JP4267181B2 - 差動アンプ回路、差動変換回路及びミキサ回路 - Google Patents
差動アンプ回路、差動変換回路及びミキサ回路 Download PDFInfo
- Publication number
- JP4267181B2 JP4267181B2 JP2000176491A JP2000176491A JP4267181B2 JP 4267181 B2 JP4267181 B2 JP 4267181B2 JP 2000176491 A JP2000176491 A JP 2000176491A JP 2000176491 A JP2000176491 A JP 2000176491A JP 4267181 B2 JP4267181 B2 JP 4267181B2
- Authority
- JP
- Japan
- Prior art keywords
- amplifier
- differential
- grounded
- emitter
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/4508—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3211—Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45479—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
- H03F3/45484—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with bipolar transistors as the active amplifying circuit
- H03F3/45596—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with bipolar transistors as the active amplifying circuit by offset reduction
- H03F3/45618—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with bipolar transistors as the active amplifying circuit by offset reduction by using balancing means
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45318—Indexing scheme relating to differential amplifiers the AAC comprising a cross coupling circuit, e.g. two extra transistors cross coupled
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45394—Indexing scheme relating to differential amplifiers the AAC of the dif amp comprising FETs whose sources are not coupled, i.e. the AAC being a pseudo-differential amplifier
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
Description
【発明の属する技術分野】
本発明は高周波差動アンプ回路、差動変換回路及びミキサ回路に関するものである。
【0002】
近年、移動体通信やケーブルTVなどの無線及び優先通信分野ではデータ転送効率をよくするために、送受信部の高周波信号回路に非常に高い直線性(低ひずみ)を要求している。また、PCB上、とりわけ高周波集積回路(RFIC)において、信号間及び回路間の干渉を回避する手段として差動回路構成が、今日の高集積化された回路で次第に必須となってきている。また、集積回路で一般的に用いられる周波数ミキサはギルバートセル型であり、差動回路構成になっている。これらの回路においても高い直線性(低ひずみ)が必要となっている。
【0003】
【従来の技術】
