2)とを有する気液分離器(気液分離器)において、 前記溝付き部が、前記外郭体(外郭体A10−2等)と別体である、溝付き面をもつ溝付き体(溝付き体4−2)であると共に、 前記気液分離器(気液分離器)は、 溝付き体(溝付き体4−2)の内径側に溝付き体(溝付き体4−2)が溝頂点仮想円の内側に飛び出すことを防止する内径支持体(内径支持体D37−2)を更に備えたことを特徴とする気液分離器(気液分離器)である。 The present invention (19) includes an outer body (outer body A10-2 and the like) constituting an outer shell, an inlet pipe (inlet pipe 5-2) capable of entering (introducing) a gas-liquid two-phase flow, and the inlet pipe ( A gas-liquid separation chamber (gas-liquid separation chamber 1-2) that separates the gas-liquid two-phase flow into a gas phase and a liquid phase, in fluid communication with the inlet pipe 5-2), and the gas-liquid separation chamber ( A gas-phase outlet pipe (gas-phase outlet pipe 6-2) through which the separated gas phase is guided, which is in fluid communication with the gas-liquid separation chamber 1-2), and the gas-liquid separation chamber (gas-liquid separation chamber 1) -2) and a liquid-phase separator (gas-liquid separator) having a liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) through which the separated liquid phase is guided in fluid communication. The gas-liquid separation chamber (gas-liquid separation chamber 1-2) includes an inlet space (narrow space 12-2) for introducing a gas-liquid two-phase flow from the inlet pipe (inlet pipe 5-2), and the inlet An expansion space (rapid expansion portion 3-2) provided downstream of the space (narrow space 12-2) and having a channel cross-sectional area larger than that of the inlet space (narrow space 12-2); A grooved portion (grooved body 4-2) toward the liquid phase outlet pipe (liquid phase outlet pipe 7-2), to which a gas-liquid two-phase flow from the inlet space (narrow space 12-2) is directly guided; In the gas-liquid separator (gas-liquid separator), the grooved portion is a separate body from the outer body (outer body A10-2 or the like), and the grooved body (grooved body 4) having a grooved surface. -2), the gas-liquid separator (gas-liquid separator) has a grooved body (grooved body 4-2) on the inner diameter side of the grooved body (grooved body 4-2). A gas-liquid separator (gas-liquid separator), further comprising an inner diameter support (inner diameter support D37-2) for preventing jumping out of the inside of the circle A.

本発明(20)は、前記発明(14)〜(19)のいずれか一つの気液分離器(気液分離器)を空気調和機等の冷凍サイクル中に組み込んだことを特徴とする気液分離器(気液分離器)を備えた冷凍装置である。 The present invention (20) is characterized in that the gas-liquid separator (gas-liquid separator) according to any one of the inventions (14) to (19) is incorporated in a refrigeration cycle such as an air conditioner. It is a refrigeration apparatus provided with a separator (gas-liquid separator).

本発明(21)は、前記発明(14)〜(19)のいずれか一つの気液分離器(気液分離器)の二相流入口管(入口管5−2)に、冷凍サイクル中の減圧器の出口管を接続し、気液分離器(気液分離器)の液相出口管(液相出口管7−2)を蒸発器に接続し、一方、気液分離器(気液分離器)の気相出口管(気相出口管6−2)をバイパス路および抵抗調整体を介して圧縮機の吸込み管に接続したことを特徴とする冷凍装置である。 In the present invention (21), the two-phase inlet pipe (inlet pipe 5-2) of the gas-liquid separator (gas-liquid separator) of any one of the inventions (14) to (19) is provided in the refrigeration cycle. Connect the outlet pipe of the decompressor, connect the liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) of the gas-liquid separator (gas-liquid separator) to the evaporator, while the gas-liquid separator (gas-liquid separation) The gas-phase outlet pipe (gas-phase outlet pipe 6-2) is connected to the suction pipe of the compressor through a bypass and a resistance adjuster.

本発明(22)は、前記発明(14)〜(19)のいずれか一つの気液分離器(気液分離器)の二相流入口管(入口管5−2)に、冷凍サイクル中の圧縮機吐出管を接続し、気液分離器(気液分離器)の液相出口管(液相出口管7−2)を流量調整絞りを介して圧縮機吸込み管に接続し、一方、気液分離器(気液分離器)の気相出口管(気相出口管6−2)を冷凍サイクルの凝縮器に至る管路に接続したことを特徴とする冷凍装置である。 According to the present invention (22), the two-phase inlet pipe (inlet pipe 5-2) of the gas-liquid separator (gas-liquid separator) according to any one of the inventions (14) to (19) is provided in the refrigeration cycle. The compressor discharge pipe is connected, and the liquid-phase outlet pipe (liquid-phase outlet pipe 7-2) of the gas-liquid separator (gas-liquid separator) is connected to the compressor suction pipe through the flow rate adjusting throttle. The refrigeration apparatus is characterized in that a gas phase outlet pipe (gas phase outlet pipe 6-2) of a liquid separator (gas-liquid separator) is connected to a pipe line leading to a condenser of a refrigeration cycle.

本発明(23)は、圧縮機、凝縮器、減圧器、気液分離器(気液分離装置)および蒸発器を順次接続し冷凍サイクルを構成し、凝縮器に空気を送る凝縮器用送風機および蒸発器に空気を送る蒸発器用送風機を持ち、 気液分離器(気液分離装置)の液相出口管(液相出口管7−1)を蒸発器に接続し、気相出口管(気相出口管6−1)をバイパス管を経て圧縮機の吸い込み側に接続した冷凍サイクルにおいて、蒸発器の伝熱管の一部をバイパス管として使用したことを特徴とする冷凍サイクルである。 According to the present invention (23), a compressor, a condenser, a pressure reducer, a gas-liquid separator (gas-liquid separator) and an evaporator are sequentially connected to constitute a refrigeration cycle, and a condenser blower and an evaporator for sending air to the condenser It has a blower for the evaporator that sends air to the vessel, and the liquid-phase outlet pipe (liquid-phase outlet pipe 7-1) of the gas-liquid separator (gas-liquid separator) is connected to the evaporator, and the gas-phase outlet pipe (gas-phase outlet) In the refrigeration cycle in which the pipe 6-1) is connected to the suction side of the compressor via the bypass pipe, a part of the heat transfer pipe of the evaporator is used as the bypass pipe.

本発明(24)は、圧縮機、凝縮器、減圧器、気液分離器(気液分離装置)および蒸発器を順次接続し冷凍サイクルを構成し、凝縮器に空気を送る凝縮器用送風機および蒸発器に空気を送る蒸発器用送風機を持ち、気液分離装置の液相出口管(液相出口管7−1)を蒸発器に接続し、気相出口管(気相出口管6−1)をバイパス管を経て圧縮機の吸い込み側に接続した冷凍サイクルにおいて、バイパス管を蒸発器用送風機で送られる空気流中に配置したことを特徴とする冷凍サイクルである。 According to the present invention (24), a compressor, a condenser, a decompressor, a gas-liquid separator (gas-liquid separator) and an evaporator are sequentially connected to constitute a refrigeration cycle, and a condenser blower and an evaporator for sending air to the condenser It has a blower for an evaporator that sends air to the evaporator, connects the liquid phase outlet pipe (liquid phase outlet pipe 7-1) of the gas-liquid separator to the evaporator, and connects the gas phase outlet pipe (gas phase outlet pipe 6-1). In the refrigeration cycle connected to the suction side of the compressor via the bypass pipe, the bypass pipe is arranged in an air flow sent by an evaporator blower.

好適態様1−1は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、ウエーバー数をWe、気液分離装置に流入する気液二相流の質量流量をG、二相流の密度をρ、表面張力をσ、溝幅をb、該狭小空間から溝に流入する溝内流路断面積をSlとしたとき、

Figure 0004268994
としたことを特徴とする気液分離装置である。The preferred embodiment 1-1 is provided with a grooved part toward the liquid-phase outlet pipe in a part of the gas-liquid separation chamber, and forms a narrow space with an outer body and an inlet partition upstream of the gas-liquid separation chamber and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. Gas-liquid separation mechanism, the Weber number is We, the mass flow rate of the gas-liquid two-phase flow flowing into the gas-liquid separation device is G, the density of the two-phase flow is ρ, the surface tension is σ, and the groove When the width is b and the cross-sectional area of the channel flowing into the groove from the narrow space is Sl,
Figure 0004268994
A gas-liquid separator characterized by the above.

好適態様2−1は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、溝付き面をもつ溝付き体を気液分離装置の外郭を構成する外郭体と別体としたことを特徴とする気液分離装置である。 In preferred embodiment 2-1, a grooved portion directed to the liquid-phase outlet pipe is provided in a part of the gas-liquid separation chamber, and a narrow space is formed upstream of the gas-liquid separation chamber with an outer body and an inlet partition, and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. The gas-liquid separation device is characterized in that the grooved body having the grooved surface is separated from the outer body constituting the outer shell of the gas-liquid separation device.

好適態様3−1は、好適態様1−1または2−1の気液分離装置であって、溝の表面を親水性処理面としたことを特徴とする気液分離装置である。 Preferred embodiment 3-1 is the gas-liquid separator according to preferred embodiment 1-1 or 2-1, wherein the groove surface is a hydrophilic treatment surface.

好適態様4−1は、好適態様2−1の気液分離装置であって、溝付き面をもつ溝付き体を薄板を折り曲げて構成し、溝幅をb、溝深さをhとしたとき

Figure 0004268994
としたことを特徴とする気液分離装置である。Preferred embodiment 4-1 is the gas-liquid separator of preferred embodiment 2-1, wherein a grooved body having a grooved surface is formed by bending a thin plate, the groove width is b, and the groove depth is h.
Figure 0004268994
A gas-liquid separator characterized by the above.

好適態様5−1は、好適態様1−1から2−1の気液分離装置であって、入口仕切り体の溝先端から上流側の長さをL1、溝先端から下流側の段差部の長さをL2としたとき、

Figure 0004268994
としたことを特徴とする気液分離装置である。Preferred embodiment 5-1 is the gas-liquid separation device of preferred embodiments 1-1 to 2-1, wherein the length of the upstream side from the groove tip of the inlet partition is L1, and the length of the step portion downstream from the groove tip When L2 is
Figure 0004268994
A gas-liquid separator characterized by the above.

好適態様6−1は、好適態様1−1から2−1の気液分離装置であって、入口仕切り体の上流側外周と外殻体との距離をH1、溝先端から外殻体との距離をH2としたとき、

Figure 0004268994
としたことを特徴とする気液分離装置である。Preferred embodiment 6-1 is the gas-liquid separator of preferred embodiments 1-1 to 2-1, wherein the distance between the upstream outer periphery of the inlet partition and the outer shell is H1, and the distance from the groove tip to the outer shell. When the distance is H2,
Figure 0004268994
A gas-liquid separator characterized by the above.

好適態様7−1は、好適態様1−1から1−2の気液分離装置であって、入口管の内面に内面螺旋溝を設けたことを特徴とする気液分離装置である。 Preferred embodiment 7-1 is the gas-liquid separator according to preferred embodiments 1-1 to 1-2, wherein an inner surface spiral groove is provided on the inner surface of the inlet pipe.

好適態様8−1は、好適態様1−1から1−2の気液分離装置であって、入口管の出口側端を末広がりに広げた広がり部を設けたことを特徴とする気液分離装置である。 A preferred embodiment 8-1 is the gas-liquid separation device according to the preferred embodiments 1-1 to 1-2, and is provided with a widened portion that widens the outlet side end of the inlet pipe. It is.

好適態様9−1は、好適態様1−1から1−2の気液分離装置であって、入口仕切り体の上流部先端を円錐体としたことを特徴とする気液分離装置である。 Preferred embodiment 9-1 is the gas-liquid separator according to preferred embodiments 1-1 to 1-2, wherein the upstream end of the inlet partition is a cone.

好適態様10−1は、好適態様1−1から1−2の気液分離装置であって、溝の上流側の流入室の外郭体内面に溝の溝深さより深さの浅い導入溝を設けたことを特徴とする気液分離装置である。 A preferred embodiment 10-1 is the gas-liquid separator according to the preferred embodiments 1-1 to 1-2, wherein an introduction groove having a depth smaller than the groove depth is provided on the inner surface of the outer body of the inflow chamber on the upstream side of the groove. A gas-liquid separator characterized by the above.

好適態様11−1は、好適態様1−1から1−2の気液分離装置であって、溝の上流側の流入室の外郭体内面に溝の溝深さより厚さの薄い多孔質体を設けたことを特徴とする気液分離装置である。 Preferred embodiment 11-1 is the gas-liquid separator according to preferred embodiments 1-1 to 1-2, in which a porous body having a thickness smaller than the groove depth is formed on the inner surface of the outer shell of the inflow chamber on the upstream side of the groove. A gas-liquid separator characterized by being provided.

好適態様12−1は、好適態様1−1から1−2の気液分離装置であって、液相出口管を複数設けたことを特徴とする気液分離装置である。 A preferred embodiment 12-1 is the gas-liquid separation device according to the preferred embodiments 1-1 to 1-2, and is a gas-liquid separation device provided with a plurality of liquid-phase outlet pipes.

好適態様13−1は、圧縮機、凝縮器、減圧器、気液分離装置および蒸発器を順次接続し冷凍サイクルを構成し、凝縮器に空気を送る凝縮器用送風機および蒸発器に空気を送る蒸発器用送風機を持ち、 気液分離装置の液相出口管を蒸発器に接続し、気相出口管をバイパス管を経て圧縮機の吸い込み側に接続した冷凍サイクルにおいて、蒸発器の伝熱管の一部をバイパス管として使用したことを特徴とする冷凍サイクルである。 A preferred embodiment 13-1 is an evaporator in which a compressor, a condenser, a decompressor, a gas-liquid separator and an evaporator are connected in order to constitute a refrigeration cycle, and a condenser blower that sends air to the condenser and an evaporator that sends air to the evaporator In a refrigeration cycle with an air blower, the liquid-phase outlet pipe of the gas-liquid separator is connected to the evaporator, and the gas-phase outlet pipe is connected to the suction side of the compressor via the bypass pipe, part of the heat transfer pipe of the evaporator This is a refrigeration cycle characterized in that is used as a bypass pipe.

好適態様14−1は、圧縮機、凝縮器、減圧器、気液分離装置および蒸発器を順次接続し冷凍サイクルを構成し、凝縮器に空気を送る凝縮器用送風機および蒸発器に空気を送る蒸発器用送風機を持ち、 気液分離装置の液相出口管を蒸発器に接続し、気相出口管をバイパス管を経て圧縮機の吸い込み側に接続した冷凍サイクルにおいて、バイパス管を蒸発器用送風機で送られる空気流中に配置したことを特徴とする冷凍サイクルである。 In the preferred embodiment 14-1, a compressor, a condenser, a decompressor, a gas-liquid separator and an evaporator are sequentially connected to form a refrigeration cycle, and a condenser blower that sends air to the condenser and an evaporation that sends air to the evaporator In the refrigeration cycle, which has an air blower for the compressor, the liquid phase outlet pipe of the gas-liquid separator is connected to the evaporator, and the gas phase outlet pipe is connected to the suction side of the compressor via the bypass pipe, the bypass pipe is sent by the evaporator blower. It is the refrigerating cycle characterized by arrange | positioning in the airflow produced.

好適態様15−1は、好適態様1の気液分離装置を空気調和機等の冷凍サイクル中に組み込んだことを特徴とする気液分離装置を備えた冷凍装置である。 A preferred embodiment 15-1 is a refrigeration apparatus provided with a gas-liquid separation device, wherein the gas-liquid separation device of the preferred embodiment 1 is incorporated in a refrigeration cycle such as an air conditioner.

好適態様16−1は、好適態様2の気液分離装置を空気調和機
等の冷凍サイクル中に組み込んだことを特徴とする気液分離装置を備えた冷凍装置である。
Preferred embodiment 16-1 is a refrigeration apparatus equipped with the gas-liquid separation device, wherein the gas-liquid separation device of preferred embodiment 2 is incorporated in a refrigeration cycle such as an air conditioner.

好適態様1−2は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、急拡大部位置を基準とし,その基準位置から気液分離器への二相流流入方向をプラス方向、その流れ方向と逆方向をマイナス方向とし、その基準位置から気相出口管の気相流入端位置までの距離をLとし、溝頂点仮想円の径をDtとしたとき、気相出口管の気相流入端位置を

Figure 0004268994
としたことを特徴とする気液分離器である。The preferred embodiment 1-2 is provided with a grooved portion toward the liquid-phase outlet pipe in a part of the gas-liquid separation chamber, and forms a narrow space with an outer body and an inlet partition upstream of the gas-liquid separation chamber and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. The gas-liquid separation mechanism is designed to lead to the flow direction, and the position of the sudden expansion part is used as a reference, the two-phase flow inflow direction from the reference position to the gas-liquid separator is the positive direction, and the opposite direction to the flow direction is the negative direction. , L is the distance from the reference position to the gas-phase inflow end position of the gas-phase outlet pipe, and Dt is the diameter of the groove vertex virtual circle. When in the vapor phase inlet end position of the vapor outlet tube
Figure 0004268994
This is a gas-liquid separator characterized by the above.

好適態様2−2は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、気相出口管内径部の気相流入端上部の入り口仕切り体位置から気相出口管の気相流入端内径部の距離をH、気相出口管の内径をdiとしたとき、

Figure 0004268994
としたことを特徴とする気液分離器である。In preferred embodiment 2-2, a grooved portion directed to the liquid-phase outlet pipe is provided in a part of the gas-liquid separation chamber, and a narrow space is formed upstream of the gas-liquid separation chamber with an outer body and an inlet partition, and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. And the distance from the inlet partition at the upper portion of the gas-phase inflow end of the gas-phase outlet pipe inner diameter portion to the gas-phase inflow end inner-diameter portion of the gas-phase outlet pipe is H, the gas-phase outlet. When the inner diameter of the tube is di,
Figure 0004268994
This is a gas-liquid separator characterized by the above.

好適態様3−2は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、気液分離室に対向する側の入口仕切り体下面が開放された中空部を設けたことを特徴とする気液分離器である。 In preferred embodiment 3-2, a grooved portion directed to the liquid-phase outlet pipe is provided in a part of the gas-liquid separation chamber, and a narrow space is formed with an outer body and an inlet partition upstream of the gas-liquid separation chamber and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. The gas-liquid separator is provided with a hollow portion in which the lower surface of the inlet partition on the side facing the gas-liquid separation chamber is provided.

好適態様4−2は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、気相出口管を出口仕切り体に通し、出口仕切り体を気相出口管に接合することにより、限られた液溜め高さのもとで液相の容積的なバッファとして最大に近い液溜め容積を確保したことを特徴とする気液分離器である。 In preferred embodiment 4-2, a grooved portion directed to the liquid-phase outlet pipe is provided in a part of the gas-liquid separation chamber, and a narrow space is formed upstream of the gas-liquid separation chamber with an outer body and an inlet partition, and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. In addition to the gas-liquid separation mechanism that leads to the gas phase, the gas phase outlet pipe is passed through the outlet partition body, and the outlet partition body is joined to the gas phase outlet pipe, so that the liquid can be kept at a limited liquid reservoir height. The gas-liquid separator is characterized in that a liquid storage volume close to the maximum is secured as a volumetric buffer for the phase.

好適態様5−2は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、溝付き体位置を適切な位置に固定するように気相出口管に接合された出口仕切り体により溝付き体の下部位置を固定し、入口仕切り体が確実に溝付き体に密着するように、外郭体により入口仕切り体を溝付き体に押し付け、入口仕切り体位置を固定したことを特徴とする気液分離器である。 A preferred embodiment 5-2 is provided with a grooved portion toward the liquid-phase outlet pipe in a part of the gas-liquid separation chamber, and creates a narrow space with an outer body and an inlet partition upstream of the gas-liquid separation chamber and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. In addition to the gas-liquid separation mechanism, the lower position of the grooved body is fixed by the outlet partition joined to the gas-phase outlet pipe so that the grooved body position is fixed at an appropriate position. In order to ensure that the body is in close contact with the grooved body, the outer partition body presses the inlet partition body against the grooved body, A gas-liquid separator, characterized in that to fix the Rikarada position.

好適態様6−2は、気液分離室の一部に液相出口管に向かう溝付き部を設け、その気液分離室の上流に外郭体と入口仕切り体をもって狭小空間を作ると共に入口管より導かれた気液二相流を該狭小空間を通した後で急拡大部をもって構成される気液分離室に導き、上記気液二相流を気相と液相に分離し、その気液分離室の下流に気相と液相の流路を分離する出口仕切り体を設け、液相は溝付き部を通して液相出口管に導くようにし、気相は気液分離室から気相出口管に導くようにした気液分離機構とすると共に、溝付き体の内径側に溝付き体が溝頂点仮想円の内側に飛び出すことを防止する内径支持体を設けたことを特徴とする気液分離器である。 A preferred embodiment 6-2 is provided with a grooved portion toward the liquid-phase outlet pipe in a part of the gas-liquid separation chamber, and forms a narrow space with an outer body and an inlet partition upstream of the gas-liquid separation chamber and from the inlet pipe. After the guided gas-liquid two-phase flow passes through the narrow space, the gas-liquid two-phase flow is guided to a gas-liquid separation chamber having a sudden expansion portion, and the gas-liquid two-phase flow is separated into a gas phase and a liquid phase. An outlet partition that separates the gas phase and liquid phase flow paths is provided downstream of the separation chamber so that the liquid phase is guided to the liquid phase outlet pipe through the grooved portion, and the gas phase is discharged from the gas-liquid separation chamber to the gas phase outlet pipe. The gas-liquid separation mechanism is characterized in that an inner diameter support body is provided on the inner diameter side of the grooved body to prevent the grooved body from jumping out inside the groove apex virtual circle. It is a vessel.

好適態様7−2は、好適態様1−2から6−2の気液分離器の二相流入口管に、冷凍サイクル中の減圧器の出口管を接続し、気液分離器の液相出口管を蒸発器に接続し、一方、気液分離器の気相出口管をバイパス路および抵抗調整体を介して圧縮機の吸込み管に接続したことを特徴とする冷凍装置である。 In preferred embodiment 7-2, the two-phase inlet pipe of the gas-liquid separator of preferred embodiments 1-2 to 6-2 is connected to the outlet pipe of the decompressor in the refrigeration cycle, and the liquid-phase outlet of the gas-liquid separator The refrigeration apparatus is characterized in that the pipe is connected to the evaporator, while the gas-phase outlet pipe of the gas-liquid separator is connected to the suction pipe of the compressor through the bypass and the resistance adjuster.

好適態様8−2は、好適態様1−2から6−2の気液分離器の二相流入口管に、冷凍サイクル中の圧縮機吐出管を接続し、気液分離器の液相出口管を流量調整絞りを介して圧縮機吸込み管に接続し、一方、気液分離器の気相出口管を冷凍サイクルの凝縮器に至る管路に接続したことを特徴とする冷凍装置である。 In preferred embodiment 8-2, a compressor discharge pipe in the refrigeration cycle is connected to the two-phase inlet pipe of the gas-liquid separator of preferred embodiments 1-2 to 6-2, and the liquid-phase outlet pipe of the gas-liquid separator is used. Is connected to the compressor suction pipe through the flow rate adjusting throttle, while the gas-phase outlet pipe of the gas-liquid separator is connected to a pipe line leading to the condenser of the refrigeration cycle.

好適態様1−1から8−2は、以下のようにも表現できる。   Preferred embodiments 1-1 to 8-2 can also be expressed as follows.

好適態様1−1の発明は、求められる運転条件および冷媒流量に対し適切な仕様の気液分離装置を提供するものであり、ウエーバー数をWe、気液分離装置に流入する気液二相流の質量流量をG、二相流の密度をρ、表面張力をσ、溝幅をb、該狭小空間から溝に流入する溝内流路断面積をSlとしたとき、

Figure 0004268994
としたものである。The invention of the preferred embodiment 1-1 provides a gas-liquid separation device having an appropriate specification for the required operating conditions and refrigerant flow rate. The Weber number is We, and the gas-liquid two-phase flow flows into the gas-liquid separation device. When the mass flow rate of G is G, the density of the two-phase flow is ρ, the surface tension is σ, the groove width is b, and the channel cross-sectional area in the groove flowing into the groove from the narrow space is Sl,
Figure 0004268994
It is what.

好適態様2−1の発明は、安価で加工性の良い溝を提供するために、溝付き面をもつ溝付き体を気液分離装置の外郭を構成する外郭体と別体で構成したものである。 The invention of the preferred embodiment 2-1 comprises a grooved body having a grooved surface as a separate body from the outer body constituting the outer shell of the gas-liquid separation device in order to provide a cheap and good workable groove. is there.

好適態様3−1の発明は、気液分離性能向上のために、溝の表面に親水性処理を行うようにしたものである。 In the invention of the preferred embodiment 3-1, a hydrophilic treatment is performed on the surface of the groove in order to improve the gas-liquid separation performance.

好適態様4−1の発明は、好適態様2−1の気液分離装置であって、気液分離性能向上のために、溝付き面をもつ溝付き体を薄板を折り曲げて構成し、溝幅をb、溝深さをhとしたときとき、

Figure 0004268994
としたものである。The invention of preferred embodiment 4-1 is the gas-liquid separation device of preferred embodiment 2-1, wherein a grooved body having a grooved surface is formed by bending a thin plate to improve the gas-liquid separation performance, and the groove width Is b and the groove depth is h,
Figure 0004268994
It is what.

好適態様5−1の発明は、好適態様1−1または2−1の気液分離装置であって、気液分離性能向上のために、入口仕切り体の溝先端から上流側の長さをL1、溝先端から下流側の段差部の長さをL2としたとき、

Figure 0004268994
としたものである。 The invention of the preferred embodiment 5-1 is the gas-liquid separation device of the preferred embodiment 1-1 or 2-1, wherein the upstream length from the groove tip of the inlet partition is set to L1 in order to improve the gas-liquid separation performance. When the length of the step portion downstream from the groove tip is L2,
Figure 0004268994
It is what.

好適態様6−1の発明は、好適態様1−1または2−1の気液分離装置であって、気液分離性能向上のために、入口仕切り体の上流側外周と外殻体との距離をH1、溝先端から外殻体との距離をH2としたとき、

Figure 0004268994
としたものである。The invention of preferred embodiment 6-1 is the gas-liquid separation device of preferred embodiment 1-1 or 2-1, in order to improve the gas-liquid separation performance, the distance between the upstream outer periphery of the inlet partition and the outer shell Is H1, and the distance from the groove tip to the outer shell is H2,
Figure 0004268994
It is what.

好適態様7−1の発明は、好適態様1−1または2−1の気液分離装置であって、気液分離性能向上のために、入口管の内面に内面螺旋溝を設けたものである。 The invention of the preferred embodiment 7-1 is the gas-liquid separation device of the preferred embodiment 1-1 or 2-1, wherein an inner surface spiral groove is provided on the inner surface of the inlet pipe in order to improve the gas-liquid separation performance. .

好適態様8−1の発明は、好適態様1−1または2−1の気液分離装置であって、気液分離性能向上のために、入口管の出口側端を末広がりに広げた広がり部を設けたものである。 The invention of the preferred embodiment 8-1 is the gas-liquid separation device of the preferred embodiment 1-1 or 2-1, and has a widened portion in which the outlet side end of the inlet pipe is widened to improve the gas-liquid separation performance. It is provided.

好適態様9−1の発明は、好適態様1−1または2−1の気液分離装置であって、気液分離性能向上のために、入口仕切り体の上流部先端を円錐体としたものである。 The invention of the preferred embodiment 9-1 is the gas-liquid separation device of the preferred embodiment 1-1 or 2-1, wherein the upstream end of the inlet partition is a cone for improving the gas-liquid separation performance. is there.

好適態様10−1の発明は、好適態様1−1または2−1の気液分離装置であって、気液分離性能向上のために、溝の上流側の流入室の外郭体内面に溝の溝深さより深さの浅い導入溝を設けたものである。 The invention of the preferred embodiment 10-1 is the gas-liquid separation device of the preferred embodiment 1-1 or 2-1, wherein the groove is formed on the inner surface of the outer body of the inflow chamber upstream of the groove in order to improve the gas-liquid separation performance. An introduction groove that is shallower than the groove depth is provided.

好適態様11−1の発明は、好適態様1−1または2−1の気液分離装置であって、気液分離性能向上のために、溝の上流側の流入室の外郭体内面に溝の溝深さより厚さの薄い多孔質体を設けたものである。 The invention of the preferred embodiment 11-1 is the gas-liquid separation device of the preferred embodiment 1-1 or 2-1, in order to improve the gas-liquid separation performance, the groove is formed on the inner surface of the outer body of the inflow chamber upstream of the groove. A porous body having a thickness smaller than the groove depth is provided.

好適態様12−1の発明は、好適態様1−1または2−1の気液分離装置であって、冷媒分流器としての機能を付加するために、液相出口管を複数設けたものである。 The invention of the preferred embodiment 12-1 is the gas-liquid separation device of the preferred embodiment 1-1 or 2-1, in which a plurality of liquid phase outlet pipes are provided in order to add a function as a refrigerant distributor. .

好適態様13−1の発明は、溝から液が溢れた場合でも、バイパス管に流れる液を無駄にしないために、蒸発器の伝熱管の一部をバイパス管として使用したものである。 The invention of the preferred embodiment 13-1 uses part of the heat transfer pipe of the evaporator as a bypass pipe so as not to waste the liquid flowing into the bypass pipe even when the liquid overflows from the groove.

好適態様14−1の発明は、溝から液が溢れた場合でも、バイパス管に流れる液を無駄にしないために、バイパス管を蒸発器用送風機で送られる空気流中に配置したものである。 In the invention of the preferred embodiment 14-1, the bypass pipe is arranged in the air flow sent by the evaporator blower so as not to waste the liquid flowing into the bypass pipe even when the liquid overflows from the groove.

好適態様15−1の発明は、空気調和機等の冷凍サイクルの高効率運転のために、好適態様1−1に記載の気液分離装置を冷凍サイクル中に組み込んだものである。 The invention of the preferred embodiment 15-1 incorporates the gas-liquid separation device of the preferred embodiment 1-1 in the refrigeration cycle for high-efficiency operation of the refrigeration cycle such as an air conditioner.

