WO2019064427A1 - Oil separator and air conditioner with same - Google Patents

Oil separator and air conditioner with same Download PDF

Info

Publication number
WO2019064427A1
WO2019064427A1 PCT/JP2017/035219 JP2017035219W WO2019064427A1 WO 2019064427 A1 WO2019064427 A1 WO 2019064427A1 JP 2017035219 W JP2017035219 W JP 2017035219W WO 2019064427 A1 WO2019064427 A1 WO 2019064427A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
refrigerant
oil separator
groove
pipe
Prior art date
Application number
PCT/JP2017/035219
Other languages
French (fr)
Japanese (ja)
Inventor
松田 弘文
宗希 石山
裕輔 島津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/651,073 priority Critical patent/US11255587B2/en
Priority to PCT/JP2017/035219 priority patent/WO2019064427A1/en
Priority to CN201780095044.9A priority patent/CN111108333B/en
Priority to EP17926760.4A priority patent/EP3690361B1/en
Priority to JP2019545489A priority patent/JP6827554B2/en
Priority to ES17926760T priority patent/ES2904309T3/en
Publication of WO2019064427A1 publication Critical patent/WO2019064427A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/17Size reduction

Definitions

  • the present invention relates to an oil separator and an air conditioner provided with the same, and more particularly to an oil separator for separating oil contained in a refrigerant and an air conditioner provided with such an oil separator.
  • an oil separator In the air conditioner, an oil separator is used in order to separate the refrigerant and the oil (refrigerator oil) discharged from the compressor from the refrigerant and return it to the compressor. In order to ensure the reliability of the compressor and to improve the performance of the refrigeration cycle, the oil separator is required to efficiently separate refrigeration oil from the refrigerant.
  • Patent Document 1 proposes an oil separator that solves such a problem.
  • One oil separator is an oil separator that separates refrigeration oil contained in a refrigerant from a refrigerant, and includes a separation container, an inflow pipe, an outflow pipe, an oil reservoir, a liquid flow path, and an oil return pipe.
  • the separation container constitutes a separation chamber.
  • the refrigerant inflow pipe communicates with the separation container.
  • the refrigerant outlet pipe communicates with the separation vessel.
  • the oil reservoir is provided in the separation container and stores refrigeration oil.
  • the liquid flow path portion including the groove is provided in the separation container, and guides the refrigeration oil contained in the refrigerant to the oil reservoir portion.
  • the oil return pipe is attached to the separation container and communicates with the oil reservoir. In the liquid channel portion, the groove is formed such that the depth of the groove gradually increases from the upper portion to the lower portion.
  • Another oil separator is an oil separator that separates refrigeration oil contained in a refrigerant from a refrigerant, and includes a separation container, an inflow pipe, an outflow pipe, a swirling portion, a liquid flow path portion, and an oil reservoir portion. It has an oil return pipe.
  • the separation container constitutes a separation chamber.
  • the refrigerant inflow pipe communicates with the separation container.
  • the refrigerant outlet pipe communicates with the separation vessel.
  • the pivoting portion is provided in the separation container and includes a wing that is rotated by the flow of the refrigerant fed from the inflow pipe.
  • the liquid flow path portion is provided in the wing and includes a groove for guiding the refrigerator oil contained in the refrigerant.
  • the oil reservoir is provided in the separation container and stores refrigeration oil.
  • the oil return pipe is attached to the separation container and communicates with the oil reservoir.
  • the groove is formed on the wall surface of the wing from the rotation center side of the wing toward the outer peripheral end of the
  • An air conditioner according to the present invention is an air conditioner provided with the above-described one oil separator or another oil separator, wherein the compressor, the oil separator, the condenser, the expansion valve, and the evaporator are refrigerants.
  • the pipes are connected in series in this order.
  • the refrigerant pipe includes an inflow pipe and an outflow pipe.
  • An inflow pipe connects between the discharge side of the compressor and the oil separator.
  • An outlet pipe is connected between the oil separator and the condenser.
  • An oil return pipe is connected between the oil separator and the suction side of the compressor.
  • refrigeration oil contained in the refrigerant is formed such that the depth of the groove gradually increases from the portion located at the upper portion to the portion located at the lower portion Captured in the groove.
  • the separation efficiency of the refrigerator oil contained in the refrigerant can be increased, and the separated refrigerator oil can be compressed. It can be returned to the machine.
  • FIG. 2 is a top view of an oil separator according to Embodiment 1; In the same embodiment, it is a side view of an oil separator. In the embodiment, it is a partial enlarged cross-sectional perspective view which shows a liquid flow path part. In the embodiment, it is a top view of an oil separator for explaining operation of an oil separator. In the same embodiment, it is a side view of the oil separator for demonstrating the operation
  • FIG. 7 is a top view of an oil separator according to Embodiment 2; In the same embodiment, it is a side view of an oil separator.
  • FIG. 20 is a cross-sectional view of an oil separator according to a first example of Embodiment 3; In the embodiment, it is an enlarged perspective view showing a swirling portion of an oil separator concerning the 1st example. In the embodiment, it is sectional drawing of the oil separator for demonstrating the operation
  • FIG. 20 is a cross-sectional view of an oil separator according to a first example of Embodiment 3; In the embodiment, it is an enlarged perspective view showing a swirling portion of an oil separator concerning the 1st example. In the embodiment, it is sectional drawing of the oil separator for demonstrating the operation
  • FIG. 13 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to the first example in the embodiment.
  • it is an expansion perspective view showing the revolution part of the oil separator concerning the 2nd example.
  • it is an enlarged top view which shows the turning part of the oil separator which concerns on a 2nd example.
  • FIG. 21 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to a second example in the same embodiment.
  • it is a top view which shows the turning part for demonstrating the operation
  • it is an enlarged perspective view which shows the turning part of the oil separator which concerns on a 3rd example.
  • FIG. 21 is a first partial enlarged cross-sectional view taken along the line XXI-XXI shown in FIG. 20 in the first embodiment.
  • FIG. 21 is a second partial enlarged cross-sectional view taken along the line XXI-XXI shown in FIG. 20 in the first embodiment.
  • FIG. 21 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to a third example in the same embodiment.
  • FIG. 21 is a first partial enlarged cross-sectional view for illustrating the operation of the oil separator according to the third example in the embodiment.
  • FIG. 21 is a second partial enlarged cross-sectional view for illustrating the operation of the oil separator according to the third example in the embodiment.
  • FIG. 27 is a partially enlarged cross-sectional view taken along the line XXVII-XXVII shown in FIG. 26 in the first embodiment.
  • FIG. 27 is a partially enlarged cross-sectional view taken along the line XXVIII-XXVIII shown in FIG. 26 in the first embodiment.
  • FIG. 27 is a partially enlarged cross-sectional view taken along the line XXIX-XXIX shown in FIG. 26 in the first embodiment.
  • FIG. 21 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to a fourth example in the same embodiment.
  • FIG. 28 is a partially enlarged cross-sectional view corresponding to FIG. 27 for describing the operation of the oil separator according to the fourth example in the embodiment.
  • FIG. 29 is a partial enlarged cross-sectional view corresponding to FIG. 28 for describing the operation of the oil separator according to the fourth example in the embodiment.
  • FIG. 30 is a partially enlarged cross-sectional view corresponding to FIG. 29 for illustrating the operation of the oil separator according to a fourth example in the same embodiment.
  • FIG. 10 is a top view of an oil separator according to Embodiment 4; In the same embodiment, it is a side view of an oil separator. In the embodiment, it is a top view of an oil separator for explaining operation of an oil separator. In the same embodiment, it is a side view of the oil separator for demonstrating the operation
  • FIG. 1 a refrigerant circuit in which a compressor 3, an oil separator 5, a condenser 7, an expansion valve 9 and an evaporator 11 are sequentially connected by a refrigerant pipe 13 is formed. .
  • the refrigerant compressed by the compressor 3 is discharged from the compressor 3 as a high-temperature high-pressure gas refrigerant.
  • the discharged high-temperature and high-pressure gas refrigerant is sent to the condenser 7 via the oil separator 5.
  • heat exchange is performed between the inflowing refrigerant and the air fed into the condenser 7.
  • the heat exchange condenses the high-temperature and high-pressure gas refrigerant into a high-pressure liquid refrigerant.
  • the high pressure liquid refrigerant delivered from the condenser 7 is converted by the expansion valve 9 into a two-phase refrigerant of low pressure gas refrigerant and liquid refrigerant.
  • the refrigerant in the two-phase state flows into the evaporator 11.
  • heat exchange is performed between the inflowing two-phase refrigerant and the air sent into the evaporator 11.
  • the liquid refrigerant evaporates and becomes a low pressure gas refrigerant.
  • the low pressure gas refrigerant sent from the evaporator 11 flows into the compressor 3 and is compressed to become a high temperature and high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is again discharged from the compressor 3 and is sent to the condenser 7 through the oil separator 5. Hereinafter, this cycle will be repeated.
  • refrigeration oil contained in the refrigerant discharged from the compressor 3 is separated from the refrigerant in the oil separator 5.
  • the separated refrigeration oil flows through the oil return pipe 19 and is returned to the suction side of the compressor 3.
  • Embodiment 1 The oil separator 5 according to the first embodiment will be described.
  • the oil separator 5 includes a separation container 56 which forms a separation chamber 55.
  • the separation container 56 has a substantially cylindrical shape in consideration of productivity.
  • An inflow pipe 15 is attached to a side surface of the separation container 56 as a part of the refrigerant pipe 13.
  • the inflow pipe 15 is attached in a direction substantially orthogonal to the tangential direction of the side surface portion of the separation container 56.
  • the inflow pipe 15 connects the discharge side of the compressor 3 and the oil separator 5 (separation vessel 56).
  • An outflow pipe 17 is attached to the upper surface portion of the separation container 56 as a part of the refrigerant pipe 13.
  • the outflow pipe 17 connects between the oil separator 5 (separation vessel 56) and the condenser 7.
  • An oil reservoir 61 is provided at the bottom of the separation container 56.
  • An oil return pipe 19 is attached to the lower surface of the separation container 56. The oil return pipe 19 connects the oil reservoir 61 and the suction side of the compressor 3.
  • coolant by the oil separator 5 mentioned above is demonstrated.
  • the refrigerant includes the refrigerator oil of the compressor 3.
  • the refrigerant containing the refrigeration oil is discharged from the inflow pipe 15 into the separation container 56, and the refrigeration oil contained in the refrigerant is captured by the groove 57a of the liquid flow path portion 57, and the refrigerant and the refrigeration oil are separated. .
  • the refrigerant separated from the refrigerator oil flows through the outflow pipe 17 and is fed to the condenser 7 (see FIG. 1) as indicated by the arrows.
  • the refrigeration oil trapped in the groove 57 a flows in the groove 57 a and is fed to the oil reservoir 61 by gravity as shown by the arrow.
  • the refrigeration oil 100 accumulated in the oil reservoir 61 flows into the oil return pipe 19.
  • the refrigerating machine oil having flowed through the oil return pipe 19 is fed to the suction side of the compressor 3.
  • the refrigeration oil discharged together with the refrigerant is returned to the compressor 3.
  • this operation is repeated.
  • the groove 57 a of the liquid flow path portion 57 for capturing the refrigeration oil contained in the refrigerant is disposed along the gravity toward the oil reservoir portion 61. Moreover, the groove 57a is formed so as to be gradually deeper from the top to the bottom of the groove 57a.
  • the contact area between the refrigerator oil and the groove 57a increases as the groove 57a moves from the top to the bottom.
  • the interface energy represented by the product of the contact area and the surface tension gradually increases in the negative direction as going from the top to the bottom of the groove 57a. That is, it means that interface energy becomes low.
  • the refrigeration oil flows positively through the groove 57 a toward the lower part of the groove 57 a where the interface energy is lower along with the action of gravity, and is led to the oil reservoir 61.
  • the refrigeration oil can be positively flowed through the groove 57a, so that the refrigeration oil can be prevented from staying in the groove 57a, and the refrigeration oil can be prevented from re-scattering by the refrigerant discharged from the inflow pipe 15. .
  • the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be returned to the compressor.
  • the position of the discharge port of the inflow pipe 15 and the start position of the groove 57a in the liquid flow passage portion 57 are desirably the same height in order to reliably capture the refrigeration oil in the groove 57a.
  • a formation range of the liquid flow path portion 57 at least a circumferential portion of a length corresponding to the radius of the inflow pipe 15 is formed on the side wall surface of the separation container 56 facing the discharge port of the inflow pipe 15. Just do it.
  • the liquid flow passage portion 57 may be formed over the entire circumference of the inner wall surface of the separation container 56 in order to reliably suppress the re-scattering of the refrigeration oil.
  • the groove 57a formed in the liquid flow path portion 57 be formed in the direction of gravity in order to efficiently guide the refrigeration oil captured in the groove 57a to the oil reservoir 61, although the refrigerant is preferably By spraying, the refrigeration oil may be slightly inclined from the direction of gravity to such an extent that re-scattering does not occur. Further, in order to efficiently feed refrigeration oil to the oil return pipe 19, the oil return pipe 19 may be disposed immediately below the liquid flow path portion 57.
  • the oil separator 5 is provided with a substantially cylindrical separating container 56 forming a separating chamber 55.
  • An inflow pipe 15 is attached to a side surface of the separation container 56 as a part of the refrigerant pipe 13.
  • the inflow pipe 15 is attached substantially along the tangential direction of the side surface portion of the separation container 56.
  • a liquid channel portion 57 is provided on the inner wall surface of the separation container 56.
  • a groove 57a extending spirally toward the oil reservoir portion 61 is formed along the inner wall surface of the separation container 56.
  • the spiral groove 57a is formed such that the depth D of the groove 57a is gradually deepened from the top to the bottom. That is, the spiral groove 57a is formed so as to gradually deepen from the upstream side to the downstream side of the flow of the refrigeration oil.
  • the refrigerating machine oil captured in the groove 57 a flows toward the oil reservoir 61 through the groove 57 a extending in a pilar shape, in response to the flow of the refrigerant discharged from the inflow pipe 15.
  • the refrigeration oil 100 accumulated in the oil reservoir 61 flows into the oil return pipe 19.
  • the refrigerating machine oil having flowed through the oil return pipe 19 is fed to the suction side of the compressor 3.
  • the refrigeration oil discharged together with the refrigerant is returned to the compressor 3.
  • this operation is repeated.
  • the inflow pipe 15 is attached substantially along the tangential direction of the side portion of the separation container 56.
  • the groove 57a is formed in a spiral shape along the flow of the refrigerant or the like which is going to flow along the inner wall surface of the separation container 56.