図9は、従来の差動アンプ回路10の回路図である。このアンプ回路10は、エミッタ結合のディファレンシャルペア(差動対)11を備えている。即ち、差動対11は、エミッタが互いに接続された一対のNPNトランジスタQ1,Q2から構成され、エミッタの接続点はバイアス電流を流す電流源12に接続されている。両トランジスタQ1,Q2のベースはそれぞれ入力端子13,14に接続され、コレクタはそれぞれ出力端子15,16に接続されている。
【0004】
【発明が解決しようとする課題】
ところが、従来の差動アンプ回路10では動作原理がバイアス電流の切替によるため、直線性はPN接合の内蔵電位で制限され、最大出力電流はバイアス電流の制限を受ける。従って、従来はひずみ特性同様に重要な特性であるゲインや雑音特性を犠牲にして、エミッタ直列帰還(emitter degeneration)により入力換算の直線性を改善していた。しかし、この場合も出力電力(電流)直線性には効果は無い。
【0005】
更に、もう一つの問題点として、差動出力の平衡度(バランス:振幅及び位相誤差)がある。差動入力信号の平衡度は多くの差動回路においてその特性に大きく影響することが多い。例えば、ダブルバランス型のギルバートセルミキサのアイソレーション特性やスプリアス特性、差動CRネットワーク構成の直交位相シフタの直交精度などである。(差動CRネットワーク構成の直交位相シフタの場合、ひずみによって生じるスプリアス成分もまた直交精度に影響する。)これらの重要な特性は、いずれも通信機器のシステムに影響を与える。
【0006】
ところが、従来の差動対回路では、高周波の場合、入力信号の平衡度が出力信号にある程度の不平衡を与える。差動対回路はギルバートセルミキサの入力部の構成要素であり、また、差動信号バッファアンプとしてもよく使用されるため、出力信号の平衡度は重要である。
【0007】
また、ICに差動信号を供給するために、IC外部にバルーン(Balun) が接続される。この場合、トランシーバのRF部などでよく用いられるRF積層ハイブリッドバルーンを用いると、その狭帯域特性などのため十分な平衡度が得られない場合が多い。その場合でも平衡度の高い信号を出力する回路が要求される。
【0008】
本発明は上記問題点を解決するためになされたものであって、その目的は平衡度が高く、直線性の良い信号を出力することのできる差動アンプ回路、差動変換回路及びミキサ回路を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、第1及び第2のシングルエンド差動変換回路をそれぞれエミッタ接地型アンプとベース接地型アンプとで構成し、それらの第1及び第2の差動信号をクロスカップルしたため、平衡度の高い第3の差動出力信号を得ることができる。そして、エミッタ接地型アンプで構成したため、差動出力信号は直線性が良い。
請求項2に記載の発明は、前記第1の入力信号はDCカット用のコンデンサを介して前記第1エミッタ接地型アンプと前記第1ベース接地型アンプに供給され、前記第2の入力信号はDCカット用のコンデンサを介して前記第2エミッタ接地型アンプと前記第2ベース接地型アンプに供給される。
請求項3に記載の発明は、第1エミッタ接地型アンプと第1ベース接地型アンプとから構成され、両アンプには共通に第1の入力信号が供給され、該第1の入力信号に対応する第1の差動信号を出力する第1のシングルエンド差動変換回路と、第2エミッタ接地型アンプと第2ベース接地型アンプとから構成され、両アンプには共通に第2の入力信号が供給され、該第2の入力信号に対応する第2の差動信号を出力する第2のシングルエンド差動変換回路と、を備え、前記第1エミッタ接地型アンプを構成する第1のトランジスタのエミッタを第1の抵抗を介して接地し、前記第2エミッタ接地型アンプを構成する第2のトランジスタのエミッタを第2の抵抗を介して接地し、前記第1ベース接地型アンプを構成する第3のトランジスタのエミッタをベースとコレクタが互いに接続された第4のトランジスタのコレクタに接続し、同第4のトランジスタのエミッタを第3の抵抗を介して接地し、前記第1ベース接地型アンプに供給される前記第1の入力信号を第4のトランジスタのベースに入力し、前記第2ベース接地型アンプを構成する第5のトランジスタのエミッタをベースとコレクタが互いに接続された第6のトランジスタのコレクタに接続し、同第6のトランジスタのエミッタを第4の抵抗を介して接地し、前記第2ベース接地型アンプに供給される前記第2の入力信号を第6のトランジスタのベースに入力し、前記第1及び第2の差動信号をクロスカップルして生成した第3の差動信号を出力する。