好適態様16−1の発明は、空気調和機等の冷凍サイクルの高効率運転のために、好適態様2−1に記載の気液分離装置を冷凍サイクル中に組み込んだものである。   The invention of the preferred embodiment 16-1 incorporates the gas-liquid separation device of the preferred embodiment 2-1 in the refrigeration cycle for high-efficiency operation of the refrigeration cycle such as an air conditioner.

好適態様1−2の発明は、求められる運転条件および冷媒流量に対し適切な仕様の気液分離器を提供するものであり、急拡大部位置を基準とし、その基準位置から気液分離器への二相流流入方向をプラス方向、流れと逆方向をマイナス方向とし、その基準位置から気相出口管の気相流入端位置までの距離をLとし、溝頂点仮想円の径をDtとしたとき、気相出口管の気相流入端位置を

Figure 0004268994
としたものである。The invention of the preferred embodiment 1-2 provides a gas-liquid separator having an appropriate specification with respect to the required operating conditions and refrigerant flow rate. From the reference position to the gas-liquid separator based on the position of the rapidly expanding portion. The two-phase flow inflow direction is a plus direction, the opposite direction to the flow is a minus direction, the distance from the reference position to the gas-phase inflow end position of the gas-phase outlet pipe is L, and the diameter of the groove apex virtual circle is Dt When the gas phase inlet end position of the gas phase outlet pipe
Figure 0004268994
It is what.

好適態様2−2の発明は、求められる運転条件および冷媒流量に対し適切な仕様の気液分離器を提供するものであり、気相出口管内径部の気相流入端上部の入り口仕切り体位置から気相出口管内径部の気相流入端の距離をH、気相出口管の内径をdiとしたとき、

Figure 0004268994
としたものである。The invention of the preferred embodiment 2-2 provides a gas-liquid separator having appropriate specifications for the required operating conditions and refrigerant flow rate, and the position of the inlet partition at the upper part of the gas-phase inflow end of the gas-phase outlet pipe inner diameter part. When the distance from the gas-phase inflow end of the gas-phase outlet pipe to the gas-phase outlet pipe is H, and the gas-phase outlet pipe has an inner diameter di,
Figure 0004268994
It is what.

好適態様3−2の発明は、求められる運転条件および冷媒流量に対し適切な仕様の気液分離器を提供するものであり、急拡大部位置を基準とし、その基準位置から気液分離器への二相流流入方向をプラス方向、流れと逆方向をマイナス方向とし、急拡大部位置から気相出口管の気相流入端位置をマイナスLとすることを可能にするために、気液分離室に対向する入り口仕切り体下面が開放された中空部を設けたものである。 The invention of the preferred embodiment 3-2 provides a gas-liquid separator having an appropriate specification with respect to the required operating conditions and the refrigerant flow rate. From the reference position to the gas-liquid separator based on the position of the rapidly expanding portion. In order to make it possible to set the two-phase flow inflow direction to the plus direction and the opposite direction to the flow to the minus direction, and to make the gas-phase inflow end position of the gas-phase outlet pipe minus minus L from the sudden expansion portion position. A hollow portion is provided in which the lower surface of the entrance partition facing the chamber is opened.

好適態様4−2の発明は、出口仕切り体を概略平板状にし、気相出口管に通し気相出口管に接合することにより、限られた液溜め高さのもとで液相の容積的なバッファとして最大に近い液溜めの容積を確保したものである。 In the invention of the preferred embodiment 4-2, the outlet partition is formed into a substantially flat plate shape, and is connected to the gas phase outlet pipe through the gas phase outlet pipe. As a simple buffer, the maximum reservoir volume is secured.

好適態様5−2の発明は、信頼性の高い気液分離器を提供するものであり、溝付き体位置を適切な位置に固定するように気相出口管に接合された出口仕切り体により溝付き体の下部位置を固定し、入口仕切り体が確実に溝付き体に密着するように、外郭体により入口仕切り体を溝付き体に押し付け入口仕切り体位置を固定したものである。 The invention of the preferred embodiment 5-2 provides a gas-liquid separator with high reliability, and the groove is formed by the outlet partition body joined to the gas-phase outlet pipe so as to fix the grooved body position to an appropriate position. The lower position of the attached body is fixed, and the inlet partition body is pressed against the grooved body by the outer body so that the inlet partition body is in close contact with the grooved body, and the position of the inlet partition body is fixed.

好適態様6−2の発明は、信頼性の高い気液分離器を提供するものであり、薄板を折り曲げて構成した溝付き体が溝頂点仮想円の内側の気液分離室への飛び出しを防止する飛び出し防止体を設けたものである。 The invention of the preferred embodiment 6-2 provides a highly reliable gas-liquid separator, and a grooved body formed by bending a thin plate prevents jumping out into the gas-liquid separation chamber inside the groove apex virtual circle. A pop-out prevention body is provided.

好適態様7−2の発明は、冷凍サイクルの高効率運転のために、好適態様1−2から6−2の気液分離器の二相流入口管に冷凍サイクル中の減圧器の出口管を接続し、気液分離器の液相出口管を蒸発器に接続し、一方、気液分離器の気相出口管をバイパス路および抵抗調整体を介して圧縮機の吸込み管に接続したものである。 In the invention of the preferred embodiment 7-2, for high-efficiency operation of the refrigeration cycle, the outlet pipe of the decompressor in the refrigeration cycle is connected to the two-phase inlet pipe of the gas-liquid separator of the preferred embodiments 1-2 to 6-2. Connect the gas phase outlet pipe of the gas-liquid separator to the evaporator, while the gas-phase outlet pipe of the gas-liquid separator is connected to the compressor suction pipe via the bypass and resistance adjuster. is there.

好適態様8−2の発明は、冷凍サイクルの高効率、高信頼性運転のために、好適態様1−2から6−2の気液分離器の二相流入口管に圧縮機吐出管を接続し、気液分離器の液相出口管を流量調整絞りを介して圧縮機の吸込み管に接続し、一方、気液分離器の気相出口管を冷凍サイクルの凝縮器に至る管路に接続したものである。 In the invention of the preferred embodiment 8-2, the compressor discharge pipe is connected to the two-phase inlet pipe of the gas-liquid separator of the preferred embodiments 1-2 to 6-2 for high efficiency and high reliability operation of the refrigeration cycle. Connect the liquid-phase outlet pipe of the gas-liquid separator to the suction pipe of the compressor through the flow rate adjusting throttle, while connecting the gas-phase outlet pipe of the gas-liquid separator to the pipe leading to the condenser of the refrigeration cycle It is a thing.

本発明(1)及び好適態様1−1の気液分離装置によれば、ウエーバー数をWe、気液分離装置に流入する気液二相流の質量流量をG、二相流の密度をρ、表面張力をσ、溝幅をb、該狭小空間から溝に流入する溝内流路断面積をSlとしたとき、

Figure 0004268994
とすることにより、表面張力効果を用いた気液分離効果を安定的に確保し、効率の良い気液分離装置を提供できる。 すなわち、該狭小空間から溝に流入直後の流路断面積である溝内流路断面積Slに対して、気液二相流の質量流量Gが大きすぎると、表面張力効果により溝面に付着した液が気相流のせん断力により引きちぎられ、気相中に液相ミストが混入した噴霧流となり気相中に液が混じり十分な気液分離効果が得られない。 したがって、上記の関係を満たすことにより表面張力効果を用いた気液分離効果を安定的に確保し、効率の良い気液分離装置を提供できる。According to the gas-liquid separator of the present invention (1) and preferred embodiment 1-1, the Weber number is We, the mass flow rate of the gas-liquid two-phase flow flowing into the gas-liquid separator is G, and the density of the two-phase flow is ρ. When the surface tension is σ, the groove width is b, and the channel cross-sectional area in the groove flowing into the groove from the narrow space is S1,
Figure 0004268994
By doing so, the gas-liquid separation effect using the surface tension effect can be stably secured, and an efficient gas-liquid separation device can be provided. That is, if the mass flow rate G of the gas-liquid two-phase flow is too large with respect to the channel cross-sectional area S1 in the groove, which is the channel cross-sectional area immediately after flowing into the groove from the narrow space, it adheres to the groove surface due to the surface tension effect. The resulting liquid is torn off by the shear force of the gas phase flow, resulting in a spray flow in which the liquid phase mist is mixed in the gas phase, and the liquid is mixed in the gas phase, so that a sufficient gas-liquid separation effect cannot be obtained. Therefore, by satisfying the above relationship, the gas-liquid separation effect using the surface tension effect can be stably secured, and an efficient gas-liquid separation device can be provided.

本発明(2)及び好適態様2−1の気液分離装置によれば、気液分離装置の外郭を構成する外郭体と別体で溝を有する溝付き体を構成することにより、気液分離装置の使い方あるいは適用機種に応じて適切な気相断面積Sg、液相断面積Slをもつ溝付き体4のみを複数準備することにより、外郭体をはじめとする共通部品に対して適切な溝付き体を選ぶことにより、安価な気液分離装置を提供できる。また、溝2を有する溝付き体4を別体で作ることにより、いかなる溝形状でも加工しやすく安価な気液分離装置を提供できる。 According to the gas-liquid separation device of the present invention (2) and preferred embodiment 2-1, gas-liquid separation is achieved by configuring a grooved body having a groove separately from the outer body constituting the outer shell of the gas-liquid separation device. By preparing a plurality of grooved bodies 4 having an appropriate gas phase cross-sectional area Sg and liquid phase cross-sectional area S1 depending on how the apparatus is used or applied, appropriate grooves for common parts such as outer bodies are prepared. By selecting the attached body, an inexpensive gas-liquid separation device can be provided. Moreover, by making the grooved body 4 having the groove 2 as a separate body, it is possible to provide an inexpensive gas-liquid separation device that can be easily processed into any groove shape.

本発明(4)及び好適態様3−1の気液分離装置によれば、溝の表面に親水性処理を行うことにより、溝の面に付着した液滴を親水性処理の作用により直ちに液膜化し、溝底に集まった液相と合流させることにより、液相を安定的に溝に捕捉でき、良好な気液分離が可能になる。 According to the gas-liquid separation device of the present invention (4) and the preferred embodiment 3-1, by subjecting the surface of the groove to hydrophilic treatment, liquid droplets adhering to the surface of the groove are immediately applied to the liquid film by the action of the hydrophilic treatment. By combining the liquid phase with the liquid phase collected at the groove bottom, the liquid phase can be stably captured in the groove, and good gas-liquid separation becomes possible.

本発明(3)及び好適態様4−1の気液分離装置によれば、溝付き面を有する溝付き体を薄板を折り曲げて構成し、溝幅をb、溝深さをhとしたとき

Figure 0004268994
とすることにより、気相主流路に対して外側の溝流路を流れる気相流量を許容できる程度に十分に小さくする気液分離器を提供できる。According to the gas-liquid separation device of the present invention (3) and preferred embodiment 4-1, when a grooved body having a grooved surface is formed by bending a thin plate, the groove width is b and the groove depth is h.
Figure 0004268994
By doing so, it is possible to provide a gas-liquid separator that is sufficiently small to allow the gas phase flow rate flowing in the outer groove channel with respect to the gas phase main channel.

本発明(5)及び好適態様5−1の気液分離装置によれば、入口仕切り体の溝先端から上流側の長さをL1、溝先端から下流側の段差部の長さをL2としたとき、

Figure 0004268994
とすることにより、気相出口管に混入する液相成分を許容値以下に抑え、良好な気液分離性能を確保できる気液分離器を提供できる。According to the gas-liquid separation device of the present invention (5) and preferred embodiment 5-1, the length of the upstream side from the groove tip of the inlet partition is L1, and the length of the stepped portion downstream from the groove tip is L2. When
Figure 0004268994
By doing so, it is possible to provide a gas-liquid separator that can suppress the liquid phase component mixed in the gas phase outlet pipe to an allowable value or less and ensure good gas-liquid separation performance.

本発明(6)及び好適態様6−1の気液分離装置によれば、入口仕切り体の上流側外周と外殻体との距離をH1、溝先端から外殻体との距離をH2としたとき、

Figure 0004268994
とすることにより、溝内に導入される気液二相流を溝の外殻体側、すなわち溝の谷部へ導入できるので、溝部から離脱する液相成分を許容値以下に抑え、良好な気液分離性能を確保できる気液分離器を提供できる。According to the gas-liquid separation device of the present invention (6) and preferred embodiment 6-1, the distance between the upstream outer periphery of the inlet partition and the outer shell is H1, and the distance from the groove tip to the outer shell is H2. When
Figure 0004268994
As a result, the gas-liquid two-phase flow introduced into the groove can be introduced into the outer shell side of the groove, that is, into the trough of the groove. A gas-liquid separator capable of ensuring liquid separation performance can be provided.

本発明(7)及び好適態様7−1の気液分離装置によれば、入口管の内面に内面螺旋溝を設けることにより、入口管の出口で二相流は広がり流れとなり外郭体にいたる。そのため、液相成分を溝底部に流入させる方向付けを行うことができるため良好な気液分離性能を確保できる。 According to the gas-liquid separation device of the present invention (7) and preferred embodiment 7-1, by providing the inner surface spiral groove on the inner surface of the inlet pipe, the two-phase flow spreads at the outlet of the inlet pipe and reaches the outer body. Therefore, since the liquid phase component can be directed to flow into the groove bottom, good gas-liquid separation performance can be ensured.

本発明(8)及び好適態様8−1の気液分離装置によれば、入口管の出口側端を末広がりに広げた広がり部を設けることにより、入口管の出口では二相流は広がり流れとなり外郭体にいたる。そのため、液相成分は外郭体に沿う流れとなり、液相成分を溝底部に流入させる方向付けを行うことが出来るため良好な気液分離性能を確保できる。 According to the gas-liquid separation device of the present invention (8) and preferred embodiment 8-1, the two-phase flow becomes a spread flow at the outlet of the inlet pipe by providing a widened portion where the outlet side end of the inlet pipe is widened toward the end. Go to the outer body. Therefore, the liquid phase component flows along the outer body, and the liquid phase component can be directed to flow into the groove bottom portion, so that good gas-liquid separation performance can be ensured.

本発明(9)及び好適態様9−1の気液分離装置によれば、入口仕切り体の上流部先端を円錐体とすることにより、入口管を流出した二相流はスムーズに広がり流れとなり外郭体にいたる。そのため、液相成分は外郭体に沿う流れとなり、液相成分を溝底部に流入させる方向付けを行うことができるため良好な気液分離性能を確保できる。 According to the gas-liquid separation device of the present invention (9) and preferred embodiment 9-1, the upstream end of the inlet partition is formed into a cone, so that the two-phase flow flowing out of the inlet pipe spreads smoothly and becomes a flow. To the body. Therefore, the liquid phase component flows along the outer body, and the liquid phase component can be oriented to flow into the groove bottom portion, so that good gas-liquid separation performance can be ensured.

本発明(10)及び好適態様10−1の気液分離装置によれば、溝の上流側の流入室の外郭体内面に溝の溝深さより深さの浅い導入溝を設けることにより、外郭体に向かう流れを受け止め、導入溝内に液滴を捕捉し溝の方向に流すことにより液相成分を溝底部に流入させる方向付けを行うことが出来るため良好な気液分離性能を確保できる。 According to the gas-liquid separation device of the present invention (10) and preferred embodiment 10-1, the outer body is provided by providing an introduction groove shallower than the groove depth in the inner surface of the inflow chamber on the upstream side of the groove. Since the liquid phase component can be directed to flow into the bottom of the groove by capturing the liquid droplet in the introduction groove and flowing it in the direction of the groove, good gas-liquid separation performance can be secured.

本発明(11)及び好適態様11−1の気液分離装置によれば、溝の上流側の流入室の外郭体内面に溝の溝深さより厚さの薄い多孔質体を設けることにより、外郭体に向かう流れを受け止め、多孔質体内に液滴を捕捉し溝の方向に流すことにより液相成分を溝底部に流入させる方向付けを行うことが出来るため良好な気液分離性能を確保できる。 According to the gas-liquid separation device of the present invention (11) and preferred embodiment 11-1, the outer shell is provided on the inner surface of the outer shell of the inflow chamber on the upstream side of the groove by providing a porous body having a thickness smaller than the groove depth. By receiving the flow toward the body and capturing the liquid droplets in the porous body and flowing them in the direction of the grooves, the liquid phase component can be directed to flow into the bottom of the grooves, so that good gas-liquid separation performance can be secured.

本発明(12)及び好適態様12−1の気液分離装置によれば、液相出口管を複数設けることにより、気液分離装置は分流器も兼ねることができる。すなわち、入口管から流入した二相流は気相と液相に分離され、気相は気相出口管から蒸発器バイパス管側に流れる。したがって、複数の液相出口管に流入する冷媒は液相単相であるため、冷媒を均等に分流することが容易になり、気液分離装置は分流器も兼ねることができる。 According to the gas-liquid separation device of the present invention (12) and preferred embodiment 12-1, by providing a plurality of liquid-phase outlet pipes, the gas-liquid separation device can also serve as a flow divider. That is, the two-phase flow flowing in from the inlet pipe is separated into a gas phase and a liquid phase, and the gas phase flows from the gas phase outlet pipe to the evaporator bypass pipe side. Therefore, since the refrigerant flowing into the plurality of liquid phase outlet pipes is a liquid phase single phase, it is easy to evenly divide the refrigerant, and the gas-liquid separation device can also serve as a flow divider.

本発明(23)及び好適態様13−1の気液分離装置によれば、蒸発器の伝熱管の一部をバイパス管として使用することにより、たとえバイパス管に液冷媒が混入しても液冷媒は空気から吸熱し蒸発するので、液冷媒を無駄にすることなく高効率な運転を可能にできる。 According to the gas / liquid separation device of the present invention (23) and preferred embodiment 13-1, by using a part of the heat transfer tube of the evaporator as a bypass tube, even if liquid refrigerant is mixed in the bypass tube, the liquid refrigerant Absorbs heat from the air and evaporates, so that highly efficient operation can be achieved without wasting liquid refrigerant.

本発明(24)及び好適態様14−1の気液分離装置によれば、バイパス管を蒸発器用送風機で送られる空気流中に配置することにより、たとえバイパス管に液冷媒が混入しても液冷媒は空気から吸熱し蒸発するので、液冷媒を無駄にすることなく高効率な運転を可能にできる。 According to the gas-liquid separation device of the present invention (24) and preferred embodiment 14-1, by arranging the bypass pipe in the air flow sent by the evaporator blower, even if liquid refrigerant is mixed into the bypass pipe, Since the refrigerant absorbs heat from the air and evaporates, it is possible to perform highly efficient operation without wasting the liquid refrigerant.

本発明(13)及び好適態様15−1の気液分離装置を備えた冷凍装置によれば、本発明(1)及び好適態様1−1の効果が得られる他、蒸発器での圧力損失を抑えることが出来、圧縮動力が節減でき高効率な運転を可能に出来る冷凍装置が得られる。 According to the refrigeration apparatus provided with the gas-liquid separator of the present invention (13) and preferred embodiment 15-1, the effects of the present invention (1) and preferred embodiment 1-1 can be obtained, and the pressure loss in the evaporator can be reduced. Thus, a refrigeration system that can reduce the compression power and enable highly efficient operation can be obtained.

本発明(13)及び好適態様16−1の気液分離装置を備えた冷凍装置によれば、本発明(2)及び好適態様2−1の効果が得られる他、蒸発器での圧力損失を抑えることが出来、圧縮動力が節減でき高効率な運転を可能に出来る冷凍装置が得られる。 According to the refrigeration apparatus provided with the gas-liquid separation device of the present invention (13) and preferred embodiment 16-1, the effects of the present invention (2) and preferred embodiment 2-1 can be obtained, and the pressure loss in the evaporator can be reduced. Thus, a refrigeration system that can reduce the compression power and enable highly efficient operation can be obtained.

本発明(14)及び好適態様1−2の気液分離器によれば、急拡大部位置を基準としその基準位置から二相流流入方向をプラス方向、その流れ方向と逆方向をマイナス方向とし、その基準位置から気相出口管の気相流入端位置までの距離をLとし、溝頂点仮想円の径をDtとしたとき、気相出口管の気相流入端位置を

Figure 0004268994
とすることにより、急拡大部から気相成分が気液分離室に流入するとき伴流される微細液滴ミストが気相出口管に吸い込まれ難く、効率の良い気液分離器を提供できる。According to the gas-liquid separator of the present invention (14) and preferred embodiment 1-2, the two-phase flow inflow direction from the reference position is defined as a plus direction and the direction opposite to the flow direction is defined as a minus direction with the suddenly enlarged portion position as a reference. When the distance from the reference position to the gas-phase inlet end position of the gas-phase outlet pipe is L and the diameter of the groove apex virtual circle is Dt, the gas-phase inlet end position of the gas-phase outlet pipe is
Figure 0004268994
By doing so, it is difficult for the fine droplet mist that is entrained when the gas phase component flows into the gas-liquid separation chamber from the rapid expansion portion, and it is possible to provide an efficient gas-liquid separator.

本発明(15)及び好適態様2−2の気液分離器によれば、気相出口管内径部の気相流入端上部の入り口仕切り体位置から気相出口管内径部の気相流入端の距離をH、気相出口管内径をdiとしたとき、

Figure 0004268994
とすることにより、気相出口管の入口直前における流速を気相出口管入口流速よりも低下させることができ、気相出口管の入口近傍に存在する微細液滴ミストが気相出口管に吸い込まれ難く、効率の良い気液分離器を提供できる。According to the gas-liquid separator of the present invention (15) and the preferred embodiment 2-2, the position of the gas-phase inlet end of the gas-phase outlet pipe inner diameter portion from the position of the inlet partition at the gas-phase inlet end upper portion of the gas-phase outlet pipe inner-diameter portion. When the distance is H and the gas-phase outlet pipe inner diameter is di,
Figure 0004268994
As a result, the flow velocity just before the inlet of the gas-phase outlet pipe can be made lower than that at the inlet of the gas-phase outlet pipe, and the fine droplet mist present near the inlet of the gas-phase outlet pipe is sucked into the gas-phase outlet pipe. Therefore, an efficient gas-liquid separator can be provided.

本発明(16)及び好適態様3−2の気液分離器によれば、入り口仕切り体をその下面が開放された中空部を設けることにより、急拡大部位置から気相出口管の気相流入端位置をマイナスLとすることを可能にするため、すなわち、気相出口管の気相流入端位置を急拡大部位置より上方にすることを可能にするため、急拡大部から気相成分が気液分離室に流入するとき伴流される微細液滴ミストが気相出口管に吸い込まれ難く、効率の良い気液分離器を提供できる。 According to the gas-liquid separator of the present invention (16) and preferred embodiment 3-2, the inlet partition body is provided with a hollow portion whose lower surface is opened, so that the gas-phase inflow of the gas-phase outlet pipe from the rapidly expanding portion position is provided. In order to enable the end position to be minus L, that is, to enable the gas-phase inflow end position of the gas-phase outlet pipe to be higher than the position of the sudden-expansion part, the gas-phase component is A fine liquid droplet mist accompanying the gas-liquid separation chamber is unlikely to be sucked into the gas-phase outlet pipe, and an efficient gas-liquid separator can be provided.

本発明(17)及び好適態様4−2の気液分離器によれば、出口仕切り体を概略平板状にし、気相出口管に通し気相出口管に接合することにより、限られた液溜め高さのもとで液相の容積的なバッファとして最大に近い液溜め容積を確保できる。 According to the gas-liquid separator of the present invention (17) and preferred embodiment 4-2, the outlet partition is formed into a substantially flat plate shape, and is connected to the gas-phase outlet pipe through the gas-phase outlet pipe, thereby providing a limited liquid reservoir. A liquid reservoir volume close to the maximum can be secured as a volumetric buffer for the liquid phase at a height.

本発明(18)及び好適態様5−2の気液分離器によれば、溝付き体位置を適切な位置に固定するように気相出口管に接合された出口仕切り体により溝付き体の下部位置を固定し、入口仕切り体が確実に溝付き体に密着するように、外郭体により入口仕切り体を溝付き体に押し付け入口仕切り体位置を固定することにより、二相流が狭小空間から溝に流入するとき、入口仕切り体と溝付き体の間に隙間が無いため、液相成分が直接気液分離室に流入することなく、効率の良い気液分離器を提供できる。 According to the gas-liquid separator of the present invention (18) and preferred embodiment 5-2, the lower part of the grooved body is provided by the outlet partition joined to the gas phase outlet pipe so as to fix the grooved body position at an appropriate position. By fixing the position and pressing the inlet partition against the grooved body with the outer body to ensure that the inlet partition is in close contact with the grooved body, the position of the inlet partition is fixed, so that the two-phase flow is reduced from the narrow space to the groove. When there is no gap between the inlet partition and the grooved body, the liquid phase component does not flow directly into the gas-liquid separation chamber, and an efficient gas-liquid separator can be provided.

本発明(19)及び好適態様6−2の気液分離器によれば、薄板を折り曲げて構成した溝付き体が溝頂点仮想円の内側の気液分離室への飛び出しを防止する内径支持体を設けることにより、気液分離器に何らかの衝撃的外力が作用しても、溝付き体が気液分離室へ飛び
出すことを防止でき、信頼性の高い気液分離器を提供できる。
According to the gas-liquid separator of the present invention (19) and preferred embodiment 6-2, the grooved body formed by bending a thin plate prevents the inner diameter support body from jumping out into the gas-liquid separation chamber inside the groove apex virtual circle Thus, even if some shocking external force acts on the gas-liquid separator, the grooved body can be prevented from jumping out to the gas-liquid separation chamber, and a highly reliable gas-liquid separator can be provided.

本発明(20)及び好適態様7−2の気液分離器を備えた冷凍装置によれば、本発明(14)〜(19)及び好適態様1−2〜6−2の効果が得られる他、蒸発器での圧力損失を抑えることが出来、圧縮動力が節減でき高効率な運転を可能に出来る冷凍装置が得られる。 According to the refrigeration apparatus provided with the gas-liquid separator of the present invention (20) and preferred embodiment 7-2, the effects of the present invention (14) to (19) and preferred embodiments 1-2 to 6-2 can be obtained. In this way, the pressure loss in the evaporator can be suppressed, the compression power can be reduced, and a refrigeration apparatus capable of highly efficient operation can be obtained.

本発明(21)及び好適態様8−2の気液分離器を備えた冷凍装置によれば、本発明(14)〜(19)及び好適態様1−2〜6−2の効果が得られる他、冷凍サイクルへの冷凍機油の流出を防止できるので、高効率および高信頼性運転を可能に出来る冷凍装置が得られる。 According to the refrigerating apparatus provided with the gas-liquid separator of the present invention (21) and preferred embodiment 8-2, the effects of the present invention (14) to (19) and preferred embodiments 1-2 to 6-2 can be obtained. Since the refrigeration oil can be prevented from flowing out into the refrigeration cycle, a refrigeration apparatus capable of high efficiency and high reliability operation can be obtained.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

「第1−1の実施の形態」 図1は第1−1の実施の形態の気液分離装置を示す断面図である。図2は図1に示す気液分離装置のA−A断面図である。また図3は図2の溝部詳細拡大断面図である。図1に示すように外郭体10−1内に液相出口管7−1に向かう溝2−1を有する溝付き体4−1が設けられており、溝付き体4−1の上流には入り口仕切り体16−1が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−1を設け、気液分離室1−1を構成している。入り口仕切り体16−1の一部は段差部15−1が設けられ、段差部15−1が溝2−1の溝頂部30−1に概略接することにより溝付き体4−1の中心軸と入り口仕切り体16−1の中心軸が概略一致する構成としている。なお、上記した概略接しとは、設計上では接するように設計しても、実際には加工上の寸法公差により入り口仕切り体と溝頂部がわずかに離れ、近接状態にある場合を含めたことを意味する。 気液二相流は入口管5−1から流入室48−1に流入し、さらに入り口仕切り体16−1と外郭体10−1をもって作られる狭小空間12−1に流入し、急拡大部3−1で流路断面積が拡大する。入り口仕切り体16−1をもって作られる狭小空間12−1で気液二相流を急拡大部3−1後流の溝2−1に沿って供給する傾向付けをするので、気液二相流は溝に沿って溝に流入する。 “1-1 Embodiment” FIG. 1 is a cross-sectional view showing a gas-liquid separator according to a 1-1 embodiment. 2 is a cross-sectional view of the gas-liquid separator shown in FIG. FIG. 3 is a detailed enlarged sectional view of the groove of FIG. As shown in FIG. 1, a grooved body 4-1 having a groove 2-1 toward the liquid phase outlet pipe 7-1 is provided in the outer body 10-1, and upstream of the grooved body 4-1. The entrance partition 16-1 is provided, and a rapid expansion portion 3-1, in which the flow path cross-sectional area rapidly increases in the wake of the entrance partition, is provided to constitute the gas-liquid separation chamber 1-1. A part of the entrance partition 16-1 is provided with a step 15-1, and the step 15-1 substantially contacts the groove top 30-1 of the groove 2-1, thereby the center axis of the grooved body 4-1. The central axis of the entrance partition 16-1 is approximately the same. Note that the above-mentioned rough contact includes the case where the entrance partition body and the groove top part are slightly separated due to dimensional tolerance in processing and are in close proximity even if they are designed to contact in the design. means. The gas-liquid two-phase flow flows into the inflow chamber 48-1 from the inlet pipe 5-1, and further flows into the narrow space 12-1 formed by the inlet partition 16-1 and the outer body 10-1. -1 increases the cross-sectional area of the flow path. Since the gas-liquid two-phase flow is tended to be supplied along the groove 2-1 in the wake of the rapid expansion portion 3-1, in the narrow space 12-1 formed by the entrance partition 16-1, the gas-liquid two-phase flow is provided. Flows into the groove along the groove.