  • a centrifugal force acts on the refrigerant including the refrigerator oil flowing along the inner wall surface of the separation container 56, and in particular, the refrigerator oil is easily captured by the groove 57 a of the liquid channel portion 57. Further, the flow of the refrigerant or the like discharged from the inflow pipe 15 acts on the flow of the refrigeration oil captured in the groove 57a so as to promote the flow of the refrigeration oil.
  • the refrigerator oil has a groove 57a in which the interface energy is lower.
  • the lower portion of the groove 57a tends to flow positively.
  • the oil separator 5 is provided with a separation container 56 forming a separation chamber 55.
  • a pivoting portion 59 is provided at the top of the separation container 56.
  • the inflow pipe 15 is attached to the turning portion 59 as a part of the refrigerant pipe 13.
  • an oil reservoir 61 is provided at the lower part of the separation container 56.
  • An oil return pipe 19 is attached to the oil reservoir 61.
  • the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like.
  • a liquid channel portion 57 is provided on the wing wall surface 65 of the wing 63.
  • a groove 57 a is formed in the liquid channel portion 57.
  • the groove 57 a is formed along the flow generated in the wing from the rotation center portion of the wing 63 toward the outer peripheral end.
  • the refrigerating machine oil 100 contained in the refrigerant collides with the blade wall surface 65 of the wing 63, and is trapped in the groove 57a formed along the flow generated in the wing 63, Refrigerant oil is separated.
  • the refrigerant separated from the refrigerator oil flows through the outflow pipe 17 and is fed to the condenser 7 (see FIG. 1) as indicated by the arrows.
  • the refrigeration oil 100 captured in the groove 57 a flows in the groove 57 a by centrifugal force and gravity, and reaches the outer peripheral end of the wing 63.
  • the refrigeration oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force, and flows toward the oil reservoir 61 on the inner wall surface.
  • the refrigeration oil 100 accumulated in the oil reservoir 61 flows into the oil return pipe 19. As shown in FIG. 1, the refrigerating machine oil having flowed through the oil return pipe 19 is fed to the suction side of the compressor 3. Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3. Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
  • a swirling portion 59 is provided, and in the swirling portion 59, a wing 63 that is rotated by the flow of a refrigerant or the like is disposed.
  • a groove 57 a is formed on the wing wall surface 65 of the wing 63 along the flow generated in the wing 63. Therefore, when the refrigerant or the like flows through the blade wall surface 65 of the blade 63, refrigeration oil contained in the refrigerant is easily captured by the groove 57a.
  • the refrigeration oil trapped in the groove 57a flows toward the outer peripheral end of the wing 63 without staying in the portion of the groove 57a located on the rotation center side of the wing 63 by centrifugal force and gravity, and then, the separation vessel 56 The oil collides with the inner wall surface of the oil and flows into the oil reservoir 61.
  • the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61.
  • the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
  • the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like.
  • a liquid channel portion 57 is provided on the wing wall surface 65 of the wing 63.
  • a groove 57 a is formed in the liquid flow path portion 57 from the rotation center of the wing 63 toward the outer peripheral end.
  • the groove 57 a is formed on the wing wall surface 65 along the flow generated in the wing 63 from the rotation center of the wing 63 toward the outer peripheral portion. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing and its peripheral portion, which has a relatively small centrifugal force acting, is captured by the groove 57a and does not stay at the rotation center of the wing wall 65 and its peripheral portion , Flows toward the outer peripheral end of the wing 63 through the groove 57a.
  • the refrigerating machine oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force or the like, and flows toward the oil reservoir 61 on the inner wall surface.
  • the refrigeration oil 100 accumulated in the oil reservoir 61 flows through the oil return pipe 19 and is fed to the suction side of the compressor 3.
  • the refrigeration oil discharged together with the refrigerant is returned to the compressor 3 (see FIG. 1).
  • this operation is repeated.
  • the groove 57 a is formed on the blade wall surface 65 along the flow generated in the blade 63 from the rotation center of the blade 63 toward the outer peripheral end. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing
  • the trapped refrigerating machine oil flows toward the outer peripheral end of the wing 63 by centrifugal force and gravity without staying at the rotation center of the wing wall 65 and its peripheral portion, and then collides with the inner wall surface of the separation vessel 56 Will flow into the oil reservoir 61.
  • the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61.
  • the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
  • the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like.
  • a liquid channel portion 57 is provided on the wing wall surface 65 of the wing 63.
  • a plurality of grooves 57a are formed from the rotation center of the wing 63 toward the outer peripheral end.
  • one groove 57a and another groove 57a are separated by a distance L.
  • the cross-sectional shape of the groove 57a may be, for example, a rectangular shape having a width W and a depth D, as shown in FIG.
  • it may be V-shaped.
  • the other configuration is the same as that of the swing portion 59 according to the second example.
  • channel 57a it is applicable also to the oil separator 5 which concerns on other embodiment.
  • the operation of separating the refrigeration oil contained in the refrigerant by the oil separator 5 described above is substantially the same as that of the oil separator 5 according to the second example.
  • the wing 63 of the swirling portion 59 is rotated by the flow of the refrigerant or the like indicated by the arrow.
  • the refrigeration oil 100 which collides with the rotation center of the wing and its peripheral portion where the acting centrifugal force is relatively small is captured in the groove 57a.
  • the trapped refrigeration oil 100 flows in the groove 57 a toward the outer peripheral end of the wing 63 without remaining in the portion on the rotation center side of the wing wall surface 65.
  • the refrigerating machine oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force etc. and flows into the oil reservoir 61 and then flows through the oil return pipe 19 and is fed to the suction side of the compressor 3 .
  • the refrigeration oil discharged together with the refrigerant is returned to the compressor 3 (see FIG. 1).
  • this operation is repeated.
  • the groove 57 a is formed on the blade wall surface 65 along the flow generated in the blade 63 from the rotation center of the blade 63 toward the outer peripheral end. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing
  • the area of the refrigerator oil exposed to the refrigerant fed from the inflow pipe 15 can be reduced on the blade wall surface 65.
  • the trapped refrigerating machine oil flows toward the outer peripheral end of the wing 63 by centrifugal force and gravity without staying on the rotation center side of the wing wall 65, and then collides with the inner wall surface of the separation vessel 56. , And flows into the oil reservoir 61.
  • the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61.
  • the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
  • the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like.
  • a liquid channel portion 57 is provided on the wing wall surface 65 of the wing 63.
  • a groove 57 a is formed in the liquid flow path portion 57 from the rotation center of the wing 63 toward the outer peripheral end.
  • the groove 57a is formed such that its depth gradually increases from the rotation center portion toward the outer peripheral end.
  • the other configuration is the same as that of the swing portion 59 according to the second example.
  • the operation of separating the refrigeration oil contained in the refrigerant by the oil separator 5 described above is substantially the same as that of the oil separator 5 according to the second example.
  • the wing 63 of the swirling portion 59 is rotated by the flow of the refrigerant or the like indicated by the arrow.
  • the refrigeration oil which collides with the rotation center of the wing and its peripheral portion, which has a relatively small centrifugal force acting, is trapped in the groove 57a.
  • the trapped refrigerating machine oil flows in the groove 57a toward the outer peripheral end of the wing 63 without remaining in the portion on the rotation center side of the wing wall surface 65.
  • the refrigerating machine oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force etc. and flows into the oil reservoir 61 and then flows through the oil return pipe 19 and is fed to the suction side of the compressor 3 .
  • the refrigeration oil discharged together with the refrigerant is returned to the compressor 3 (see FIG. 1).
  • this operation is repeated.
  • the groove 57 a is formed on the blade wall surface 65 along the flow generated in the blade 63 from the rotation center of the blade 63 toward the outer peripheral end. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing
  • the groove 57a is formed such that the depth thereof gradually increases from the rotation center toward the outer peripheral end. For this reason, the refrigeration oil tends to flow positively through the groove 57a toward the groove 57a at the outer peripheral end of the blade 63 where the interface energy is lower. Furthermore, the refrigerating machine oil flows toward the outer peripheral end of the wing 63 by centrifugal force and gravity without staying in the portion on the rotation center side of the wing wall surface 65 and then collides with the inner wall surface of the separation container 56 It will flow into the oil reservoir 61.
  • the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61.
  • the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
  • the oil separator 5 is provided with a substantially cylindrical separation container 56 forming a separation chamber 55.
  • An inflow pipe 15 is attached to a side surface of the separation container 56 as a part of the refrigerant pipe 13.
  • the inflow pipe 15 is attached substantially along the tangential direction of the side surface portion of the separation container 56.
  • the inflow pipe 15 for example, an L-shaped pipe bent in an L-shape is used.
  • a liquid channel portion 58 is provided at a portion of the inner wall surface of the inflow pipe 15 located on the outer peripheral side among the inner wall surfaces.
  • a groove 58 a is formed in the liquid flow path 58 along the direction in which the inflow pipe 15 extends.
  • the remaining structure is similar to that of oil separator 5 shown in FIGS. 7, 8 and 9. Therefore, the same members are denoted by the same reference characters, and the description thereof will not be repeated unless necessary. To be.
  • coolant by the oil separator 5 mentioned above is demonstrated.
  • the high temperature / high pressure refrigerant discharged from the compressor 3 flows into the oil separator 5 through the inflow pipe 15 by the operation of the air conditioner 1.
  • the liquid flow passage portion 58 is provided in the portion of the inner wall surface located on the outer peripheral side.
  • a groove 58 a is formed in the liquid flow path 58 along the direction in which the inflow pipe 15 extends. Therefore, the refrigeration oil contained in the refrigerant is easily captured in the groove 58 a by the centrifugal force acting when flowing through the L-shaped inflow pipe 15 and is led to the discharge port of the inflow pipe 15.
  • the inflow pipe 15 is attached to the separation container 56 such that the side where the groove 58 a is formed is substantially along the tangential direction of the side surface of the separation container 56. Furthermore, in the inner wall surface of the separation container 56, a groove 57a extending in a spiral shape toward the oil reservoir 61 is formed. Therefore, the refrigeration oil discharged from the inflow pipe 15 is easily captured by the groove 57 a of the liquid flow path portion 57.
  • the refrigerating machine oil captured in the groove 57 a receives the flow of the refrigerant and the like discharged from the inflow pipe 15, flows through the groove 57 a extending in a spiral shape, and is led to the oil reservoir 61.
  • the refrigeration oil 100 accumulated in the oil reservoir 61 is fed to the suction side of the compressor 3 through the oil return pipe 19.
  • the refrigeration oil discharged together with the refrigerant is returned to the compressor 3.
  • this operation is repeated.
  • the refrigeration oil contained in the refrigerant is easily captured in the groove 58 a by the centrifugal force acting when flowing through the L-shaped inflow pipe 15. It is led to the discharge port. Thereby, the variation in the amount of refrigeration oil staying in the inflow tube 15 is suppressed, and the thickness of the refrigeration oil formed on the inner wall surface of the inflow tube 15 becomes thin, and the flow velocity of the refrigerant decreases.
  • the refrigerant flowing through the inflow pipe 15 can suppress re-scattering of the refrigerator oil.
  • the inflow pipe 15 is attached to the separation container 56 such that the side where the groove 58 a is formed is substantially along the tangential direction of the side surface of the separation container 56.
  • the refrigerating machine oil captured in the groove 58 a is easily captured in the groove 57 a of the liquid channel portion 57 and is led to the oil reservoir 61.
  • the refrigeration oil is prevented from staying in both the inflow pipe 15 and the separation container 5, and re-scattering of the refrigeration oil can be further effectively suppressed.
  • the L-shaped inflow pipe 15 is applied as the inflow pipe 15.
  • the inflow pipe 15 is not limited to the L-shape, and a U-shaped pipe bent in a U-shape, for example, may be applied as needed.
  • the L-shaped inflow pipe 15 is applied to the oil separator 5 described in the second embodiment.
  • the L-shaped or U-shaped inflow pipe 15 may be applied to the oil separator 5 (see FIGS. 12 and 13) described in the third embodiment. Good.
  • the refrigeration oil trapped in the groove 58a formed in the inner wall surface of the inflow tube 15 is discharged from the discharge port of the inflow tube 15, whereby the refrigeration oil is mainly the outer peripheral portion of the rotating wing 63 And are captured in the groove 57a. Therefore, compared to the oil separator 5 described in the third embodiment, the amount of refrigeration oil captured in the groove 57a due to collision with the rotation center side portion of the wing 63 is reduced.
  • a relatively large centrifugal force acts on the refrigeration oil 100 which collides with the outer peripheral portion of the wing 63 and is captured in the groove 57a, and flows through the groove 57a.
  • the refrigeration oil having flowed through the groove 57 a collides with the inner wall surface of the separation container 56 and is fed to the oil reservoir 61.
  • the refrigeration oil trapped in the groove 57a flows through the groove 57a without staying in the groove 57a, and the refrigerant oil and the like sent from the inflow pipe 15 effectively prevent the refrigeration oil from re-scattering. it can.
  • the present invention is effectively utilized in an air conditioner provided with an oil separator.
  • Reference Signs List 1 air conditioner, 3 compressor, 5 oil separator, 7 condenser, 9 expansion valve, 11 evaporator, 13 refrigerant piping, 15 inflow pipe, 17 outflow pipe, 19 oil return pipe, 55 separation chamber, 56 separation container, 57, 58 Liquid flow channel part, 59 swirling part, 61 oil reservoir, 63 wings, 65 wing wall, 100 refrigeration oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

This oil separator (5) is provided with a separation container (56). An inflow pipe (15) is attached to a side surface of the separation container (56), and an outflow pipe (17) is attached to the upper surface of the separation container (56). An oil holding section (61) is provided in the lower part of the separation container (56). An oil return pipe (19) is attached to the lower surface of the separation container (56). A liquid flow passage (57) is provided on the inner wall surface of the separation container (56). A groove (57a) is provided in the liquid flow passage (57). The groove (57a) is disposed in the direction of gravity toward the oil holding section (61). The groove (57a) is formed so that the depth (D) thereof gradually increases from the upper part toward the lower part.