請求項4に記載の発明は、前記第1エミッタ接地型アンプを構成する第1のトランジスタのコレクタは、ベースにバイアス電圧が供給される第7のトランジスタのエミッタに接続され、同第7のトランジスタのコレクタから前記第1の差動信号を構成する1つの信号を出力し、前記第2エミッタ接地型アンプを構成する第2のトランジスタのコレクタは、ベースに前記バイアス電圧が供給される第8のトランジスタのエミッタに接続され、同第8のトランジスタのコレクタから前記第2の差動信号を構成する1つの信号を出力する。
【0010】
請求項5に記載の発明のように、平衡度の高い差動信号を出力する差動アンプ回路の前段に、エミッタ接地型アンプとベース接地型アンプとから構成された差動変換部を設けることで、差動変換回路は入力信号に基づいて直線性が良く平衡度の高い差動信号を出力する。
【0011】
請求項6に記載の発明のように、ギルバートセルミキサのディファレンシャルペア部分に請求項1〜4のうちの何れか1項に記載の差動アンプ回路を用いることで、直線性が良く平衡度が高いミキサ出力を得ることができる。
【0012】
請求項7に記載の発明のように、ギルバートセルミキサのディファレンシャルペア部分に請求項5に記載の差動変換回路を用いることで、狭帯域特性のバルーンを必要とせず、単一の入力信号から直線性が良く平衡度が高いミキサ出力を得ることができる。
【0013】
【発明の実施の形態】
(第一実施形態)
以下、本発明を具体化した第一実施形態を図1〜図3に従って説明する。
【0014】
図2は、本実施形態の差動アンプ回路20のブロック回路図である。
差動アンプ回路20は、第1及び第2シングルエンド差動変換回路21,22と加算器23,24を備えている。第1及び第2差動変換回路21,22は相補な第1及び第2入力信号Iz,Ixがそれぞれ入力され、それらの差動出力がクロスカップルされて相補出力信号Oz,Oxを生成する。
【0015】
即ち、第1及び第2差動変換回路21,22はそれぞれ非反転出力端子と反転出力端子を備えている。第1差動変換回路21の非反転出力端子と第2差動変換回路22の反転出力端子が第1加算器23に接続され、その加算器23から第1出力信号Ozが出力される。同様に、第1差動変換回路21の反転出力端子と第2差動変換回路の非反転出力端子が第2加算器24に接続され、その加算器から第2出力信号Oxが出力される。
【0016】
図1に示すように、第1差動変換回路21は、1組のエミッタ接地アンプ25とベース接地アンプ26とから構成され、両アンプ25,26には第1入力信号Izが共通に入力される。両アンプ25,26は共通に入力される第1入力信号Izに対して逆相で動作し、それぞれ逆相の信号S1z,S1xを出力する。
【0017】
同様に、第2差動変換回路22は、1組のエミッタ接地アンプ27とベース接地アンプ28とから構成され、両アンプ27,28には第2入力信号Ixが共通に入力される。両アンプ27,28は共通に入力される第2入力信号Ixに対して逆相で動作し、それぞれ逆相の信号S2z,S2xを出力する。
【0018】
第1及び第2差動変換回路21,22を構成するエミッタ接地アンプ25,27とベース接地アンプ26,28は、同一の半導体基板上に近接して形成されるため、それらは同一の電気的特性を持つ。
【0019】
上記のように構成された差動アンプ回路20の動作を説明する。
第1及び第2入力信号Iz,Ixの相対振幅誤差及び位相誤差をp及びφとすると、入力信号Iz,Ixは次のように表せる。
【0020】
【数1】
第1差動変換回路21の相対差動出力信号S1z,S1xは、出力信号振幅誤差及び位相誤差をk及びθ、ゲインをAとすると、
【0021】
【数2】
となる。同様に、第2差動変換回路22の差動出力信号S2z,S2xは、
【0022】
【数3】
となる。
【0023】
従って、クロスカップルされた最終の出力信号Oz,Oxは、
【0024】
【数4】
となる。
【0025】
この場合、出力信号Oz,Oxの振幅誤差k(o) は、
【0026】
【数5】
となり、位相誤差φ(o) は、
【0027】
【数6】
となる。
【0028】
仮に、入力信号誤差をp=1.2(誤差20%),φ=+20°、回路内部の誤差をk=1.05(誤差5%),θ=+5°として出力誤差を計算すると、振幅誤差1.01(誤差1%)、位相誤差ー0.96°となる。このように、入力信号Iz,Ixの振幅誤差及び位相誤差に対して、出力信号Oz,Oxのそれらは、全く問題ないレベルに改善される。
【0029】