ここで、図3に示す溝幅をb、液面曲率半径をr、液密度をρ、液表面張力をσおよび重力加速度をgとしたとき、溝は

Figure 0004268994
となるように設計されているため、重力よりも表面張力が支配的となり、液相は表面張力の作用により溝内に保持され流れる。 また、急拡大部3−1で急に流路断面積が拡大するため流速が低下し、二相流はその条件に応じたボイド率βの流れとなり、気相は液相より分離し溝外に出て行く。二相流のボイド率とは全流路断面積に占める気相流路断面積の割合であり、例えば有名なSmithの式を用いれば、気液分離装置の溝に流入する乾き度χと気液密度比ρの関数で式2−1に示す関数で表すことができることが知られている。
Figure 0004268994
Here, when the groove width shown in FIG. 3 is b, the liquid surface radius of curvature is r, the liquid density is ρ, the liquid surface tension is σ, and the gravitational acceleration is g, the groove is
Figure 0004268994
Therefore, the surface tension is more dominant than the gravity, and the liquid phase is retained and flows in the groove by the action of the surface tension. Further, since the flow passage cross-sectional area suddenly expands at the sudden expansion portion 3-1, the flow velocity decreases, the two-phase flow becomes a flow with a void ratio β according to the conditions, the gas phase is separated from the liquid phase, and the outside of the groove Go out to. The void fraction of the two-phase flow is the ratio of the gas-phase channel cross-sectional area to the total channel cross-sectional area. For example, if the well-known Smith equation is used, the dryness χ flowing into the groove of the gas-liquid separator and the gas It is known that the liquid density ratio ρ G / ρ L can be expressed by the function shown in Formula 2-1.
Figure 0004268994

溝頂点仮想円9−1の内側の気相流路断面積をSg、溝頂点仮想円9−1の外側の液相流路断面積をSlとしたとき、

Figure 0004268994
の関係を満たすようにSgとSlを設計しておくことにより、液は溝から溢れることなく溝内を流れ続け、気相は溝頂点仮想円9−1の内側の流路断面積Sgの部分を流れるため、二相流は気液に分離される。 溝2−1で気液分離された後、分離された気相と液相が混じり合わないように出口仕切り体8−1で気相と液相の流路が分けられ、気相出口管6−1から気相が、液相出口管7−1から液相が流出する。When the gas phase channel cross-sectional area inside the groove vertex virtual circle 9-1 is Sg and the liquid phase channel cross-sectional area outside the groove vertex virtual circle 9-1 is S1,
Figure 0004268994
By designing Sg and Sl so as to satisfy the relationship, the liquid continues to flow in the groove without overflowing the groove, and the gas phase is a portion of the channel cross-sectional area Sg inside the groove apex virtual circle 9-1. The two-phase flow is separated into gas and liquid. After gas-liquid separation in the groove 2-1, the gas-phase and liquid-phase flow paths are divided by the outlet partition 8-1 so that the separated gas-phase and liquid-phase are not mixed with each other. The gas phase flows out from -1, and the liquid phase flows out from the liquid phase outlet pipe 7-1.

以上に述べた式1−1および式3−1が表面張力の作用により液が溝から溢れることなく溝内を流れ、気液分離を行うための必要条件であるが、確実に二相流を気液分離するためには二相流の流量に関する条件が必要である。すなわち、該狭小空間から溝に流入直後の流路断面(図1に示すB−B断面)における溝内流路断面積Slに対して、気液二相流の質量流量Gが大きすぎると、非常に速い流速となり、流れのせん断力が表面張力に勝り、表面張力効果により溝面に付着した液が気相流のせん断力により引きちぎられ、気相中に液相ミストが混入した噴霧流となり、気相中に液が混じり十分な気液分離効果が得られない。
このような高速気相流のせん断力による噴霧流発生限界はIshii(M.Ishii and M.A.Grolmes, Inception Criteria
for Droplet Entrainment in Two-Phase Concurrent Film Flow, AIChE Journal
Vol.21,No.2, March,1975)の研究がよく知られている。
すなわち、図4においてガス流によるせん断力で液が引きちぎられる力Fdが液面を保持しようとする表面張力Fσを上回ったとき、ミストが発生し噴霧流になる。

Figure 0004268994
したがって、ミストの発生をなくし、噴霧流に遷移するのを防止するには式5−1を満足すればよい。
Figure 0004268994
式5−1は無次元速度Uと膜レイノルズ数Refにより次式の形で表現される。
Figure 0004268994
Figure 0004268994
Figure 0004268994
ここに μl:液粘性係数、Jg:ガスの速度、σ:表面張力、ρg:ガス密度、ρl:液密度、vl:液速度、δ:液膜厚さ、Gl:液質量流量、Lw:濡れぶち長さである。Equation 1-1 and Equation 3-1 described above are necessary conditions for the liquid to flow in the groove without overflowing the groove due to the action of surface tension, and to perform gas-liquid separation. In order to perform gas-liquid separation, conditions relating to the flow rate of the two-phase flow are necessary. That is, if the mass flow rate G of the gas-liquid two-phase flow is too large with respect to the in-groove channel cross-sectional area S1 in the channel cross section (BB cross section shown in FIG. 1) immediately after flowing into the groove from the narrow space, The flow velocity is very fast, the flow shear force is superior to the surface tension, and the liquid attached to the groove surface is torn off by the shear force of the gas phase flow due to the surface tension effect, resulting in a spray flow in which the liquid phase mist is mixed in the gas phase. The liquid is mixed in the gas phase and a sufficient gas-liquid separation effect cannot be obtained.
The limit of spray flow generation due to the shear force of such high-speed gas-phase flow is Ishii (M.Ishii and MAGrolmes, Inception Criteria
for Droplet Entrainment in Two-Phase Concurrent Film Flow, AIChE Journal
Vol.21, No.2, March, 1975) is well known.
That is, in FIG. 4, when the force Fd by which the liquid is torn off by the shearing force due to the gas flow exceeds the surface tension Fσ that tries to hold the liquid surface, mist is generated and becomes a spray flow.
Figure 0004268994
Therefore, in order to eliminate the generation of mist and prevent the transition to the spray flow, it is only necessary to satisfy Formula 5-1.
Figure 0004268994
Expression 5-1 is expressed in the form of the following expression by the dimensionless velocity U and the film Reynolds number Ref.
Figure 0004268994
Figure 0004268994
Figure 0004268994
Where μl: liquid viscosity coefficient, Jg: gas velocity, σ: surface tension, ρg: gas density, ρl: liquid density, vl: liquid velocity, δ: liquid film thickness, Gl: liquid mass flow rate, Lw: wetting It is the length.

すなわち、式6−1の関係を満たすことにより噴霧流の発生を防止でき、その例として、表1に示す具体的な複数の冷凍サイクル運転条件例と表2に示す複数の気液分離装置仕様例に対して式7−1、式8−1で示される無次元速度U、膜レイノルズ数Refを計算した結果を図5に示し、また、式6−1で示される噴霧流発生限界を計算した結果も図5に示した。

Figure 0004268994
Figure 0004268994
図5に示したプロット記号は、表2に示したaからeの各仕様の気液分離装置を表1に示す各運転条件で使用した場合に対応している。 図5において、各仕様の気液分離装置に対する運転条件は左から(1)(2)(3)(4)の順となっている。噴霧流遷移限界無次元速度Ulimは膜レイノルズ数Refに対して勾配をもっており、この例では仕様a,bでは噴霧流遷移限界以下の無次元速度Uを確保できているが、仕様c,d,eでは運転条件によっては噴霧流遷移限界無次元速度Ulimを超えることが分かる。That is, the generation of the spray flow can be prevented by satisfying the relationship of Expression 6-1. As an example, a plurality of specific refrigeration cycle operation condition examples shown in Table 1 and a plurality of gas-liquid separator specifications shown in Table 2 are used. FIG. 5 shows the result of calculating the dimensionless velocity U and the membrane Reynolds number Ref shown in Equation 7-1 and Equation 8-1 for the example, and the spray flow generation limit shown in Equation 6-1 is calculated. The results are also shown in FIG.
Figure 0004268994
Figure 0004268994
The plot symbols shown in FIG. 5 correspond to the case where the gas-liquid separators having the specifications a to e shown in Table 2 are used under the respective operating conditions shown in Table 1. In FIG. 5, the operating conditions for the gas-liquid separator of each specification are in the order of (1) (2) (3) (4) from the left. The spray flow transition limit dimensionless velocity Ulim has a gradient with respect to the membrane Reynolds number Ref. In this example, the specifications a and b can secure the dimensionless velocity U below the spray flow transition limit, but the specifications c, d, It can be seen that e exceeds the spray flow transition limit dimensionless speed Ulim depending on the operating conditions.

図5に示したように各気液分離装置を各運転条件で使用した場合の噴霧流遷移限界無次元速度Ulimに対する位置づけは把握できる。しかし、各点は膜レイノルズ数Refに対する無次元速度Uの分布を示すが、この図から各仕様の気液分離装置に流すことが出来る冷媒流量を直接把握することは出来ない。 As shown in FIG. 5, the position relative to the spray flow transition limit dimensionless speed Ulim when each gas-liquid separator is used under each operating condition can be grasped. However, although each point shows the distribution of the dimensionless velocity U with respect to the membrane Reynolds number Ref, it is impossible to directly grasp the refrigerant flow rate that can be flowed to the gas-liquid separator of each specification from this figure.

そこで、噴霧流を起こさない冷媒流量を直接把握するための具体的手段として以下の発明を行った。すなわち、噴霧流を起こさない冷媒流量を直接把握するために、冷媒流量と無次元速度Uの関係を検討した。この物理モデルでは冷媒の運動量と表面張力が関係しているため、冷媒流量が関係する物理量として、ウエーバー数Weを選んだ。ウエーバー数Weは冷媒の運動量すなわち慣性力と表面張力の比で定義される無次元数であり、二相流の密度をρ、流速をu、表面張力をσ、液面の曲率半径をrとしたとき次式となる。

Figure 0004268994
ここで、液面の曲率半径rは図3に示すように溝を構成する板13−1の頂部が角を持っている場合は比較的に容易に求められるが、図19に示すように薄板を折り曲げて溝を構成する場合には(図19の詳細は後述の第5−1の実施形態にて詳述する)溝を構成する板の頂部は曲率を持つため、液面の曲率半径rを求めるには非常に煩雑な計算になる。 ここで、図3および図19を見ると液面の曲率半径rは近似的に溝幅bの1/2と考えることができる。したがって式9−1は次式となる。なお、溝幅bは溝頂点仮想円9−1の円周を溝数で除した円弧長さで定義している。
Figure 0004268994
ここで、二相流の流速uは、二相流の流量をG,二相流の比容積をv、溝に流入直後の流路断面積である溝内流路断面積をSlとしたとき次式となる。
Figure 0004268994
式11−1を式10−1に代入し、ρ=1/vの関係を考慮すると、ウエーバー数Weは式12−1に示すように二相流の流量Gと気液分離器の形状より求められる溝内流路断面積Sl、溝幅bおよび物性値で表現できる。
Figure 0004268994
Therefore, the following invention was performed as a specific means for directly grasping the refrigerant flow rate that does not cause the spray flow. That is, the relationship between the refrigerant flow rate and the dimensionless speed U was examined in order to directly grasp the refrigerant flow rate that does not cause the spray flow. In this physical model, since the momentum of the refrigerant and the surface tension are related, the Weber number We was selected as the physical quantity related to the refrigerant flow rate. The Weber number We is a dimensionless number defined by the momentum of the refrigerant, that is, the ratio of the inertial force and the surface tension. The density of the two-phase flow is ρ, the flow velocity is u, the surface tension is σ, and the curvature radius of the liquid surface is r. Then, the following equation is obtained.
Figure 0004268994
Here, the curvature radius r of the liquid surface can be obtained relatively easily when the top of the plate 13-1 constituting the groove has a corner as shown in FIG. 3, but the thin plate as shown in FIG. When the groove is formed by bending (details of FIG. 19 will be described in detail in the embodiment 5-1 described later), the top of the plate forming the groove has a curvature, so the curvature radius r of the liquid surface This is a very complicated calculation. Here, referring to FIGS. 3 and 19, the radius of curvature r of the liquid surface can be considered to be approximately ½ of the groove width b. Therefore, Formula 9-1 becomes the following formula. The groove width b is defined by an arc length obtained by dividing the circumference of the groove vertex virtual circle 9-1 by the number of grooves.
Figure 0004268994
Here, the flow velocity u of the two-phase flow is as follows: G is the flow rate of the two-phase flow, v is the specific volume of the two-phase flow, and S1 is the channel cross-sectional area in the groove, which is the channel cross-sectional area immediately after flowing into the groove. The following formula.
Figure 0004268994
Substituting Equation 11-1 into Equation 10-1 and considering the relationship of ρ = 1 / v, the Weber number We is calculated from the flow rate G of the two-phase flow and the shape of the gas-liquid separator as shown in Equation 12-1. It can be expressed by the required in-groove channel cross-sectional area Sl, groove width b and physical property values.
Figure 0004268994

そこで、図5の場合と同様に、表2に示すaからeの各仕様の気液分離器を表1に示す各運転条件で使用した場合の無次元速度Uを式7−1より計算し、噴霧流遷移限界無次元速度Ulimに対する比U/Ulimを求め、ウエーバー数Weに対してプロットした結果を図6に示す。Weに対してU/Ulimをプロットすることにより、各気液分離装置を各運転条件で使用した場合のU/Ulimはほぼ一つの線上に乗っていることが分かる。なお、図6中のプロット記号も表2の記号に対応している。 したがって、噴霧流を越さない限界、すなわち、各点の無次元速度Uが噴霧流遷移限界無次元速度Ulimより小さい U/Ulim<1 とするには図6より

Figure 0004268994
を満足すればよいことを明かにした。Therefore, as in the case of FIG. 5, the dimensionless velocity U when the gas-liquid separator of each specification of a to e shown in Table 2 is used under each operating condition shown in Table 1 is calculated from Equation 7-1. The ratio U / Ulim to the spray flow transition limit dimensionless velocity Ulim is obtained and plotted against the Weber number We. FIG. By plotting U / Ulim against We, it can be seen that U / Ulim is almost on one line when each gas-liquid separator is used in each operating condition. The plot symbols in FIG. 6 also correspond to the symbols in Table 2. Therefore, in order to make the limit not exceeding the spray flow, that is, the dimensionless velocity U at each point smaller than the spray flow transition limit dimensionless velocity Ulim, U / Ulim <1, from FIG.
Figure 0004268994
It was revealed that we should be satisfied.

「第2−1の実施の形態」 先に説明した、図1および図2を用いて第2−1の実施の形態の気液分離装置を説明する。 図1は、第2−1の実施の形態の気液分離装置を示す断面図である。図2は、図1に示す気液分離装置のA−A断面図である。本実施形態の気液分離装置は、図1および図2に示すように外郭体1−1内に外郭体と別体で溝2−1を有する溝付き体4−1が設けられており、溝頂点仮想円9−1の内側がガスが流れる流路断面積Sgであり、溝頂点仮想円9−1の外側の溝内が液が流れる流路断面積Slであり、その構成および作用は先に説明したとおりである。 “2-1 Embodiment” The gas-liquid separation device of the 2-1 embodiment will be described with reference to FIGS. 1 and 2 described above. FIG. 1 is a cross-sectional view showing a gas-liquid separation device according to a 2-1 embodiment. 2 is a cross-sectional view of the gas-liquid separator shown in FIG. As shown in FIGS. 1 and 2, the gas-liquid separation device of the present embodiment is provided with a grooved body 4-1 having a groove 2-1 separately from the outer body in the outer body 1-1. The inside of the groove apex virtual circle 9-1 is the flow path cross-sectional area Sg through which gas flows, and the inside of the groove outside the groove apex virtual circle 9-1 is the flow path cross-sectional area Sl through which the liquid flows. As described above.

本発明の気液分離装置を実際の冷凍サイクルに適用する場合、色々な使い方があり、適用対象となる冷凍サイクルそれぞれの条件に適切な気液分離装置を提供する必要がある。具体的な適用例として、上記した気液分離装置を冷凍サイクルに使用した場合の第一の冷凍サイクル構成図を図7に示す。図7に示した冷凍サイクル構成図には適用例を説明するために必要な基本的構成要素を示している。すなわち、圧縮機17−1は第一のシリンダ18−1と第二のシリンダ19−1を有し、圧縮機で吸い込んだ低温低圧の気相冷媒は第一のシリンダ18−1と第二のシリンダ19−1で二段に圧縮され高温高圧気相冷媒となり冷媒吐出管20−1を経て、凝縮器21−1で凝縮器用送風機22−1より送られる空気に放熱し、低温高圧液冷媒となる。その液冷媒は第一の減圧器23−1で減圧され二相流となり、入り口管5−1から気液分離装置33−1に流入し、液相冷媒は液相出口管7−1から第二の減圧器24−1でさらに減圧され、蒸発器25−1に入り蒸発器用送風機26−1で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機17−1に吸い込まれる。一方、気液分離装置33−1で分離された気相冷媒は気相出口管6−1から第二のシリンダ19−1に吸い込まれるため、気液分離装置33−1で分離された蒸発に寄与しない気相冷媒は第一のシリンダ18−1で圧縮する必要が無く、圧縮動力が節減でき、高効率な運転を可能にできる。 When the gas-liquid separator of the present invention is applied to an actual refrigeration cycle, there are various usages, and it is necessary to provide a gas-liquid separator suitable for each condition of the refrigeration cycle to be applied. As a specific application example, FIG. 7 shows a first refrigeration cycle configuration diagram when the gas-liquid separator described above is used in a refrigeration cycle. The refrigeration cycle configuration diagram shown in FIG. 7 shows basic components necessary for explaining an application example. That is, the compressor 17-1 has a first cylinder 18-1 and a second cylinder 19-1, and the low-temperature and low-pressure gas-phase refrigerant sucked by the compressor is connected to the first cylinder 18-1 and the second cylinder 19-1. The refrigerant is compressed in two stages by the cylinder 19-1 to become a high-temperature and high-pressure gas-phase refrigerant, passes through the refrigerant discharge pipe 20-1, and is radiated to the air sent from the condenser blower 22-1 by the condenser 21-1, Become. The liquid refrigerant is depressurized by the first decompressor 23-1 to form a two-phase flow, and flows into the gas-liquid separation device 33-1 from the inlet pipe 5-1, and the liquid refrigerant is supplied from the liquid phase outlet pipe 7-1. The pressure is further reduced by the second pressure reducer 24-1, takes heat from the air that enters the evaporator 25-1 and is sent by the evaporator blower 26-1, becomes a low-temperature low-pressure gas-phase refrigerant, and is sucked into the compressor 17-1. On the other hand, since the gas-phase refrigerant separated by the gas-liquid separator 33-1 is sucked into the second cylinder 19-1 from the gas-phase outlet pipe 6-1, the vapor separated by the gas-liquid separator 33-1 is evaporated. Gas phase refrigerant that does not contribute need not be compressed by the first cylinder 18-1, compression power can be reduced, and high-efficiency operation can be achieved.

図7に示した冷凍サイクルにおいて、気液分離装置に流入する冷媒の状態は図8に示すモリエル線図で示すことができ、点aの状態で第一の減圧器23−1に流入した冷媒は第一の減圧器23−1で中間圧力Pmまで減圧され、点bの乾き度Xmで気相と液相が混合した状態の冷媒となり気液分離器33−1に流入する。 In the refrigeration cycle shown in FIG. 7, the state of the refrigerant flowing into the gas-liquid separator can be shown by the Mollier diagram shown in FIG. 8, and the refrigerant flowing into the first decompressor 23-1 in the state of point a. Is reduced to the intermediate pressure Pm by the first pressure reducer 23-1, becomes a refrigerant in a state where the gas phase and the liquid phase are mixed at the dryness Xm at the point b, and flows into the gas-liquid separator 33-1.

図9は上記した気液分離装置を冷凍サイクルに使用した場合の第二の冷凍サイクル構成図である。すなわち、圧縮機17−1は第一のシリンダ18−1を有し、圧縮機で吸い込んだ低温低圧の気相冷媒は第一のシリンダ18−1で圧縮され高温高圧気相冷媒となり冷媒吐出管20−1を経て、凝縮器21−1で凝縮器用送風機22−1から送られる空気に放熱し、低温高圧液冷媒となる。その液冷媒は第一の減圧器23−1で減圧され二相流となり、入り口管5−1から気液分離装置33−1に流入し、液相冷媒は液相出口管7−1から蒸発器25−1に入り蒸発器用送風機26−1で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機17−1に吸い込まれる。一方、気液分離装置で分離された気相冷媒は気相出口管6−1から蒸発器バイパス管27−1を経て圧縮機17−1に吸い込まれる。 FIG. 9 is a configuration diagram of a second refrigeration cycle when the gas-liquid separator described above is used in a refrigeration cycle. That is, the compressor 17-1 has the first cylinder 18-1, and the low-temperature and low-pressure gas-phase refrigerant sucked by the compressor is compressed by the first cylinder 18-1 and becomes a high-temperature and high-pressure gas-phase refrigerant. After passing through 20-1, the condenser 21-1 dissipates heat to the air sent from the condenser blower 22-1 and becomes a low-temperature high-pressure liquid refrigerant. The liquid refrigerant is depressurized by the first decompressor 23-1 to form a two-phase flow, and flows into the gas-liquid separator 33-1 from the inlet pipe 5-1, and the liquid refrigerant is evaporated from the liquid phase outlet pipe 7-1. Heat is taken from the air sent into the evaporator 25-1 and sent by the evaporator blower 26-1 to become a low-temperature and low-pressure gas-phase refrigerant and sucked into the compressor 17-1. On the other hand, the gas-phase refrigerant separated by the gas-liquid separator is sucked into the compressor 17-1 from the gas-phase outlet pipe 6-1 through the evaporator bypass pipe 27-1.

気液分離装置33−1を用いない場合には、減圧器23−1で減圧された二相流の気相冷媒も蒸発器に流入するため、特に、蒸発器用送風機26−1で送られる空気温度が低い場合には蒸発圧力が低下し、気相冷媒の密度は小さくなり体積流量が大きくなるため、蒸発器25−1での圧力損失が大きく蒸発器25−1の出口圧力、即ち、圧縮機吸込み圧力が低下するため、圧縮動力が増大し、高効率な運転ができなくなる。 それに対して、図9で示したように気液分離装置33−1を設け、分離された気相冷媒を気相出口管6−1から蒸発器バイパス管27−1を経て圧縮機17−1に吸い込ませることにより、蒸発に寄与しない気相冷媒は蒸発器25−1に流入しないため蒸発器25−1での圧力損失を抑えることができ、圧縮動力が節減でき、高効率な運転を可能にできる。 When the gas-liquid separation device 33-1 is not used, the two-phase gas-phase refrigerant decompressed by the decompressor 23-1 also flows into the evaporator, so that the air sent by the evaporator fan 26-1 in particular. When the temperature is low, the evaporation pressure decreases, the density of the gas-phase refrigerant decreases, and the volume flow rate increases, so that the pressure loss in the evaporator 25-1 is large and the outlet pressure of the evaporator 25-1, that is, compression. Since the machine suction pressure decreases, the compression power increases and high-efficiency operation becomes impossible. On the other hand, as shown in FIG. 9, a gas-liquid separator 33-1 is provided, and the separated gas-phase refrigerant is sent from the gas-phase outlet pipe 6-1 to the compressor 177-1 via the evaporator bypass pipe 27-1. Since the gas-phase refrigerant that does not contribute to evaporation does not flow into the evaporator 25-1, the pressure loss in the evaporator 25-1 can be suppressed, the compression power can be reduced, and highly efficient operation is possible. Can be.

図9に示した冷凍サイクルは、減圧器23−1により蒸発圧力まで減圧され、使用対象となる蒸発温度に設定される。すなわち、この冷凍サイクルの状態は図10に示すモリエル線図で表現でき、例えば(A)は蒸発温度が−20℃程度まで対象とする低温冷凍サイクル、(B)は蒸発温度が0℃程度まで対象とする中温冷凍サイクルの例であり、それぞれにおいて、点aは減圧器入口、点bは気液分離装置入口の冷媒状態であり、気液分離装置入口のそれぞれの冷媒乾き度X1,X2は減圧器入口のサブクール量Sc1,Sc2及び蒸発圧力Ps1、Ps2が変わることにより異なった値となる。 The refrigeration cycle shown in FIG. 9 is decompressed to the evaporation pressure by the decompressor 23-1, and is set to the evaporation temperature to be used. That is, the state of this refrigeration cycle can be expressed by the Mollier diagram shown in FIG. 10, for example, (A) is a low-temperature refrigeration cycle targeted for an evaporation temperature of about −20 ° C., and (B) is an evaporation temperature of about 0 ° C. It is an example of the target intermediate temperature refrigeration cycle, and in each, the point a is the decompressor inlet, the point b is the refrigerant state at the gas-liquid separator inlet, and the refrigerant dryness X1, X2 at the gas-liquid separator inlet is The subcool amounts Sc1 and Sc2 and the evaporation pressures Ps1 and Ps2 at the inlet of the decompressor change to different values.

以上に述べたように、気液分離装置の使い方により、気液分離装置に流入する冷媒の状態が異なり、それに対応してそれぞれの条件に適切な気液分離装置を提供する必要がある。 それぞれの条件に対して適切な気液分離装置を提供する要件は先に述べたように、冷媒流量に対して適切な流路断面積をもち、かつ、液が溝から溢れないようにし、表面張力の作用により溝内に液を保持することであり、式13−1、式3−1および式1−1の関係を満たすことである。 As described above, the state of the refrigerant flowing into the gas-liquid separator varies depending on how the gas-liquid separator is used, and accordingly, it is necessary to provide a gas-liquid separator suitable for each condition. The requirement to provide an appropriate gas-liquid separation device for each condition is that, as described above, it has an appropriate flow path cross-sectional area with respect to the refrigerant flow rate, and prevents liquid from overflowing from the groove. This is to hold the liquid in the groove by the action of tension, and to satisfy the relations of Formula 13-1, Formula 3-1, and Formula 1-1.

気液分離装置の使い方あるいは適用機種により適切な気液分離装置を提供するためには溝の断面形状を変えることにより気相断面積Sg、液相断面積Slが式13−1、式3−1および式1−1の関係を満たすようにする。例えば、気液分離装置の溝に流入する二相流の液の割合が少ない条件の場合には図11に示す浅い溝2−1を有する溝付き体4−1が用いられ、気液分離装置の溝に流入する二相流の液の割合が多い条件の場合には図12に示す深い溝2−1を有する溝付き体4−1が用いられる。したがって、図1に示すように外郭体1−1と別体で溝2−1を有する溝付き体4−1を設けることにより、気液分離装置の使い方あるいは適用機種に応じて適切な気相断面積Sg、液相断面積Slをもつ溝付き体4−1のみを複数準備することにより、外郭体をはじめとする共通部品に対して適切な溝付き体を選ぶことにより、安価な気液分離装置を提供できる。また、溝2−1を有する溝付き体4−1を別体で作ることにより、いかなる溝形状でも加工しやすく安価な気液分離装置を提供できる。 In order to provide an appropriate gas-liquid separator according to the usage or application model of the gas-liquid separator, the gas-phase cross-sectional area Sg and the liquid-phase cross-sectional area S1 are changed by the equations 13-1 and 3- 1 and Formula 1-1 are satisfied. For example, when the ratio of the two-phase flow liquid flowing into the groove of the gas-liquid separator is small, the grooved body 4-1 having the shallow groove 2-1 shown in FIG. When the ratio of the two-phase flow liquid flowing into the groove is large, a grooved body 4-1 having a deep groove 2-1 shown in FIG. 12 is used. Therefore, as shown in FIG. 1, by providing the grooved body 4-1 having the groove 2-1 separately from the outer body 1-1, an appropriate gas phase can be obtained according to the usage or application model of the gas-liquid separator. By preparing only a plurality of grooved bodies 4-1 having a cross-sectional area Sg and a liquid phase cross-sectional area Sl, an appropriate gas-liquid can be obtained by selecting an appropriate grooved body for the common parts including the outer body. A separation device can be provided. Moreover, by making the grooved body 4-1 having the groove 2-1 separately, it is possible to provide an inexpensive gas-liquid separation device that can be easily processed in any groove shape.

「第3−1の実施の形態」 先に説明した図1および図13を用いて第3−1の実施の形態の気液分離装置を説明する。図1は第3−1の実施の形態の気液分離装置を示す断面図である。図13は図1に示す気液分離装置のB−B断面図における溝部詳細断面図である。第3−1の実施の形態では溝2−1の表面を親水性処理面43−1としていることが特徴であり、その他の構成および作用は第1−1の実施の形態の場合と同じである。 図1に示す気液分離装置のB−B断面図に流入した二相流は気相中に多くの液滴ミスト40−1を含んでおり、それらの液滴ミスト40−1は溝2−1の表面に付着し溝に捕捉される。しかし、溝面に付着した液滴41−1がそのままの状態で留まっていると、図4に示した噴霧流発生メカニズムの原理により、高速ガス流によるせん断力で液滴が引きちぎられ噴霧流となりやすい。したがって、第3−1の実施の形態では溝2−1の表面を親水性処理面43−1とし、溝2−1の溝面に付着した液滴41−1を親水性処理の作用により直ちに液膜化し、溝底に集まった液相42−1と合流させることにより、液相を安定的に溝に補足でき良好な気液分離が可能になる。親水性処理面43−1の加工方法はたとえば、ショットブラスト等による機械的手段または化学的処理により微細凹凸加工、あるいは親水性材料の塗布でも良い。 “3-1 Embodiment” A gas-liquid separation device according to a 3-1 embodiment will be described with reference to FIGS. 1 and 13 described above. FIG. 1 is a sectional view showing a gas-liquid separation device according to a 3-1 embodiment. FIG. 13 is a detailed cross-sectional view of the groove portion in the BB cross-sectional view of the gas-liquid separator shown in FIG. The 3-1 embodiment is characterized in that the surface of the groove 2-1 is a hydrophilic treatment surface 43-1, and other configurations and operations are the same as those in the 1-1 embodiment. is there. The two-phase flow that has flowed into the BB cross-sectional view of the gas-liquid separation device shown in FIG. 1 includes a large number of droplet mists 40-1 in the gas phase. It adheres to the surface of 1 and is captured by the groove. However, if the droplet 41-1 adhering to the groove surface remains as it is, the droplet is torn off by the shearing force of the high-speed gas flow and becomes a spray flow due to the principle of the spray flow generation mechanism shown in FIG. Cheap. Therefore, in the third embodiment, the surface of the groove 2-1 is the hydrophilic treatment surface 43-1, and the droplet 41-1 adhering to the groove surface of the groove 2-1 is immediately caused by the action of the hydrophilic treatment. By forming a liquid film and joining with the liquid phase 42-1 collected at the bottom of the groove, the liquid phase can be stably captured in the groove and good gas-liquid separation becomes possible. The processing method of the hydrophilic treatment surface 43-1 may be, for example, fine unevenness processing by mechanical means such as shot blasting or chemical treatment or application of a hydrophilic material.