Description

油分離器およびそれを備えた空気調和機Oil separator and air conditioner equipped with the same
 本発明は、油分離器およびそれを備えた空気調和機に関し、特に、冷媒に含まれる油を分離する油分離器と、そのような油分離器を備えた空気調和機とに関する。 The present invention relates to an oil separator and an air conditioner provided with the same, and more particularly to an oil separator for separating oil contained in a refrigerant and an air conditioner provided with such an oil separator.
 空気調和装置では、冷媒とともに圧縮機から吐出する油(冷凍機油)を、冷媒と分離して圧縮機に戻すために、油分離器が使用されている。圧縮機の信頼性を確保するとともに、冷凍サイクルの性能を向上させるため、油分離器には、冷媒から冷凍機油を効率的に分離させることが求められる。 In the air conditioner, an oil separator is used in order to separate the refrigerant and the oil (refrigerator oil) discharged from the compressor from the refrigerant and return it to the compressor. In order to ensure the reliability of the compressor and to improve the performance of the refrigeration cycle, the oil separator is required to efficiently separate refrigeration oil from the refrigerant.
 従来、油分離器の一例として、サイクロン方式のオイルセパレータがある。この方式のオイルセパレータでは、遠心力を利用して冷凍機油をいかに効率よく分離させるかが重要とされる。さらに、オイルセパレータでは、一旦分離された冷凍機油が、冷媒によって巻き上げられて再び飛散してしまい、冷媒とともに流れてしまう現象を防止することが、冷凍機油を効率的に分離させるうえで重要とされる。 Conventionally, there is a cyclone type oil separator as an example of an oil separator. In this type of oil separator, it is important how to efficiently separate refrigeration oil using centrifugal force. Furthermore, in the oil separator, it is important to prevent the refrigeration oil from being efficiently separated by preventing the phenomenon that the refrigeration oil once separated is rolled up by the refrigerant and scattered again and flows together with the refrigerant. Ru.
 近年、油分離器の小型化が求められている。小型化された油分離器では、油分離器が小型化される分、冷凍機油が再び飛散した場合の影響が大きくなっていた。また、吐出する冷媒の流量が比較的多い場合にも、冷凍機油が再び飛散した場合の影響が大きくなってしまう。たとえば、特許文献1には、このような問題点を解消する油分離器が提案されている。 In recent years, downsizing of the oil separator has been required. In the miniaturized oil separator, as the oil separator is miniaturized, the influence of the re-spoiling of the refrigeration oil is increased. Further, even when the flow rate of the refrigerant to be discharged is relatively large, the influence of the re-scattering of the refrigerator oil is increased. For example, Patent Document 1 proposes an oil separator that solves such a problem.
特開2009-174836号公報JP, 2009-174836, A
 油分離器によって、冷媒から冷凍機油を分離させる方式では、油分離器が比較的小型である場合、または、油分離器に流入する冷媒の流量が大きい場合には、油分離器において分離された冷凍機油に対して、冷媒が接触する際の影響が大きくなる。このため、分離された冷凍機油が再び飛散して、冷媒とともに冷媒配管を流れてしまい、その結果、冷媒から冷凍機油を分離する効率が低下することになる。 In the method of separating refrigerator oil from refrigerant by an oil separator, when oil separator is relatively small, or when the flow rate of refrigerant flowing into the oil separator is large, it is separated in the oil separator The influence of the refrigerant on the refrigeration oil increases. For this reason, the separated refrigeration oil again scatters and flows together with the refrigerant in the refrigerant pipe, and as a result, the efficiency of separating the refrigeration oil from the refrigerant is reduced.
 本発明は、そのような問題点を解決するためになされたものであり、一つの目的は、分離された冷凍機油が再飛散するのを抑制し、冷媒から冷凍機油を効率的に分離する油分離器を提供することであり、他の目的は、そのような油分離器を備えた空気調和機を提供することである。 The present invention has been made to solve such problems, and one object thereof is to suppress re-scattering of separated refrigerator oil and efficiently separate refrigerator oil from refrigerant. Another object of the present invention is to provide a separator, and to provide an air conditioner equipped with such an oil separator.
 本発明に係る一の油分離器は、冷媒に含まれる冷凍機油を冷媒と分離させる油分離器であって、分離容器と流入管と流出管と油溜め部と液体流路部と返油管とを備えている。分離容器は、分離室を成している。冷媒の流入管は、分離容器に連通する。冷媒の流出管は、分離容器に連通する。油溜め部は、分離容器に設けられ、冷凍機油を貯留する。溝を含む液体流路部は、分離容器内に設けられ、冷媒に含まれる冷凍機油を油溜め部に導く。返油管は、分離容器に取り付けられ、油溜め部に連通する。液体流路部では、溝は、上部に位置する部分から下部に位置する部分に向かって、溝の深さが徐々に深くなるように形成されている。 One oil separator according to the present invention is an oil separator that separates refrigeration oil contained in a refrigerant from a refrigerant, and includes a separation container, an inflow pipe, an outflow pipe, an oil reservoir, a liquid flow path, and an oil return pipe. Is equipped. The separation container constitutes a separation chamber. The refrigerant inflow pipe communicates with the separation container. The refrigerant outlet pipe communicates with the separation vessel. The oil reservoir is provided in the separation container and stores refrigeration oil. The liquid flow path portion including the groove is provided in the separation container, and guides the refrigeration oil contained in the refrigerant to the oil reservoir portion. The oil return pipe is attached to the separation container and communicates with the oil reservoir. In the liquid channel portion, the groove is formed such that the depth of the groove gradually increases from the upper portion to the lower portion.
 本発明に係る他の油分離器は、冷媒に含まれる冷凍機油を冷媒と分離させる油分離器であって、分離容器と流入管と流出管と旋回部と液体流路部と油溜め部と返油管とを備えている。分離容器は、分離室を成している。冷媒の流入管は、分離容器に連通する。冷媒の流出管は、分離容器に連通する。旋回部は、分離容器内に設けられ、流入管から送り込まれる冷媒の流れによって回転する翼を含む。液体流路部は、翼に設けられ、冷媒に含まれる冷凍機油を導く溝を含む。油溜め部は、分離容器に設けられ、冷凍機油を貯留する。返油管は、分離容器に取り付けられ、油溜め部に連通する。溝は、翼の壁面に、翼の回転中心側から翼の外周端へ向かって形成されている。 Another oil separator according to the present invention is an oil separator that separates refrigeration oil contained in a refrigerant from a refrigerant, and includes a separation container, an inflow pipe, an outflow pipe, a swirling portion, a liquid flow path portion, and an oil reservoir portion. It has an oil return pipe. The separation container constitutes a separation chamber. The refrigerant inflow pipe communicates with the separation container. The refrigerant outlet pipe communicates with the separation vessel. The pivoting portion is provided in the separation container and includes a wing that is rotated by the flow of the refrigerant fed from the inflow pipe. The liquid flow path portion is provided in the wing and includes a groove for guiding the refrigerator oil contained in the refrigerant. The oil reservoir is provided in the separation container and stores refrigeration oil. The oil return pipe is attached to the separation container and communicates with the oil reservoir. The groove is formed on the wall surface of the wing from the rotation center side of the wing toward the outer peripheral end of the wing.
 本発明に係る空気調和機は、上述した一の油分離器または他の油分離器を備えた空気調和機であって、圧縮機、油分離器、凝縮器、膨張弁および蒸発器が、冷媒配管によってこの順に直列に接続されている。冷媒配管は、流入管および流出管を含む。流入管は、圧縮機の吐出側と油分離器との間を接続している。流出管は、油分離器と凝縮器との間を接続している。返油管は、油分離器と圧縮機の吸入側との間を接続している。 An air conditioner according to the present invention is an air conditioner provided with the above-described one oil separator or another oil separator, wherein the compressor, the oil separator, the condenser, the expansion valve, and the evaporator are refrigerants. The pipes are connected in series in this order. The refrigerant pipe includes an inflow pipe and an outflow pipe. An inflow pipe connects between the discharge side of the compressor and the oil separator. An outlet pipe is connected between the oil separator and the condenser. An oil return pipe is connected between the oil separator and the suction side of the compressor.
 本発明に係る一の油分離器によれば、冷媒に含まれる冷凍機油が、上部に位置する部分から下部に位置する部分に向かって、溝の深さが徐々に深くなるように形成された溝に捕捉される。これにより、冷媒等による冷凍機油の再飛散を防ぐことができ、その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機へ戻すことができる。 According to one oil separator according to the present invention, refrigeration oil contained in the refrigerant is formed such that the depth of the groove gradually increases from the portion located at the upper portion to the portion located at the lower portion Captured in the groove. As a result, it is possible to prevent re-scattering of refrigeration oil due to the refrigerant and the like, and as a result, the separation efficiency of refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be returned to the compressor.
 本発明に係る他の油分離器によれば、冷媒等が翼を流れる際に、冷媒に含まれる冷凍機油が、翼に形成された溝に捕捉される。これにより、冷媒等による冷凍機油の再飛散を防ぐことができ、その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機へ戻すことができる。 According to another oil separator according to the present invention, when refrigerant or the like flows through a blade, refrigeration oil contained in the refrigerant is captured in a groove formed in the blade. As a result, it is possible to prevent re-scattering of refrigeration oil due to the refrigerant and the like, and as a result, the separation efficiency of refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be returned to the compressor.
 本発明に係る空気調和機によれば、上述した一の油分離器または他の油分離器を適用することで、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機へ戻すことができる。 According to the air conditioner pertaining to the present invention, by applying the above-described one oil separator or another oil separator, the separation efficiency of the refrigerator oil contained in the refrigerant can be increased, and the separated refrigerator oil can be compressed. It can be returned to the machine.
各実施の形態に係る油分離器を適用した空気調和機の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the air conditioner to which the oil separator which concerns on each embodiment is applied. 実施の形態1に係る油分離器の上面図である。FIG. 2 is a top view of an oil separator according to Embodiment 1; 同実施の形態において、油分離器の側面図である。In the same embodiment, it is a side view of an oil separator. 同実施の形態において、液体流路部を示す部分拡大断面斜視図である。In the embodiment, it is a partial enlarged cross-sectional perspective view which shows a liquid flow path part. 同実施の形態において、油分離器の動作を説明するための油分離器の上面図である。In the embodiment, it is a top view of an oil separator for explaining operation of an oil separator. 同実施の形態において、油分離器の動作を説明するための油分離器の側面図である。In the same embodiment, it is a side view of the oil separator for demonstrating the operation | movement of an oil separator. 実施の形態2に係る油分離器の上面図である。FIG. 7 is a top view of an oil separator according to Embodiment 2; 同実施の形態において、油分離器の側面図である。In the same embodiment, it is a side view of an oil separator. 同実施の形態において、液体流路部を示す部分拡大断面斜視図である。In the embodiment, it is a partial enlarged cross-sectional perspective view which shows a liquid flow path part. 同実施の形態において、油分離器の動作を説明するための油分離器の上面図である。In the embodiment, it is a top view of an oil separator for explaining operation of an oil separator. 同実施の形態において、油分離器の動作を説明するための油分離器の側面図である。In the same embodiment, it is a side view of the oil separator for demonstrating the operation | movement of an oil separator. 実施の形態3の第1例に係る油分離器の断面図である。FIG. 20 is a cross-sectional view of an oil separator according to a first example of Embodiment 3; 同実施の形態において、第1例に係る油分離器の旋回部を示す拡大斜視図である。In the embodiment, it is an enlarged perspective view showing a swirling portion of an oil separator concerning the 1st example. 同実施の形態において、第1例に係る油分離器の動作を説明するための油分離器の断面図である。In the embodiment, it is sectional drawing of the oil separator for demonstrating the operation | movement of the oil separator which concerns on a 1st example. 同実施の形態において、第1例に係る油分離器の動作を説明するための旋回部を示す拡大斜視図である。FIG. 13 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to the first example in the embodiment. 同実施の形態において、第2例に係る油分離器の旋回部を示す拡大斜視図である。In the same embodiment, it is an expansion perspective view showing the revolution part of the oil separator concerning the 2nd example. 同実施の形態において、第2例に係る油分離器の旋回部を示す拡大上面図である。In the embodiment, it is an enlarged top view which shows the turning part of the oil separator which concerns on a 2nd example. 同実施の形態において、第2例に係る油分離器の動作を説明するための旋回部を示す拡大斜視図である。FIG. 21 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to a second example in the same embodiment. 同実施の形態において、第2例に係る油分離器の動作を説明するための旋回部を示す上面図である。In the embodiment, it is a top view which shows the turning part for demonstrating the operation | movement of the oil separator which concerns on a 2nd example. 同実施の形態において、第3例に係る油分離器の旋回部を示す拡大斜視図である。In the embodiment, it is an enlarged perspective view which shows the turning part of the oil separator which concerns on a 3rd example. 同実施の形態において、図20に示す断面線XXI-XXIにおける第1の部分拡大断面図である。FIG. 21 is a first partial enlarged cross-sectional view taken along the line XXI-XXI shown in FIG. 20 in the first embodiment. 同実施の形態において、図20に示す断面線XXI-XXIにおける第2の部分拡大断面図である。FIG. 21 is a second partial enlarged cross-sectional view taken along the line XXI-XXI shown in FIG. 20 in the first embodiment. 同実施の形態において、第3例に係る油分離器の動作を説明するための旋回部を示す拡大斜視図である。FIG. 21 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to a third example in the same embodiment. 同実施の形態において、第3例に係る油分離器の動作を説明するための第1の部分拡大断面図である。FIG. 21 is a first partial enlarged cross-sectional view for illustrating the operation of the oil separator according to the third example in the embodiment. 同実施の形態において、第3例に係る油分離器の動作を説明するための第2の部分拡大断面図である。FIG. 21 is a second partial enlarged cross-sectional view for illustrating the operation of the oil separator according to the third example in the embodiment. 同実施の形態において、第4例に係る油分離器の旋回部を示す拡大斜視図である。In the same embodiment, it is an expansion perspective view showing the revolution part of the oil separator concerning the 4th example. 同実施の形態において、図26に示す断面線XXVII-XXVIIにおける部分拡大断面図である。FIG. 27 is a partially enlarged cross-sectional view taken along the line XXVII-XXVII shown in FIG. 26 in the first embodiment. 同実施の形態において、図26に示す断面線XXVIII-XXVIIIにおける部分拡大断面図である。FIG. 27 is a partially enlarged cross-sectional view taken along the line XXVIII-XXVIII shown in FIG. 26 in the first embodiment. 同実施の形態において、図26に示す断面線XXIX-XXIXにおける部分拡大断面図である。FIG. 27 is a partially enlarged cross-sectional view taken along the line XXIX-XXIX shown in FIG. 26 in the first embodiment. 同実施の形態において、第4例に係る油分離器の動作を説明するための旋回部を示す拡大斜視図である。FIG. 21 is an enlarged perspective view showing a pivoting part for explaining the operation of the oil separator according to a fourth example in the same embodiment. 同実施の形態において、第4例に係る油分離器の動作を説明するための図27に対応する部分拡大断面図である。FIG. 28 is a partially enlarged cross-sectional view corresponding to FIG. 27 for describing the operation of the oil separator according to the fourth example in the embodiment. 同実施の形態において、第4例に係る油分離器の動作を説明するための図28に対応する部分拡大断面図である。FIG. 29 is a partial enlarged cross-sectional view corresponding to FIG. 28 for describing the operation of the oil separator according to the fourth example in the embodiment. 同実施の形態において、第4例に係る油分離器の動作を説明するための図29に対応する部分拡大断面図である。FIG. 30 is a partially enlarged cross-sectional view corresponding to FIG. 29 for illustrating the operation of the oil separator according to a fourth example in the same embodiment. 実施の形態4に係る油分離器の上面図である。FIG. 10 is a top view of an oil separator according to Embodiment 4; 同実施の形態において、油分離器の側面図である。In the same embodiment, it is a side view of an oil separator. 同実施の形態において、油分離器の動作を説明するための油分離器の上面図である。In the embodiment, it is a top view of an oil separator for explaining operation of an oil separator. 同実施の形態において、油分離器の動作を説明するための油分離器の側面図である。In the same embodiment, it is a side view of the oil separator for demonstrating the operation | movement of an oil separator.