即ち、シングルエンド構成のエミッタ接地アンプ25,27では、単なるバイアス電流の切替え動作ではなく、大信号入力時には入力信号による自己バイアス効果でバイアス電流が増加し(AB級動作)、出力電力(電流)の飽和が従来のエミッタ結合差動アンプに比べて遅くなる。従って、両アンプ25,27の出力信号S1z,S2zは、直線性の良い特性を持ち、更には電力効率が良い。
【0030】
そして、第1差動変換回路21の差動出力信号S1z,S1xと第2差動変換回路22の差動出力信号S2z,S2xをクロスカップルすることで、それらにより生成される出力信号Oz,Oxは高い平衡度特性を持つ。従って、本実施形態の差動アンプ回路20は、直線性が良く平衡度の高い相補出力信号Oz,Oxを出力する。
【0031】
図3は、差動アンプ回路20のトランジスタレベルの回路図である。
第1差動変換回路21は、エミッタ接地アンプ25とベース接地アンプ26とから構成されている。
【0032】
エミッタ接地アンプ25は、NPNトランジスタQ11、抵抗R1,R2及びコンデンサC1から構成されている。トランジスタQ11のベースには抵抗R1を介してバイアス電圧VBが印加され、エミッタは抵抗R2を介して接地されている。トランジスタQ11のベースはDCカット用のコンデンサC1を介して第1入力端子Ti1に接続され、コレクタは第1出力端子To1に接続されている。
【0033】
ベース接地アンプ26は、NPNトランジスタQ12、抵抗R3,R4及びコンデンサC2,C3から構成されている。トランジスタQ12のベースはコンデンサC2を介して接地されると共に、抵抗R3を介してバイアス電圧VBが供給されている。トランジスタQ12のエミッタは抵抗R4を介して接地されている。そして、トランジスタQ12のエミッタはDCカット用のコンデンサC3を介して第1入力端子Ti1に接続され、コレクタは第2出力端子To2に接続されている。
【0034】
第2差動変換回路22は、エミッタ接地アンプ27とベース接地アンプ28とから構成されている。
エミッタ接地アンプ27は、NPNトランジスタQ13、抵抗R5,R6及びコンデンサC4から構成されている。トランジスタQ13のベースには抵抗R5を介してバイアス電圧VBが印加され、エミッタは抵抗R6を介して接地されている。トランジスタQ13のベースにはDCカット用のコンデンサC4を介して第2入力端子Ti2に接続され、コレクタは第2出力端子To2に接続されている。
【0035】
ベース接地アンプ28は、NPNトランジスタQ14、抵抗R7,R8及びコンデンサC5,C6から構成されている。トランジスタQ14のベースはコンデンサC5を介して接地されると共に、抵抗R7を介してバイアス電圧VBが供給されている。トランジスタQ14のエミッタは抵抗R8を介して接地されている。そして、トランジスタQ14のエミッタはDCカット用のコンデンサC6を介して第2入力端子Ti2に接続され、コレクタは第1出力端子To1に接続されている。
【0036】
各トランジスタQ11〜Q14のエミッタに接続された抵抗R2,R4,R6,R8は各アンプ25〜28のゲインを決定する。ベース接地アンプ26,28のコンデンサC2,C5はトランジスタQ12,Q14のベース接地容量である。
【0037】
即ち、トランジスタQ11のエミッタとトランジスタQ14のエミッタがドットされて第1出力端子To1に接続され、これにより第1エミッタ接地アンプ25の出力信号と第2ベース接地アンプ28の出力信号とにより出力信号Ozが生成される。同様に、トランジスタQ12のエミッタとトランジスタQ13のエミッタがドットされて第2出力端子To2に接続され、これにより第1ベース接地アンプ26の出力信号と第2エミッタ接地アンプ27の出力信号とにより出力信号Oxが生成される。従って、図1及び図2に示すように、加算器23,24を用いなくてもよい。
【0038】
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)差動アンプ回路20はそれぞれ一対のエミッタ接地アンプ25,27とベース接地アンプ26,28から構成される第1及び第2差動変換回路21,22を備え、各アンプ25〜28による差動出力信号S1z,S1x,S2z,S2xをクロスカップルして差動出力信号Oz,Oxを生成するようにした。その結果、差動出力信号をS1z,S1x,S2z,S2xクロスカップルしたため、平衡度の高い差動出力信号Oz,Oxを得ることができる。そして、エミッタ接地型アンプ25,27で構成したため、差動出力信号Oz,Oxは直線性を良くすることができる。
【0039】
尚、前記実施形態は、以下の態様に変更してもよい。
○上記実施形態のアンプ25〜28の構成を適宜変更して実施しても良い。