「第4−1の実施の形態」 図14は第4−1の実施の形態の気液分離装置を示す断面図である。図15は図14に示す気液分離装置のC−C断面図である。本実施形態の気液分離装置は溝2−1を有する溝付き体4−1を平板状にし、それに応じて外郭体1−1を箱状にしたものであり、図14および図15に示すよう外郭体1−1内に外郭体と別体で溝2−1を有する溝付き体4−1が設けられ
ており、その作用及び効果は図1に示した第2−1の実施の形態と同じである。
"4-1th Embodiment" FIG. 14 is a cross-sectional view showing a gas-liquid separation device according to a 4-1 embodiment. 15 is a cross-sectional view taken along the line CC of the gas-liquid separator shown in FIG. The gas-liquid separation device of the present embodiment has a grooved body 4-1 having a groove 2-1 in a flat plate shape, and the outer body 1-1 has a box shape accordingly, as shown in FIGS. 14 and 15. In the outer body 1-1, a grooved body 4-1 having a groove 2-1 is provided separately from the outer body, and the operation and effect of the second embodiment shown in FIG. Is the same.

また、図15において、溝付き体4−1の溝頂部30−1から第2の外郭体10−1の上蓋に当たる第2の外郭体11−2の内面までの距離Hは二相流のボイド率βを用いて決められる。すなわち、ボイド率とは全流路断面積に占める気相断面積の割合であり、気相断面積をSg、液相断面積をSlとしたとき、

Figure 0004268994
となるようにHを決めることにより第2−1の実施の形態の場合と同様に液相は溝内に保持され、液溢れが生じない。In FIG. 15, the distance H from the groove top 30-1 of the grooved body 4-1 to the inner surface of the second outer body 11-2 that hits the upper cover of the second outer body 10-1 is a two-phase flow void. It is determined using the rate β. That is, the void ratio is the ratio of the gas phase cross-sectional area to the total channel cross-sectional area, and when the gas phase cross-sectional area is Sg and the liquid phase cross-sectional area is Sl,
Figure 0004268994
By determining H to be equal to, the liquid phase is held in the groove as in the case of the 2-1 embodiment, and no liquid overflow occurs.

「第5−1の実施の形態」 図16は第5−1の実施の形態の気液分離装置を示す断面図である。図17は図16に示す気液分離装置のA−A断面図である。図16に示す第5−1の実施の形態の気液分離装置では溝2−1をもつ溝付き体4−1を薄板を折り曲げて構成したものであり、そのA−A断面は図17に示すようになっている。薄板を折り曲げて構成した溝付き体4−1は図18に示した薄板を折り曲げた溝付き体4−1を製作し、それを丸め、図17に示すように外郭体10−1に挿入している。 “5-1th Embodiment” FIG. 16 is a cross-sectional view showing a gas-liquid separator according to a 5-1 embodiment. 17 is a cross-sectional view taken along line AA of the gas-liquid separator shown in FIG. In the gas-liquid separator of the 5-1 embodiment shown in FIG. 16, a grooved body 4-1 having a groove 2-1 is formed by bending a thin plate, and the AA cross section is shown in FIG. As shown. A grooved body 4-1 formed by bending a thin plate is manufactured as a grooved body 4-1 formed by bending a thin plate shown in FIG. 18, and is rolled and inserted into the outer body 10-1 as shown in FIG. ing.

一般的に、図11、図12に示したような浅い溝は切削、焼結加工等により加工が可能であるが、溝深さが深くなるとそれらによる加工方法で深い溝を実現することは難しく、また、たとえ可能になっても加工費が高くなる。 さらに噴霧流を起さない条件として示した式13−1において、溝内流路断面積Slを大きくすることにより、噴霧流を起こすことなく気相質量流量Gを大きく出来る。したがって図2に示す溝面を構成する肉部13−1の厚さtが厚いと溝内流路断面積Slは小さくなるため、Slを大ききとるためには肉部13−1の厚さtを薄くするかまたは溝深さhを深くすることが必要になり、この点からも切削、焼結加工等による溝加工が難しくなる。 したがって、薄板を折り曲げて溝付き体4−1を構成することにより安価な深溝を構成でき、さらに、図18に示した薄板を折り曲げた溝付き体4−1を丸め、図17に示すように外郭体10−1に挿入することにより溝内流路断面積Slを確保し、かつ深溝を安価で容易に実現できる。 In general, shallow grooves as shown in FIGS. 11 and 12 can be processed by cutting, sintering, or the like. However, when the groove depth becomes deep, it is difficult to realize a deep groove by a processing method using them. Also, even if it becomes possible, the processing cost becomes high. Furthermore, in Equation 13-1 shown as a condition that does not cause the spray flow, the gas phase mass flow rate G can be increased without causing the spray flow by increasing the channel cross-sectional area Sl in the groove. Therefore, if the thickness t of the meat portion 13-1 constituting the groove surface shown in FIG. 2 is large, the channel cross-sectional area Sl in the groove becomes small. Therefore, in order to increase the thickness Sl, the thickness of the meat portion 13-1 is increased. It is necessary to make t thin or deepen the groove depth h, and from this point, groove processing by cutting, sintering, or the like becomes difficult. Therefore, an inexpensive deep groove can be formed by bending the thin plate to form the grooved body 4-1, and further, the grooved body 4-1 formed by bending the thin plate shown in FIG. 18 is rounded, as shown in FIG. By inserting it into the outer body 10-1, the in-groove channel cross-sectional area Sl can be secured, and the deep groove can be easily realized at low cost.

しかし、薄板を折り曲げて溝付き体4−1を構成する方法は深溝を安価で容易に実現できる一方で、解決しなければならない課題があり、以下にその課題を解決する具体的発明について述べる。 However, while the method of forming the grooved body 4-1 by bending a thin plate can easily realize a deep groove at a low cost, there are problems that must be solved, and a specific invention that solves the problem will be described below.

溝付き体4−1を丸め、外郭体10−1に挿入した気液分離装置では、図16に示すように、入口管5−1から流入した二相流は入り口仕切り体16−1と外郭体10−1をもって作られる狭小空間12−1を通り図16に矢印で示すように溝2−1に流入する。このとき、溝に流入した二相流は図17に示す内側の溝2i−1と外側の溝2o−1の両側に流入する。内側の溝2i−1に流入した二相流の液相は表面張力の作用により溝内に付着して流れ、気相は溝頂点仮想円9−1の内側の気相流路Sg側に流れる。しかし、外側の溝2o−1に流入した二相流は気相成分もそのまま外側の溝2o−1側を流れ続け、液相出口管7−1に至るため、液相側に気相成分が混入し良好な気液分離を出来ないという課題が考えられる。 In the gas-liquid separation device in which the grooved body 4-1 is rolled and inserted into the outer body 10-1, as shown in FIG. 16, the two-phase flow flowing from the inlet pipe 5-1 is separated from the inlet partition 16-1. It passes through the narrow space 12-1 formed with the body 10-1, and flows into the groove 2-1 as shown by the arrow in FIG. At this time, the two-phase flow flowing into the groove flows into both sides of the inner groove 2i-1 and the outer groove 2o-1 shown in FIG. The liquid phase of the two-phase flow that has flowed into the inner groove 2i-1 adheres and flows in the groove due to the action of surface tension, and the gas phase flows toward the gas phase flow path Sg side inside the groove apex virtual circle 9-1. . However, two-phase flow gas phase component that has flowed outside the groove 2o-1 also continues as it flows through the outer grooves 2o-1 side, since it reaches the liquid-phase outlet pipe 7-1 is a gas phase component in the liquid phase side The problem that it cannot mix and gas-liquid separation cannot be considered.

上記した課題を解決する具体的発明を図19を用いて説明する。
外側の溝2o−1には気相と液相が二相流の状態で流れ、液相は表面張力の作用により外側の溝2o−1内のコーナ部28−1に付着して流れると考えることができ、その結果気相流路は狭まり、気相は外側の溝2o−1に内接する円29−1内を流れると考えることができる。
溝数を多くしていくと、内接する円29−1の径dgは小さくなり、その部分を流れる気相流速は気相主流路すなわち、溝頂点仮想円9−1の内側の流路を流れる気相流速に対し小さく、さらに、気相主流路断面積に対する全内接円流路断面積も小さいため、気相主流路に対する全内接円流路を流れる気相流量が十分に小さくなる溝幅bと溝深さhの関係が存在すると考えた。
そこで、すべての外側の溝2o−1全体を流れる気相流量Ggoが気相主流路すなわち、溝頂点仮想円9−1の内側の流路を流れる気相流量Ggiに対してどの程度の割合になるのかを把握するため、Ggo/Ggiを以下の考え方で計算した。
一般に、円形流路における圧力損失ΔPは流体密度をρg、管摩擦係数をλ、流路径をD,流路長さをL,管内流速をVおよび重力加速度をgとしたとき次式で示される。

Figure 0004268994
溝頂点仮想円9−1の内側の流路と溝2o−1に内接する円29−1内を流れる流路の入口の圧力と出口の圧力はそれぞれ等しいため、内接する円29−1の径をdg、その流速をvgとし、溝頂点仮想円9−1の内側の流路径をDg,その流速をVgおよび流路長さをL、気相密度をρgとすると次式が得られる。
Figure 0004268994
ここで、管摩擦係数λは有名なブラジウスの式を用いると流速をV、流路径をD、動粘性係数をνとすると次式となる。
Figure 0004268994
流路dgとDgの両者の流路のρgとLも等しいため、次式が得られる。
Figure 0004268994
故に
Figure 0004268994
したがって、気相主流路Dgを流れる気相流量に対する全内接円dgを流れる気相流量の比は気相主流路断面積をSg,全内接円流路断面積をsgとすると、気相主流路に対する全内接円流路の流量比は次式となる。
Figure 0004268994
A specific invention for solving the above problems will be described with reference to FIG.
Consider gas phase and the liquid phase on the outside of the groove 2o-1 continues to flow while the two-phase flow, the liquid phase to flow attached to the corner portion 28-1 of the outer groove 2o-1 by the action of surface tension As a result, the gas phase flow path is narrowed, and it can be considered that the gas phase flows in a circle 29-1 inscribed in the outer groove 2o-1 .
As the number of grooves is increased, the diameter dg of the inscribed circle 29-1 decreases, and the gas phase flow velocity flowing through the circle 29-1 flows through the gas phase main channel, that is, the channel inside the groove apex virtual circle 9-1. A groove in which the gas flow rate flowing through the inscribed circular flow path with respect to the gas phase main flow path is sufficiently small because it is small with respect to the gas phase flow velocity and the cross section area of the inscribed circular flow path relative to the gas phase main flow path is also small. It was considered that there was a relationship between width b and groove depth h.
Therefore, at what ratio the gas-phase flow rate Ggo flowing through all the outer grooves 2o-1 is relative to the gas-phase main flow channel, that is, the gas-phase flow rate Ggi flowing through the inner channel of the groove apex virtual circle 9-1. Ggo / Ggi was calculated based on the following concept in order to understand whether this would be true.
In general, the pressure loss ΔP in a circular flow path is expressed by the following equation when the fluid density is ρg, the pipe friction coefficient is λ, the flow path diameter is D, the flow path length is L, the pipe flow velocity is V, and the gravitational acceleration is g. .
Figure 0004268994
Since the pressure at the inlet and the outlet of the flow path flowing in the circle 29-1 inscribed in the groove apex virtual circle 9-1 and the circle 29-1 inscribed in the groove 2o-1 are equal, the diameter of the inscribed circle 29-1 Where dg, the flow velocity is vg, the flow channel diameter inside the groove apex virtual circle 9-1 is Dg, the flow velocity is Vg, the flow channel length is L, and the gas phase density is ρg, the following equation is obtained.
Figure 0004268994
Here, the pipe friction coefficient λ is represented by the following expression when the flow velocity is V, the flow path diameter is D, and the kinematic viscosity coefficient is ν when using the famous Blasius equation.
Figure 0004268994
Since ρg and L of the flow paths of both the flow paths dg and Dg are also equal, the following equation is obtained.
Figure 0004268994
Therefore
Figure 0004268994
Therefore, the ratio of the gas phase flow rate flowing through the entire inscribed circle dg to the gas phase flow rate flowing through the gas phase main channel Dg is as follows. The flow rate ratio of all inscribed circular flow paths to the main flow path is as follows.
Figure 0004268994

式16−1は気液分離装置の幾何学的形状により決まるため、表3に示す具体的気液分離装置仕様例に対して流量比を計算した結果を図20に示す。計算において、本気液分離装置が使用される運転条件は表1の条件とした。表1によると各運転条件の中で最も小さなボイド率βは0.732であり、式3−1のSg/(Sg+Sl)≦0.732になるように溝設計を行えばいずれの条件で運転しても液相が溝から溢れることなく流れるため、本計算では、余裕を見て、Sg/(Sg+Sl)=0.70となるようにhを求めた。また、溝幅bは溝頂点仮想円9−1の円周を溝数で除した円弧長さで定義し、溝幅bは溝数を変えることにより求められる。上記より求められるb/hに対して流量比Ggo/Ggiを図20に示した。 なお、溝の折り曲げ加工を行う場合、折り曲げ部は鋭角に折り曲げることは難しく、実際には図19に示すように折り曲げ半径rcが必要であり、本計算では折り曲げ半径rc=板厚tとして計算した。

Figure 0004268994
Since Equation 16-1 is determined by the geometric shape of the gas-liquid separator, FIG. 20 shows the result of calculating the flow rate ratio for the specific gas-liquid separator specification example shown in Table 3. In the calculation, the operating conditions in which the gas-liquid separator is used are the conditions shown in Table 1. According to Table 1, the smallest void ratio β in each operating condition is 0.732. If the groove design is made so that Sg / (Sg + Sl) ≦ 0.732 in the expression 3-1, it can be operated under any condition. However, since the liquid phase flows without overflowing from the groove, h is obtained in this calculation so as to satisfy Sg / (Sg + Sl) = 0.70. The groove width b is defined by an arc length obtained by dividing the circumference of the groove apex virtual circle 9-1 by the number of grooves, and the groove width b is obtained by changing the number of grooves. FIG. 20 shows the flow rate ratio Ggo / Ggi with respect to b / h obtained from the above. When the groove is bent, it is difficult to bend the bent portion at an acute angle. Actually, a bending radius rc is required as shown in FIG. 19, and in this calculation, the bending radius rc = plate thickness t was calculated. .
Figure 0004268994

図20より明かなように、b/hに対して流量比Ggo/Ggiをプロットすることにより、気液分離装置仕様例A,B,Cいずれもほぼ同一線上に乗っていることがわかる。理想的には液相側に混入する気相は0%であることが望ましいが、工業的には広い運転条件を考慮すると1から2%程度の混入は許容する必要があり、Ggo/Ggiが2%以下になるのは図20よりb/hが0.6以下の場合であることが分かる。したがって、液相側に混入する気相成分を2%以下に抑えるためには

Figure 0004268994
を満足すればよいことを明かにした。As is clear from FIG. 20, by plotting the flow rate ratio Ggo / Ggi against b / h, it can be seen that the gas-liquid separator specification examples A, B, and C are almost on the same line. Ideally, it is desirable that the gas phase mixed on the liquid phase side is 0%. However, in consideration of a wide range of operating conditions, it is necessary to allow mixing of about 1 to 2%, and Ggo / Ggi is It can be seen from FIG. 20 that b / h is 0.6 or less from 2% or less. Therefore, in order to suppress the gas phase component mixed in the liquid phase side to 2% or less
Figure 0004268994
It was revealed that we should be satisfied.

「第6−1の実施の形態」 図21は第6−1の実施の形態の気液分離装置を示す断面図である。 図21に示す気液分離装置は図1に示した気液分離装置とその構成、作用は同じであり、外郭体10−1内に液相出口管7−1に向かう溝2−1を有する溝付き体4−1が設けられており、溝付き体4−1の上流には入り口仕切り体16−1が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−1を設け気液分離室1−1を構成している。入り口仕切り体16−1の一部は段差部15−1が設けられ、段差部15−1が溝2−1の溝頂部に概略接することにより溝付き体4−1の中心軸と入り口仕切り体16−1の中心軸が概略一致する構成としている。すなわち、入り口仕切り体16−1は二相流が気液分離室1−1に直接流入しないようにする機能を持つため、溝付き体4−1の中心軸と入り口仕切り体16−1の中心軸のずれを防ぐための位置あわせのために入り口仕切り体16−1の一部に段差部15−1を設けている。 気液二相流は入口管5−1から流入し、入り口仕切り体16−1と外郭体10−1をもって作られる狭小空間12−1に流入し、狭小空間12−1で気液二相流を急拡大部3−1後流の溝2−1に沿って供給する傾向付けをするので、気液二相流は溝に沿って溝に流入する。 気液分離性能は基本的には先に述べた溝の特性に依存しているが、溝の特性以外に気液二相流の溝への流入条件も気液分離性能を確保する上で重要な要件である。その第一の流入条件は入り口仕切り体16−1の寸法に関する条件である。 入り口仕切り体16−1は気液二相流を溝に沿って溝に流入させる機能も果たすことが気液分離性能を確保する上で重要な要件である。したがって、そのためには、図21に示す入口仕切り体16−1の溝先端から上流側の長さL1、溝先端から下流側の段差部15−1の長さL2寸法が気液分離性能に重要な意味を持つ。 “6-1th Embodiment” FIG. 21 is a cross-sectional view showing a gas-liquid separator according to a 6-1 embodiment. The gas-liquid separator shown in FIG. 21 has the same configuration and function as the gas-liquid separator shown in FIG. 1, and has a groove 2-1 in the outer body 10-1 toward the liquid-phase outlet pipe 7-1. A grooved body 4-1 is provided, an inlet partition 16-1 is provided upstream of the grooved body 4-1, and the flow path cross-sectional area rapidly increases in the wake of the inlet partition. The unit 3-1 is provided to constitute the gas-liquid separation chamber 1-1. A part of the entrance partition 16-1 is provided with a stepped portion 15-1, and the stepped portion 15-1 substantially contacts the groove top of the groove 2-1, whereby the central axis of the grooved body 4-1 and the entrance partition The central axis of 16-1 is substantially matched. That is, since the entrance partition 16-1 has a function to prevent the two-phase flow from directly flowing into the gas-liquid separation chamber 1-1, the central axis of the grooved body 4-1 and the center of the entrance partition 16-1 A step 15-1 is provided in a part of the entrance partition 16-1 for alignment to prevent the shaft from shifting. The gas-liquid two-phase flow flows from the inlet pipe 5-1, flows into the narrow space 12-1 formed by the inlet partition 16-1 and the outer body 10-1, and the gas-liquid two-phase flow in the narrow space 12-1. Since the gas-liquid two-phase flow flows along the groove, the gas-liquid two-phase flow flows into the groove. The gas-liquid separation performance basically depends on the groove characteristics described above, but in addition to the groove characteristics, the inflow conditions of the gas-liquid two-phase flow into the groove are also important to ensure the gas-liquid separation performance. It is a necessary requirement. The first inflow condition is a condition related to the size of the entrance partition 16-1. It is an important requirement for ensuring the gas-liquid separation performance that the entrance partition 16-1 also fulfills the function of causing the gas-liquid two-phase flow to flow into the groove along the groove. Therefore, for this purpose, the length L1 upstream from the groove tip of the inlet partition 16-1 shown in FIG. 21 and the length L2 of the step 15-1 downstream from the groove tip are important for the gas-liquid separation performance. It has a meaning.

一般的に、図22に示すように流れの中に置かれた板をよぎる流れの物理モデルを考えたとき、板31−1の厚さが薄い場合には、流線32−1は板の後流側で板の中心部方向に回り込みやすい性質があり、L1寸法が小さいと溝に供給された二相流の液相成分が溝内に捕捉される前に溝の外の気相流路部に流れ込み、良好な気液分離が出来ない可能性を予測した。そこで、L1、L2寸法を種々変え、気相出口管6−1中に混入する液量を実験により計測し、二相流全液量に対する液混合割合を求めた。図23に液混合割合をL1/L2に対してプロットした結果を示す。理想的には液混合割合が0であることが望ましいが工業的には若干の許容値が必要であり、液混合割合を0.003すなわち0.3%許容すると、図23より

Figure 0004268994
を満たすことにより、良好な気液分離性能を確保できることが分かる。 In general, when a physical model of a flow that crosses a plate placed in the flow as shown in FIG. 22 is considered, if the thickness of the plate 31-1 is thin, the streamline 32-1 Gas phase flow path outside the groove before the liquid phase component of the two-phase flow supplied to the groove is trapped in the groove when the L1 dimension is small. The possibility that good gas-liquid separation could not be performed was predicted. Therefore, the dimensions of L1 and L2 were variously changed, the amount of liquid mixed in the gas phase outlet pipe 6-1 was measured by experiment, and the liquid mixing ratio with respect to the total amount of two-phase flow was obtained. FIG. 23 shows the result of plotting the liquid mixing ratio against L1 / L2. Ideally, it is desirable that the liquid mixing ratio is 0, but some tolerance is required industrially. If the liquid mixing ratio is allowed to be 0.003, that is, 0.3%, FIG.
Figure 0004268994
It can be seen that satisfactory gas-liquid separation performance can be secured by satisfying the above.

なお、L1/L2<1.6で液混合割合が大きくなっている理由は以下による。 L1/L2が小さな場合の第一点はL1が小さな場合でありこの場合には図22に示した流れの物理モデルにより溝に供給された二相流の液相成分が溝内に捕捉される前に溝の外の気相流路部に流れ込むためである。L1/L2が小さな場合の第二点はL2が大きな場合である。この場合には、図24に示すように溝頂部30−1が入口仕切り体の段差部15−1に接することによりコーナー部ができ、そこにコーナー付着液34−1が蓄積し流れ、急拡大部3−1でその液が気相流路部に流れ込むためである。この場合、L2が大きいとコーナー付着液34−1の量が増えるため、L2が大きいほど、すなわちL1/L2が小さいほど液混合割合が大きくなる。一方、L1/L2が大きくなると液混合割合が若干増大する傾向が見られるが、その理由はL1が大きくなると、二相流中の液滴ミストが入口仕切り体16−1の表面に付着する量が増え、入口仕切り体16−1の表面に蓄積された液相が急拡大部で気相流路Sg中に流入しやすくなるためである。 以上より、良好な気液分離を行うためには、ある程度の長さを持つL1寸法が必要であり、一方、L1寸法が長すぎても良くないことが分かる。 The reason why the liquid mixing ratio is large when L1 / L2 <1.6 is as follows. The first point when L1 / L2 is small is when L1 is small. In this case, the liquid phase component of the two-phase flow supplied to the groove is captured in the groove by the physical model of the flow shown in FIG. This is because it flows into the gas phase flow path portion outside the groove before. The second point when L1 / L2 is small is when L2 is large. In this case, as shown in FIG. 24, the groove top portion 30-1 comes into contact with the step portion 15-1 of the inlet partition body to form a corner portion, where the corner adhering liquid 34-1 accumulates and flows, and rapidly expands. This is because the liquid flows into the gas phase flow path section at the section 3-1. In this case, when L2 is large, the amount of the corner adhesion liquid 34-1 increases. Therefore, the liquid mixing ratio increases as L2 increases, that is, as L1 / L2 decreases. On the other hand, when L1 / L2 increases, the liquid mixing ratio tends to increase slightly. The reason is that when L1 increases, the amount of droplet mist in the two-phase flow attached to the surface of the inlet partition 16-1. This is because the liquid phase accumulated on the surface of the inlet partition 16-1 is likely to flow into the gas phase flow path Sg at the rapidly expanding portion. From the above, it can be seen that in order to perform good gas-liquid separation, the L1 dimension having a certain length is necessary, while the L1 dimension may not be too long.

また、許容値0.3%の考え方は以下の理由による。気液分離装置を図9に示した冷凍サイクルに適用する場合を例にとると、分離された気相冷媒を気相出口管6−1から蒸発器バイパス管27−1を経て圧縮機17−1に吸い込ませると、気相出口管6−1中に混入する液相冷媒は外気から吸熱することなく、圧縮機に戻ってしまい、その分圧縮機動力に対する吸熱能力が低下し冷凍サイクル効率が低下することになる。最近では冷凍サイクル効率を向上させるためにあらゆる努力が行われており、効率向上効果が0.5%程度の手段も取り入れていることを考えると、液混合割合の許容値は0.3%以下と考えるのが妥当である。 The idea of the allowable value of 0.3% is as follows. Taking the case where the gas-liquid separator is applied to the refrigeration cycle shown in FIG. 9 as an example, the separated gas-phase refrigerant is sent from the gas-phase outlet pipe 6-1 to the compressor 17- through the evaporator bypass pipe 27-1. 1, the liquid refrigerant mixed in the gas-phase outlet pipe 6-1 returns to the compressor without absorbing heat from the outside air, and accordingly, the heat absorption capacity for the compressor power is reduced and the refrigeration cycle efficiency is increased. Will be reduced. Recently, every effort has been made to improve the efficiency of the refrigeration cycle, and considering that the efficiency improvement effect is also about 0.5%, the allowable value of the liquid mixing ratio is 0.3% or less It is reasonable to think.

「第7−1の実施の形態」 図25は第7−1の実施の形態の気液分離装置を示す断面図である。 図25に示す気液分離装置は図1に示した気液分離装置とその構成、作用は同じであり、外郭体10−1内に
液相出口管7−1に向かう溝2−1を有する溝付き体4−1が設けられており、溝付き体4−1の上流には入り口仕切り体16−1が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−1を設け気液分離室1−1を構成している。入り口仕切り体16−1の一部は段差部15−1が設けられ、段差部15−1が溝2−1の溝頂部に概略接することにより溝付き体4−1の中心軸と入り口仕切り体16−1の中心軸が概略一致する構成としている。すなわち、入り口仕切り体16−1は二相流が気液分離室1−1に直接流入しないようにする機能を持つため、溝付き体4−1の中心軸と入り口仕切り体16−1の中心軸のずれを防ぐための位置あわせのために入り口仕切り体16−1の一部に段差部15−1を設けている。 気液二相流は入口管5−1から流入し、入り口仕切り体16−1と外郭体10−1をもって作られる狭小空間12−1に流入し、狭小空間12−1で気液二相流を急拡大部3−1後流の溝2−1に沿って供給する傾向付けをするので、気液二相流は溝に沿って溝に流入する。 気液分離性能は基本的には先に述べた溝の特性に依存しているが、溝の特性以外に気液二相流の溝への流入条件も気液分離性能を確保する上で重要な要件である。その第二の流入条件は入り口仕切り体16−1と外郭体までの寸法に関する条件である。即ち,入り口仕切り体16−1と外殻体10−1内壁との距離H1、溝頂部から外殻体10−1内壁との距離H2の相対関係が、

Figure 0004268994
を満たすようにすることで、先に図24で示したようなコーナー付着液34−1の蓄積を防ぐことができ,急拡大部3−1でその液が気相流路部に流れ込むことを防止することができる。溝や溝付き体の加工精度や,仕切り体の位置決め精度のばらつきを考慮した上で、H1をH2よりも小さくしておくことが肝要である。“7-1th Embodiment” FIG. 25 is a cross-sectional view showing a gas-liquid separator according to a 7-1 embodiment. The gas-liquid separator shown in FIG. 25 has the same configuration and function as the gas-liquid separator shown in FIG. 1, and has a groove 2-1 in the outer body 10-1 that faces the liquid-phase outlet pipe 7-1. A grooved body 4-1 is provided, an inlet partition 16-1 is provided upstream of the grooved body 4-1, and the flow path cross-sectional area rapidly increases in the wake of the inlet partition. The unit 3-1 is provided to constitute the gas-liquid separation chamber 1-1. A part of the entrance partition 16-1 is provided with a stepped portion 15-1, and the stepped portion 15-1 substantially contacts the groove top of the groove 2-1, whereby the central axis of the grooved body 4-1 and the entrance partition The central axis of 16-1 is approximately the same. That is, since the entrance partition 16-1 has a function to prevent the two-phase flow from directly flowing into the gas-liquid separation chamber 1-1, the central axis of the grooved body 4-1 and the center of the entrance partition 16-1 A step 15-1 is provided in a part of the entrance partition 16-1 for alignment to prevent the shaft from shifting. The gas-liquid two-phase flow flows from the inlet pipe 5-1, flows into the narrow space 12-1 formed by the inlet partition 16-1 and the outer body 10-1, and the gas-liquid two-phase flow in the narrow space 12-1. Since the gas-liquid two-phase flow flows along the groove, the gas-liquid two-phase flow flows into the groove. The gas-liquid separation performance basically depends on the groove characteristics described above, but in addition to the groove characteristics, the inflow conditions of the gas-liquid two-phase flow into the groove are also important to ensure the gas-liquid separation performance. It is a necessary requirement. The second inflow condition is a condition relating to the dimensions of the entrance partition 16-1 and the outer body. That is, the relative relationship between the distance H1 between the entrance partition 16-1 and the inner wall of the outer shell 10-1, and the distance H2 from the groove top to the inner wall of the outer shell 10-1 is:
Figure 0004268994
By satisfying the above, accumulation of the corner adhesion liquid 34-1 as previously shown in FIG. 24 can be prevented, and the liquid rapidly flows into the gas phase flow path section at the rapid expansion section 3-1. Can be prevented. It is important to make H1 smaller than H2 in consideration of variations in the processing accuracy of the groove and the grooved body and the positioning accuracy of the partition body.