 はじめに、油分離器が適用される空気調和機の一例について説明する。図1に示すように、空気調和機1では、圧縮機3、油分離器5、凝縮器7、膨張弁9および蒸発器11が、冷媒配管13によって順次接続された冷媒回路が形成されている。圧縮機3によって圧縮された冷媒は、高温高圧のガス冷媒となって圧縮機3から吐出する。吐出した高温高圧のガス冷媒は、油分離器5を経て凝縮器7へ送られる。凝縮器7では、流れ込んだ冷媒と凝縮器7内に送り込まれた空気との間で熱交換が行われる。熱交換により、高温高圧のガス冷媒は凝縮し、高圧の液冷媒になる。 First, an example of an air conditioner to which an oil separator is applied will be described. As shown in FIG. 1, in the air conditioner 1, a refrigerant circuit in which a compressor 3, an oil separator 5, a condenser 7, an expansion valve 9 and an evaporator 11 are sequentially connected by a refrigerant pipe 13 is formed. . The refrigerant compressed by the compressor 3 is discharged from the compressor 3 as a high-temperature high-pressure gas refrigerant. The discharged high-temperature and high-pressure gas refrigerant is sent to the condenser 7 via the oil separator 5. In the condenser 7, heat exchange is performed between the inflowing refrigerant and the air fed into the condenser 7. The heat exchange condenses the high-temperature and high-pressure gas refrigerant into a high-pressure liquid refrigerant.
 凝縮器7から送り出された高圧の液冷媒は、膨張弁9によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器11に流れ込む。蒸発器11では、流れ込んだ二相状態の冷媒と、蒸発器11内に送り込まれた空気との間で熱交換が行われる。熱交換により、液冷媒は蒸発し、低圧のガス冷媒になる。 The high pressure liquid refrigerant delivered from the condenser 7 is converted by the expansion valve 9 into a two-phase refrigerant of low pressure gas refrigerant and liquid refrigerant. The refrigerant in the two-phase state flows into the evaporator 11. In the evaporator 11, heat exchange is performed between the inflowing two-phase refrigerant and the air sent into the evaporator 11. By the heat exchange, the liquid refrigerant evaporates and becomes a low pressure gas refrigerant.
 蒸発器11から送り出された低圧のガス冷媒は圧縮機3に流れ込み、圧縮されて高温高圧のガス冷媒となる。高温高圧のガス冷媒は、再び圧縮機3から吐出し、油分離器5を経て凝縮器7へ送られる。以下、このサイクルが繰り返されることになる。 The low pressure gas refrigerant sent from the evaporator 11 flows into the compressor 3 and is compressed to become a high temperature and high pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant is again discharged from the compressor 3 and is sent to the condenser 7 through the oil separator 5. Hereinafter, this cycle will be repeated.
 空気調和機1では、圧縮機3から吐出した冷媒に含まれる冷凍機油が、油分離器5において冷媒と分離される。分離された冷凍機油は、返油管19を流れて圧縮機3の吸入側へ戻されることになる。 In the air conditioner 1, refrigeration oil contained in the refrigerant discharged from the compressor 3 is separated from the refrigerant in the oil separator 5. The separated refrigeration oil flows through the oil return pipe 19 and is returned to the suction side of the compressor 3.
 次に、空気調和機1に使用されている油分離器5の具体的な構造について、各実施の形態において説明する。 Next, the specific structure of the oil separator 5 used in the air conditioner 1 will be described in each embodiment.
 実施の形態1.
 実施の形態1に係る油分離器5について説明する。図2および図3に示すように、油分離器5は、分離室55をなす分離容器56を備えている。分離容器56は、生産性を考慮して、ほぼ円柱状の形状とされる。分離容器56の側面部に、冷媒配管13の一部として、流入管15が取り付けられている。流入管15は、分離容器56の側面部の接線方向とほぼ直交する向きに取り付けられている。流入管15は、圧縮機3の吐出側と油分離器5(分離容器56)とを接続している。
Embodiment 1
The oil separator 5 according to the first embodiment will be described. As shown in FIG. 2 and FIG. 3, the oil separator 5 includes a separation container 56 which forms a separation chamber 55. The separation container 56 has a substantially cylindrical shape in consideration of productivity. An inflow pipe 15 is attached to a side surface of the separation container 56 as a part of the refrigerant pipe 13. The inflow pipe 15 is attached in a direction substantially orthogonal to the tangential direction of the side surface portion of the separation container 56. The inflow pipe 15 connects the discharge side of the compressor 3 and the oil separator 5 (separation vessel 56).
 分離容器56の上面部に、冷媒配管13の一部として、流出管17が取り付けられている。流出管17は、油分離器5(分離容器56)と凝縮器7との間を接続している。分離容器56の下部に、油溜め部61が設けられている。分離容器56の下面部に、返油管19が取り付けられている。返油管19は、油溜め部61と圧縮機3の吸入側との間を接続している。 An outflow pipe 17 is attached to the upper surface portion of the separation container 56 as a part of the refrigerant pipe 13. The outflow pipe 17 connects between the oil separator 5 (separation vessel 56) and the condenser 7. An oil reservoir 61 is provided at the bottom of the separation container 56. An oil return pipe 19 is attached to the lower surface of the separation container 56. The oil return pipe 19 connects the oil reservoir 61 and the suction side of the compressor 3.
 図4に示すように、分離容器56の内壁面には、冷凍機油の流路となる液体流路部57が設けられている。液体流路部57は、流入管15の吐出口と対向する領域を含むように配置されている。液体流路部57には、溝57aが設けられている。ここでは、溝57aは、油溜め部61に向かって重力の方向に沿って配置されている。図4の下側の部分図に示すように、溝57aは、溝57aの深さDが上部から下部へ向かって徐々に深くなるように形成されている。すなわち、溝57aは、冷凍機油の流れの上流側から下流側へ向かって徐々に深くなるように形成されている。 As shown in FIG. 4, on the inner wall surface of the separation container 56, a liquid flow passage portion 57 which is a flow passage of refrigeration oil is provided. The liquid channel portion 57 is disposed so as to include a region facing the discharge port of the inflow pipe 15. A groove 57 a is provided in the liquid channel portion 57. Here, the groove 57 a is disposed along the direction of gravity toward the oil reservoir 61. As shown in the lower partial view of FIG. 4, the groove 57a is formed such that the depth D of the groove 57a becomes gradually deeper from the top to the bottom. That is, the groove 57a is formed to be gradually deeper from the upstream side to the downstream side of the flow of the refrigeration oil.
 次に、上述した油分離器5によって、冷媒に含まれる冷凍機油を分離する動作について説明する。図5および図6に示すように、空気調和機1の動作によって、圧縮機3から吐出した高温高圧の冷媒が、流入管15を経て油分離器5に流れ込む。冷媒には、圧縮機3の冷凍機油が含まれている。冷凍機油を含んだ冷媒は、流入管15から分離容器56内に吐出し、冷媒に含まれる冷凍機油が、液体流路部57の溝57aに捕捉されて、冷媒と冷凍機油とが分離される。冷凍機油と分離された冷媒は、矢印に示すように、流出管17を流れて、凝縮器7(図1参照)へ送り込まれる。 Next, the operation | movement which isolate | separates the refrigerator oil contained in a refrigerant | coolant by the oil separator 5 mentioned above is demonstrated. As shown in FIGS. 5 and 6, the high temperature and high pressure refrigerant discharged from the compressor 3 flows into the oil separator 5 through the inflow pipe 15 by the operation of the air conditioner 1. The refrigerant includes the refrigerator oil of the compressor 3. The refrigerant containing the refrigeration oil is discharged from the inflow pipe 15 into the separation container 56, and the refrigeration oil contained in the refrigerant is captured by the groove 57a of the liquid flow path portion 57, and the refrigerant and the refrigeration oil are separated. . The refrigerant separated from the refrigerator oil flows through the outflow pipe 17 and is fed to the condenser 7 (see FIG. 1) as indicated by the arrows.
 一方、溝57aに捕捉された冷凍機油は、重力によって、矢印に示すように、溝57aを流れて油溜め部61へ送り込まれる。油溜め部61に溜まった冷凍機油100は、返油管19に流れ込む。図1に示すように、返油管19を流れた冷凍機油は、圧縮機3の吸入側へ送り込まれる。こうして、冷媒とともに吐出した冷凍機油が圧縮機3へ戻される。以下、空気調和機1が動作をしている際には、この動作が繰り返されることになる。 On the other hand, the refrigeration oil trapped in the groove 57 a flows in the groove 57 a and is fed to the oil reservoir 61 by gravity as shown by the arrow. The refrigeration oil 100 accumulated in the oil reservoir 61 flows into the oil return pipe 19. As shown in FIG. 1, the refrigerating machine oil having flowed through the oil return pipe 19 is fed to the suction side of the compressor 3. Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3. Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
 上述した空気調和機1の油分離器5では、冷媒に含まれる冷凍機油を捕捉する液体流路部57の溝57aが、油溜め部61に向かって重力に沿って配置されている。しかも、溝57aは、溝57aの上部から下部へ向かって徐々に深くなるように形成されている。 In the oil separator 5 of the air conditioner 1 described above, the groove 57 a of the liquid flow path portion 57 for capturing the refrigeration oil contained in the refrigerant is disposed along the gravity toward the oil reservoir portion 61. Moreover, the groove 57a is formed so as to be gradually deeper from the top to the bottom of the groove 57a.
 このため、溝57aの上部から下部に向かうにしたがい、冷凍機油と溝57aとの接触面積が増加することになる。このことは、溝57aの上部から下部に向かうにしたがって、接触面積と表面張力との積で表される界面エネルギが、負の向きへ徐々に大きくなることを意味する。すなわち、界面エネルギが低くなることを意味する。 Therefore, the contact area between the refrigerator oil and the groove 57a increases as the groove 57a moves from the top to the bottom. This means that the interface energy represented by the product of the contact area and the surface tension gradually increases in the negative direction as going from the top to the bottom of the groove 57a. That is, it means that interface energy becomes low.
 これにより、冷凍機油は、重力の作用とともに、界面エネルギがより低くなる溝57aの下部へ向かって、溝57aを積極的に流れて、油溜め部61に導かれることになる。冷凍機油が溝57aを積極的に流れることで、溝57a内に冷凍機油が留まるのを抑制することができ、流入管15から吐出する冷媒によって、冷凍機油が再飛散するのを防ぐことができる。その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機へ戻すことができる。 As a result, the refrigeration oil flows positively through the groove 57 a toward the lower part of the groove 57 a where the interface energy is lower along with the action of gravity, and is led to the oil reservoir 61. The refrigeration oil can be positively flowed through the groove 57a, so that the refrigeration oil can be prevented from staying in the groove 57a, and the refrigeration oil can be prevented from re-scattering by the refrigerant discharged from the inflow pipe 15. . As a result, the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be returned to the compressor.
 なお、冷凍機油を溝57aに確実に捕捉するために、流入管15の吐出口の位置と、液体流路部57における溝57aの開始位置とは、同じ高さであることが望ましい。また、液体流路部57の形成範囲としては、流入管15の吐出口と対向する分離容器56の側壁面において、少なくとも、流入管15の半径に相当する長さの円周部分に形成されていればよい。冷凍機油の再飛散を確実に抑制するために、液体流路部57が分離容器56の内壁面の全周にわたって形成されていてもよい。 The position of the discharge port of the inflow pipe 15 and the start position of the groove 57a in the liquid flow passage portion 57 are desirably the same height in order to reliably capture the refrigeration oil in the groove 57a. Further, as a formation range of the liquid flow path portion 57, at least a circumferential portion of a length corresponding to the radius of the inflow pipe 15 is formed on the side wall surface of the separation container 56 facing the discharge port of the inflow pipe 15. Just do it. The liquid flow passage portion 57 may be formed over the entire circumference of the inner wall surface of the separation container 56 in order to reliably suppress the re-scattering of the refrigeration oil.
 さらに、溝57aに捕捉された冷凍機油を油溜め部61に効率よく導くために、液体流路部57に形成される溝57aとしては、重力の方向に形成されていることが望ましいが、冷媒が吹き付けることによって、冷凍機油が再飛散が発生しない程度に、重力の方向から多少傾斜していてもよい。また、冷凍機油を効率的に返油管19に送り込むために、返油管19を液体流路部57の直下に配置してもよい。 Furthermore, it is desirable that the groove 57a formed in the liquid flow path portion 57 be formed in the direction of gravity in order to efficiently guide the refrigeration oil captured in the groove 57a to the oil reservoir 61, although the refrigerant is preferably By spraying, the refrigeration oil may be slightly inclined from the direction of gravity to such an extent that re-scattering does not occur. Further, in order to efficiently feed refrigeration oil to the oil return pipe 19, the oil return pipe 19 may be disposed immediately below the liquid flow path portion 57.
 実施の形態2.
 実施の形態2に係る油分離器5について説明する。図7および図8に示すように、油分離器5は、分離室55をなす、ほぼ円柱形状の分離容器56を備えている。分離容器56の側面部に、冷媒配管13の一部として、流入管15が取り付けられている。流入管15は、分離容器56の側面部の接線方向にほぼ沿うように取り付けられている。
Second Embodiment
The oil separator 5 according to the second embodiment will be described. As shown in FIGS. 7 and 8, the oil separator 5 is provided with a substantially cylindrical separating container 56 forming a separating chamber 55. An inflow pipe 15 is attached to a side surface of the separation container 56 as a part of the refrigerant pipe 13. The inflow pipe 15 is attached substantially along the tangential direction of the side surface portion of the separation container 56.
 図9に示すように、分離容器56の内壁面には、液体流路部57が設けられている。液体流路部57には、分離容器56の内壁面に沿って、油溜め部61に向かってスパイラル状に延在する溝57aが形成されている。スパイラル状の溝57aは、上部から下部へ向かって溝57aの深さDが徐々に深くなるように形成されている。すなわち、スパイラル状の溝57aは、冷凍機油の流れの上流側から下流側へ向かって徐々に深くなるように形成されている。 As shown in FIG. 9, a liquid channel portion 57 is provided on the inner wall surface of the separation container 56. In the liquid flow path portion 57, a groove 57a extending spirally toward the oil reservoir portion 61 is formed along the inner wall surface of the separation container 56. The spiral groove 57a is formed such that the depth D of the groove 57a is gradually deepened from the top to the bottom. That is, the spiral groove 57a is formed so as to gradually deepen from the upstream side to the downstream side of the flow of the refrigeration oil.
 なお、これ以外の構成については、図2および図3等に示す分離容器56の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。 The rest of the configuration is the same as the configuration of separation container 56 shown in FIG. 2 and FIG. 3 and the like, so the same reference numerals are given to the same members, and the description will not be repeated unless necessary. .
 次に、上述した油分離器5によって、冷媒に含まれる冷凍機油を分離する動作について説明する。図10および図11に示すように、空気調和機1の動作によって、圧縮機3から吐出した高温高圧の冷媒が、流入管15を経て油分離器5に流れ込む。このとき、流入管15が、分離容器56の側面部の接線方向にほぼ沿うように取り付けられていることで、冷凍機油を含んだ冷媒は、遠心力を受けて分離容器56の内壁面に沿って流れながら、冷媒に含まれている冷凍機油が、液体流路部57の溝57aに捕捉されて、冷媒と冷凍機油とが分離される。冷凍機油と分離された冷媒は、矢印に示すように、流出管17を流れて、凝縮器7(図1参照)へ送り込まれる。 Next, the operation | movement which isolate | separates the refrigerator oil contained in a refrigerant | coolant by the oil separator 5 mentioned above is demonstrated. As shown in FIGS. 10 and 11, the high temperature / high pressure refrigerant discharged from the compressor 3 flows into the oil separator 5 through the inflow pipe 15 by the operation of the air conditioner 1. At this time, since the inflow pipe 15 is attached substantially along the tangential direction of the side surface of the separation container 56, the refrigerant containing the refrigeration oil is subjected to centrifugal force and is along the inner wall surface of the separation container 56. While flowing, refrigeration oil contained in the refrigerant is captured by the groove 57a of the liquid flow path portion 57, and the refrigerant and the refrigeration oil are separated. The refrigerant separated from the refrigerator oil flows through the outflow pipe 17 and is fed to the condenser 7 (see FIG. 1) as indicated by the arrows.
 一方、溝57aに捕捉された冷凍機油は、矢印に示すように、流入管15から吐出する冷媒等の流れを受けて、パイラル状に延在する溝57aを油溜め部61へ向かって流れる。油溜め部61に溜まった冷凍機油100は、返油管19に流れ込む。図1に示すように、返油管19を流れた冷凍機油は、圧縮機3の吸入側へ送り込まれる。こうして、冷媒とともに吐出した冷凍機油が圧縮機3へ戻される。以下、空気調和機1が動作をしている際には、この動作が繰り返されることになる。 On the other hand, as indicated by the arrows, the refrigerating machine oil captured in the groove 57 a flows toward the oil reservoir 61 through the groove 57 a extending in a pilar shape, in response to the flow of the refrigerant discharged from the inflow pipe 15. The refrigeration oil 100 accumulated in the oil reservoir 61 flows into the oil return pipe 19. As shown in FIG. 1, the refrigerating machine oil having flowed through the oil return pipe 19 is fed to the suction side of the compressor 3. Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3. Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