例えば、図4には、差動アンプ回路20aの回路図を示す。この差動アンプ回路20aは、第1及び第2差動変換回路21a,22aを備え、それらはそれぞれ一対のエミッタ接地アンプ25a,27aとベース接地アンプ26a,28aにより構成されている。エミッタ接地アンプ25aはNPNトランジスタQ11と抵抗R2とから構成され、トランジスタQ11のエミッタは抵抗R2を介して接地され、ベースには入力信号Izが印加されている。
【0040】
ベース接地アンプ26aはNPNトランジスタQ12,Q15、抵抗R4及びコンデンサC2から構成されている。トランジスタQ14のベースにはバイアス電圧VBが印加され、そのベースはコンデンサC2を介して接地されている。トランジスタQ14のエミッタは抵抗R4を介して接地されている。トランジスタT14と抵抗R4との間にはトランジスタQ15が挿入接続されている。トランジスタQ15はコレクタがトランジスタQ14のエミッタに接続され、エミッタが抵抗R4に接続されている。トランジスタQ15はベースとコレクタが互いに接続され、そのベースはエミッタ接地アンプ25aのトランジスタQ11のベースに接続されている。
【0041】
第2エミッタ接地アンプ27aはNPNトランジスタQ13と抵抗R6とから構成され、第1エミッタ接地アンプ25aと同様に接続されている。第2ベース接地アンプ28aはトランジスタNPNQ14,Q16、抵抗R8及びコンデンサC6とから構成され、第1ベース接地アンプ26aと同様に接続されている。
【0042】
このように構成された差動アンプ回路20aにおいて、第1及び第2ベース接地アンプ26a,28aのトランジスタQ15,q16のベースに印加するバイアス電圧はトランジスタQ12,Q14が流す電流によってその電位が決定され、そのバイアス電圧を第1及び第2エミッタ接地アンプ25a,27aのトランジスタQ12,Q13のベースに印加する。これにより、抵抗R1,R3,R5,R7と入力部にDCカット用のコンデンサC1,C3,C4,C6が不要になる。
【0043】
また、図5には、差動アンプ回路20bの回路図を示す。この差動アンプ回路20bは、第1及び第2差動変換回路21b,22bを備え、それらはそれぞれ一対のエミッタ接地アンプ25b,27bとベース接地アンプ26b,28bにより構成されている。エミッタ接地アンプ25bはNPNトランジスタQ11,Q17と抵抗R2とから構成され、トランジスタQ11のエミッタは抵抗R2を介して接地され、ベースには入力信号Izが印加されている。トランジスタQ11と出力端子To1の間にはトランジスタQ17が挿入接続されている。トランジスタQ17はエミッタがトランジスタQ11のコレクタに接続され、コレクタが出力端子To1に接続されている。トランジスタQ17のベースにはバイアス電圧VBが印加されている。
【0044】
ベース接地アンプ26bはNPNトランジスタQ12,Q15、抵抗R4及びコンデンサC2から構成されている。トランジスタQ14のベースにはバイアス電圧VBが印加され、そのベースはコンデンサC2を介して接地されている。トランジスタQ14のエミッタは抵抗R4を介して接地されている。トランジスタT14と抵抗R4との間にはトランジスタQ15が挿入接続されている。トランジスタQ15はコレクタがトランジスタQ14のエミッタに接続され、エミッタが抵抗R4に接続されている。トランジスタQ15はベースとコレクタが互いに接続され、そのベースはエミッタ接地アンプ25bのトランジスタQ11のベースに接続されている。
【0045】
第2エミッタ接地アンプ27bはNPNトランジスタQ13,Q18と抵抗R6とから構成され、第1エミッタ接地アンプ25bと同様に接続されている。第2ベース接地アンプ28bはNPNトランジスタQ14,Q16、抵抗R8及びコンデンサC6とから構成され、第1ベース接地アンプ26bと同様に接続されている。
【0046】
このように構成された差動アンプ回路20bでは、上記の差動アンプ回路20aと同様にバイアス電圧を供給するための抵抗R1,R3,R5,R7と入力部にDCカット用のコンデンサC1,C3,C4,C6が不要であり、チップ面積が小さくてすむ。更に、この差動アンプ回路20bは、エミッタ接地アンプ25a,27aがカスコード構成となり、回路内部の平衡度が良い。
【0047】
(第二実施形態)
以下、本発明を具体化した第二実施形態を図6に従って説明する。
尚、説明の便宜上、第一実施形態と同様の構成については同一の符号を付してその説明を一部省略する。
【0048】