「第8−1の実施の形態」 図26は第8−1の実施の形態の気液分離装置を示す断面図である。 図26に示す気液分離装置は入口管5−1の内面に内面螺旋溝を設けており、その他は図21に示した気液分離装置とその構成、作用は同じであり、外郭体10−1内に液相出口管7−1に向かう溝2−1を有する溝付き体4−1が設けられており、溝付き体4−1の上流には入り口仕切り体16−1が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−1を設け気液分離室1−1を構成している。入口管5−1に流入した二相流は管内面に設けられた螺旋溝35−1の作用により入口管5−1内で旋回流となり、二相流の液相成分は遠心力の作用により入口管5−1の内壁に沿い旋回しながら流れる。したがって、入口管5−1の出口では液相成分は広がり流れ36−1となり外郭体10−1にいたる。そのため、液相成分は外郭体に沿う流れ37−1となり、液相成分を溝底部14−1に流入させる方向付けを行うことができるため良好な気液分離性能を確保できる。 “Eighth-1 Embodiment” FIG. 26 is a cross-sectional view showing a gas-liquid separator according to an 8-1 embodiment. The gas-liquid separator shown in FIG. 26 is provided with an inner spiral groove on the inner surface of the inlet pipe 5-1, and the other configuration and operation are the same as those of the gas-liquid separator shown in FIG. 1 is provided with a grooved body 4-1 having a groove 2-1 toward the liquid phase outlet pipe 7-1, and an inlet partition body 16-1 is provided upstream of the grooved body 4-1. The gas-liquid separation chamber 1-1 is configured by providing a rapid expansion portion 3-1, in which the flow path cross-sectional area suddenly expands in the downstream of the entrance partition. The two-phase flow flowing into the inlet pipe 5-1 becomes a swirl flow in the inlet pipe 5-1 by the action of the spiral groove 35-1 provided on the inner surface of the pipe, and the liquid phase component of the two-phase flow is caused by the action of centrifugal force. It flows while turning along the inner wall of the inlet pipe 5-1. Therefore, at the outlet of the inlet pipe 5-1, the liquid phase component spreads to flow 36-1, and reaches the outer body 10-1. Therefore, the liquid phase component becomes a flow 37-1 along the outer body, and the liquid phase component can be directed to flow into the groove bottom portion 14-1, so that favorable gas-liquid separation performance can be ensured.

「第9−1の実施の形態」 図27は第9−1の実施の形態の気液分離装置を示す断面図である。 図27に示す気液分離装置は入口管5−1の出口側端を末広がりに広げた広がり部38−1を設けており、その他は図21に示した気液分離装置とその構成、作用は同じであり、外郭体10−1内に液相出口管7−1に向かう溝2−1を有する溝付き体4−1が設けられており、溝付き体4−1の上流には入り口仕切り体16−1が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−1を設け気液分離室1−1を構成している。入口管5−1に流入した二相流はその出口側端に末広がりに広げた広がり部38−1を設けてあり、また、二相流は広がり部38−1の内面に沿い流れる性質があるため、入口管5−1の出口では二相流は広がり流れ36−1となり外郭体10−1にいたる。そのため、液相成分は外郭体に沿う流れ37−1となり、液相成分を溝底部14−1に流入させる方向付けを行うことが出来るため良好な気液分離性能を確保できる。 “9-1th Embodiment” FIG. 27 is a cross-sectional view showing a gas-liquid separation device according to a 9-1th embodiment. The gas-liquid separator shown in FIG. 27 is provided with a widened portion 38-1 in which the outlet side end of the inlet pipe 5-1 is widened to the end, and the gas-liquid separator shown in FIG. A grooved body 4-1 having a groove 2-1 toward the liquid phase outlet pipe 7-1 is provided in the outer body 10-1, and an inlet partition is provided upstream of the grooved body 4-1. The body 16-1 is provided, and the gas-liquid separation chamber 1-1 is configured by providing a rapid expansion portion 3-1, in which the flow path cross-sectional area rapidly expands in the wake of the entrance partition. The two-phase flow that has flowed into the inlet pipe 5-1 is provided with a widened portion 38-1 that widens toward the outlet end, and the two-phase flow has a property of flowing along the inner surface of the widened portion 38-1. Therefore, the two-phase flow spreads at the outlet of the inlet pipe 5-1 and becomes a flow 36-1, which reaches the outer body 10-1. Therefore, the liquid phase component becomes a flow 37-1 along the outer body, and the liquid phase component can be directed to flow into the groove bottom portion 14-1, so that favorable gas-liquid separation performance can be ensured.

「第10−1の実施の形態」 図28は第10−1の実施の形態の気液分離装置を示す断面図である。 図28に示す気液分離装置は、入り口仕切り体上流部先端に円錐体39−1を設けており、その他は図21に示した気液分離装置とその構成、作用は同じであり、外郭体10−1内に液相出口管7−1に向かう溝2−1を有する溝付き体4−1が設けられており、溝付き体4−1の上流には入り口仕切り体16−1が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−1を設け気液分離室1−1を構成している。入口管5−1から流出した二相流は、その下流に先端に円錐体39−1を設けた入り口仕切り体16−1を設けているため、入口管5−1を流出した二相流はスムーズに広がり流れ36−1となり外郭体10−1にいたる。そのため、液相成分は外郭体に沿う流れ37−1となり、液相成分を溝底部14−1に流入させる方向付けを行うことが出来るため良好な気液分離性能を確保できる。 “10th Embodiment” FIG. 28 is a cross-sectional view showing a gas-liquid separator according to a 10th embodiment. The gas-liquid separator shown in FIG. 28 is provided with a cone 39-1 at the upstream end of the entrance partition, and the other configuration and operation are the same as those of the gas-liquid separator shown in FIG. 10-1 is provided with a grooved body 4-1 having a groove 2-1 toward the liquid phase outlet pipe 7-1, and an inlet partition 16-1 is provided upstream of the grooved body 4-1. The gas-liquid separation chamber 1-1 is configured by providing a rapid enlargement portion 3-1 in which the flow path cross-sectional area rapidly increases in the wake of the entrance partition. The two-phase flow that has flowed out of the inlet pipe 5-1 is provided with an inlet partition 16-1 having a conical body 39-1 at the tip at the downstream, so the two-phase flow that has flowed out of the inlet pipe 5-1 is It spreads smoothly and becomes the flow 36-1, reaching the outer body 10-1. Therefore, the liquid phase component becomes a flow 37-1 along the outer body, and the liquid phase component can be directed to flow into the groove bottom portion 14-1, so that favorable gas-liquid separation performance can be ensured.

「第11−1の実施の形態」 図29は第11−1の実施の形態の気液分離装置を示す断面図である。図30は図29に示す気液分離装置のD−D断面図である。図29に示す気液分離装置は溝2−1の上流側の流入室48−1の外郭体内面に溝2−1の溝深さより浅い導入溝44−1を持つ導入溝付き体45−1を設けており、その他は図21に示した気液分離装置とその構成、作用は同じである。入口管5−1から流出した二相流は、入口仕切り体に衝突し外郭体に向かう流れ46−1となる。外郭体に向かう流れ46−1が直接外郭体に衝突すると、流入室48−1内は微細液滴ミストが発生し、溝2−1に流入する二相流は液滴ミスト成分が多く、液相成分を溝底部14−1に流入させる方向付けを行うことが出来にくくなり、気液分離性能が低下する。 したがって、導入溝44−1を持つ導入溝付き体45−1を設けることにより、外郭体に向かう流れ46−1を受け止め、導入溝44−1内に液滴を捕捉し溝2−1の方向に流すことにより液相成分を溝底部14−1に流入させる方向付けを行うことが出来るため良好な気液分離性能を確保できる。 [Eleventh Embodiment] FIG. 29 is a cross-sectional view showing a gas-liquid separator according to an eleventh embodiment. 30 is a DD cross-sectional view of the gas-liquid separator shown in FIG. The gas-liquid separator shown in FIG. 29 has an introduction grooved body 45-1 having an introduction groove 44-1 shallower than the groove depth of the groove 2-1, on the inner surface of the outer body of the inflow chamber 48-1 upstream of the groove 2-1. The rest of the configuration is the same as that of the gas-liquid separator shown in FIG. The two-phase flow flowing out from the inlet pipe 5-1 collides with the inlet partition and becomes a flow 46-1 toward the outer body. When the flow 46-1 toward the outer body directly collides with the outer body, a fine droplet mist is generated in the inflow chamber 48-1, and the two-phase flow flowing into the groove 2-1 has a large amount of droplet mist components. It becomes difficult to direct the phase component to flow into the groove bottom portion 14-1, and the gas-liquid separation performance is deteriorated. Therefore, by providing the introduction grooved body 45-1 having the introduction groove 44-1, the flow 46-1 toward the outer body is received, the droplet is captured in the introduction groove 44-1, and the direction of the groove 2-1. Since the liquid phase component can be directed to flow into the groove bottom portion 14-1, the gas-liquid separation performance can be secured.

「第12−1の実施の形態」 図31は第12−1の実施の形態の気液分離装置を示す断面図である。図32は図31に示す気液分離装置のD−D断面図である。図31に示す気液分離装置は溝2−1の上流側の流入室48−1の外郭体内面に溝2−1の溝深さより厚さの薄い多孔質体47−1を設けており、その他は図21に示した気液分離装置とその構成、作用は同じである。入口管5−1から流出した二相流は、入口仕切り体に衝突し外郭体に向かう流れ46−1となる。外郭体に向かう流れ46−1が直接外郭体に衝突すると、流入室48−1内は微細液滴ミストが発生し、溝2−1に流入する二相流は液滴ミスト成分が多く、液相成分を溝底部14−1に流入させる方向付けを行うことが出来にくくなり、気液分離性能が低下する。 したがって、多孔質体47−1を設けることにより、外郭体に向かう流れ46−1を受け止め、多孔質体47−1内に液滴を捕捉し溝2−1の方向に流すことにより液相成分を溝底部14−1に流入させる方向付けを行うことが出来るため良好な気液分離性能を確保できる。多孔質体47−1は例えば図33に示すように金網シートを丸めることにより構成できる。 “Twelfth Embodiment” FIG. 31 is a cross-sectional view showing a gas-liquid separator according to a twelfth embodiment. 32 is a DD cross-sectional view of the gas-liquid separator shown in FIG. The gas-liquid separator shown in FIG. 31 is provided with a porous body 47-1 having a thickness smaller than the groove depth of the groove 2-1, on the inner surface of the outer body of the inflow chamber 48-1 upstream of the groove 2-1. The rest of the configuration is the same as that of the gas-liquid separator shown in FIG. The two-phase flow flowing out from the inlet pipe 5-1 collides with the inlet partition and becomes a flow 46-1 toward the outer body. When the flow 46-1 toward the outer body directly collides with the outer body, a fine droplet mist is generated in the inflow chamber 48-1, and the two-phase flow flowing into the groove 2-1 has a large amount of droplet mist components. It becomes difficult to direct the phase component to flow into the groove bottom portion 14-1, and the gas-liquid separation performance is deteriorated. Therefore, by providing the porous body 47-1, the liquid phase component is received by receiving the flow 46-1 toward the outer body, capturing the droplet in the porous body 47-1, and flowing it in the direction of the groove 2-1. Can be directed to flow into the groove bottom portion 14-1, so that good gas-liquid separation performance can be secured. The porous body 47-1 can be constituted by rolling a wire netting sheet as shown in FIG.

「第13−1の実施の形態」 図34は第13−1の実施の形態の気液分離装置を示す断面図である。図34に示すように外郭体10−1内に二つの液相出口管7−1a,7−1bに向かう溝2−1を有する溝付き体4−1が設けられており、溝付き体4−1の上流には入り口仕切り体16−1が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−1を設け気液分離室1−1を構成している。入り口仕切り体16−1の一部は段差部15−1が設けられ、段差部15−1が溝2−1の溝頂部に概略接することにより溝付き体4−1の中心軸と入り口仕切り体16−1の中心軸が概略一致する構成としている。 気液二相流は入口管5−1から流入室48−1に流入し、入り口仕切り体16−1と外郭体10−1をもって作られる狭小空間12−1に流入し、急拡大部3−1で流路断面積が拡大する。入り口仕切り体16−1をもって作られる狭小空間12−1で気液二相流を急拡大部3−1後流の溝2−1に沿って供給する傾向付けをするので、気液二相流は溝に沿って溝に流入する。溝2−1で気液分離された後、分離された気相と液相が混じり合わないように出口仕切り体8−1で気相と液相の流路が分けられ、気相出口管6−1から気相が、液相出口管7−1a,7−1bから液相が流出する。 “Thirteenth Embodiment” FIG. 34 is a cross-sectional view showing a gas-liquid separator according to a thirteenth embodiment. As shown in FIG. 34, a grooved body 4-1 having a groove 2-1 directed to two liquid phase outlet pipes 7-1a and 7-1b is provided in the outer body 10-1, and the grooved body 4 is provided. -1 is provided with an inlet partition 16-1, and a gas flow separation chamber 1-1 is configured by providing a rapid expansion portion 3-1 in which the flow path cross-sectional area rapidly increases in the wake of the inlet partition. ing. A part of the entrance partition 16-1 is provided with a stepped portion 15-1, and the stepped portion 15-1 substantially contacts the groove top of the groove 2-1, whereby the central axis of the grooved body 4-1 and the entrance partition The central axis of 16-1 is approximately the same. The gas-liquid two-phase flow flows into the inflow chamber 48-1 from the inlet pipe 5-1, flows into the narrow space 12-1 formed by the inlet partition 16-1 and the outer body 10-1, 1 increases the cross-sectional area of the flow path. Since the gas-liquid two-phase flow is tended to be supplied along the groove 2-1 in the wake of the rapid expansion portion 3-1, in the narrow space 12-1 formed by the entrance partition 16-1, the gas-liquid two-phase flow is provided. Flows into the groove along the groove. After gas-liquid separation in the groove 2-1, the gas-phase and liquid-phase flow paths are divided by the outlet partition 8-1 so that the separated gas-phase and liquid-phase are not mixed with each other. The gas phase flows out from -1, and the liquid phase flows out from the liquid phase outlet pipes 7-1a and 7-1b.

図35は一般的な多パス蒸発器冷凍サイクル構成図である。蒸発器25−1は例えばクロスフィンアンドチューブ蒸発器であり、蒸発器伝熱管内の圧力損失を低減するために分流器52−1を設け、パスA49−1,パスB50−1の2パスに分岐して冷媒を流している。この場合、分岐点51−1における冷媒は減圧器23−1で減圧された後であるため冷媒は気相と液相が混入している二相流になっている。したがって、分岐点では重力の影響を強く受け、パスA49−1,パスB50−1の2パスに冷媒を均等に分流することが難しく、分岐点51への流入姿勢、各パスへの分岐姿勢及び各パスの抵抗設定等の調整を試行錯誤的に行うため、多大な時間を必要としている。 FIG. 35 is a general multi-pass evaporator refrigeration cycle configuration diagram. The evaporator 25-1 is, for example, a cross fin and tube evaporator, and is provided with a flow divider 52-1 to reduce the pressure loss in the evaporator heat transfer tube, and is divided into two paths, a path A49-1 and a path B50-1. The refrigerant branches and flows. In this case, since the refrigerant at the branch point 51-1 is after being decompressed by the decompressor 23-1, the refrigerant has a two-phase flow in which the gas phase and the liquid phase are mixed. Therefore, at the branch point, it is strongly affected by gravity, and it is difficult to evenly distribute the refrigerant into the two paths of path A49-1 and path B50-1, and the inflow attitude to the branch point 51, the branch attitude to each path, and It takes a lot of time to adjust the resistance setting of each path by trial and error.

図36は第13−1の実施の形態の気液分離装置を冷凍サイクルに適用した場合の冷凍サイクル構成図である。上記課題に対して、第13−1の実施の形態の気液分離装置を使用することにより冷媒を均等に分流することが容易になる。すなわち、気液分離装置33−1を設けることにより、入口管5−1から流入した二相流は気相と液相に分離され気相は気相出口管6−1から蒸発器バイパス管27−1に流れるため、液相出口管7−1a,7−1bに流入する冷媒は液相単相であるため、冷媒を均等に分流することが容易になり、気液分離器は分流器も兼ねることができる。さらにこの場合、図9でも説明したように分離された気相冷媒を気相出口管6−1から蒸発器バイパス管27−1を経て圧縮機17−1に吸い込ませることにより、蒸発に寄与しない気相冷媒は蒸発器25−1に流入しないため蒸発器25−1での圧力損失を抑えることができ、圧縮動力が節減でき、高効率な運転を可能にできる。なお、本実施例では2パスの分岐の場合について述べたが、分岐数に応じて複数の液相出口管を設けることが有効なことは言うまでもない。 FIG. 36 is a configuration diagram of a refrigeration cycle when the gas-liquid separator according to the thirteenth embodiment is applied to a refrigeration cycle. With respect to the above-mentioned problem, it becomes easy to evenly distribute the refrigerant by using the gas-liquid separator according to the thirteenth embodiment. That is, by providing the gas-liquid separation device 33-1, the two-phase flow that has flowed from the inlet pipe 5-1 is separated into a gas phase and a liquid phase, and the gas phase is separated from the gas-phase outlet pipe 6-1 to the evaporator bypass pipe 27. Since the refrigerant flowing into the liquid-phase outlet pipes 7-1a and 7-1b is a single-phase liquid phase, it is easy to evenly divide the refrigerant, and the gas-liquid separator is also a flow divider. I can also serve. Further, in this case, as described with reference to FIG. 9, the separated gas-phase refrigerant is sucked into the compressor 17-1 from the gas-phase outlet pipe 6-1 through the evaporator bypass pipe 27-1, so that it does not contribute to evaporation. Since the gas-phase refrigerant does not flow into the evaporator 25-1, pressure loss in the evaporator 25-1 can be suppressed, compression power can be reduced, and highly efficient operation can be achieved. In the present embodiment, the case of two-pass branching has been described. Needless to say, it is effective to provide a plurality of liquid-phase outlet pipes according to the number of branches.

「第14−1の実施の形態」 図37は第14−1の実施の形態として、気液分離装置の適用例を示す第三の冷凍サイクル構成図である。すなわち、圧縮機17−1は第一のシリンダ18−1を有し、圧縮機で吸い込んだ低温低圧の気相冷媒は第一のシリンダ18−1で圧縮され高温高圧気相冷媒となり冷媒吐出管20−1を経て、凝縮器21−1で凝縮器用送風機22−1から送られる空気に放熱し、低温高圧液冷媒となる。その液冷媒は第一の減圧器23−1で減圧され二相流となり、入り口管5−1から気液分離装置33−1に流入し、液相冷媒は液相出口管7−1から蒸発器25−1に入り蒸発器用送風機26−1で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機17−1に吸い込まれる。一方、気液分離装置で分離された気相冷媒は気相出口管6−1から蒸発器バイパス管27−1を経て圧縮機17−1に吸い込まれる。ここで、蒸発器25−1は例えばクロスフィンアンドチューブ蒸発器を使用しており、その蒸発器25−1の伝熱管の一部をバイパス管27−1として使用することにより、バイパス管でも蒸発器用送風機26−1で送られる空気から熱を吸熱できる構成としている。 "14th Embodiment" FIG. 37 is a third refrigeration cycle configuration diagram showing an application example of a gas-liquid separation device as a 14th embodiment. That is, the compressor 17-1 has the first cylinder 18-1, and the low-temperature and low-pressure gas-phase refrigerant sucked by the compressor is compressed by the first cylinder 18-1 and becomes a high-temperature and high-pressure gas-phase refrigerant. After passing through 20-1, the condenser 21-1 dissipates heat to the air sent from the condenser blower 22-1 and becomes a low-temperature high-pressure liquid refrigerant. The liquid refrigerant is depressurized by the first decompressor 23-1 to form a two-phase flow, and flows into the gas-liquid separator 33-1 from the inlet pipe 5-1, and the liquid refrigerant is evaporated from the liquid phase outlet pipe 7-1. Heat is taken from the air sent into the evaporator 25-1 and sent by the evaporator blower 26-1 to become a low-temperature and low-pressure gas-phase refrigerant and sucked into the compressor 17-1. On the other hand, the gas-phase refrigerant separated by the gas-liquid separator is sucked into the compressor 17-1 from the gas-phase outlet pipe 6-1 through the evaporator bypass pipe 27-1. Here, the evaporator 25-1 uses, for example, a cross fin and tube evaporator, and by using a part of the heat transfer pipe of the evaporator 25-1 as the bypass pipe 27-1, the evaporator 25-1 is also evaporated. It is set as the structure which can absorb heat from the air sent with the air blower 26-1.

気液分離装置33−1は冷凍サイクルの様々な運転条件範囲を考慮して、溝から液が溢れないように式3−1に基づき適切な設計をしている。しかし、冷凍サイクルが実際に市場で運転される条件は予想の範囲を超えることが多く、そのような場合には液が溝から溢れ、気液分離装置33−1の気相側出口管6−1にも液冷媒が混入す
ることが想定できる。したがって、蒸発器25−1の伝熱管の一部をバイパス管27−1として使用することにより、バイパス管でも蒸発器用送風機26−1で送られる空気から熱を吸熱でき、たとえ、バイパス管に液冷媒が混入しても、液冷媒を無駄にすることなく、吸熱に寄与でき高効率な運転を可能にできる。
In consideration of various operating condition ranges of the refrigeration cycle, the gas-liquid separator 33-1 is appropriately designed based on Equation 3-1, so that liquid does not overflow from the groove. However, the conditions under which the refrigeration cycle is actually operated in the market often exceed the expected range. In such a case, the liquid overflows from the groove, and the gas phase side outlet pipe 6- 6 of the gas-liquid separator 33-1. It can be assumed that liquid refrigerant is also mixed into 1. Therefore, by using a part of the heat transfer pipe of the evaporator 25-1 as the bypass pipe 27-1, even the bypass pipe can absorb heat from the air sent by the evaporator blower 26-1, Even if the refrigerant is mixed, the liquid refrigerant can be contributed to heat absorption without wasting the liquid refrigerant, and a highly efficient operation can be realized.

「第15−1の実施の形態」 図38は第15−1の実施の形態として、気液分離装置の適用例を示す第四の冷凍サイクル構成図である。すなわち、圧縮機17−1は第一のシリンダ18−1を有し、圧縮機で吸い込んだ低温低圧の気相冷媒は第一のシリンダ18−1で圧縮され高温高圧気相冷媒となり冷媒吐出管20−1を経て、凝縮器21−1で凝縮器用送風機22−1から送られる空気に放熱し、低温高圧液冷媒となる。その液冷媒は第一の減圧器23−1で減圧され二相流となり、入り口管5−1から気液分離装置33−1に流入し、液相冷媒は液相出口管7−1から蒸発器25−1に入り蒸発器用送風機26−1で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機17−1に吸い込まれる。一方、気液分離装置で分離された気相冷媒は気相出口管6−1から蒸発器バイパス管27−1を経て圧縮機17−1に吸い込まれる。ここで、バイパス管27−1を蒸発器用送風機26−1で送られる空気流53−1中に配置することにより、バイパス管でも蒸発器用送風機26−1で送られる空気から熱を吸熱でき、たとえ、バイパス管に液冷媒が混入しても、液冷媒を無駄にすることなく、吸熱に寄与でき高効率な運転を可能にできる。 “15th Embodiment” FIG. 38 is a fourth refrigeration cycle configuration diagram showing an application example of a gas-liquid separator as a 15th embodiment. That is, the compressor 17-1 has the first cylinder 18-1, and the low-temperature and low-pressure gas-phase refrigerant sucked by the compressor is compressed by the first cylinder 18-1 and becomes a high-temperature and high-pressure gas-phase refrigerant. After passing through 20-1, the condenser 21-1 dissipates heat to the air sent from the condenser blower 22-1 and becomes a low-temperature high-pressure liquid refrigerant. The liquid refrigerant is depressurized by the first decompressor 23-1 to form a two-phase flow, and flows into the gas-liquid separator 33-1 from the inlet pipe 5-1, and the liquid refrigerant is evaporated from the liquid phase outlet pipe 7-1. Heat is taken from the air sent into the evaporator 25-1 and sent by the evaporator blower 26-1 to become a low-temperature and low-pressure gas-phase refrigerant and sucked into the compressor 17-1. On the other hand, the gas-phase refrigerant separated by the gas-liquid separator is sucked into the compressor 17-1 from the gas-phase outlet pipe 6-1 through the evaporator bypass pipe 27-1. Here, by disposing the bypass pipe 27-1 in the air flow 53-1 sent by the evaporator blower 26-1, the bypass pipe 27-1 can also absorb heat from the air sent by the evaporator blower 26-1, Even if liquid refrigerant is mixed in the bypass pipe, it is possible to contribute to heat absorption without wasting the liquid refrigerant and to enable highly efficient operation.

「第1−2の実施の形態」 図39は第1−2の実施の形態の気液分離器を示す断面図である。図40は図39に示す気液分離器のA−A断面図である。図41は薄板を折り曲げて構成した溝付き体4−2の展開斜視図であり、また図42は図39の入口仕切り体16−2の平面拡大図であり、図43は溝の拡大断面図である。図39に示すように外郭体A10−2内に液相出口管7−2に向かう溝2−2を有する溝付き体4−2が設けられており、溝付き体4−2の上流には入り口仕切り体16−2が設けられ、入り口仕切り体の後流で流路断面積が急激に拡大する急拡大部3−2を設け、気液分離室1−2を構成している。溝付き体4−2は図41に示す薄板を折り曲げ溝2−2を構成し、これをまるめて図40に示すように外郭体A10−2内に挿入している。溝付き体4−2の下流には気相出口管6−2に接合された出口仕切り体8−2により溝付き体4−2の高さ方向の下部位置を規定するように、気相出口管6−2が外郭体A10−2の下縮管部13−2に接合されている。 “1-2th Embodiment” FIG. 39 is a cross-sectional view showing a gas-liquid separator according to the 1-2 embodiment. 40 is a cross-sectional view of the gas-liquid separator shown in FIG. 39 taken along the line AA. 41 is a developed perspective view of the grooved body 4-2 formed by bending a thin plate, FIG. 42 is an enlarged plan view of the inlet partition 16-2 of FIG. 39, and FIG. 43 is an enlarged sectional view of the groove. It is. As shown in FIG. 39, a grooved body 4-2 having a groove 2-2 toward the liquid phase outlet pipe 7-2 is provided in the outer body A10-2, and upstream of the grooved body 4-2. An entrance partition 16-2 is provided, and a rapid expansion portion 3-2 in which the flow path cross-sectional area rapidly increases in the wake of the entrance partition is provided to constitute a gas-liquid separation chamber 1-2. The grooved body 4-2 is formed by bending the thin plate shown in FIG. 41 to form a groove 2-2, and the whole is inserted into the outer body A10-2 as shown in FIG. In the downstream of the grooved body 4-2, the gas phase outlet is defined such that the lower position in the height direction of the grooved body 4-2 is defined by the outlet partition 8-2 joined to the gas phase outlet pipe 6-2. The tube 6-2 is joined to the lower contraction tube portion 13-2 of the outer body A10-2.

入り口仕切り体16−2には図42の平面拡大図に示すように、つば部14−2が設けられ、つば部14−2には二相流が流れることが出来るようにスリット15−2が設けられている。図39に示すように、入り口仕切り体16−2は溝付き体4−2の上に置かれ、外郭体B11−2によりつば部外周17−2を押し付けた状態で、入り口仕切り体16−2と溝付き体4−2が密着するように外郭体A10−2と外郭体B11−2は外郭体接合部18−2で接合されている。 As shown in the enlarged plan view of FIG. 42, the entrance partition 16-2 is provided with a collar 14-2, and the collar 14-2 has a slit 15-2 so that a two-phase flow can flow. Is provided. As shown in FIG. 39, the entrance partition 16-2 is placed on the grooved body 4-2, and the entrance partition 16-2 is pressed against the outer periphery 17-2 of the collar by the outer body B11-2. The outer body A10-2 and the outer body B11-2 are joined by the outer body joint portion 18-2 so that the grooved body 4-2 is in close contact therewith.

気液二相流は入口管5−2から流入室19−2に流入し、さらに入り口仕切り体16−2と外郭体A10−2とをもって作られる狭小空間12−2に流入し、急拡大部3−2で流路断面積が拡大する。入り口仕切り体16−2と外郭体A10−2とをもって作られる狭小空間12−2で気液二相流を急拡大部3−2後流の溝2−2に沿って供給する傾向付けをするので、気液二相流は溝に沿って溝に流入する。ここで、図43に示す溝幅をb、液面曲率半径をr、液密度をρ、液表面張力をσおよび重力加速度をgとしたとき、溝は

Figure 0004268994
となるように設計されているため、重力よりも表面張力が支配的となり、液相は表面張力の作用により溝内に保持され流れる。 また、急拡大部3−2で急に流路断面積が拡大するため流速が低下し、二相流はその条件に応じたボイド率βの流れとなり、気相は液相より分離し溝外に出て行く。二相流のボイド率とは全流路断面積に占める気相流路断面積の割合であり、例えば有名なSmithの式を用いれば、気液分離器の溝に流入する乾き度χと気液密度比ρの関数で式2−2に示す関数で表すことができることが知られている。
Figure 0004268994
The gas-liquid two-phase flow flows from the inlet pipe 5-2 into the inflow chamber 19-2, and further flows into the narrow space 12-2 formed by the inlet partition 16-2 and the outer body A10-2, and the sudden expansion portion. At 3-2, the cross-sectional area of the flow path is enlarged. In the narrow space 12-2 formed by the entrance partition 16-2 and the outer shell A10-2, the gas-liquid two-phase flow is apt to be supplied along the groove 2-2 in the wake of the rapid expansion portion 3-2. Therefore, the gas-liquid two-phase flow flows into the groove along the groove. 43, when the groove width is b, the liquid surface radius of curvature is r, the liquid density is ρ, the liquid surface tension is σ, and the gravitational acceleration is g,
Figure 0004268994
Therefore, the surface tension is more dominant than the gravity, and the liquid phase is retained and flows in the groove by the action of the surface tension. Also, since the flow passage cross-sectional area suddenly expands at the sudden expansion section 3-2, the flow velocity decreases, the two-phase flow becomes a flow with a void ratio β according to the conditions, the gas phase is separated from the liquid phase, and the outside of the groove Go out to. The void ratio of the two-phase flow is the ratio of the gas-phase channel cross-sectional area to the total channel cross-sectional area. For example, if the well-known Smith equation is used, the dryness χ flowing into the gas-liquid separator groove and the gas It is known that the liquid density ratio ρ G / ρ L can be expressed by the function shown in Formula 2-2.
Figure 0004268994

溝頂点仮想円9−2の内側の気相流路断面積をSg、溝頂点仮想円9−2の外側の液相流路断面積をSlとしたとき、

Figure 0004268994
の関係を満たすようにSgとSlを設計しておくことにより、液は溝から溢れることなく溝内を流れ続け、気相は溝頂点仮想円9−2の内側の流路断面積Sgの部分を流れるため、二相流は気液に分離される。溝2−2で気液分離された後、分離された気相と液相が混じり合わないように出口仕切り体8−2で気相と液相の流路が分けられ、気相出口管6−2から気相が、液相出口管7−2から液相が流出する。When the gas phase channel cross-sectional area inside the groove apex virtual circle 9-2 is Sg and the liquid phase channel cross-sectional area outside the groove apex virtual circle 9-2 is S1,
Figure 0004268994
By designing Sg and Sl so as to satisfy the relationship, the liquid continues to flow in the groove without overflowing from the groove, and the gas phase is a portion of the channel cross-sectional area Sg inside the groove apex virtual circle 9-2. The two-phase flow is separated into gas and liquid. After the gas-liquid separation in the groove 2-2, the gas-phase and liquid-phase flow paths are divided by the outlet partition 8-2 so that the separated gas-phase and liquid-phase are not mixed, and the gas-phase outlet pipe 6 -2 from the gas phase and liquid phase from the liquid phase outlet pipe 7-2.