 上述した空気調和機1の油分離器5では、流入管15が、分離容器56の側面部の接線方向にほぼ沿うように取り付けられている。また、溝57aは、分離容器56の内壁面に沿って流れようとする冷媒等の流れに沿うように、スパイラル状に形成されている。 In the oil separator 5 of the air conditioner 1 described above, the inflow pipe 15 is attached substantially along the tangential direction of the side portion of the separation container 56. In addition, the groove 57a is formed in a spiral shape along the flow of the refrigerant or the like which is going to flow along the inner wall surface of the separation container 56.
 このため、分離容器56の内壁面に沿って流れる冷凍機油を含んだ冷媒には、遠心力が作用し、特に、冷凍機油が、液体流路部57の溝57aに捕捉されやすくなる。また、溝57aに捕捉された冷凍機油の流れに対して、流入管15から吐出する冷媒等の流れが、その冷凍機油の流れを促進させるように作用する。 For this reason, a centrifugal force acts on the refrigerant including the refrigerator oil flowing along the inner wall surface of the separation container 56, and in particular, the refrigerator oil is easily captured by the groove 57 a of the liquid channel portion 57. Further, the flow of the refrigerant or the like discharged from the inflow pipe 15 acts on the flow of the refrigeration oil captured in the groove 57a so as to promote the flow of the refrigeration oil.
 さらに、溝57aの上部から下部へ向かって、溝57aの深さが徐々に深くなるように形成されていることで、前述したのと同様に、冷凍機油は、界面エネルギがより低くなる溝57aの下部へ向かって、溝57aを積極的に流れやすくなる。 Furthermore, by forming the groove 57a so that the depth of the groove 57a gradually increases from the top to the bottom of the groove 57a, as described above, the refrigerator oil has a groove 57a in which the interface energy is lower. The lower portion of the groove 57a tends to flow positively.
 これにより、溝57aに捕捉された冷凍機油は、溝57aの上部に留まることなく、また、流入管15から送り込まれる冷媒等によって再飛散することなく、下部の油溜め部61へ向かってパイラル状に延在する溝57aを流れることになる。その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機3へ確実に戻すことができる。 As a result, the refrigeration oil trapped in the groove 57a does not stay in the upper part of the groove 57a, and is not redispersed by the refrigerant or the like fed from the inflow pipe 15, and is in a pilar shape toward the lower oil reservoir 61 Flow through the groove 57a extending to the As a result, the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
 実施の形態3.
 実施の形態3に係る油分離器5について説明する。
Third Embodiment
The oil separator 5 according to the third embodiment will be described.
 (第1例)
 まず、第1例について説明する。図12に示すように、油分離器5は、分離室55をなす分離容器56を備えている。分離容器56の上部には、旋回部59が設けられている。旋回部59には、冷媒配管13の一部として、流入管15が取り付けられている。分離容器56の下部には、油溜め部61が設けられている。油溜め部61には、返油管19が取り付けられている。
(First example)
First, the first example will be described. As shown in FIG. 12, the oil separator 5 is provided with a separation container 56 forming a separation chamber 55. A pivoting portion 59 is provided at the top of the separation container 56. The inflow pipe 15 is attached to the turning portion 59 as a part of the refrigerant pipe 13. At the lower part of the separation container 56, an oil reservoir 61 is provided. An oil return pipe 19 is attached to the oil reservoir 61.
 次に、旋回部59について説明する。図13に示すように、旋回部59は、冷媒等の流れによって回転する翼63を備えている。翼63の翼壁面65には、液体流路部57が設けられている。液体流路部57には、溝57aが形成されている。溝57aは、翼63の回転中心側の部分から外周端に向かって、翼に生じる流れに沿って形成されている。 Next, the turning portion 59 will be described. As shown in FIG. 13, the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like. On the wing wall surface 65 of the wing 63, a liquid channel portion 57 is provided. A groove 57 a is formed in the liquid channel portion 57. The groove 57 a is formed along the flow generated in the wing from the rotation center portion of the wing 63 toward the outer peripheral end.
 次に、上述した油分離器5によって、冷媒に含まれる冷凍機油を分離する動作について説明する。図14に示すように、空気調和機1の動作によって、圧縮機3から吐出した高温高圧の冷媒が、流入管15を経て油分離器5に流れ込む。このとき、図15に示すように、矢印に示す冷媒の流れによって、旋回部59の翼63が回転する。 Next, the operation | movement which isolate | separates the refrigerator oil contained in a refrigerant | coolant by the oil separator 5 mentioned above is demonstrated. As shown in FIG. 14, the high temperature and high pressure refrigerant discharged from the compressor 3 flows into the oil separator 5 through the inflow pipe 15 by the operation of the air conditioner 1. At this time, as shown in FIG. 15, the wing 63 of the turning portion 59 is rotated by the flow of the refrigerant indicated by the arrow.
 旋回部59を通過する際に、冷媒に含まれる冷凍機油100が、翼63の翼壁面65に衝突し、翼63に生じている流れに沿って形成された溝57aに捕捉されて、冷媒と冷凍機油とが分離される。冷凍機油と分離された冷媒は、矢印に示すように、流出管17を流れて、凝縮器7(図1参照)へ送り込まれる。 When passing through the swirling portion 59, the refrigerating machine oil 100 contained in the refrigerant collides with the blade wall surface 65 of the wing 63, and is trapped in the groove 57a formed along the flow generated in the wing 63, Refrigerant oil is separated. The refrigerant separated from the refrigerator oil flows through the outflow pipe 17 and is fed to the condenser 7 (see FIG. 1) as indicated by the arrows.
 一方、溝57aに捕捉された冷凍機油100は、遠心力と重力とによって溝57aを流れて、翼63の外周端に達する。翼63の外周端に到達した冷凍機油は、遠心力によって分離容器56内壁面に衝突し、その内壁面を油溜め部61に向かって流れる。 On the other hand, the refrigeration oil 100 captured in the groove 57 a flows in the groove 57 a by centrifugal force and gravity, and reaches the outer peripheral end of the wing 63. The refrigeration oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force, and flows toward the oil reservoir 61 on the inner wall surface.
 油溜め部61に溜まった冷凍機油100は、返油管19に流れ込む。図1に示すように、返油管19を流れた冷凍機油は、圧縮機3の吸入側へ送り込まれる。こうして、冷媒とともに吐出した冷凍機油が圧縮機3へ戻される。以下、空気調和機1が動作をしている際には、この動作が繰り返されることになる。 The refrigeration oil 100 accumulated in the oil reservoir 61 flows into the oil return pipe 19. As shown in FIG. 1, the refrigerating machine oil having flowed through the oil return pipe 19 is fed to the suction side of the compressor 3. Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3. Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
 上述した空気調和機1の油分離器5では、旋回部59が設けられ、その旋回部59には、冷媒等の流れによって回転する翼63が配置されている。その翼63の翼壁面65には、翼63に生じている流れに沿って溝57aが形成されている。このため、冷媒等が翼63の翼壁面65を流れる際に、冷媒に含まれる冷凍機油が溝57aに捕捉されやすくなる。溝57aに捕捉された冷凍機油は、遠心力と重力とによって、翼63の回転中心側に位置する溝57aの部分に留まることなく、翼63の外周端に向かって流れ、その後、分離容器56の内壁面に衝突して、油溜め部61に流れ込むことになる。 In the oil separator 5 of the air conditioner 1 described above, a swirling portion 59 is provided, and in the swirling portion 59, a wing 63 that is rotated by the flow of a refrigerant or the like is disposed. A groove 57 a is formed on the wing wall surface 65 of the wing 63 along the flow generated in the wing 63. Therefore, when the refrigerant or the like flows through the blade wall surface 65 of the blade 63, refrigeration oil contained in the refrigerant is easily captured by the groove 57a. The refrigeration oil trapped in the groove 57a flows toward the outer peripheral end of the wing 63 without staying in the portion of the groove 57a located on the rotation center side of the wing 63 by centrifugal force and gravity, and then, the separation vessel 56 The oil collides with the inner wall surface of the oil and flows into the oil reservoir 61.
 これにより、流入管15から送り込まれる冷媒等によって、冷凍機油が再飛散をして流出管17に流れ込むことが抑制されて、冷凍機油を確実に油溜め部61に導くことができる。その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機3へ確実に戻すことができる。 As a result, the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61. As a result, the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
 (第2例)
 次に、第2例について説明する。図16および図17に示すように、旋回部59は、冷媒等の流れによって回転する翼63を備えている。翼63の翼壁面65には、液体流路部57が設けられている。液体流路部57には、翼63の回転中心から外周端に向かって、溝57aが形成されている。なお、これ以外の構成については、第1例に係る旋回部59と同様である。
(Second example)
Next, a second example will be described. As shown in FIG. 16 and FIG. 17, the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like. On the wing wall surface 65 of the wing 63, a liquid channel portion 57 is provided. A groove 57 a is formed in the liquid flow path portion 57 from the rotation center of the wing 63 toward the outer peripheral end. In addition, about the structure of those other than this, it is the same as that of the turning part 59 which concerns on a 1st example.
 次に、上述した油分離器5によって、冷媒に含まれる冷凍機油を分離する動作について説明する。空気調和機1の動作によって、圧縮機3から吐出した高温高圧の冷媒が、流入管15を経て油分離器5に流れ込む(図14参照)。図18に示すように、油分離器5内では、矢印に示す冷媒等の流れによって、旋回部59の翼63が回転する。 Next, the operation | movement which isolate | separates the refrigerator oil contained in a refrigerant | coolant by the oil separator 5 mentioned above is demonstrated. By the operation of the air conditioner 1, the high-temperature and high-pressure refrigerant discharged from the compressor 3 flows into the oil separator 5 through the inflow pipe 15 (see FIG. 14). As shown in FIG. 18, in the oil separator 5, the wing 63 of the turning portion 59 is rotated by the flow of the refrigerant or the like indicated by the arrow.
 旋回部59を通過する際に、冷媒に含まれる冷凍機油が、翼63の翼壁面65に衝突する。翼63に衝突した冷凍機油においては、翼63の外周部分に衝突した冷凍機油に作用する遠心力に比べて、翼63の回転中心とその周辺部分に衝突した冷凍機油に作用する遠心力が小さい。このため、図19に示すように、翼63の回転中心とその周辺部分に衝突した冷凍機油100は、翼壁面65に留まりやすい傾向がある。 When passing through the swirling portion 59, refrigeration oil contained in the refrigerant collides with the wing wall surface 65 of the wing 63. In the refrigeration oil that collides with the wing 63, the centrifugal force that acts on the refrigeration oil that collides with the rotation center of the wing 63 and the peripheral portion thereof is smaller than the centrifugal force that acts on the refrigeration oil that collides with the outer peripheral portion of the wing 63 . For this reason, as shown in FIG. 19, the refrigeration oil 100 that has collided with the rotation center of the wing 63 and the peripheral portion thereof tends to be easily retained on the wing wall surface 65.
 上述した油分離器5では、翼壁面65に、翼63の回転中心から外周部分に向かって、翼63に生じる流れに沿って溝57aが形成されている。このため、作用する遠心力が相対的に小さい、翼の回転中心とその周辺部分に衝突した冷凍機油100が、溝57aに捕捉されて、翼壁面65の回転中心とその周辺部分に留まることなく、翼63の外周端に向かって溝57aを流れる。 In the oil separator 5 described above, the groove 57 a is formed on the wing wall surface 65 along the flow generated in the wing 63 from the rotation center of the wing 63 toward the outer peripheral portion. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing and its peripheral portion, which has a relatively small centrifugal force acting, is captured by the groove 57a and does not stay at the rotation center of the wing wall 65 and its peripheral portion , Flows toward the outer peripheral end of the wing 63 through the groove 57a.
 翼63の外周端に到達した冷凍機油は、遠心力等によって分離容器56内壁面に衝突し、その内壁面を油溜め部61に向かって流れる。油溜め部61に溜まった冷凍機油100は、返油管19を流れて圧縮機3の吸入側へ送り込まれる。こうして、冷媒とともに吐出した冷凍機油が圧縮機3へ戻される(図1参照)。以下、空気調和機1が動作をしている際には、この動作が繰り返されることになる。 The refrigerating machine oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force or the like, and flows toward the oil reservoir 61 on the inner wall surface. The refrigeration oil 100 accumulated in the oil reservoir 61 flows through the oil return pipe 19 and is fed to the suction side of the compressor 3. Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3 (see FIG. 1). Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
 上述した空気調和機1の油分離器5では、翼壁面65に、翼63の回転中心から外周端に向かって、翼63に生じる流れに沿って溝57aが形成されている。このため、作用する遠心力が相対的に小さい、翼63の回転中心とその周辺部分に衝突した冷凍機油100が、溝57aに捕捉される。捕捉された冷凍機油は、遠心力と重力とによって、翼壁面65の回転中心とその周辺部分に留まることなく、翼63の外周端に向かって流れ、その後、分離容器56の内壁面に衝突して、油溜め部61に流れ込むことになる。 In the oil separator 5 of the air conditioner 1 described above, the groove 57 a is formed on the blade wall surface 65 along the flow generated in the blade 63 from the rotation center of the blade 63 toward the outer peripheral end. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing | blade 63 and its peripheral part with relatively small acting centrifugal force is capture | acquired by the groove | channel 57a. The trapped refrigerating machine oil flows toward the outer peripheral end of the wing 63 by centrifugal force and gravity without staying at the rotation center of the wing wall 65 and its peripheral portion, and then collides with the inner wall surface of the separation vessel 56 Will flow into the oil reservoir 61.
 これにより、流入管15から送り込まれる冷媒等によって、冷凍機油が再飛散をして流出管17に流れ込むことが抑制されて、冷凍機油を確実に油溜め部61に導くことができる。その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機3へ確実に戻すことができる。 As a result, the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61. As a result, the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
 (第3例)
 次に、第3例について説明する。図20に示すように、旋回部59は、冷媒等の流れによって回転する翼63を備えている。翼63の翼壁面65には、液体流路部57が設けられている。液体流路部57には、翼63の回転中心から外周端に向かって、複数の溝57aが形成されている。
(Third example)
Next, a third example will be described. As shown in FIG. 20, the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like. On the wing wall surface 65 of the wing 63, a liquid channel portion 57 is provided. In the liquid flow path portion 57, a plurality of grooves 57a are formed from the rotation center of the wing 63 toward the outer peripheral end.
 たとえば、一の溝57aと他の溝57aとは、距離Lを隔てられている。溝57aの断面形状としては、たとえば、図21に示すように、幅W、深さDを有する矩形状であってもよい。また、たとえば、図22に示すように、V字型であってもよい。これ以外の構成については、第2例に係る旋回部59と同様である。なお、溝57aの断面形状としては、他の実施の形態に係る油分離器5にも適用が可能である。 For example, one groove 57a and another groove 57a are separated by a distance L. The cross-sectional shape of the groove 57a may be, for example, a rectangular shape having a width W and a depth D, as shown in FIG. For example, as shown in FIG. 22, it may be V-shaped. The other configuration is the same as that of the swing portion 59 according to the second example. In addition, as a cross-sectional shape of the groove | channel 57a, it is applicable also to the oil separator 5 which concerns on other embodiment.
 次に、上述した油分離器5による冷媒に含まれる冷凍機油を分離する動作は、第2例に係る油分離器5の場合と実質的に同じである。図23に示すように、油分離器5内では、矢印に示す冷媒等の流れによって、旋回部59の翼63が回転する。作用する遠心力が相対的に小さい、翼の回転中心とその周辺部分に衝突した冷凍機油100が、溝57aに捕捉される。図24または図25に示すように、捕捉された冷凍機油100は、翼壁面65の回転中心側の部分に留まることなく、翼63の外周端に向かって溝57aを流れる。 Next, the operation of separating the refrigeration oil contained in the refrigerant by the oil separator 5 described above is substantially the same as that of the oil separator 5 according to the second example. As shown in FIG. 23, in the oil separator 5, the wing 63 of the swirling portion 59 is rotated by the flow of the refrigerant or the like indicated by the arrow. The refrigeration oil 100 which collides with the rotation center of the wing and its peripheral portion where the acting centrifugal force is relatively small is captured in the groove 57a. As shown in FIG. 24 or 25, the trapped refrigeration oil 100 flows in the groove 57 a toward the outer peripheral end of the wing 63 without remaining in the portion on the rotation center side of the wing wall surface 65.
 翼63の外周端に到達した冷凍機油は、遠心力等によって分離容器56の内壁面に衝突し、油溜め部61に流れ込んだ後、返油管19を流れて圧縮機3の吸入側へ送り込まれる。こうして、冷媒とともに吐出した冷凍機油が圧縮機3へ戻される(図1参照)。以下、空気調和機1が動作をしている際には、この動作が繰り返されることになる。 The refrigerating machine oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force etc. and flows into the oil reservoir 61 and then flows through the oil return pipe 19 and is fed to the suction side of the compressor 3 . Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3 (see FIG. 1). Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
 上述した空気調和機1の油分離器5では、翼壁面65に、翼63の回転中心から外周端に向かって、翼63に生じる流れに沿って溝57aが形成されている。このため、作用する遠心力が相対的に小さい、翼63の回転中心とその周辺部分に衝突した冷凍機油100が、溝57aに捕捉される。 In the oil separator 5 of the air conditioner 1 described above, the groove 57 a is formed on the blade wall surface 65 along the flow generated in the blade 63 from the rotation center of the blade 63 toward the outer peripheral end. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing | blade 63 and its peripheral part with relatively small acting centrifugal force is capture | acquired by the groove | channel 57a.