図6は、シングルエンド差動変換回路の回路図である。
この差動変換回路30は、出力段に第一実施形態の差動アンプ回路20を備えたものである。即ち、差動変換回路30は入力段の差動変換部31と出力段の差動アンプ回路20から構成されている。差動変換部31は一対のベース入力エミッタ接地アンプ32とエミッタ入力ベース接地アンプ33とから構成されている。両アンプ32,33には共通に入力信号Inが入力され、差動出力信号Iz,Ixを出力する。
【0049】
この様にシングルエンド差動変換回路30を構成することで、直線性が良く平衡度が高い出力信号Oz,Oxが得られる。
尚、第一実施形態の差動アンプ回路20に替えて、図4の差動アンプ回路20a又は図5の差動アンプ回路20bを用いて実施しても良い。
【0050】
(第三実施形態)
以下、本発明を具体化した第三実施形態を図7に従って説明する。
尚、説明の便宜上、第一及び第二実施形態と同様の構成については同一の符号を付してその説明を一部省略する。
【0051】
図7は、差動入力型ミキサ回路の回路図である。
このミキサ回路40は、ギルバートセルミキサの下段ディファレンシャルペア部分を第一実施形態の差動アンプ回路20(又は、図4又は図5の差動アンプ回路20a,20b)にて構成した差動入力型のミキサ回路である。
【0052】
即ち、ミキサ回路40は、差動アンプ回路20と一対の差動回路41,42を備えている。第1差動回路41はエミッタ結合されたNPNトランジスタQ21,Q22から構成され、エミッタの接続点には差動アンプ回路20の出力信号Ozが供給されている。トランジスタQ21,Q22のベースにはそれぞれキャリア信号LOz,LOxが供給されている。
【0053】
第2差動回路42はエミッタ結合されたNPNトランジスタQ23,Q24から構成され、エミッタの接続点には差動アンプ回路20の出力信号Oxが供給されている。トランジスタQ23,Q24のベースにはそれぞれキャリア信号LOx,LOzが供給されている。
【0054】
第1及び第2差動回路41,42の出力はクロスカップルされ、これにより、ミキサ回路40は入力信号Iz,Ixとキャリア信号LOz,LOxをミキシングして生成した信号O1z,O1xを出力する。このように構成されたミキサ回路40は、回路内部において平衡度が高く、直線性が良く平衡度の高い出力信号O1z,O1xを得ることができる。
【0055】
(第四実施形態)
以下、本発明を具体化した第四実施形態を図8に従って説明する。
尚、説明の便宜上、第一〜第三実施形態と同様の構成については同一の符号を付してその説明を一部省略する。
【0056】
図8は、シングルエンド入力型ミキサ回路の回路図である。
このミキサ回路50は、ギルバートセルミキサの下段ディファレンシャルペア部分を第二実施形態のシングルエンド差動変換回路30にて構成したシングルエンド入力型のミキサ回路である。
【0057】
即ち、ミキサ回路50は、差動変換回路30及び一対の差動回路41,42を備え、差動変換回路30は差動変換部31と差動アンプ回路20とから構成されている。
【0058】
このように構成されたミキサ回路50は、差動信号を生成するための外部バルーン(Balun) が不要であり、入力信号Inの周波数帯域が広い場合においても、平衡度が高く直線性の良い出力信号O2z,O2xを得ることができる。
【0059】
尚、前記実施形態は、以下の態様に変更してもよい。
○上記各実施形態におけるNPNトランジスタQ11,Q12,…を、PNPバイポーラトランジスタ又はFETで構成して実施しても良い。
【0060】
【発明の効果】
以上詳述したように、本発明によれば、平衡度が高く、直線性の良い信号を出力することのできる差動アンプ回路、差動変換回路及びミキサ回路を提供することができる。
【図面の簡単な説明】
【図1】 差動アンプ回路のブロック回路図である。
【図2】 差動アンプ回路のブロック回路図である。
【図3】 差動アンプ回路の詳細な回路図である。
【図4】 別の差動アンプ回路の回路図である。
【図5】 別の差動アンプ回路の回路図である。
【図6】 シングルエンド差動変換回路の回路図である。
【図7】 差動入力型ミキサ回路の回路図である。
【図8】 シングルエンド入力型ミキサ回路の回路図である。
【図9】 従来例の回路図である。
【符号の説明】
20 差動アンプ回路
21 第1のシングルエンド差動変換回路
22 第2のシングルエンド差動変換回路
25,27 エミッタ接地型アンプ
26,28 ベース接地型アンプ
30 シングルエンド差動変換回路
31 差動変換部