以上に述べた原理により気液分離がおこなわれるが、溝に流入する二相流には微細な液滴ミストも含まれているため、溝壁面に捕捉されない微細な液滴ミストは気相が溝2−2から出るときに気液分離室1−2に流出し、気相と一緒に気相出口管から液滴が流出する。特に二相流が狭小空間12−2を出て、溝に流入した直後は急拡大部3−2で流路断面積が拡大するため、急拡大部3−2における気相のベクトル20−2は気相出口管6−2の方向を向く傾向が強く、図44に示したように気相出口管6−2の気相流入端21−2の位置によっては、溝2−2に捕捉されない微細な液滴ミストは気相と一緒に気相出口管6−2から流出することが考えられた。 Gas-liquid separation is performed according to the principle described above. However, since the two-phase flow flowing into the groove also contains fine droplet mist, the fine droplet mist that is not trapped on the groove wall surface has a gas phase in the groove. When it exits 2-2, it flows out into the gas-liquid separation chamber 1-2, and a droplet flows out from the gas phase outlet pipe together with the gas phase. In particular, immediately after the two-phase flow exits the narrow space 12-2 and flows into the groove, the cross-sectional area of the flow path expands in the rapid expansion section 3-2. Therefore, the gas phase vector 20-2 in the rapid expansion section 3-2. Has a strong tendency to face in the direction of the gas phase outlet pipe 6-2, and is not trapped in the groove 2-2 depending on the position of the gas phase inlet end 21-2 of the gas phase outlet pipe 6-2 as shown in FIG. It was considered that the fine droplet mist flows out of the gas phase outlet pipe 6-2 together with the gas phase.

そこで、図44に示すように急拡大部3の位置を基準としその基準位置から気液分離器への二相流流入方向をプラス方向、その流れ方向と逆方向をマイナス方向とし、その基準位置から気相出口管6−2の気相流入端21−2の位置までの距離Lを変化させた場合の気相出口管6−2に流入する液量を実験により計測した。その結果を図45に示す。図45において、縦軸は気液分離器に流入する全液量Glに対する気相出口管6−2に流入する液量glの比gl/Glであり、横軸は溝頂点仮想円9−2の径Dtと基準位置から気相出口管6−2の気相流入端21−2の位置までの距離Lの比L/Dtである。図45より、無次元距離L/Dtのマイナス領域にgl/Glの最小値があることが判る。これは、微細な液滴ミストといえどもある程度の重力の影響を受けるため、気相出口管6−2の気相流入端21−2の位置が上方になるほど気相出口管6−2に液滴ミストが吸い込まれ難くなるためである。 理想的には気相出口管への液混合割合が0であることが望ましいが工業的には若干の許容値が必要であり、気相出口管への液混合割合gl/Glを0.5%許容すると、図45より

Figure 0004268994
にすることにより気相出口管6−2への液混合割合を許容値以下に抑えることができ、Lの上限値が規定され、良好な気液分離性能が得られる。なお、図45において、横軸の無次元数としてL/Dtを選んだ理由は以下による。溝頂点仮想円9−2の径Dtが大きくなると、溝頂点から溝付き管までの水平方向距離が離れるため、微細な液滴ミストが気相出口管6−2に吸い込まれ難くなり、LとDtは相関があると考えたためである。Therefore, as shown in FIG. 44, the position of the sudden expansion portion 3 is used as a reference, the two-phase flow inflow direction from the reference position to the gas-liquid separator is the positive direction, and the opposite direction to the flow direction is the negative direction. The amount of liquid flowing into the gas-phase outlet pipe 6-2 when the distance L from the position to the position of the gas-phase inflow end 21-2 of the gas-phase outlet pipe 6-2 was changed was measured by experiment. The result is shown in FIG. In FIG. 45, the vertical axis represents the ratio gl / Gl of the liquid amount gl flowing into the gas phase outlet pipe 6-2 to the total liquid amount Gl flowing into the gas-liquid separator, and the horizontal axis represents the groove apex virtual circle 9-2. Diameter Lt and the ratio L / Dt of the distance L from the reference position to the position of the gas-phase inlet end 21-2 of the gas-phase outlet pipe 6-2. From FIG. 45, it can be seen that there is a minimum value of gl / Gl in the minus region of the dimensionless distance L / Dt. This is because even a fine droplet mist is affected by a certain degree of gravity, so that the position of the gas-phase inlet end 21-2 of the gas-phase outlet pipe 6-2 becomes higher in the gas-phase outlet pipe 6-2. This is because the droplet mist is hardly sucked. Ideally, it is desirable that the liquid mixing ratio to the gas phase outlet pipe is 0, but some tolerance is required industrially, and the liquid mixing ratio gl / Gl to the gas phase outlet pipe is 0.5. % Allowed, from Fig. 45
Figure 0004268994
Thus, the liquid mixing ratio to the gas phase outlet pipe 6-2 can be suppressed to an allowable value or less, the upper limit value of L is defined, and good gas-liquid separation performance can be obtained. In FIG. 45, the reason why L / Dt is selected as the dimensionless number on the horizontal axis is as follows. When the diameter Dt of the groove apex virtual circle 9-2 is increased, the horizontal distance from the groove apex to the grooved tube is increased, so that it is difficult for fine droplet mist to be sucked into the gas phase outlet tube 6-2. This is because Dt is considered to have a correlation.

「第2−2の実施の形態」 図46および先の図45を用いて第2−2の実施の形態の気液分離器を説明する。図46は第2−2の実施の形態の気液分離器を示す断面図であり、気相出口管6−2の気相流入端21−2の位置が入り口仕切り体16−2の中空部22−2の天井面に近い場合があり、それ以外の構成および作用は図39の実施形態の場合と同じである。図45において、無次元距離L/DtのLがマイナス側になり過ぎるとgl/Glは大きくなる傾向が示されている。Lの下限値を規定する現象は先に述べたLの上限値を規定する現象とは別であり、以下に図46を用い、Lの下限値に対する説明を行う。 気相出口管6−2の気相流入端21−2の位置が入り口仕切り体16−2の中空部22−2の天井面に近づくと、気相出口管6−2に流入する気相の流れは、図46に気相出口管6−2の内径diの上部に破線で示した高さHの仮想円筒面23−2を通り気相出口管6−2に流入する。したがって、Hが小さくなると、仮想円筒面23−2の面積は小さくなり仮想円筒面を通る気相の流速が大きくなり気相流入端21−2近傍の微細液滴ミストが気相出口管6−2に吸い込まれやすくなる。そのため、無次元距離L/DtのLがマイナス側になり過ぎるとgl/Glは大きくなる。したがって、仮想円筒面23−2の面積は気相出口管6−2の流路断面積より大きいことが必要であり、気相出口管6−2の内径をdiとしたとき、次の関係を満足する必要がある。

Figure 0004268994
この式を整理変形すると、Lのマイナス側の下限値は式5−2を満足するHにより与えられる。
Figure 0004268994
したがって、式5−2を満足することにより良好な気液分離器性能が得られる。“2-2th Embodiment” A gas-liquid separator according to the 2-2 embodiment will be described with reference to FIG. 46 and FIG. FIG. 46 is a cross-sectional view showing the gas-liquid separator of the 2-2 embodiment, wherein the position of the gas-phase inflow end 21-2 of the gas-phase outlet pipe 6-2 is the hollow portion of the inlet partition 16-2. 22-2 may be close to the ceiling surface, and other configurations and operations are the same as those in the embodiment of FIG. FIG. 45 shows that gl / Gl tends to increase when L of dimensionless distance L / Dt becomes too negative. The phenomenon that defines the lower limit value of L is different from the phenomenon that defines the upper limit value of L described above, and the lower limit value of L will be described below with reference to FIG. When the position of the gas-phase inflow end 21-2 of the gas-phase outlet pipe 6-2 approaches the ceiling surface of the hollow portion 22-2 of the inlet partition 16-2, the gas-phase outlet flowing into the gas-phase outlet pipe 6-2 The flow passes through the virtual cylindrical surface 23-2 having a height H indicated by a broken line above the inner diameter di of the gas phase outlet pipe 6-2 in FIG. 46 and flows into the gas phase outlet pipe 6-2. Therefore, as H becomes smaller, the area of the virtual cylindrical surface 23-2 becomes smaller, the flow velocity of the gas phase passing through the virtual cylindrical surface becomes larger, and the fine droplet mist in the vicinity of the gas phase inflow end 21-2 becomes the gas phase outlet pipe 6- It becomes easy to be sucked into 2. Therefore, gl / Gl increases when L of dimensionless distance L / Dt becomes too negative. Therefore, the area of the virtual cylindrical surface 23-2 needs to be larger than the flow path cross-sectional area of the gas phase outlet pipe 6-2, and when the inner diameter of the gas phase outlet pipe 6-2 is di, the following relationship is obtained. Need to be satisfied.
Figure 0004268994
When this equation is rearranged, the lower limit value on the minus side of L is given by H that satisfies Equation 5-2.
Figure 0004268994
Therefore, satisfactory gas-liquid separator performance can be obtained by satisfying the expression 5-2.

「第3−2の実施の形態」 先に説明した、図39および図45を用いて第3−2の実施の形態の気液分離器を説明する。 図45において、無次元距離L/Dtのマイナス領域にgl/Glの小さな領域があり、無次元距離L/Dtをマイナス領域に構成するためには、急拡大部3−2の位置を基準とし気相出口管6−2の気相流入端21−2の位置を急拡大部3−2の位置より上にすることを意味し、そのためには入り口仕切り体16−2の気液分離室1−2に対向する側の入口仕切り体下面が開放された中空部22−2を設けることが必要である。中空部22−2を設けた入り口仕切り体16−2はプレス加工等により加工される。入り口仕切り体16−2の気液分離室1−2に対向する側の入口仕切り体下面が開放された中空部22−2を設けることにより、無次元距離L/Dtのマイナス領域を構成でき、gl/Glを最小にでき、良好な気液分離器性能が得られる。 "3-2 Embodiment" The gas-liquid separator of the 3-2 embodiment will be described with reference to Figs. 39 and 45 described above. In FIG. 45, there is a small area of gl / Gl in the minus area of the dimensionless distance L / Dt, and in order to configure the dimensionless distance L / Dt in the minus area, the position of the rapid enlargement section 3-2 is used as a reference. This means that the position of the gas-phase inflow end 21-2 of the gas-phase outlet pipe 6-2 is above the position of the rapid expansion portion 3-2. For this purpose, the gas-liquid separation chamber 1 of the inlet partition 16-2 is used. It is necessary to provide a hollow portion 22-2 in which the lower surface of the inlet partition on the side facing -2 is opened. The entrance partition 16-2 provided with the hollow portion 22-2 is processed by pressing or the like. By providing the hollow portion 22-2 in which the lower surface of the inlet partition on the side facing the gas-liquid separation chamber 1-2 of the inlet partition 16-2 is opened, a minus region of the dimensionless distance L / Dt can be configured. gl / Gl can be minimized, and good gas-liquid separator performance can be obtained.

「第4−2の実施の形態」 先に説明した、図39を用いて第4−2の実施の形態の気液分離器を説明する。気液分離器を実際に冷凍サイクルに組込み使用する場合を想定すると、気液分離器に流入する二相流の冷媒流量あるいは気相成分と液相成分の混合割合は、気温および室温の変化に伴いある程度変動する。従って、それらの変動に対応するためには分離された気相および液相の容積的なバッファが必要になる。本発明の図1では気相側の容積的なバッファとしては気液分離室1−2がその機能を果たしているが、液相の容積的なバッファは十分に考慮されていなかった。そこで本発明における、限られた気液分離器の大きさの中で、十分な大きさの液相の容積的なバッファを確保する手段を図39により説明する。 “4-2th Embodiment” The gas-liquid separator according to the 4-2 embodiment will be described with reference to FIG. 39 described above. Assuming that the gas-liquid separator is actually incorporated into the refrigeration cycle and used, the refrigerant flow rate of the two-phase flow that flows into the gas-liquid separator or the mixing ratio of the gas phase component and the liquid phase component depends on changes in temperature and room temperature. Fluctuates to some extent. Thus, separate gas phase and liquid phase volumetric buffers are required to accommodate these variations. In FIG. 1 of the present invention, the gas-liquid separation chamber 1-2 serves as a volumetric buffer on the gas phase side, but the liquid phase volumetric buffer is not fully considered. Therefore, a means for securing a sufficiently large liquid phase volume buffer within the limited size of the gas-liquid separator in the present invention will be described with reference to FIG.

図39に示しように気液二相流は溝2−2で気液分離された後、分離された気相と液相が混じり合わないように出口仕切り体8−2で気相と液相の流路が分けられ、気相出口管6−2から気相が、液相出口管7−2から液相が流出する。ここで、出口仕切り体8−2を概略平板状にし、気相出口管6−2に通し、気相出口管に接合することにより、限られた液溜め高さのもとで液相の容積的なバッファとして最大に近い液溜め36−2の容積を確保できる。 As shown in FIG. 39, after the gas-liquid two-phase flow is gas-liquid separated in the groove 2-2, the gas and liquid phases are separated in the outlet partition 8-2 so that the separated gas and liquid phases are not mixed. , And the gas phase flows out from the gas phase outlet pipe 6-2 and the liquid phase flows out from the liquid phase outlet pipe 7-2. Here, by making the outlet partition 8-2 into a substantially flat plate shape, passing through the gas phase outlet pipe 6-2, and joining to the gas phase outlet pipe, the volume of the liquid phase can be obtained under a limited liquid reservoir height. As a typical buffer, the capacity of the liquid reservoir 36-2 close to the maximum can be secured.

「第5−2の実施の形態」 先に説明した、図39および図47を用いて第5−2の実施の形態の気液分離器を説明する。 図47は気液分離器組み立て上の課題を示す断面図である。図39に示した気液分離器が目的とする気液分離性能を発揮するための組み立て上の課題は、図47に示したように入り口仕切り体16−2のつば部14−2と溝付き体4−2の間に隙間24−2が出来ない状態で組み立てることが重要である。すなわち、図47に示したように、つば部14−2と溝付き体4−2の間に隙間24−2が存在すると、狭小空間12−2からつば部14−2のスリット15−2に流入した二相流の大部分は溝に流入するが、液相
成分を含む二相流の一部25−2は隙間24−2から直接気液分離室1−2の中央方向に流入する。気液分離器に要求されている気液分離性能は図45に示したように、全液量Glに対する気相出口管6−2に流入する液量glの比gl/Glが0.5%以下であるため、液相成分が直接気液分離室1−2の中央方向に流入すると要求される性能は維持できなくなる。 気液分離器を構成する部品には寸法公差があり、また組み立て時の位置決め公差もあるため、隙間24−2が発生しない組み立て構造が必要である。
“5-2th Embodiment” The gas-liquid separator according to the 5-2 embodiment will be described with reference to FIGS. 39 and 47 described above. FIG. 47 is a cross-sectional view showing a problem in assembling the gas-liquid separator. Assembling problems for the gas-liquid separator shown in FIG. 39 to achieve the target gas-liquid separation performance are as follows. As shown in FIG. It is important to assemble in a state where there is no gap 24-2 between the bodies 4-2. That is, as shown in FIG. 47, when a gap 24-2 exists between the flange portion 14-2 and the grooved body 4-2, the narrow space 12-2 enters the slit 15-2 of the flange portion 14-2. Most of the two-phase flow that flows in flows into the groove, but a part 25-2 of the two-phase flow including the liquid phase component flows directly from the gap 24-2 toward the center of the gas-liquid separation chamber 1-2. As shown in FIG. 45, the gas-liquid separation performance required for the gas-liquid separator is such that the ratio gl / Gl of the liquid volume gl flowing into the gas phase outlet pipe 6-2 with respect to the total liquid volume Gl is 0.5%. Therefore, the required performance cannot be maintained when the liquid phase component flows directly into the center of the gas-liquid separation chamber 1-2. Since the components constituting the gas-liquid separator have dimensional tolerances and positioning tolerances during assembly, an assembly structure that does not generate the gap 24-2 is required.

上記課題を解決するための第一の発明例を第5−2の実施形態として図39により説明する。外郭体を外郭体A10−2と外郭体B11−2の二つに分けて構成し、外郭体A10−2には拡管部26−2を設け、拡管部26−2に入り口仕切り体16−2のつば部14−2と外郭体B11−2を嵌め込めるように構成している。 外郭体A10−2の下縮管部13−2には気相出口管6−2が接合され、気相出口管6−2には出口仕切り体8−2が接合され、溝付き体下部位置を適切な位置に固定するようにそれらの接合位置は接合加工時に位置決めされて接合されている。以上に述べた構成で出口仕切り体により溝付き体の下部位置を固定し、さらに、入口仕切り体16−2が確実に溝付き体4−2に密着するように、外郭体B11−2により入口仕切り体16−2のつば部外周17−2を溝付き体に押し付け、入口仕切り体位置を固定し、外郭体A10−2の拡管部26−2に外郭体B11−2を接合したものである。 したがって、入口仕切り体16−2のつば部14−2が確実に溝付き体4−2に密着するように、外郭体B11−2により入口仕切り体16−2を溝付き体4−2に押し付け入口仕切り体位置を固定することにより、二相流が狭小空間12−2から溝2−2に流入するとき、入口仕切り体16−2と溝付き体4−2の間に隙間が無いため、液相成分が気液分離室1−2に直接流入することなく、効率の良い気液分離器を提供できる。 A first invention example for solving the above problems will be described as a 5-2 embodiment with reference to FIG. The outer body is divided into two parts, an outer body A10-2 and an outer body B11-2. The outer body A10-2 is provided with an expanded portion 26-2, and the expanded portion 26-2 has an entrance partition 16-2. The collar portion 14-2 and the outer body B11-2 are configured to be fitted. A gas phase outlet pipe 6-2 is joined to the lower contraction tube portion 13-2 of the outer body A10-2, an outlet partition body 8-2 is joined to the gas phase outlet pipe 6-2, and a grooved body lower position The positions of the joints are positioned and joined at the time of joining processing so as to fix them in an appropriate position. In the configuration described above, the lower position of the grooved body is fixed by the outlet partition body, and further, the entrance body B11-2 receives the inlet by the outer body body B11-2 so that the inlet partition body 16-2 is in close contact with the grooved body 4-2. The outer circumference 17-2 of the partition 16-2 is pressed against the grooved body, the position of the entrance partition is fixed, and the outer body B11-2 is joined to the expanded portion 26-2 of the outer body A10-2. . Therefore, the inlet partition 16-2 is pressed against the grooved body 4-2 by the outer body B11-2 so that the flange portion 14-2 of the inlet partition 16-2 is in close contact with the grooved body 4-2. By fixing the position of the inlet partition, when the two-phase flow flows into the groove 2-2 from the narrow space 12-2, there is no gap between the inlet partition 16-2 and the grooved body 4-2. An efficient gas-liquid separator can be provided without the liquid phase component flowing directly into the gas-liquid separation chamber 1-2.

「第6−2の実施の形態」 図47に示した気液分離器組み立て上の課題を解決するための第二の発明例を第6−2の実施の形態として図48により説明する。図48は第6−2の実施形態を示す半断面図であり、外郭体C27−2が一体となっている場合であり、外郭体C27−2の壁面を内側に絞ったビード28−2が外郭体C27−2の全周に設けられており、それ以外の構成および作用は図39と同じである。図48に示した第6−2の実施形態では、以下のように組み立てられる。外郭体C27−2は最初に下縮管部13−2のみを絞り、上縮管部29−2は縮管しない状態としておく。気相出口管6−2には出口仕切り体8−2が接合され、出口仕切り体8−2が接合された気相出口管6−2は、上部が縮管されていない外郭体C27−2の上部から外郭体C27−2の下縮管部13−2に通され、その後に外郭体C27−2の下縮管部13−2に気相出口管6−2が接合され、溝付き体4−2の下部位置を適切な位置に固定するようにそれらの接合位置は接合加工時に位置決めされて接合されている。次に、上部が縮管されていない外郭体C27−2の上部から溝付き体4−2を挿入し、その上に入口仕切り体16−2を挿入し、入口仕切り体16−2のつば外周部17−2の直上部をビード加工し、入口仕切り体16−2を溝付き体4−2に密着させる。最後に、外郭体C27−2の上部を絞り加工により上縮管部29−2を加工し、上縮管部29−2に入口管5−2が接合され、気液分離器が組み立てられる。入口仕切り体16−2のつば外周部17−2の直上部をビード加工するとき入口仕切り体16−2が溝付き体4−2を押し付けるようにビード加工しているため、二相流が狭小空間12−2から溝2−2に流入するとき、入口仕切り体16−2と溝付き体4−2の間に隙間が無いため、液相成分が気液分離室1−2に直接流入することなく、効率の良い気液分離器を提供できる。 "6-2th Embodiment" A second example of the invention for solving the problem in assembling the gas-liquid separator shown in FIG. 47 will be described as a 6-2 embodiment with reference to FIG. FIG. 48 is a half sectional view showing the 6-2th embodiment, in which the outer body C27-2 is integrated, and a bead 28-2 with the wall surface of the outer body C27-2 squeezed inward is shown. It is provided on the entire circumference of the outer body C27-2, and other configurations and operations are the same as those in FIG. In the 6-2 embodiment shown in FIG. 48, the assembly is performed as follows. In the outer body C27-2, only the lower contraction tube portion 13-2 is initially throttled, and the upper contraction tube portion 29-2 is not contracted. The gas phase outlet pipe 6-2 is joined to the outlet partition body 8-2, and the gas phase outlet pipe 6-2 to which the outlet partition body 8-2 is joined is an outer body C27-2 whose upper part is not contracted. The gas phase outlet pipe 6-2 is joined to the lower contracted tube portion 13-2 of the outer body C27-2, and then the gas phase outlet pipe 6-2 is joined to the grooved body. Those joining positions are positioned and joined at the time of joining so as to fix the lower position of 4-2 to an appropriate position. Next, the grooved body 4-2 is inserted from the upper part of the outer body C27-2 whose upper part is not contracted, and the inlet partition 16-2 is inserted thereon, and the outer periphery of the collar of the inlet partition 16-2 The upper part of the part 17-2 is bead processed, and the inlet partition 16-2 is brought into close contact with the grooved body 4-2. Finally, the upper contraction tube portion 29-2 is processed by drawing the upper portion of the outer body C27-2, the inlet tube 5-2 is joined to the upper contraction tube portion 29-2, and the gas-liquid separator is assembled. Since the inlet partition 16-2 is bead-processed so as to press the grooved body 4-2 when the upper portion of the flange outer peripheral portion 17-2 of the inlet partition 16-2 is beaded, the two-phase flow is narrow. When flowing into the groove 2-2 from the space 12-2, since there is no gap between the inlet partition 16-2 and the grooved body 4-2, the liquid phase component flows directly into the gas-liquid separation chamber 1-2. Therefore, an efficient gas-liquid separator can be provided.

「第7−2の実施の形態」 図47に示した気液分離器組み立て上の課題を解決するための第三の発明例を第7−2の実施形態として図49により説明する。図49は第7−2の実施形態を示す半断面図であり、外郭体C27−2が一体となっている場合であり、外郭体C27−2の壁面に内側に向け部分的にノッチ30−2が外郭体C27−2に複数設けられており、それ以外の構成および作用は図39と同じである。また、図48に示した第6−2の実施形態との相違点は図48のビード28−2に変えてノッチ30−2を設けている点であり、その他の組み立て方は図48の場合と同じである。従って、入口仕切り体16−2のつば外周部17−2の直上部をノッチ加工するとき入口仕切り体16−2が溝付き体4−2を押し付けるようにノッチ加工しているため、二相流が狭小空間12−2から溝2−2に流入するとき、入口仕切り体16−2と溝付き体4−2の間に隙間が無いため、液相成分が気液分離室1−2に直接流入することなく、効率の良い気液分離器を提供できる。 "Seventh Embodiment" A third example of the invention for solving the problem in assembling the gas-liquid separator shown in Fig. 47 will be described as a seventh embodiment with reference to Fig. 49. FIG. 49 is a half sectional view showing the seventh embodiment, and shows a case in which the outer body C27-2 is integrated. The notch 30- is partially directed inward to the wall surface of the outer body C27-2. 2 is provided in plurality in the outer body C27-2, and other configurations and operations are the same as those in FIG. 48 differs from the 6-2 embodiment shown in FIG. 48 in that a notch 30-2 is provided instead of the bead 28-2 in FIG. Is the same. Therefore, since the inlet partition 16-2 is notched so as to press the grooved body 4-2 when notching the upper portion of the flange outer peripheral portion 17-2 of the inlet partition 16-2, the two-phase flow Flows into the groove 2-2 from the narrow space 12-2, since there is no gap between the inlet partition 16-2 and the grooved body 4-2, the liquid phase component directly enters the gas-liquid separation chamber 1-2. An efficient gas-liquid separator can be provided without flowing in.

「第8−2の実施の形態」 図50および図51を用いて第8−2の実施の形態の気液分離器を説明する。図50は第8−2の実施形態を示す半断面図であり、図51は気液分離器信頼性上の課題を示す断面図である。溝付き体4−2は図41に示したようにその展開長Bが外郭体A10−2の内径周長より長い自由長で加工されており、これをまるめて図50に示すように外郭体A10−2内に挿入している。したがって、溝付き体4−2が外郭体A10−2内に挿入されたとき、外郭体A10−2の内径周長は上記Bより短いため、溝付き体4−2はB方向に圧縮され各溝の弾性力の反力により外郭体A10−2の内面に密着している。しかし、単に外郭体A10−2の内面に密着しているだけでは、気液分離器に何らかの衝撃力等が作用したとき、図51に示したように溝付き体4−2の一部が溝頂点仮想円9−2の内側に飛び出す可能性があり、信頼性上の課題がある。 すなわち、図51に示したように溝付き体4−2が溝頂点仮想円9−2の内側に飛び出すと狭小空間12−2から溝2−2に流入すべき二相流が溝付き体の裏側に流れ、適切に気液分離できないという課題がある。 “Eighth-2 Embodiment” A gas-liquid separator according to an eighth embodiment will be described with reference to FIGS. 50 and 51. FIG. 50 is a half cross-sectional view showing an eighth embodiment, and FIG. 51 is a cross-sectional view showing problems in gas-liquid separator reliability. As shown in FIG. 41, the grooved body 4-2 is processed with a free length that is longer than the inner circumference of the outer body A10-2. As shown in FIG. It is inserted in A10-2. Therefore, when the grooved body 4-2 is inserted into the outer body A10-2, the inner peripheral length of the outer body A10-2 is shorter than the above B. Therefore, the grooved body 4-2 is compressed in the B direction. It is in close contact with the inner surface of the outer shell A10-2 by the reaction force of the elastic force of the groove. However, if the impact force or the like is applied to the gas-liquid separator simply by being in close contact with the inner surface of the outer shell A10-2, as shown in FIG. There is a possibility of jumping out inside the vertex virtual circle 9-2, and there is a problem in reliability. That is, as shown in FIG. 51, when the grooved body 4-2 jumps inside the groove vertex virtual circle 9-2, the two-phase flow that should flow into the groove 2-2 from the narrow space 12-2 is There is a problem that it flows to the back side and cannot be properly gas-liquid separated.

上記図51に示した課題に対する第一の発明例を第8−2の実施形態として図50により説明する。図50では入口仕切り体16−2の内周に円筒リング状の内径支持体A31−2を挿入し、内径支持体A31−2の下部を溝付き体4−2の溝頂点仮想円9−2の内側に挿入し、溝付き体4−2の一部が溝頂点仮想円9−2の内側に飛び出すことを防止する構成としており、それ以外の構成および作用は図39と同じである。入口仕切り体16−2と円筒リング状の内径支持体A31−2を一体でプレス加工等により安価に加工することは難しいため、入口仕切り体16−2と円筒リング状の内径支持体A31−2を別体として加工し、入口仕切り体16−2の内周に円筒リング状の内径支持体A31−2を挿入し、結合している。内径支持体A31−2を設けることにより、溝付き体4−2は溝頂点仮想円9−2の内側に飛び出すことは無く、信頼性の高い良好な気液分離がおこなえる。 A first invention example for the problem shown in FIG. 51 will be described with reference to FIG. 50 as an eighth embodiment. In FIG. 50, a cylindrical ring-shaped inner diameter support A31-2 is inserted into the inner periphery of the inlet partition 16-2, and a lower portion of the inner diameter support A31-2 is inserted into the groove apex virtual circle 9-2 of the grooved body 4-2. Is inserted to the inside, and a part of the grooved body 4-2 is prevented from jumping out to the inside of the groove apex virtual circle 9-2, and other configurations and operations are the same as those in FIG. Since it is difficult to process the inlet partition 16-2 and the cylindrical ring-shaped inner diameter support A31-2 integrally with a low cost by pressing or the like, the inlet partition 16-2 and the cylindrical ring-shaped inner diameter support A31-2 Are processed separately, and a cylindrical ring-shaped inner diameter support A31-2 is inserted into the inner periphery of the inlet partition 16-2 and coupled. By providing the inner diameter support A31-2, the grooved body 4-2 does not jump out to the inside of the groove apex virtual circle 9-2, and good gas-liquid separation with high reliability can be performed.