 しかも、そのような溝57aが複数形成されていることで、翼壁面65において、流入管15から送り込まれる冷媒に晒される冷凍機油の面積を少なくすることができる。捕捉された冷凍機油は、遠心力と重力とによって、翼壁面65の回転中心側の部分に留まることなく、翼63の外周端に向かって流れ、その後、分離容器56の内壁面に衝突して、油溜め部61に流れ込むことになる。 In addition, by forming a plurality of such grooves 57a, the area of the refrigerator oil exposed to the refrigerant fed from the inflow pipe 15 can be reduced on the blade wall surface 65. The trapped refrigerating machine oil flows toward the outer peripheral end of the wing 63 by centrifugal force and gravity without staying on the rotation center side of the wing wall 65, and then collides with the inner wall surface of the separation vessel 56. , And flows into the oil reservoir 61.
 これにより、流入管15から送り込まれる冷媒等によって、冷凍機油が再飛散をして流出管17に流れ込むことが抑制されて、冷凍機油を確実に油溜め部61に導くことができる。その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機3へ確実に戻すことができる。 As a result, the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61. As a result, the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
 (第4例)
 次に、第4例について説明する。図26に示すように、旋回部59は、冷媒等の流れによって回転する翼63を備えている。翼63の翼壁面65には、液体流路部57が設けられている。液体流路部57には、翼63の回転中心から外周端に向かって、溝57aが形成されている。図27、図28および図29に示すように、溝57aは、回転中心の部分から外周端に向かって、深さが徐々に深くなるように形成されている。これ以外の構成については、第2例に係る旋回部59と同様である。
(4th example)
Next, the fourth example will be described. As shown in FIG. 26, the turning portion 59 includes a wing 63 which is rotated by the flow of a refrigerant or the like. On the wing wall surface 65 of the wing 63, a liquid channel portion 57 is provided. A groove 57 a is formed in the liquid flow path portion 57 from the rotation center of the wing 63 toward the outer peripheral end. As shown in FIG. 27, FIG. 28 and FIG. 29, the groove 57a is formed such that its depth gradually increases from the rotation center portion toward the outer peripheral end. The other configuration is the same as that of the swing portion 59 according to the second example.
 次に、上述した油分離器5による冷媒に含まれる冷凍機油を分離する動作は、第2例に係る油分離器5の場合と実質的に同じである。図30に示すように、油分離器5内では、矢印に示す冷媒等の流れによって、旋回部59の翼63が回転する。作用する遠心力が相対的に小さい、翼の回転中心とその周辺部分に衝突した冷凍機油が、溝57aに捕捉される。図31、図32および図33に示すように、捕捉された冷凍機油は、翼壁面65の回転中心側の部分に留まることなく、翼63の外周端に向かって溝57aを流れる。 Next, the operation of separating the refrigeration oil contained in the refrigerant by the oil separator 5 described above is substantially the same as that of the oil separator 5 according to the second example. As shown in FIG. 30, in the oil separator 5, the wing 63 of the swirling portion 59 is rotated by the flow of the refrigerant or the like indicated by the arrow. The refrigeration oil which collides with the rotation center of the wing and its peripheral portion, which has a relatively small centrifugal force acting, is trapped in the groove 57a. As shown in FIGS. 31, 32 and 33, the trapped refrigerating machine oil flows in the groove 57a toward the outer peripheral end of the wing 63 without remaining in the portion on the rotation center side of the wing wall surface 65.
 翼63の外周端に到達した冷凍機油は、遠心力等によって分離容器56の内壁面に衝突し、油溜め部61に流れ込んだ後、返油管19を流れて圧縮機3の吸入側へ送り込まれる。こうして、冷媒とともに吐出した冷凍機油が圧縮機3へ戻される(図1参照)。以下、空気調和機1が動作をしている際には、この動作が繰り返されることになる。 The refrigerating machine oil that has reached the outer peripheral end of the wing 63 collides with the inner wall surface of the separation container 56 by centrifugal force etc. and flows into the oil reservoir 61 and then flows through the oil return pipe 19 and is fed to the suction side of the compressor 3 . Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3 (see FIG. 1). Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
 上述した空気調和機1の油分離器5では、翼壁面65に、翼63の回転中心から外周端に向かって、翼63に生じる流れに沿って溝57aが形成されている。このため、作用する遠心力が相対的に小さい、翼63の回転中心とその周辺部分に衝突した冷凍機油100が、溝57aに捕捉される。 In the oil separator 5 of the air conditioner 1 described above, the groove 57 a is formed on the blade wall surface 65 along the flow generated in the blade 63 from the rotation center of the blade 63 toward the outer peripheral end. For this reason, the refrigeration oil 100 which collides with the rotation center of the wing | blade 63 and its peripheral part with relatively small acting centrifugal force is capture | acquired by the groove | channel 57a.
 しかも、溝57aは、回転中心から外周端に向かって、深さが徐々に深くなるように形成されている。このため、冷凍機油は、界面エネルギがより低くなる翼63の外周端の溝57aへ向かって、溝57aを積極的に流れやすくなる。さらに、冷凍機油は、遠心力と重力とによって、翼壁面65の回転中心側の部分に留まることなく、翼63の外周端に向かって流れ、その後、分離容器56の内壁面に衝突して、油溜め部61に流れ込むことになる。 In addition, the groove 57a is formed such that the depth thereof gradually increases from the rotation center toward the outer peripheral end. For this reason, the refrigeration oil tends to flow positively through the groove 57a toward the groove 57a at the outer peripheral end of the blade 63 where the interface energy is lower. Furthermore, the refrigerating machine oil flows toward the outer peripheral end of the wing 63 by centrifugal force and gravity without staying in the portion on the rotation center side of the wing wall surface 65 and then collides with the inner wall surface of the separation container 56 It will flow into the oil reservoir 61.
 これにより、流入管15から送り込まれる冷媒等によって、冷凍機油が再飛散をして流出管17に流れ込むことが抑制されて、冷凍機油を確実に油溜め部61に導くことができる。その結果、冷媒に含まれる冷凍機油の分離効率が上がるとともに、分離された冷凍機油を圧縮機3へ確実に戻すことができる。 As a result, the refrigerant oil is prevented from re-scattering and flowing into the outflow pipe 17 by the refrigerant and the like fed from the inflow pipe 15, and the refrigerant oil can be reliably guided to the oil reservoir 61. As a result, the separation efficiency of the refrigeration oil contained in the refrigerant can be increased, and the separated refrigeration oil can be reliably returned to the compressor 3.
 実施の形態4.
 実施の形態4に係る油分離器5について説明する。図34および図35に示すように、油分離器5は、分離室55をなす、ほぼ円柱形状の分離容器56を備えている。分離容器56の側面部に、冷媒配管13の一部として、流入管15が取り付けられている。流入管15は、分離容器56の側面部の接線方向にほぼ沿うように取り付けられている。
Fourth Embodiment
The oil separator 5 according to the fourth embodiment will be described. As shown in FIGS. 34 and 35, the oil separator 5 is provided with a substantially cylindrical separation container 56 forming a separation chamber 55. An inflow pipe 15 is attached to a side surface of the separation container 56 as a part of the refrigerant pipe 13. The inflow pipe 15 is attached substantially along the tangential direction of the side surface portion of the separation container 56.
 流入管15として、たとえば、L字型に屈曲したL字管が用いられている。流入管15の内壁面のうち、外周側に位置する内壁面の部分には、液体流路部58が設けられている。液体流路部58には、流入管15が延在する方向に沿って溝58aが形成されている。なお、これ以外の構成については、図7、図8および図9に示す油分離器5の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。 As the inflow pipe 15, for example, an L-shaped pipe bent in an L-shape is used. A liquid channel portion 58 is provided at a portion of the inner wall surface of the inflow pipe 15 located on the outer peripheral side among the inner wall surfaces. A groove 58 a is formed in the liquid flow path 58 along the direction in which the inflow pipe 15 extends. The remaining structure is similar to that of oil separator 5 shown in FIGS. 7, 8 and 9. Therefore, the same members are denoted by the same reference characters, and the description thereof will not be repeated unless necessary. To be.
 次に、上述した油分離器5によって、冷媒に含まれる冷凍機油を分離する動作について説明する。図36および図37に示すように、空気調和機1の動作によって、圧縮機3から吐出した高温高圧の冷媒が、流入管15を経て油分離器5に流れ込む。このとき、まず、L字管を適用した流入管15では、外周側に位置する内壁面の部分には、液体流路部58が設けられている。液体流路部58には、流入管15が延在する方向に沿って溝58aが形成されている。このため、冷媒に含まれる冷凍機油は、L字型の流入管15を流れる際に作用する遠心力によって溝58aに容易に捕捉されて、流入管15の吐出口にまで導かれる。 Next, the operation | movement which isolate | separates the refrigerator oil contained in a refrigerant | coolant by the oil separator 5 mentioned above is demonstrated. As shown in FIGS. 36 and 37, the high temperature / high pressure refrigerant discharged from the compressor 3 flows into the oil separator 5 through the inflow pipe 15 by the operation of the air conditioner 1. At this time, first, in the inflow tube 15 to which the L-shaped tube is applied, the liquid flow passage portion 58 is provided in the portion of the inner wall surface located on the outer peripheral side. A groove 58 a is formed in the liquid flow path 58 along the direction in which the inflow pipe 15 extends. Therefore, the refrigeration oil contained in the refrigerant is easily captured in the groove 58 a by the centrifugal force acting when flowing through the L-shaped inflow pipe 15 and is led to the discharge port of the inflow pipe 15.
 また、流入管15は、溝58aが形成されている側が、分離容器56の側面部の接線方向にほぼ沿うように、分離容器56に取り付けられている。さらに、分離容器56に内壁面には、油溜め部61に向かってスパイラル状に延在する溝57aが形成されている。このため、流入管15から吐出した冷凍機油は、液体流路部57の溝57aに容易に捕捉される。 Further, the inflow pipe 15 is attached to the separation container 56 such that the side where the groove 58 a is formed is substantially along the tangential direction of the side surface of the separation container 56. Furthermore, in the inner wall surface of the separation container 56, a groove 57a extending in a spiral shape toward the oil reservoir 61 is formed. Therefore, the refrigeration oil discharged from the inflow pipe 15 is easily captured by the groove 57 a of the liquid flow path portion 57.
 溝57aに捕捉された冷凍機油は、流入管15から吐出する冷媒等の流れを受けて、パイラル状に延在する溝57aを流れて、油溜め部61へ導かれる。油溜め部61に溜まった冷凍機油100は、返油管19を経て圧縮機3の吸入側へ送り込まれる。こうして、冷媒とともに吐出した冷凍機油が圧縮機3へ戻される。以下、空気調和機1が動作をしている際には、この動作が繰り返されることになる。 The refrigerating machine oil captured in the groove 57 a receives the flow of the refrigerant and the like discharged from the inflow pipe 15, flows through the groove 57 a extending in a spiral shape, and is led to the oil reservoir 61. The refrigeration oil 100 accumulated in the oil reservoir 61 is fed to the suction side of the compressor 3 through the oil return pipe 19. Thus, the refrigeration oil discharged together with the refrigerant is returned to the compressor 3. Hereinafter, when the air conditioner 1 is operating, this operation is repeated.
 上述した空気調和機1の油分離器5では、冷媒に含まれる冷凍機油は、L字型の流入管15を流れる際に作用する遠心力によって溝58aに容易に捕捉されて、流入管15の吐出口にまで導かれる。これにより、流入管15内に滞留する冷凍機油の量のばらつきが抑制されて、流入管15の内壁面に形成される冷凍機油の厚さが薄くなり、冷媒の流速が小さくなった場合に、流入管15を流れる冷媒によって、冷凍機油が再飛散するのを抑制することができる。 In the oil separator 5 of the air conditioner 1 described above, the refrigeration oil contained in the refrigerant is easily captured in the groove 58 a by the centrifugal force acting when flowing through the L-shaped inflow pipe 15. It is led to the discharge port. Thereby, the variation in the amount of refrigeration oil staying in the inflow tube 15 is suppressed, and the thickness of the refrigeration oil formed on the inner wall surface of the inflow tube 15 becomes thin, and the flow velocity of the refrigerant decreases. The refrigerant flowing through the inflow pipe 15 can suppress re-scattering of the refrigerator oil.
 また、流入管15は、溝58aが形成されている側が、分離容器56の側面部の接線方向にほぼ沿うように、分離容器56に取り付けられている。これにより、溝58aに捕捉された冷凍機油が、液体流路部57の溝57aに容易に捕捉されて、油溜め部61にまで導かれる。これらの結果、流入管15内と分離容器5内との双方において、冷凍機油が留まることが抑制されて、冷凍機油の再飛散をさらに効果的に抑制することができる。 Further, the inflow pipe 15 is attached to the separation container 56 such that the side where the groove 58 a is formed is substantially along the tangential direction of the side surface of the separation container 56. As a result, the refrigerating machine oil captured in the groove 58 a is easily captured in the groove 57 a of the liquid channel portion 57 and is led to the oil reservoir 61. As a result of these, the refrigeration oil is prevented from staying in both the inflow pipe 15 and the separation container 5, and re-scattering of the refrigeration oil can be further effectively suppressed.
 なお、上述した油分離器5では、流入管15としてL字型の流入管15を適用した。流入管15としてはL字型に限られるものではなく、必要に応じて、たとえば、U字型に屈曲したU字管を適用してもよい。 In the oil separator 5 described above, the L-shaped inflow pipe 15 is applied as the inflow pipe 15. The inflow pipe 15 is not limited to the L-shape, and a U-shaped pipe bent in a U-shape, for example, may be applied as needed.
 また、上述した油分離器5では、L字型の流入管15を実施の形態2において説明した油分離器5に適用した場合について説明した。油分離器5としては、この他に、たとえば、実施の形態3において説明した油分離器5(図12および図13参照)に、L字型またはU字型の流入管15を適用してもよい。 In the oil separator 5 described above, the case where the L-shaped inflow pipe 15 is applied to the oil separator 5 described in the second embodiment has been described. As the oil separator 5, in addition to this, for example, the L-shaped or U-shaped inflow pipe 15 may be applied to the oil separator 5 (see FIGS. 12 and 13) described in the third embodiment. Good.
 この場合には、流入管15の内壁面に形成された溝58aに捕捉された冷凍機油が、流入管15の吐出口から吐出することで、冷凍機油は、主として、回転する翼63の外周部分に衝突して溝57aに捕捉される。このため、実施の形態3において説明した油分離器5と比べて、翼63の回転中心側の部分に衝突して溝57aに捕捉される冷凍機油の量は少なくなる。 In this case, the refrigeration oil trapped in the groove 58a formed in the inner wall surface of the inflow tube 15 is discharged from the discharge port of the inflow tube 15, whereby the refrigeration oil is mainly the outer peripheral portion of the rotating wing 63 And are captured in the groove 57a. Therefore, compared to the oil separator 5 described in the third embodiment, the amount of refrigeration oil captured in the groove 57a due to collision with the rotation center side portion of the wing 63 is reduced.
 翼63の外周部分に衝突して溝57aに捕捉された冷凍機油100には、相対的に大きい遠心力が作用して、溝57aを流れることになる。溝57aを流れた冷凍機油は、分離容器56内壁面に衝突して、油溜め部61に送り込まれることになる。これにより、溝57aに捕捉された冷凍機油は、溝57aに留まることなく溝57aを流れて、流入管15から送り込まれる冷媒等によって、冷凍機油が再飛散するのを効果的に抑制することができる。 A relatively large centrifugal force acts on the refrigeration oil 100 which collides with the outer peripheral portion of the wing 63 and is captured in the groove 57a, and flows through the groove 57a. The refrigeration oil having flowed through the groove 57 a collides with the inner wall surface of the separation container 56 and is fed to the oil reservoir 61. Thus, the refrigeration oil trapped in the groove 57a flows through the groove 57a without staying in the groove 57a, and the refrigerant oil and the like sent from the inflow pipe 15 effectively prevent the refrigeration oil from re-scattering. it can.
 なお、各実施の形態において説明した油分離器については、必要に応じて種々組み合わせることが可能である。 In addition, about the oil separator demonstrated in each embodiment, it is possible to combine variously as needed.
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。 The embodiment disclosed this time is an example and is not limited thereto. The present invention is not the scope described above, is shown by the claims, and is intended to include all modifications in the meaning and scope equivalent to the claims.
 本発明は、油分離器を備えた空気調和機に有効に利用される。 The present invention is effectively utilized in an air conditioner provided with an oil separator.
 1 空気調和機、3 圧縮機、5 油分離器、7 凝縮器、9 膨張弁、11 蒸発器、13 冷媒配管、15 流入管、17 流出管、19 返油管、55 分離室、56 分離容器、57、58 液体流路部、59 旋回部、61 油溜め部、63 翼、65 翼壁面、100 冷凍機油。 Reference Signs List 1 air conditioner, 3 compressor, 5 oil separator, 7 condenser, 9 expansion valve, 11 evaporator, 13 refrigerant piping, 15 inflow pipe, 17 outflow pipe, 19 oil return pipe, 55 separation chamber, 56 separation container, 57, 58 Liquid flow channel part, 59 swirling part, 61 oil reservoir, 63 wings, 65 wing wall, 100 refrigeration oil.