Iz,Ix 第1及び第2入力信号
S1z,S1x 第1の差動信号
S2z,S2x 第2の差動信号
Oz,Ox 第3の差動信号
Claims (7)
- 第1エミッタ接地型アンプと第1ベース接地型アンプとから構成され、両アンプには共通に第1の入力信号が供給され、該第1の入力信号に対応する第1の差動信号を出力する第1のシングルエンド差動変換回路と、
第2エミッタ接地型アンプと第2ベース接地型アンプとから構成され、両アンプには共通に第2の入力信号が供給され、該第2の入力信号に対応する第2の差動信号を出力する第2のシングルエンド差動変換回路と、
を備え、
前記第1エミッタ接地型アンプを構成するトランジスタのエミッタと前記第2エミッタ接地型アンプを構成するトランジスタのエミッタとをそれぞれ抵抗を介して接地し、
前記第1ベース接地型アンプを構成するトランジスタのエミッタと前記第2ベース接地型アンプを構成するトランジスタのエミッタとをそれぞれ抵抗を介して接地し、
前記第1及び第2の差動信号をクロスカップルして生成した第3の差動信号を出力することを特徴とする差動アンプ回路。 - 前記第1の入力信号はDCカット用のコンデンサを介して前記第1エミッタ接地型アンプと前記第1ベース接地型アンプに供給され、
前記第2の入力信号はDCカット用のコンデンサを介して前記第2エミッタ接地型アンプと前記第2ベース接地型アンプに供給される、
ことを特徴とする請求項1に記載の差動アンプ回路。 - 第1エミッタ接地型アンプと第1ベース接地型アンプとから構成され、両アンプには共通に第1の入力信号が供給され、該第1の入力信号に対応する第1の差動信号を出力する第1のシングルエンド差動変換回路と、
第2エミッタ接地型アンプと第2ベース接地型アンプとから構成され、両アンプには共通に第2の入力信号が供給され、該第2の入力信号に対応する第2の差動信号を出力する第2のシングルエンド差動変換回路と、
を備え、
前記第1エミッタ接地型アンプを構成する第1のトランジスタのエミッタを第1の抵抗を介して接地し、
前記第2エミッタ接地型アンプを構成する第2のトランジスタのエミッタを第2の抵抗を介して接地し、
前記第1ベース接地型アンプを構成する第3のトランジスタのエミッタをベースとコレクタが互いに接続された第4のトランジスタのコレクタに接続し、同第4のトランジスタのエミッタを第3の抵抗を介して接地し、前記第1ベース接地型アンプに供給される前記第1の入力信号を第4のトランジスタのベースに入力し、
前記第2ベース接地型アンプを構成する第5のトランジスタのエミッタをベースとコレクタが互いに接続された第6のトランジスタのコレクタに接続し、同第6のトランジスタのエミッタを第4の抵抗を介して接地し、前記第2ベース接地型アンプに供給される前記第2の入力信号を第6のトランジスタのベースに入力し、
前記第1及び第2の差動信号をクロスカップルして生成した第3の差動信号を出力することを特徴とする差動アンプ回路。 - 前記第1エミッタ接地型アンプを構成する第1のトランジスタのコレクタは、ベースにバイアス電圧が供給される第7のトランジスタのエミッタに接続され、同第7のトランジスタのコレクタから前記第1の差動信号を構成する1つの信号を出力し、
前記第2エミッタ接地型アンプを構成する第2のトランジスタのコレクタは、ベースに前記バイアス電圧が供給される第8のトランジスタのエミッタに接続され、同第8のトランジスタのコレクタから前記第2の差動信号を構成する1つの信号を出力する、
ことを特徴とする請求項3に記載の差動アンプ回路。 - エミッタ接地型アンプとベース接地型アンプとから構成され、両アンプには共通に入力信号が供給され、該入力信号に対応する差動信号を出力する差動変換部と、
前記差動信号が前記第1及び第2の入力信号として入力される請求項1〜4のうちの何れか1項に記載の差動アンプ回路と、
を備えたことを特徴とする差動変換回路。 - ディファレンシャルペア部分を有するギルバートセルミキサからなるミキサ回路において、
前記ディファレンシャルペア部分に請求項1〜4のうちの何れか1項に記載の差動アンプ回路を用いたことを特徴とするミキサ回路。 - ディファレンシャルペア部分を有するギルバートセルミキサからなるミキサ回路において、
前記ディファレンシャルペア部分に請求項5に記載の差動変換回路を用いたことを特徴とするミキサ回路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000176491A JP4267181B2 (ja) | 2000-06-13 | 2000-06-13 | 差動アンプ回路、差動変換回路及びミキサ回路 |