「第9−2の実施の形態」 上記図51に示した課題に対する第二の発明例を第9−2の実施の形態として図52および図53により説明する。図52は第9−2の実施の形態を示す断面図であり、図53は第9−2の実施の形態で使用する内径支持体B33−2の断面図である。図52では入口仕切り体16−2の下に図53に示す内径支持体B32−2の内径支持体Bつば部33−2を挟みこみ、内径支持体B32−2の下部を溝付き体4−2の溝頂点仮想円9−2の内側に挿入し、溝付き体4−2の一部が溝頂点仮想円9−2の内側に飛び出すことを防止する構成としており、それ以外の構成および作用は図39と同じである。内径支持体B32−2を設けることにより、溝付き体4−2は溝頂点仮想円9−2の内側に飛び出すことは無く、信頼性の高い良好な気液分離がおこなえる。 [Ninth Embodiment] A second invention example for the problem shown in FIG. 51 will be described as a ninth embodiment with reference to FIGS. 52 and 53. FIG. 52 is a cross-sectional view showing the ninth embodiment, and FIG. 53 is a cross-sectional view of the inner diameter support B33-2 used in the ninth embodiment. 52, an inner diameter support B collar 33-2 of an inner diameter support B32-2 shown in FIG. 53 is sandwiched below the inlet partition 16-2, and a lower portion of the inner diameter support B32-2 is provided with a grooved body 4-. 2 is inserted into the inside of the groove apex virtual circle 9-2 to prevent a part of the grooved body 4-2 from jumping out to the inside of the groove apex virtual circle 9-2. Is the same as FIG. By providing the inner diameter support B32-2, the grooved body 4-2 does not jump out to the inside of the groove apex virtual circle 9-2, and good gas-liquid separation with high reliability can be performed.

「第10−2の実施の形態」 上記図51に示した課題に対する第三の発明例を第10−2の実施の形態として図54および図55により説明する。図54は第10−2の実施の形態を示す断面図であり、図55は第10−2の実施の形態で使用する内径支持体C34−2の平面図であり、内径支持体C34−2には気液分離室内でその上下方向に気相が流動できる複数の切り欠き部35−2が設けられている。内径支持体C34−2は、図54に示すように気相出口管6−2に接合され、溝付き体4−2の溝頂点仮想円9−2の内側中に挿入され、溝付き体4−2の一部が溝頂点仮想円9−2の内側に飛び出すことを防止する構成としており、それ以外の構成および作用は図39と同じである。内径支持体C34−2を設けることにより、溝付き体4−2は溝頂点仮想円9の内側に飛び出すことは無く、信頼性の高い良好な気液分離がおこなえる。 "10th Embodiment" A third invention example for the problem shown in Fig. 51 will be described as a 10-2 embodiment with reference to Figs. FIG. 54 is a cross-sectional view showing the tenth embodiment, and FIG. 55 is a plan view of the inner diameter support C34-2 used in the tenth embodiment, and the inner diameter support C34-2. Is provided with a plurality of notches 35-2 through which the gas phase can flow in the vertical direction in the gas-liquid separation chamber. As shown in FIG. 54, the inner diameter support body C34-2 is joined to the gas phase outlet pipe 6-2, and is inserted into the inside of the groove apex virtual circle 9-2 of the grooved body 4-2. −2 is configured to prevent a part of −2 from jumping out to the inside of the groove apex virtual circle 9-2, and the other configurations and operations are the same as those in FIG. By providing the inner diameter support body C34-2, the grooved body 4-2 does not jump out inside the groove apex virtual circle 9, and good gas-liquid separation with high reliability can be performed.

「第11−2の実施の形態」 上記図51に示した課題に対する第四の発明例を第11−2の実施の形態として図56および図57により説明する。図56は第11−2の実施形態を示す断面図であり、図57は第10−2の実施形態で使用する内径支持体D37−2の断面図であり、出口仕切り体8の機能を兼ねている。内径支持体D37−2の外周には段差部38−2をもち、図56に示すように段差部38−2が溝付き体4−2の溝頂点仮想円9−2の内側中に挿入され、溝付き体4−2の一部が溝頂点仮想円9−2の内側に飛び出すことを防止する構成としており、それ以外の構成および作用は図39と同じである。内径支持体D37−2を設けることにより、溝付き体4−2は溝頂点仮想円9−2の内側に飛び出すことは無く、信頼性の高い良好な気液分離がおこなえる。 “11-2nd Embodiment” A fourth invention example for the problem shown in FIG. 51 will be described as an 11-2nd embodiment with reference to FIGS. 56 and 57. 56 is a cross-sectional view showing the eleventh embodiment, and FIG. 57 is a cross-sectional view of the inner diameter support D37-2 used in the tenth embodiment, which also functions as the outlet partition 8. ing. A stepped portion 38-2 is provided on the outer periphery of the inner diameter support D37-2. As shown in FIG. 56, the stepped portion 38-2 is inserted into the inside of the groove apex virtual circle 9-2 of the grooved body 4-2. The grooved body 4-2 is configured to prevent a part of the grooved body 4-2 from jumping out to the inside of the groove apex virtual circle 9-2, and the other configurations and operations are the same as those in FIG. By providing the inner diameter support D37-2, the grooved body 4-2 does not jump out to the inside of the groove apex virtual circle 9-2, and good gas-liquid separation with high reliability can be performed.

上記図51に示した課題に対するそれぞれの発明例は、内径支持体を溝の二相流入口側、溝の中間、溝の出口側に設けた例としてそれぞれ別々に説明したが、必要に応じてそれらを組み合わせて使用しても良いことは言うまでもない。 Each invention example for the problem shown in FIG. 51 has been described separately as an example in which the inner diameter support is provided on the two-phase inlet side of the groove, the middle of the groove, and the outlet side of the groove. Needless to say, they may be used in combination.

「第12−2の実施の形態」 図58は第12−2の実施の形態として、上記した気液分離器を冷凍サイクルに使用した場合の第一の冷凍サイクル構成図である。すなわち、圧縮機39−2で吸い込んだ低温低圧の気相冷媒は圧縮機39−2で圧縮され高温高圧気相冷媒となり冷媒吐出管40−2を経て、凝縮器41−2で凝縮器用送風機42−2から送られる空気に放熱し、低温高圧液冷媒となる。その液冷媒は減圧器43−2で減圧され二相流となり、入り口管5−2から気液分離器44−2に流入し、液相冷媒は液相出口管7−2から蒸発器45−2に入り蒸発器用送風機46−2で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機39−2に吸い込まれる。一方、気液分離器で分離された気相冷媒は気相出口管6−2から蒸発器バイパス管47−2、抵抗調整体48−2を経て圧縮機39−2に吸い込まれる。一般に蒸発器の冷媒流路管長さは長く、蒸発器バイパス管長さは短いため、両者の圧力損失のバランスを取るために抵抗調整体48−2が設けられている。 “Twelfth Embodiment” FIG. 58 is a first refrigeration cycle configuration diagram when the above-described gas-liquid separator is used in a refrigeration cycle as a twelfth embodiment. That is, the low-temperature and low-pressure gas-phase refrigerant sucked in by the compressor 39-2 is compressed by the compressor 39-2 to become a high-temperature and high-pressure gas-phase refrigerant, passes through the refrigerant discharge pipe 40-2, and is fed to the condenser blower 42 by the condenser 41-2. -2 radiates heat to the air sent from -2 and becomes a low-temperature high-pressure liquid refrigerant. The liquid refrigerant is decompressed by the decompressor 43-2 to become a two-phase flow, and flows into the gas-liquid separator 44-2 from the inlet pipe 5-2, and the liquid refrigerant is sent from the liquid phase outlet pipe 7-2 to the evaporator 45-. Heat is taken from the air that enters the evaporator 2 and is sent by the evaporator blower 46-2 to become a low-temperature and low-pressure gas-phase refrigerant and is sucked into the compressor 39-2. On the other hand, the gas-phase refrigerant separated by the gas-liquid separator is sucked into the compressor 39-2 from the gas-phase outlet pipe 6-2 through the evaporator bypass pipe 47-2 and the resistance adjuster 48-2. Generally, the refrigerant flow path pipe length of the evaporator is long and the evaporator bypass pipe length is short, so that the resistance adjusting body 48-2 is provided in order to balance the pressure loss between the two.

気液分離器44−2を用いない場合には、減圧器43−2で減圧された二相流の気相冷媒も蒸発器に流入するため、特に、蒸発器用送風機46−2で送られる空気温度が低い場合には蒸発圧力が低下し、気相冷媒の密度は小さくなり体積流量が大きくなるため、蒸発器45−2での圧力損失が大きく、蒸発器45−2の出口圧力、即ち、圧縮機吸込み圧力が低下するため、圧縮動力が増大し、高効率な運転ができなくなる。 それに対して、図58で示したようにコンパクトな気液分離器44−2を設け、分離された気相冷媒を気相出口管6−2から蒸発器バイパス管47−2を経て圧縮機39−2に吸い込ませることにより、蒸発に寄与しない気相冷媒は蒸発器45−2に流入しないため蒸発器45−2での圧力損失を抑えることができ、圧縮動力が節減でき、高効率な運転を可能にできる。 When the gas-liquid separator 44-2 is not used, the two-phase gas phase refrigerant decompressed by the decompressor 43-2 also flows into the evaporator. When the temperature is low, the evaporation pressure decreases, the density of the gas-phase refrigerant decreases, and the volume flow rate increases, so the pressure loss in the evaporator 45-2 is large and the outlet pressure of the evaporator 45-2, that is, Since the compressor suction pressure decreases, the compression power increases and high-efficiency operation cannot be performed. On the other hand, as shown in FIG. 58, a compact gas-liquid separator 44-2 is provided, and the separated gas-phase refrigerant is sent from the gas-phase outlet pipe 6-2 through the evaporator bypass pipe 47-2 to the compressor 39. Gas phase refrigerant that does not contribute to evaporation does not flow into the evaporator 45-2, so that pressure loss in the evaporator 45-2 can be suppressed, compression power can be saved, and high efficiency operation is achieved. Can be made possible.

「第13−2の実施の形態」 図59は第13−2の実施の形態として、上記した気液分離器を冷凍サイクルに使用した場合の第
二の冷凍サイクル構成図である。図59はセパレート型エアコンの例であり、室外ユニット49−2と室内ユニット50−2より構成され、冷房運転時のサイクルを示している。圧縮機39−2で圧縮された高温高圧気相冷媒には冷凍機油が混入しており、圧縮機から吐出された気相冷媒に混入する冷凍機油量が多くなると、冷凍サイクル冷媒流路の圧力損失が増加し、また冷媒の蒸発熱伝達率および凝縮熱伝達率が低下し、冷凍サイクル効率の低下の原因になる。さらに、圧縮機起動時には圧縮機内に封入されている冷凍機油がフォーミングし、大量の冷凍機油が気相冷媒に混入し圧縮機から吐出され、冷凍サイクルに流出する。特にセパレート型エアコンの場合には、室内ユニットと室外ユニットを接続する接続配管が設けられており、この接続配管が長い場合には、冷凍サイクルに流出した冷凍機油は長時間圧縮機に戻らず、運転条件によっては圧縮機内の冷凍機油が不足し、圧縮機の信頼性に支障をきたす問題があった。
“Thirteenth Embodiment” FIG. 59 is a second refrigeration cycle configuration diagram when the above-described gas-liquid separator is used in a refrigeration cycle as a thirteenth embodiment. FIG. 59 shows an example of a separate type air conditioner, which includes an outdoor unit 49-2 and an indoor unit 50-2, and shows a cycle during cooling operation. Refrigerating machine oil is mixed in the high-temperature high-pressure gas-phase refrigerant compressed by the compressor 39-2, and when the amount of refrigerating machine oil mixed in the gas-phase refrigerant discharged from the compressor increases, the pressure of the refrigeration cycle refrigerant flow path Loss increases and the evaporative heat transfer coefficient and condensing heat transfer coefficient of the refrigerant decrease, causing a decrease in refrigeration cycle efficiency. Furthermore, when the compressor is started, the refrigerating machine oil enclosed in the compressor forms, and a large amount of the refrigerating machine oil is mixed into the gas phase refrigerant and discharged from the compressor, and flows out into the refrigerating cycle. In particular, in the case of a separate type air conditioner, a connecting pipe that connects the indoor unit and the outdoor unit is provided.If this connecting pipe is long, the refrigeration oil that has flowed into the refrigeration cycle does not return to the compressor for a long time, Depending on the operating conditions, there was a problem that the compressor oil in the compressor was insufficient and the reliability of the compressor was hindered.

そこで、図59は上記課題を解決するために、圧縮機39−2の冷媒吐出管にコンパクトな気液分離器44−2を設け、冷凍サイクル効率の確保および圧縮機の信頼性確保を図るものである。すなわち、圧縮機39−2で吸い込んだ低温低圧の気相冷媒は圧縮機39−2で圧縮され高温高圧気相冷媒となり冷媒吐出管40−2を経て、気液分離器44−2の入口管5−2から気液分離器に流入する。圧縮機39−2で圧縮された高温高圧気相冷媒には冷凍機油が混入しており、気液分離器44−2内で冷凍機油は液相として、気相冷媒は気相として分離され、それぞれ液相出口管7−2および気相出口管6−2から取り出される。液相出口管7を出た冷凍機油は液レシーバ52−2、流量調整絞り53−2をへて、圧縮機吸込み管54−2に吸い込まれ、冷凍機油は圧縮機に戻る。流量調整絞り53−2を設けている理由は、通常の運転条件では圧縮機39−2から吐出される高温高圧気相冷媒に混入している冷凍機油は気相冷媒に比べて少ないため、気液分離器44−2で分離した冷凍機油を流量調整絞り53−2で徐々に圧縮機39−2に冷凍機油を戻すためである。また、液レシーバ52−2を設けている理由は、圧縮機起動時に圧縮機内に封入されている冷凍機油がフォーミングし、大量の冷凍機油が気相冷媒に混入し圧縮機から吐出されるが、これは一時的な現象であるため、気液分離器44−2で分離した冷凍機油を一時的に液レシーバ52−2に溜め込み、流量調整絞り53−2で徐々に圧縮機39−2に冷凍機油を戻すためである。なお、気液分離器の液溜め36−2の容積が大きな場合には必ずしも液レシーバは必要としない。 Therefore, in order to solve the above problems, FIG. 59 is provided with a compact gas-liquid separator 44-2 in the refrigerant discharge pipe of the compressor 39-2 to ensure the refrigeration cycle efficiency and the reliability of the compressor. It is. That is, the low-temperature and low-pressure gas-phase refrigerant sucked by the compressor 39-2 is compressed by the compressor 39-2 to become a high-temperature and high-pressure gas-phase refrigerant, passes through the refrigerant discharge pipe 40-2, and enters the inlet pipe of the gas-liquid separator 44-2. It flows into the gas-liquid separator from 5-2. Refrigerating machine oil is mixed in the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor 39-2, the refrigerating machine oil is separated as a liquid phase, and the gas-phase refrigerant is separated as a gas phase in the gas-liquid separator 44-2. They are taken out from the liquid phase outlet pipe 7-2 and the gas phase outlet pipe 6-2, respectively. The refrigerating machine oil that has exited the liquid phase outlet pipe 7 passes through the liquid receiver 52-2 and the flow rate adjusting throttle 53-2 and is sucked into the compressor suction pipe 54-2, and the refrigerating machine oil returns to the compressor. The reason why the flow rate adjusting throttle 53-2 is provided is that, under normal operating conditions, the amount of refrigerating machine oil mixed in the high-temperature high-pressure gas-phase refrigerant discharged from the compressor 39-2 is less than that in the gas-phase refrigerant. This is because the refrigerating machine oil separated by the liquid separator 44-2 is gradually returned to the compressor 39-2 by the flow rate adjusting throttle 53-2. In addition, the reason why the liquid receiver 52-2 is provided is that the refrigerating machine oil enclosed in the compressor is formed at the time of starting the compressor, and a large amount of refrigerating machine oil is mixed in the gas phase refrigerant and discharged from the compressor. Since this is a temporary phenomenon, the refrigerating machine oil separated by the gas-liquid separator 44-2 is temporarily stored in the liquid receiver 52-2, and is gradually frozen in the compressor 39-2 by the flow rate adjusting throttle 53-2. This is to return the machine oil. In addition, when the volume of the liquid reservoir 36-2 of the gas-liquid separator is large, the liquid receiver is not necessarily required.

一方、気液分離器44−2内で分離された気相冷媒は気相出口管6−2から四方弁を経て、凝縮器41−2で凝縮器用送風機42−2から送られる空気に放熱し、低温高圧液冷媒となる。その液冷媒は減圧器43−2で減圧され低温低圧の二相流となり、蒸発器45−2に入り蒸発器用送風機46−2で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機39−2に吸い込まれる。したがって、気液分離器44−2内で冷凍機油は液相として分離され、液相出口管7−2から液レシーバ52−2、流量調整絞り53−2を経て、圧縮機吸込み管54−2に吸い込まれ、冷凍機油は圧縮機に戻るため、冷凍機油が冷凍サイクルに流出するのを防止でき、高効率な冷凍サイクル運転が可能になり、また、起動時にも冷凍機油が冷凍サイクルに流出するのを防止でき、信頼性の高い運転が可能になる。 On the other hand, the gas-phase refrigerant separated in the gas-liquid separator 44-2 dissipates heat to the air sent from the condenser blower 42-2 through the four-way valve from the gas-phase outlet pipe 6-2. It becomes a low-temperature high-pressure liquid refrigerant. The liquid refrigerant is decompressed by the decompressor 43-2 to become a low-temperature and low-pressure two-phase flow, takes heat from the air that enters the evaporator 45-2 and is sent by the evaporator blower 46-2, and becomes a low-temperature and low-pressure gas-phase refrigerant. It is sucked into machine 39-2. Therefore, the refrigerating machine oil is separated as a liquid phase in the gas-liquid separator 44-2, and from the liquid phase outlet pipe 7-2 through the liquid receiver 52-2 and the flow rate adjusting throttle 53-2, the compressor suction pipe 54-2. Since the refrigeration oil returns to the compressor, the refrigeration oil can be prevented from flowing into the refrigeration cycle, enabling highly efficient refrigeration cycle operation, and the refrigeration oil also flows into the refrigeration cycle at startup. Can be prevented, and a reliable operation becomes possible.

本発明は気液二相流を狭小空間に通すことで、液相を溝に導き、表面張力効果により液相を溝に効率良く捕捉し、取付位置や取付角度に関係なく気液分離を効率良く行うようにしたものであるから、冷凍装置の小形化に追従出来る冷凍サイクルの提供を可能とすることは勿論、冷凍装置の冷却性能改善および信頼性の改善に大幅に貢献出来るものであり、空気調和機、冷蔵庫、冷凍庫、除湿機、ショーケース、自動販売機およびカーエアコン等の冷凍装置に利用可能である。 The present invention guides the liquid phase into the groove by passing the gas-liquid two-phase flow through a narrow space, and efficiently captures the liquid phase in the groove due to the surface tension effect, making the gas-liquid separation efficient regardless of the mounting position and mounting angle. Since it is designed to be performed well, it is possible to provide a refrigeration cycle that can follow the downsizing of the refrigeration system, as well as to greatly contribute to the improvement of the cooling performance and reliability of the refrigeration system, It can be used for refrigeration equipment such as air conditioners, refrigerators, freezers, dehumidifiers, showcases, vending machines, and car air conditioners.

第1−1、第2−1および第3−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 1-1, 2-1 and 3-1 embodiment. 図1に示す気液分離装置のA−A線断面図である。It is AA sectional view taken on the line of the gas-liquid separator shown in FIG. 図2に示す気液分離装置の溝部詳細拡大断面図である。FIG. 3 is a detailed enlarged cross-sectional view of a groove portion of the gas-liquid separator shown in FIG. 2. 噴霧流発生メカニズムを示すモデル図である。It is a model figure which shows a spray flow generation | occurrence | production mechanism. Ishiiの理論による噴霧流遷移限界無次元速度Ulimに対し、例として取り上げた気液分離装置の無次元速度Uの位置づけを示すグラフである。It is a graph which shows the positioning of the dimensionless speed U of the gas-liquid separator taken up as an example with respect to the spray flow transition limit dimensionless speed Ulim by Ishii's theory. 噴霧流を起こさない冷媒量を直接把握するための、本発明におけるウエーバー数Weに対するU/Ulimの関係を示すグラフである。It is a graph which shows the relationship of U / Ulim with respect to the Weber number We in this invention for grasping | ascertaining the refrigerant | coolant amount which does not raise | generate a spray flow directly. 気液分離装置の適用例を示す第一の冷凍サイクル構成図である。It is a 1st freezing cycle block diagram which shows the example of application of a gas-liquid separator. 図7に示す第一の冷凍サイクルの動作状態を示すモリエル線図である。It is a Mollier diagram which shows the operation state of the 1st freezing cycle shown in FIG. 気液分離装置の適用例を示す第二の冷凍サイクル構成図であるIt is a 2nd freezing cycle block diagram which shows the example of application of a gas-liquid separator. 図9に示す第二の冷凍サイクルの動作状態を示すモリエル線図である。It is a Mollier diagram which shows the operation state of the 2nd freezing cycle shown in FIG. 浅い溝を持つ溝付き体の断面図である。It is sectional drawing of a grooved body with a shallow groove | channel. 深い溝を持つ溝付き体の断面図である。It is sectional drawing of a grooved body with a deep groove. 図1に示す気液分離装置のB−B線断面図である。It is a BB sectional view of the gas-liquid separator shown in FIG. 第4−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 4th-1 embodiment. 図14に示す気液分離装置のC-C断面図である。It is CC sectional drawing of the gas-liquid separator shown in FIG. 第5−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 5th-1 embodiment. 図16に示す気液分離装置のA-A断面図である。It is AA sectional drawing of the gas-liquid separator shown in FIG. 第5−1の実施の形態の気液分離装置の溝付き体斜視図である。It is a grooved body perspective view of the gas-liquid separator of 5th-1 embodiment. 図17に示す溝部詳細断面図である。FIG. 18 is a detailed cross-sectional view of the groove shown in FIG. 17. 本発明におけるb/hに対する流量比Ggo/Ggiの関係を示すグラフである。It is a graph which shows the relationship of the flow ratio Ggo / Ggi with respect to b / h in this invention. 第6−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 6th-1 embodiment. 流れの中に置かれた板をよぎる流れの物理モデルである。It is a physical model of a flow that crosses a plate placed in the flow. 本発明におけるL1/L2に対する液混合割合の関係を示すグラフである。It is a graph which shows the relationship of the liquid mixing ratio with respect to L1 / L2 in this invention. 溝頂部30が入口仕切り体の段差部15に接することによりできるコーナー付着液モデルを示す断面図である。It is sectional drawing which shows the corner adhesion liquid model which can be formed when the groove | channel top part 30 contacts the level | step-difference part 15 of an entrance partition. 第7−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 7th Embodiment. 第8−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 8th Embodiment. 第9−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 9th-1 embodiment. 第10−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separation apparatus of 10th-1 embodiment. 第11−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separator of 11th-1 embodiment. 図29に示す気液分離装置のD−D断面図である。It is DD sectional drawing of the gas-liquid separator shown in FIG. 第12−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separator of 12th Embodiment. 図31に示す気液分離装置のD−D断面図である。It is DD sectional drawing of the gas-liquid separator shown in FIG. 第12−1の実施の形態に使用される多孔質体の断面図である。It is sectional drawing of the porous body used for 12th embodiment. 第13−1の実施の形態の気液分離装置の断面図である。It is sectional drawing of the gas-liquid separator of 13th Embodiment. 一般的な多パス蒸発器冷凍サイクル構成図である。It is a general multipass evaporator refrigeration cycle block diagram. 第13−1の実施の形態の気液分離装置を冷凍サイクルに適用した場合の冷凍サイクル構成図である。It is a refrigeration cycle block diagram at the time of applying the gas-liquid separator of 13th Embodiment to a refrigeration cycle. 第14−1の実施の形態として、気液分離装置の適用例を示す第三の冷凍サイクル構成図である。It is a 3rd refrigerating-cycle block diagram which shows the example of application of a gas-liquid separator as 14th embodiment. 第15−1の実施の形態として、気液分離装置の適用例を示す第四の冷凍サイクル構成図である。It is a 4th refrigerating-cycle block diagram which shows the example of application of a gas-liquid separator as 15th Embodiment. 第1−2の実施の形態、第3−2、第4−2および第5−2の実施の形態の気液分離器の断面図である。It is sectional drawing of the gas-liquid separator of 1-2 embodiment, 3-2, 4-2, and 5-2 embodiment. 図39に示す気液分離器のA−A線断面図である。It is AA sectional view taken on the line of the gas-liquid separator shown in FIG. 図40に示す溝付き体の展開斜視図である。FIG. 41 is a developed perspective view of the grooved body shown in FIG. 40. 図39の入口仕切り体16の平面拡大図である。It is a plane enlarged view of the entrance partition 16 of FIG. 溝の拡大断面図である。It is an expanded sectional view of a groove. 第1−2の実施形態の気液分離器の説明の背景を示す断面図である。It is sectional drawing which shows the background of description of the gas-liquid separator of 1-2 embodiment. 本発明におけるL/Dtに対するgl/Glの関係を示すグラフである。It is a graph which shows the relationship of gl / Gl with respect to L / Dt in this invention. 第2−2の実施の形態の気液分離器を示す断面図である。It is sectional drawing which shows the gas-liquid separator of 2nd-2 embodiment. 気液分離器組み立て上の課題を示す断面図である。It is sectional drawing which shows the subject on a gas-liquid separator assembly. 第6−2の実施形態を示す半断面図である。It is a half sectional view showing the 6th embodiment. 第7−2の実施形態を示す半断面図である。It is a half sectional view showing a 7-2 embodiment. 第8−2の実施形態を示す半断面図である。It is a half sectional view showing an 8-2nd embodiment. 気液分離器信頼性上の課題を示す断面図である。It is sectional drawing which shows the subject on a gas-liquid separator reliability. 第9−2の実施形態を示す断面図である。It is sectional drawing which shows 9th-2 embodiment. 第9−2の実施形態で使用する内径支持体Bの断面図である。It is sectional drawing of the internal diameter support body B used in 9th-2 embodiment. 第10−2の実施形態を示す断面図である。It is sectional drawing which shows 10th-2 embodiment. 第10−2の実施形態で使用する内径支持体Cの平面図である。It is a top view of the internal diameter support body C used by 10th-2 embodiment. 第11−2の実施形態を示す断面図である。It is sectional drawing which shows 11th-2 embodiment. 第11−2の実施形態で使用する内径支持体Dの断面図である。It is sectional drawing of the internal diameter support body D used by 11th-2 embodiment. 第12−2の実施の形態として、気液分離器を冷凍サイクルに使用した場合の第一の冷凍サイクル構成図である。It is a 1st refrigerating-cycle block diagram at the time of using a gas-liquid separator for a refrigerating cycle as 12th Embodiment. 第13−2の実施の形態として、気液分離器を冷凍サイクルに使用した場合の第二の冷凍サイクル構成図である。It is a 2nd refrigeration cycle block diagram at the time of using a gas-liquid separator for a refrigeration cycle as 13th Embodiment.