Claims (13)

  1.  冷媒に含まれる冷凍機油を前記冷媒と分離させる油分離器であって、
     分離室を成す分離容器と、
     前記分離容器に連通する前記冷媒の流入管と、
     前記分離容器に連通する前記冷媒の流出管と、
     前記分離容器に設けられ、前記冷凍機油を貯留する油溜め部と、
     前記分離容器内に設けられ、前記冷媒に含まれる前記冷凍機油を前記油溜め部に導く、溝を含む液体流路部と、
     前記分離容器に取り付けられ、前記油溜め部に連通する返油管と
    を備え、
     前記液体流路部では、前記溝は、上部に位置する部分から下部に位置する部分に向かって、前記溝の深さが徐々に深くなるように形成された、油分離器。
    An oil separator for separating refrigeration oil contained in a refrigerant from the refrigerant, the oil separator comprising:
    A separation vessel forming a separation chamber,
    An inlet pipe of the refrigerant communicating with the separation container;
    An outlet pipe of the refrigerant communicating with the separation container;
    An oil reservoir provided in the separation container and storing the refrigeration oil;
    A liquid channel portion including a groove, provided in the separation container, for guiding the refrigeration oil contained in the refrigerant to the oil reservoir portion;
    An oil return pipe attached to the separation container and in fluid communication with the oil reservoir;
    In the liquid flow path portion, the groove is formed so that the depth of the groove becomes gradually deeper from the upper portion to the lower portion.
  2.  前記液体流路部は、前記分離容器の内壁面に配置され、
     前記溝は、前記油溜め部に向かって重力の向きに沿って配置された、請求項1記載の油分離器。
    The liquid channel portion is disposed on an inner wall surface of the separation container.
    The oil separator according to claim 1, wherein the groove is disposed along the direction of gravity toward the oil reservoir.
  3.  前記液体流路部は、前記分離容器の内壁面に配置され、
     前記溝は、前記油溜め部に向かって前記内壁面に沿ってスパイラル状に配置された、請求項1記載の油分離器。
    The liquid channel portion is disposed on an inner wall surface of the separation container.
    The oil separator according to claim 1, wherein the groove is disposed spirally along the inner wall surface toward the oil reservoir.
  4.  前記流入管は、屈曲部分を含み、
     前記屈曲部分の外周側の内壁面には、他の溝を含む他の液体流路部が形成された、請求項1記載の油分離器。
    The inflow tube includes a bent portion,
    The oil separator according to claim 1, wherein another liquid channel portion including another groove is formed on an inner wall surface on an outer peripheral side of the bent portion.
  5.  前記流入管は、L字管およびU字管のいずれかを含む、請求項4記載の油分離器。 The oil separator according to claim 4, wherein the inflow pipe includes any of an L-shaped pipe and a U-shaped pipe.
  6.  前記溝の断面形状はV字型および矩形状のいずれかを含む、請求項1記載の油分離器。 The oil separator according to claim 1, wherein a cross-sectional shape of the groove includes one of a V shape and a rectangular shape.
  7.  冷媒に含まれる冷凍機油を前記冷媒と分離させる油分離器であって、
     分離室を成す分離容器と、
     前記分離容器に連通する前記冷媒の流入管と、
     前記分離容器に連通する前記冷媒の流出管と、
     前記分離容器内に設けられ、前記流入管から送り込まれる前記冷媒の流れによって回転する翼を含む旋回部と、
     前記翼に設けられ、前記冷媒に含まれる前記冷凍機油を導く溝を含む液体流路部と、
     前記分離容器に設けられ、前記冷凍機油を貯留する油溜め部と、
     前記分離容器に取り付けられ、前記油溜め部に連通する返油管と
    を備え、
     前記溝は、前記翼の壁面に、前記翼の回転中心側から前記翼の外周端へ向かって形成された、油分離器。
    An oil separator for separating refrigeration oil contained in a refrigerant from the refrigerant, the oil separator comprising:
    A separation vessel forming a separation chamber,
    An inlet pipe of the refrigerant communicating with the separation container;
    An outlet pipe of the refrigerant communicating with the separation container;
    A pivoting portion provided in the separation container and including a wing that is rotated by the flow of the refrigerant fed from the inflow pipe;
    A liquid channel portion provided on the wing and including a groove for guiding the refrigeration oil contained in the refrigerant;
    An oil reservoir provided in the separation container and storing the refrigeration oil;
    An oil return pipe attached to the separation container and in fluid communication with the oil reservoir;
    An oil separator, wherein the groove is formed on a wall surface of the wing from a rotation center side of the wing toward an outer peripheral end of the wing.
  8.  前記溝は、前記壁面に互いに間隔を隔てて複数形成された、請求項7記載の油分離器。 The oil separator according to claim 7, wherein a plurality of the grooves are formed at intervals on the wall surface.
  9.  前記溝は、前記翼の回転中心側から前記翼の外周端へ向かって徐々に深くなるように形成された、請求項7記載の油分離器。 The oil separator according to claim 7, wherein the groove is formed so as to be gradually deeper from the rotation center side of the wing toward the outer peripheral end of the wing.
  10.  前記流入管は、屈曲部分を含み、
     前記屈曲部分の外周側の内壁面には、他の溝を含む他の液体流路部が形成された、請求項7記載の油分離器。
    The inflow tube includes a bent portion,
    The oil separator according to claim 7, wherein another liquid channel portion including another groove is formed on the inner wall surface on the outer peripheral side of the bent portion.
  11.  前記流入管は、L字管およびU字管のいずれかを含む、請求項10記載の油分離器。 The oil separator according to claim 10, wherein the inflow pipe includes one of an L-shaped pipe and a U-shaped pipe.
  12.  前記溝の断面形状はV字型および矩形状のいずれかを含む、請求項7記載の油分離器。 The oil separator according to claim 7, wherein a cross-sectional shape of the groove includes one of a V shape and a rectangular shape.
  13.  請求項1~12のいずれか1項に記載の油分離器を備えた空気調和機であって、
     圧縮機、前記油分離器、凝縮器、膨張弁および蒸発器が、冷媒配管によってこの順に直列に接続され、
     前記冷媒配管は、前記流入管および前記流出管を含み、
     前記流入管は、前記圧縮機の吐出側と前記油分離器との間を接続し、
     前記流出管は、前記油分離器と前記凝縮器との間を接続し、
     前記返油管は、前記油分離器と前記圧縮機の吸入側との間を接続する、空気調和機。
    An air conditioner provided with the oil separator according to any one of claims 1 to 12, comprising:
    A compressor, the oil separator, a condenser, an expansion valve and an evaporator are serially connected in this order by a refrigerant pipe;
    The refrigerant pipe includes the inflow pipe and the outflow pipe.
    The inflow pipe connects between the discharge side of the compressor and the oil separator;
    The outflow pipe connects between the oil separator and the condenser;
    An air conditioner, wherein the oil return pipe connects between the oil separator and the suction side of the compressor.
PCT/JP2017/035219 2017-09-28 2017-09-28 Oil separator and air conditioner with same WO2019064427A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/651,073 US11255587B2 (en) 2017-09-28 2017-09-28 Oil separator and air conditioner including the same
PCT/JP2017/035219 WO2019064427A1 (en) 2017-09-28 2017-09-28 Oil separator and air conditioner with same
CN201780095044.9A CN111108333B (en) 2017-09-28 2017-09-28 Oil separator and air conditioner provided with same
EP17926760.4A EP3690361B1 (en) 2017-09-28 2017-09-28 Oil separator and air conditioner with same
JP2019545489A JP6827554B2 (en) 2017-09-28 2017-09-28 Oil separator and air conditioner equipped with it
ES17926760T ES2904309T3 (en) 2017-09-28 2017-09-28 oil separator and air conditioner with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035219 WO2019064427A1 (en) 2017-09-28 2017-09-28 Oil separator and air conditioner with same

Publications (1)

Publication Number Publication Date
WO2019064427A1 true WO2019064427A1 (en) 2019-04-04

Family

ID=65901067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035219 WO2019064427A1 (en) 2017-09-28 2017-09-28 Oil separator and air conditioner with same

Country Status (6)

Country Link
US (1) US11255587B2 (en)
EP (1) EP3690361B1 (en)
JP (1) JP6827554B2 (en)
CN (1) CN111108333B (en)
ES (1) ES2904309T3 (en)
WO (1) WO2019064427A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230106373A1 (en) * 2020-05-11 2023-04-06 Mitsubishi Electric Corporation Accumulator and refrigeration cycle apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132148U (en) * 1977-03-28 1978-10-19
JPS5479045U (en) * 1977-11-15 1979-06-05
JPS5575753A (en) * 1978-11-28 1980-06-07 Rolls Royce Liquid separator
JPS5869317A (en) * 1981-10-22 1983-04-25 Yoshikane Ikutake Mist separator for smoke stack
JPH05296611A (en) * 1992-02-21 1993-11-09 Daikin Ind Ltd Centrifugal oil separator
EP0763384A1 (en) * 1995-09-15 1997-03-19 GEC ALSTHOM Stein Industrie Centrifugal separator, in particular for a circulating fluidized bed boiler
JP2002061993A (en) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp Oil separator and outdoor unit
WO2007055386A1 (en) * 2005-11-14 2007-05-18 Nichirei Industries Co., Ltd. Gas-liquid separator and refrigerating apparatus equipped therewith
JP2009174836A (en) 2008-01-23 2009-08-06 Nichirei Kogyo Kk Gas-liquid separation device and refrigeration system equipped therewith
JP2014098500A (en) * 2012-11-13 2014-05-29 Samsung R&D Institute Japan Co Ltd Shunt
JP2014145497A (en) * 2013-01-28 2014-08-14 Daikin Ind Ltd Oil separator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497114B1 (en) * 2001-09-18 2002-12-24 Visteon Global Technologies, Inc. Oil separator
NL1026268C2 (en) * 2004-05-26 2005-11-30 Flash Technologies N V In-line cyclone separator.
CN1782629A (en) * 2004-11-29 2006-06-07 乐金电子(天津)电器有限公司 Oil separator
KR100619785B1 (en) * 2005-05-16 2006-09-06 엘지전자 주식회사 Oil seperator
JPWO2015140949A1 (en) * 2014-03-19 2017-04-06 三菱電機株式会社 Hermetic compressor and vapor compression refrigeration cycle apparatus including the hermetic compressor
CN204063718U (en) * 2014-09-26 2014-12-31 青岛开拓隆海制冷配件有限公司 A kind of helical oil separator
CN204227780U (en) * 2014-10-08 2015-03-25 新昌县宏宇制冷有限公司 A kind of centrifugal oil separator
US11015850B2 (en) * 2014-10-23 2021-05-25 Mitsubishi Electric Corporation Oil separator
JP6594707B2 (en) * 2015-08-27 2019-10-23 三菱重工サーマルシステムズ株式会社 Two-stage compression refrigeration system
CN205279549U (en) 2015-10-15 2016-06-01 珠海格力电器股份有限公司 Vertical oil separator's inner tube, casing and vertical oil separator
CN206503217U (en) 2016-12-07 2017-09-19 宿迁华夏建设(集团)工程有限公司 It is a kind of to be used for the protection against erosion slope drainage device of hundred meter level side slopes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132148U (en) * 1977-03-28 1978-10-19
JPS5479045U (en) * 1977-11-15 1979-06-05
JPS5575753A (en) * 1978-11-28 1980-06-07 Rolls Royce Liquid separator
JPS5869317A (en) * 1981-10-22 1983-04-25 Yoshikane Ikutake Mist separator for smoke stack
JPH05296611A (en) * 1992-02-21 1993-11-09 Daikin Ind Ltd Centrifugal oil separator
EP0763384A1 (en) * 1995-09-15 1997-03-19 GEC ALSTHOM Stein Industrie Centrifugal separator, in particular for a circulating fluidized bed boiler
JP2002061993A (en) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp Oil separator and outdoor unit
WO2007055386A1 (en) * 2005-11-14 2007-05-18 Nichirei Industries Co., Ltd. Gas-liquid separator and refrigerating apparatus equipped therewith
JP2009174836A (en) 2008-01-23 2009-08-06 Nichirei Kogyo Kk Gas-liquid separation device and refrigeration system equipped therewith
JP2014098500A (en) * 2012-11-13 2014-05-29 Samsung R&D Institute Japan Co Ltd Shunt
JP2014145497A (en) * 2013-01-28 2014-08-14 Daikin Ind Ltd Oil separator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690361A4

Also Published As

Publication number Publication date
EP3690361A4 (en) 2020-11-25
CN111108333B (en) 2021-11-30
US20200248941A1 (en) 2020-08-06
JPWO2019064427A1 (en) 2020-10-22
EP3690361B1 (en) 2021-12-22
US11255587B2 (en) 2022-02-22
JP6827554B2 (en) 2021-02-10
CN111108333A (en) 2020-05-05
EP3690361A1 (en) 2020-08-05
ES2904309T3 (en) 2022-04-04

Similar Documents

Publication Publication Date Title
JP5395358B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP6272497B2 (en) Oil separator
US7131292B2 (en) Gas-liquid separator
CN102235783B (en) Gas-liquid separation device and possess the refrigerating plant of gas-liquid separation device
US20100199716A1 (en) Gas-liquid separator and air conditioner equipped with the same
JP6055673B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP2008196721A (en) Gas-liquid separator
JP2018155485A (en) Gas-liquid separation device and refrigeration device including gas-liquid separation device
EP3006864A1 (en) Oil separator and method for manufacturing oil separator
JP5634549B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
WO2019064427A1 (en) Oil separator and air conditioner with same
US9022230B2 (en) Oil separation means and refrigeration device equipped with the same
JP7012839B2 (en) Oil separator and refrigeration cycle equipment
JP5072523B2 (en) Gas-liquid separator and air conditioner
JP2008045763A (en) Oil separator
JP7130838B2 (en) Gas-liquid separator and refrigeration cycle equipment
CN104848615A (en) Oil separator
JP6782517B2 (en) Oil separator
JP7361907B2 (en) Accumulator and refrigeration cycle equipment
WO2022239211A1 (en) Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2024029028A1 (en) Oil separator and refrigeration cycle device
KR101155701B1 (en) Economizer with fluid velocity reduction apparatus and multi-stage compressing refrigeration apparatus having the same
JP2020085424A (en) Oil separator
JP2015081711A (en) Oil separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017926760

Country of ref document: EP

Effective date: 20200428