符号の説明Explanation of symbols

<第1−1の実施の形態〜第15−1の実施の形態> 1−1…気液分離室 2−1…溝 3−1…急拡大部 4−1…溝付き体 5−1…入口管 6−1…気相出口管 7−1…液相出口管 8−1…出口仕切り体 9−1…溝頂点仮想円 10−1…外郭体 11−1…第2の外郭体 12−1…狭小空間 13−1…溝を構成する板 14−1…溝底部 15−1…段差部 16−1…入り口仕切体 17−1…圧縮機 18−1…第一のシリンダ 19−1…第二のシリンダ 20−1…冷媒吐出管 21−1…凝縮器 22−1…凝縮器用送風機 23−1…第一の減圧器 24−1…第二の減圧器 25−1…蒸発器 26−1…蒸発器用送風機 27−1…蒸発器バイパス管 28−1…コーナ部 29−1…外側の溝2oに内接する円 30−1…溝頂部 31−1…流れの中に置かれた板 32−1…流線 33−1…気液分離装置 34−1…コーナー付着液 35−1…内面螺旋溝 36−1…広がり流れ 37−1…外郭体に沿う流れ 38−1…広がり部 39−1…円錐体 40−1…液滴ミスト 41−1…溝面に付着した液滴 42−1…溝底に集まった液相 43−1…親水性処理面 44−1…導入溝 45−1…導入溝付き体 46−1…外郭体に向かう流れ 47−1…多孔質体 48−1…流入室 49−1…パスA 50−1…パスB 51−1…分岐点 52−1…分流器 53−1…蒸発器用送風機で送られる空気流 <1-1st Embodiment to 15-1th Embodiment> 1-1 ... Gas-liquid separation chamber 2-1 ... Groove 3-1 ... Rapid expansion section 4-1 ... Grooved body 5-1 ... Inlet pipe 6-1 ... Gas phase outlet pipe 7-1 ... Liquid phase outlet pipe 8-1 ... Outlet partition body 9-1 ... Groove vertex virtual circle 10-1 ... Outer body 11-1 ... Second outer body 12- DESCRIPTION OF SYMBOLS 1 ... Narrow space 13-1 ... Plate which comprises a groove 14-1 ... Groove bottom 15-1 ... Step part 16-1 ... Entrance partition 17-1 ... Compressor 18-1 ... First cylinder 19-1 ... Second cylinder 20-1 ... Refrigerant discharge pipe 21-1 ... Condenser 22-1 ... Condenser blower 23-1 ... First decompressor 24-1 ... Second decompressor 25-1 ... Evaporator 26- DESCRIPTION OF SYMBOLS 1 ... Blower for evaporators 27-1 ... Evaporator bypass pipe 28-1 ... Corner part 29-1 ... Circle inscribed in outer groove | channel 2o 30-1 ... Groove Section 31-1 ... Plate placed in flow 32-1 ... Streamline 33-1 ... Gas-liquid separator 34-1 ... Corner adhesion liquid 35-1 ... Inner spiral groove 36-1 ... Spreading flow 37-1 ... Flow along outer body 38-1 ... Expansion part 39-1 ... Conical body 40-1 ... Drop mist 41-1 ... Drop adhering to groove surface 42-1 ... Liquid phase collected at groove bottom 43-1 ... hydrophilic treatment surface 44-1 ... introduction groove 45-1 ... body with introduction groove 46-1 ... flow toward outer body 47-1 ... porous body 48-1 ... inflow chamber 49-1 ... path A 50-1 ... Path B 51-1 ... Branch point 52-1 ... Diverter 53-1 ... Air flow sent by evaporator blower

<第1−2の実施の形態〜第13−2の実施の形態> 1−2…気液分離室 2−2…溝 3−2…急拡大部 4−2…溝付き体 5−2…入口管 6−2…気相出口管 7−2…液相出口管 8−2…出口仕切り体 9−2…溝頂点仮想円 10−2…外郭体A 11−2…外郭体B 12−2…狭小空間 13−2…下縮管部 14−2…つば部 15−2…スリット 16−2…入り口仕切り体 17−2…つば部外周 18−2…外郭体接合部 19−2…流入室 20−2…急拡大部気相ベクトル 21−2…気相流入端 22−2…中空部 23−2…仮想円筒面 24−2…隙間 25−2…二相流の一部 26−2…拡管部 27−2…外郭体C 28−2…ビード 29−2…上縮管部 30−2…ノッチ 31−2…内径支持体A 32−2…内径支持体B 33−2…内径支持体Bつば部 34−2…内径支持体C 35−2…切り欠き部 36−2…液溜め 37−2…内径支持体D 38−2…段差部 39−2…圧縮機 40−2…冷媒吐出管 41−2…凝縮器 42−2…凝縮器用送風機 43−2…減圧器 44−2…気液分離器 45−2…蒸発器 46−2…蒸発器用送風機 47−2…バイパス管 48−2…抵抗調整体 49−2…室外ユニット 50−2…室内ユニット 51−2…接続配管 52−2…液レシーバ 53−2…流量調整絞り 54−2…圧縮機吸込み管 <1-2th Embodiment to 13th-2nd Embodiment> 1-2 ... Gas-liquid separation chamber 2-2 ... Groove 3-2 ... Rapid expansion portion 4-2 ... Grooved body 5-2 ... Inlet pipe 6-2 ... Gas phase outlet pipe 7-2 ... Liquid phase outlet pipe 8-2 ... Outlet partition body 9-2 ... Groove vertex virtual circle 10-2 ... Outer body A 11-2 ... Outer body B 12-2 ... Narrow space 13-2 ... Lower contraction pipe part 14-2 ... Collar part 15-2 ... Slit 16-2 ... Entrance partition 17-2 ... Collar part outer periphery 18-2 ... Outer body joint part 19-2 ... Inflow chamber 20-2 ... Rapid expansion portion gas phase vector 21-2 ... Gas phase inflow end 22-2 ... Hollow portion 23-2 ... Virtual cylindrical surface 24-2 ... Gap 25-2 ... Part of two-phase flow 26-2 ... Expanded portion 27-2 ... outer body C 28-2 ... bead 29-2 ... upper contracted tube portion 30-2 ... notch 31-2 ... inner diameter support A 32-2 ... inside Support B 33-2 ... Inner diameter support B collar 34-2 ... Inner diameter support C 35-2 ... Notch 36-2 ... Liquid reservoir 37-2 ... Inner diameter support D 38-2 ... Stepped portion 39- 2 ... Compressor 40-2 ... Refrigerant discharge pipe 41-2 ... Condenser 42-2 ... Condenser blower 43-2 ... Decompressor 44-2 ... Gas-liquid separator 45-2 ... Evaporator 46-2 ... For evaporator Blower 47-2 ... Bypass pipe 48-2 ... Resistance adjustment body 49-2 ... Outdoor unit 50-2 ... Indoor unit 51-2 ... Connection pipe 52-2 ... Liquid receiver 53-2 ... Flow rate adjusting throttle 54-2 ... Compression Suction pipe

Claims (21)

外郭を構成する外郭体と、
気液二相流を導入可能な入口管と、
前記入口管と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室と、
前記気液分離室と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管と、
前記気液分離室と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管と
を有する気液分離器であって、
前記気液分離室は、
前記入口管からの気液二相流を導入するための入口空間と、
前記入口空間の下流に設けられた空間であって、前記入口空間よりも流路断面積が拡大した拡大空間と、
前記入口空間からの気液二相流が直接導かれる、前記液相出口管に向かう溝付き部と
を有する気液分離器において、
ウエーバー数をWe、気液分離器に流入する気液二相流の質量流量をG、二相流の密度をρ、表面張力をσ、溝幅をb、該入口空間から溝に流入する溝内流路断面積をSlとしたとき、
Figure 0004268994
としたことを特徴とする気液分離器。
An outer body constituting the outer shell,
An inlet pipe capable of introducing a gas-liquid two-phase flow;
A gas-liquid separation chamber that is in fluid communication with the inlet pipe and separates the gas-liquid two-phase flow into a gas phase and a liquid phase;
A gas-phase outlet pipe that is in fluid communication with the gas-liquid separation chamber and that guides the separated gas phase;
A gas-liquid separator having a liquid phase outlet pipe through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separation chamber;
The gas-liquid separation chamber is
An inlet space for introducing a gas-liquid two-phase flow from the inlet pipe;
The space provided downstream of the inlet space, and an enlarged space in which a channel cross-sectional area is larger than the inlet space;
In the gas-liquid separator having a grooved portion toward the liquid-phase outlet pipe, to which the gas-liquid two-phase flow from the inlet space is directly guided,
The number of Webers is We, the mass flow rate of the gas-liquid two-phase flow flowing into the gas-liquid separator is G, the density of the two-phase flow is ρ, the surface tension is σ, the groove width is b, and the groove flows into the groove from the inlet space. When the inner channel cross-sectional area is Sl,
Figure 0004268994
A gas-liquid separator characterized by that.
外郭を構成する外郭体と、
気液二相流を入流可能な入口管と、
前記入口管と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室と、
前記気液分離室と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管と、
前記気液分離室と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管と
を有する気液分離器であって、
前記気液分離室は、
前記入口管からの気液二相流を導入するための入口空間と、
前記入口空間の下流に設けられた空間であって、前記入口空間よりも流路断面積が拡大した拡大空間と、
前記入口空間からの気液二相流が直接導かれる、前記液相出口管に向かう溝付き部と
を有する気液分離器において、
前記溝付き部が、薄板を折り曲げて構成された、溝付き面をもつ溝付き体であることを特徴とする気液分離器。
An outer body constituting the outer shell,
An inlet pipe capable of entering a gas-liquid two-phase flow;
A gas-liquid separation chamber that is in fluid communication with the inlet pipe and separates the gas-liquid two-phase flow into a gas phase and a liquid phase;
A gas-phase outlet pipe that is in fluid communication with the gas-liquid separation chamber and that guides the separated gas phase;
A gas-liquid separator having a liquid phase outlet pipe through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separation chamber;
The gas-liquid separation chamber is
An inlet space for introducing a gas-liquid two-phase flow from the inlet pipe;
The space provided downstream of the inlet space, and an enlarged space in which a channel cross-sectional area is larger than the inlet space;
In the gas-liquid separator having a grooved portion toward the liquid-phase outlet pipe, to which the gas-liquid two-phase flow from the inlet space is directly guided,
The gas-liquid separator, wherein the grooved portion is a grooved body having a grooved surface formed by bending a thin plate .
前記溝付き体が、溝幅をb、溝深さをhとしたとき
Figure 0004268994
とした、請求項2記載の気液分離器。
When the grooved body has a groove width of b and a groove depth of h
Figure 0004268994
The gas-liquid separator according to claim 2.
溝の表面が親水性処理されている、請求項1〜3のいずれか一項記載の気液分離器。  The gas-liquid separator according to any one of claims 1 to 3, wherein a surface of the groove is subjected to a hydrophilic treatment. 前記気液分離器は、
前記外郭体内に設置されていると共に、前記外郭体と協同して前記入口空間を形成する、前記溝付き部の溝先端と係合する段差部を備えた入口仕切り体を更に有しており、
前記入口仕切り体の溝先端から上流側の長さをL1、溝先端から下流側の段差部の長さをL2としたとき、
Figure 0004268994
とした、請求項1〜4のいずれか一項記載の気液分離器。
The gas-liquid separator is
In addition to being installed in the outer body, and further forming an inlet partition body that cooperates with the outer body to form the inlet space and has a stepped portion that engages with a groove tip of the grooved portion;
When the length of the upstream side from the groove tip of the inlet partition is L1, and the length of the stepped portion downstream from the groove tip is L2,
Figure 0004268994
The gas-liquid separator according to any one of claims 1 to 4.
前記気液分離器は、
前記外郭体内に設置されていると共に、前記外郭体と協同して前記入口空間を形成する、前記溝付き部の溝先端と係合する段差部を備えた入口仕切り体を更に有しており、
前記入口仕切り体の上流側外周と外郭体との距離をH1、溝先端から外殻体との距離をH2としたとき、
Figure 0004268994
とした、請求項1〜5のいずれか一項記載の気液分離器。
The gas-liquid separator is
In addition to being installed in the outer body, and further forming an inlet partition body that cooperates with the outer body to form the inlet space and has a stepped portion that engages with a groove tip of the grooved portion;
When the distance between the outer periphery on the upstream side of the inlet partition and the outer body is H1, and the distance from the groove tip to the outer shell is H2,
Figure 0004268994
The gas-liquid separator according to any one of claims 1 to 5.
前記入口管の内面に内面螺旋溝が設けられている、請求項1〜6のいずれか一項記載の気液分離器。  The gas-liquid separator according to any one of claims 1 to 6, wherein an inner surface spiral groove is provided on an inner surface of the inlet pipe. 前記入口管の出口側端を末広がりに広げた広がり部を設けた、請求項1〜7のいずれか一項記載の気液分離器。  The gas-liquid separator as described in any one of Claims 1-7 which provided the expansion part which expanded the exit side end of the said inlet pipe at the end. 前記入口仕切り体の上流部先端を円錐体とした、請求項5又は6記載の気液分離器。The gas-liquid separator according to claim 5 or 6 , wherein the upstream end of the inlet partition is a cone. 溝の上流側の流入室の外郭体内面に溝の溝深さより深さの浅い導入溝が設けられている、請求項1〜9のいずれか一項記載の気液分離器。  The gas-liquid separator according to any one of claims 1 to 9, wherein an introduction groove shallower than the groove depth is provided on the inner surface of the outer body of the inflow chamber on the upstream side of the groove. 溝の上流側の流入室の外郭体内面に溝の溝深さより厚さの薄い多孔質体が設けられている、請求項1〜9のいずれか一項記載の気液分離器。  The gas-liquid separator according to any one of claims 1 to 9, wherein a porous body having a thickness smaller than the groove depth of the groove is provided on the inner surface of the outer body of the inflow chamber on the upstream side of the groove. 液相出口管が複数設けられている、請求項1〜11のいずれか一項記載の気液分離器。  The gas-liquid separator according to any one of claims 1 to 11, wherein a plurality of liquid phase outlet pipes are provided. 請求項1〜12のいずれか一項記載の気液分離器を空気調和機等の冷凍サイクル中に組み込んだことを特徴とする気液分離器を備えた冷凍装置。  A refrigeration apparatus comprising a gas-liquid separator, wherein the gas-liquid separator according to any one of claims 1 to 12 is incorporated in a refrigeration cycle such as an air conditioner. 外郭を構成する外郭体と、
気液二相流を導入可能な入口管と、
前記入口管と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室と、
前記気液分離室と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管と、
前記気液分離室と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管と
を有する気液分離器であって、
前記気液分離室は、
前記入口管からの気液二相流を導入するための入口空間と、
前記入口空間の下流に設けられた空間であって、前記入口空間よりも流路断面積が拡大した拡大空間と、
前記入口空間からの気液二相流が直接導かれる、前記液相出口管に向かう溝付き部と
を有する気液分離器において、
前記入口空間よりも拡大した位置を基準とし、その基準位置から気液分離器への二相流流入方向をプラス方向、その流れ方向と逆方向をマイナス方向とし、その基準位置から気相出口管の気相流入端位置までの距離をLとし、溝頂点仮想円の径をDtとしたとき、気相出口管の気相流入端位置を
Figure 0004268994
としたことを特徴とする気液分離器。
An outer body constituting the outer shell,
An inlet pipe capable of introducing a gas-liquid two-phase flow;
A gas-liquid separation chamber that is in fluid communication with the inlet pipe and separates the gas-liquid two-phase flow into a gas phase and a liquid phase;
A gas-phase outlet pipe that is in fluid communication with the gas-liquid separation chamber and that guides the separated gas phase;
A gas-liquid separator having a liquid phase outlet pipe through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separation chamber;
The gas-liquid separation chamber is
An inlet space for introducing a gas-liquid two-phase flow from the inlet pipe;
The space provided downstream of the inlet space, and an enlarged space in which a channel cross-sectional area is larger than the inlet space;
In the gas-liquid separator having a grooved portion toward the liquid-phase outlet pipe, to which the gas-liquid two-phase flow from the inlet space is directly guided,
The position that is larger than the inlet space is used as a reference, the two-phase flow inflow direction from the reference position to the gas-liquid separator is the positive direction, and the opposite direction to the flow direction is the negative direction. Where L is the distance to the gas-phase inflow end position, and Dt is the diameter of the groove apex virtual circle, the gas-phase inflow end position of the gas-phase outlet pipe is
Figure 0004268994
A gas-liquid separator characterized by that.
外郭を構成する外郭体と、
気液二相流を導入可能な入口管と、
前記入口管と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室と、
前記気液分離室と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管と、
前記気液分離室と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管と
を有する気液分離器であって、
前記気液分離室は、
前記入口管からの気液二相流を導入するための入口空間と、
前記入口空間の下流に設けられた空間であって、前記入口空間よりも流路断面積が拡大した拡大空間と、
前記入口空間からの気液二相流が直接導かれる、前記液相出口管に向かう溝付き部と
を有する気液分離器において、
前記気液分離器は、
前記外郭体内に設置されていると共に、前記外郭体と協同して前記入口空間を形成する、入口仕切り体を更に有しており、
前記気相出口管内径部の気相流入端上部の入口仕切り体位置から気相出口管の気相流入端内径部の距離をH、気相出口管の内径をdiとしたとき、
Figure 0004268994
としたことを特徴とする気液分離器。
An outer body constituting the outer shell,
An inlet pipe capable of introducing a gas-liquid two-phase flow;
A gas-liquid separation chamber that is in fluid communication with the inlet pipe and separates the gas-liquid two-phase flow into a gas phase and a liquid phase;
A gas-phase outlet pipe that is in fluid communication with the gas-liquid separation chamber and that guides the separated gas phase;
A gas-liquid separator having a liquid phase outlet pipe through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separation chamber;
The gas-liquid separation chamber is
An inlet space for introducing a gas-liquid two-phase flow from the inlet pipe;
The space provided downstream of the inlet space, and an enlarged space in which a channel cross-sectional area is larger than the inlet space;
In the gas-liquid separator having a grooved portion toward the liquid-phase outlet pipe, to which the gas-liquid two-phase flow from the inlet space is directly guided,
The gas-liquid separator is
And further comprising an inlet partition that is installed in the outer body and forms the inlet space in cooperation with the outer body;
When the distance from the inlet partition position at the upper part of the gas phase inlet end of the gas phase outlet pipe inner diameter part to the gas phase inlet end inner diameter part of the gas phase outlet pipe is H, and the inner diameter of the gas phase outlet pipe is di,
Figure 0004268994
A gas-liquid separator characterized by that.
外郭を構成する外郭体と、
気液二相流を導入可能な入口管と、
前記入口管と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室と、
前記気液分離室と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管と、
前記気液分離室と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管と
を有する気液分離器であって、
前記気液分離室は、
前記入口管からの気液二相流を導入するための入口空間と、
前記入口空間の下流に設けられた空間であって、前記入口空間よりも流路断面積が拡大した拡大空間と、
前記入口空間からの気液二相流が直接導かれる、前記液相出口管に向かう溝付き部と
を有する気液分離器において、
前記気液分離器は、
前記外郭体内に設置されていると共に、前記外郭体と協同して前記入口空間を形成する、入口仕切り体を更に有しており、
気液分離室に対向する側の入口仕切り体下面に、開放された中空部が設けられていることを特徴とする気液分離器。
An outer body constituting the outer shell,
An inlet pipe capable of introducing a gas-liquid two-phase flow;
A gas-liquid separation chamber that is in fluid communication with the inlet pipe and separates the gas-liquid two-phase flow into a gas phase and a liquid phase;
A gas-phase outlet pipe that is in fluid communication with the gas-liquid separation chamber and that guides the separated gas phase;
A gas-liquid separator having a liquid phase outlet pipe through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separation chamber;
The gas-liquid separation chamber is
An inlet space for introducing a gas-liquid two-phase flow from the inlet pipe;
The space provided downstream of the inlet space, and an enlarged space in which a channel cross-sectional area is larger than the inlet space;
In the gas-liquid separator having a grooved portion toward the liquid-phase outlet pipe, to which the gas-liquid two-phase flow from the inlet space is directly guided,
The gas-liquid separator is
And further comprising an inlet partition that is installed in the outer body and forms the inlet space in cooperation with the outer body;
A gas-liquid separator characterized in that an open hollow portion is provided on the lower surface of the inlet partition on the side facing the gas-liquid separation chamber.
外郭を構成する外郭体と、
気液二相流を入流可能な入口管と、
前記入口管と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室と、
前記気液分離室と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管と、
前記気液分離室と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管と
を有する気液分離器であって、
前記気液分離室は、
前記入口管からの気液二相流を導入するための入口空間と、
前記入口空間の下流に設けられた空間であって、前記入口空間よりも流路断面積が拡大した拡大空間と、
前記入口空間からの気液二相流が直接導かれる、前記液相出口管に向かう溝付き部と
を有する気液分離器において、
前記気液分離器は、
前記外郭体内に設置されていると共に、前記外郭体と協同して前記入口空間を形成する、入口仕切り体と、
前記外郭体内に設置されていると共に、気液分離室の下流に気相と液相の流路を分離する、気相出口管が貫通して当該気相出口管に接合された、出口仕切り体とを更に有していると共に、
前記溝付き部が、前記外郭体と別体である、溝付き面をもつ溝付き体であり、
外郭体と入口仕切り体及び出口仕切り体とで溝付き体を挟み込むことにより、溝付き体が所定位置に固定されている
ことを特徴とする気液分離器。
An outer body constituting the outer shell,
An inlet pipe capable of entering a gas-liquid two-phase flow;
A gas-liquid separation chamber that is in fluid communication with the inlet pipe and separates the gas-liquid two-phase flow into a gas phase and a liquid phase;
A gas-phase outlet pipe that is in fluid communication with the gas-liquid separation chamber and that guides the separated gas phase;
A gas-liquid separator having a liquid phase outlet pipe through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separation chamber;
The gas-liquid separation chamber is
An inlet space for introducing a gas-liquid two-phase flow from the inlet pipe;
The space provided downstream of the inlet space, and an enlarged space in which a channel cross-sectional area is larger than the inlet space;
In the gas-liquid separator having a grooved portion toward the liquid-phase outlet pipe, to which the gas-liquid two-phase flow from the inlet space is directly guided,
The gas-liquid separator is
An inlet partition that is installed in the outer body and forms the inlet space in cooperation with the outer body;
An outlet partition that is installed in the outer body and separates a gas phase and a liquid phase flow path downstream of a gas-liquid separation chamber, and a gas phase outlet pipe penetrates and is joined to the gas phase outlet pipe And further having
The grooved portion is a grooved body having a grooved surface, which is a separate body from the outer body,
A gas-liquid separator, wherein the grooved body is fixed at a predetermined position by sandwiching the grooved body between the outer body, the inlet partition body, and the outlet partition body.
外郭を構成する外郭体と、
気液二相流を入流可能な入口管と、
前記入口管と流体導通可能に連絡した、前記気液二相流を気相と液相に分離する気液分離室と、
前記気液分離室と流体導通可能に連絡した、前記分離した気相が導かれる気相出口管と、
前記気液分離室と流体導通可能に連絡した、前記分離した液相が導かれる液相出口管と
を有する気液分離器であって、
前記気液分離室は、
前記入口管からの気液二相流を導入するための入口空間と、
前記入口空間の下流に設けられた空間であって、前記入口空間よりも流路断面積が拡大した拡大空間と、
前記入口空間からの気液二相流が直接導かれる、前記液相出口管に向かう溝付き部と
を有する気液分離器において、
前記溝付き部が、前記外郭体と別体である、溝付き面をもつ溝付き体であると共に、
前記気液分離器は、
溝付き体の内径側に溝付き体が溝頂点仮想円の内側に飛び出すことを防止する内径支持体を更に備えたことを特徴とする気液分離器。
An outer body constituting the outer shell,
An inlet pipe capable of entering a gas-liquid two-phase flow;
A gas-liquid separation chamber that is in fluid communication with the inlet pipe and separates the gas-liquid two-phase flow into a gas phase and a liquid phase;
A gas-phase outlet pipe that is in fluid communication with the gas-liquid separation chamber and that guides the separated gas phase;
A gas-liquid separator having a liquid phase outlet pipe through which the separated liquid phase is guided, which is in fluid communication with the gas-liquid separation chamber;
The gas-liquid separation chamber is
An inlet space for introducing a gas-liquid two-phase flow from the inlet pipe;
The space provided downstream of the inlet space, and an enlarged space in which a channel cross-sectional area is larger than the inlet space;
In the gas-liquid separator having a grooved portion toward the liquid-phase outlet pipe, to which the gas-liquid two-phase flow from the inlet space is directly guided,
The grooved portion is a grooved body having a grooved surface, which is a separate body from the outer body,
The gas-liquid separator is
A gas-liquid separator, further comprising an inner diameter support for preventing the grooved body from jumping out to the inside of the groove apex virtual circle on the inner diameter side of the grooved body.
請求項14〜18のいずれか一項記載の気液分離器を空気調和機等の冷凍サイクル中に組み込んだことを特徴とする気液分離器を備えた冷凍装置。A refrigeration apparatus comprising a gas-liquid separator, wherein the gas-liquid separator according to any one of claims 14 to 18 is incorporated in a refrigeration cycle such as an air conditioner. 請求項14〜18のいずれか一項記載の気液分離器の二相流入口管に、冷凍サイクル中の減圧器の出口管を接続し、気液分離器の液相出口管を蒸発器に接続し、一方、気液分離器の気相出口管をバイパス路を介して圧縮機の吸込み管に接続したことを特徴とする冷凍装置。An outlet pipe of a decompressor in the refrigeration cycle is connected to the two-phase inlet pipe of the gas-liquid separator according to any one of claims 14 to 18 , and the liquid-phase outlet pipe of the gas-liquid separator is an evaporator. On the other hand, the gas phase outlet pipe of the gas-liquid separator is connected to the suction pipe of the compressor via a bypass . 請求項14〜18のいずれか一項記載の気液分離器の二相流入口管に、冷凍サイクル中の圧縮機吐出管を接続し、気液分離器の液相出口管を流量調整絞りを介して圧縮機吸込み管に接続し、一方、気液分離器の気相出口管を冷凍サイクルの凝縮器に至る管路に接続したことを特徴とする冷凍装置。A compressor discharge pipe in a refrigeration cycle is connected to the two-phase inlet pipe of the gas-liquid separator according to any one of claims 14 to 18 , and a flow rate adjusting throttle is connected to the liquid-phase outlet pipe of the gas-liquid separator. Through which the gas-phase outlet pipe of the gas-liquid separator is connected to a pipeline leading to the condenser of the refrigeration cycle.
JP2007544237A 2005-11-14 2006-11-14 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator Active JP4268994B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005356892 2005-11-14
JP2005356892 2005-11-14
JP2006201276 2006-06-27
JP2006201276 2006-06-27
PCT/JP2006/322682 WO2007055386A1 (en) 2005-11-14 2006-11-14 Gas-liquid separator and refrigerating apparatus equipped therewith

Publications (2)

Publication Number Publication Date
JPWO2007055386A1 JPWO2007055386A1 (en) 2009-04-30
JP4268994B2 true JP4268994B2 (en) 2009-05-27

Family

ID=38023377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007544237A Active JP4268994B2 (en) 2005-11-14 2006-11-14 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator

Country Status (3)

Country Link
JP (1) JP4268994B2 (en)
CN (1) CN101310154B (en)
WO (1) WO2007055386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057924A (en) * 2010-09-13 2012-03-22 Nichirei Kogyo Kk Gas-liquid separator and refrigeration device including the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5395358B2 (en) * 2008-01-23 2014-01-22 日冷工業株式会社 A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP2010139094A (en) * 2008-12-09 2010-06-24 Sanden Corp Receiver tank for refrigerating circuit and refrigerating circuit including the same
JP5498715B2 (en) * 2009-02-12 2014-05-21 日冷工業株式会社 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
CN103285689A (en) * 2009-04-17 2013-09-11 清华大学 Refrigeration type gas-liquid separation gas sampling method
JP5360095B2 (en) * 2009-09-30 2013-12-04 ダイキン工業株式会社 Gas refrigerant separation and refrigerant shunt
JP2011094946A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
JP5518200B2 (en) * 2010-08-25 2014-06-11 三菱電機株式会社 Refrigerant compressor with attached accumulator and vapor compression refrigeration cycle apparatus
JP5757415B2 (en) * 2010-08-27 2015-07-29 日冷工業株式会社 Refrigeration equipment such as air conditioners
CN102452924B (en) * 2010-11-03 2014-04-30 中国石油化工股份有限公司 Method for separating acetic acid from water by acetic acid dehydration tower
CN102452926B (en) * 2010-11-03 2014-06-04 中国石油化工股份有限公司 Method for separating acetic acid and water
CN102452925B (en) * 2010-11-03 2014-04-02 中国石油化工股份有限公司 Method for separating acetic acid from water
CN102451572B (en) * 2010-11-03 2014-07-02 中国石油化工股份有限公司 Method for separating acetic acid from water by rectification of acetic acid dehydrating tower
CN103348203B (en) 2011-02-08 2015-12-09 松下电器产业株式会社 Gas-liquid separator and refrigerating circulatory device
EP2729742B1 (en) 2011-07-05 2020-09-02 Carrier Corporation Refrigeration circuit and heating and cooling system
CN102992993B (en) * 2011-09-17 2014-08-27 天华化工机械及自动化研究设计院有限公司 Acetic acid+water azeotropic-rectification energy-saving consumption-reduction method by adding heat pump
JP2015034637A (en) * 2011-11-22 2015-02-19 パナソニック株式会社 Gas-liquid separator and refrigeration cycle device
CN103673430B (en) * 2012-09-17 2015-12-16 珠海格力电器股份有限公司 Tonifying Qi blender, compressor and air-conditioning system
JP6055673B2 (en) * 2012-12-05 2016-12-27 日冷工業株式会社 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP5634549B2 (en) * 2013-03-15 2014-12-03 日冷工業株式会社 A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
CN105042956A (en) * 2015-06-08 2015-11-11 大连冷冻机股份有限公司 Ammonia low-pressure circulating barrel having filtering function
JP7146207B2 (en) * 2017-03-17 2022-10-04 日冷工業株式会社 Refrigeration equipment with gas-liquid separator and gas-liquid separator
CN106861339A (en) * 2017-03-22 2017-06-20 溧阳市英创机电技术有限公司 A kind of multiphase flow separation equipment
CN106895616B (en) * 2017-03-22 2022-10-04 江苏中关村科技产业园节能环保研究有限公司 Gas-liquid separator with surface tension type groove body
WO2019021431A1 (en) * 2017-07-27 2019-01-31 三菱電機株式会社 Refrigeration cycle apparatus
WO2019064427A1 (en) * 2017-09-28 2019-04-04 三菱電機株式会社 Oil separator and air conditioner with same
CN107975987B (en) * 2017-11-21 2020-05-22 中国科学院合肥物质科学研究院 Linear adjustable gas-liquid separator for low-temperature equipment
JP2019100695A (en) * 2017-12-04 2019-06-24 パナソニックIpマネジメント株式会社 Refrigeration cycle device and method for driving refrigeration cycle device
WO2020065999A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929661U (en) * 1982-08-17 1984-02-24 松下冷機株式会社 Heat pump air conditioner
JP3057393B2 (en) * 1992-01-20 2000-06-26 株式会社クボタ Combustion chamber of sub-combustion chamber diesel engine
JPH0658653A (en) * 1992-08-04 1994-03-04 Daikin Ind Ltd Gas liquid separator
JP2000234825A (en) * 1999-02-15 2000-08-29 Daikin Ind Ltd Degassing diverter and air conditioner
JP4249380B2 (en) * 2000-08-17 2009-04-02 三菱電機株式会社 Air conditioner
JP4295530B2 (en) * 2003-03-04 2009-07-15 東芝キヤリア株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057924A (en) * 2010-09-13 2012-03-22 Nichirei Kogyo Kk Gas-liquid separator and refrigeration device including the same

Also Published As

Publication number Publication date
JPWO2007055386A1 (en) 2009-04-30
WO2007055386A1 (en) 2007-05-18
CN101310154A (en) 2008-11-19
CN101310154B (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP4268994B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP5395358B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP5050563B2 (en) Ejector and ejector type refrigeration cycle unit
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
JP2007192465A (en) Evaporator unit and ejector type refrigerating cycle
US10222104B2 (en) Distributor and turbo refrigerating machine and evaporator having the same
EP2175214A1 (en) Gas-liquid separator and air conditioner with the same
JP2010096483A (en) Gas-liquid separating device and refrigerating device including the same
EP2092262B1 (en) Refrigerant vapor injection for distribution improvement in parallel flow heat exchanger manifolds
CN107014117A (en) Heat exchanger
US20080190122A1 (en) Accumulator Integration with Heat Exchanger Header
JP5757415B2 (en) Refrigeration equipment such as air conditioners
JP2000320933A (en) Gas/liquid separator and its manufacturing method
CN107407293B (en) Injector, the manufacturing method of injector and ejector-type refrigerating circulatory device
CN103245144B (en) Energy-saving appliance and refrigerator
EP1801521A2 (en) Pressure reduce module with oil seperator
JP5634549B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
WO2014155816A1 (en) Expansion valve and cooling cycle device using same
JP5498715B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP4577291B2 (en) Refrigerant evaporator
WO2012147290A1 (en) Gas-liquid separator and refrigerating cycle apparatus equipped with gas-liquid separator
JP5072523B2 (en) Gas-liquid separator and air conditioner
JP2002061966A (en) Air conditioner
JP2006170589A (en) Gas-liquid separator and refrigerating apparatus equipped therewith
JPH10111047A (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Ref document number: 4268994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150227

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250