US09/805,103 US6927629B2 (en) | 2000-06-13 | 2001-03-14 | Differential amplifier having improved balanced and linearity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000176491A JP4267181B2 (ja) | 2000-06-13 | 2000-06-13 | 差動アンプ回路、差動変換回路及びミキサ回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001358546A JP2001358546A (ja) | 2001-12-26 |
JP4267181B2 true JP4267181B2 (ja) | 2009-05-27 |
Family
ID=18678212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000176491A Expired - Fee Related JP4267181B2 (ja) | 2000-06-13 | 2000-06-13 | 差動アンプ回路、差動変換回路及びミキサ回路 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6927629B2 (ja) |
JP (1) | JP4267181B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6603964B1 (en) * | 2000-09-05 | 2003-08-05 | Motorola, Inc. | Mixer with reduced carrier feedthrough |
EP1500187B1 (en) * | 2002-04-08 | 2010-11-24 | ST-Ericsson SA | A differential amplifier |
US6958650B1 (en) | 2003-05-14 | 2005-10-25 | Marvell International Ltd. | Push-pull buffer/amplifier |
JP2005064766A (ja) | 2003-08-08 | 2005-03-10 | Alps Electric Co Ltd | 可変利得増幅器 |
US7801504B2 (en) | 2005-12-08 | 2010-09-21 | Qualcomm Incorporated | Common-gate common-source transconductance stage for RF downconversion mixer |
JP4725472B2 (ja) * | 2006-09-29 | 2011-07-13 | ソニー株式会社 | 引き算回路および演算増幅器 |
KR100852186B1 (ko) * | 2006-11-02 | 2008-08-13 | 삼성전자주식회사 | 광 대역 프로그래머블 가변 이득 증폭기 및 그를 포함하는무선 수신기 |
KR101682375B1 (ko) * | 2010-07-12 | 2016-12-07 | 삼성전자주식회사 | 구동 증폭기 |
JP5828069B2 (ja) | 2011-07-27 | 2015-12-02 | パナソニックIpマネジメント株式会社 | 電力分配回路 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE31545E (en) * | 1977-10-31 | 1984-03-27 | Tektronix, Inc. | Feed-forward amplifier |
US4945263A (en) * | 1989-08-23 | 1990-07-31 | National Semiconductor Corporation | TTL to ECL/CML translator circuit with differential output |
US5047728A (en) * | 1990-07-18 | 1991-09-10 | Anadigics | Amplifier having a low noise active GaAs MESFET load |
JP2914005B2 (ja) * | 1992-04-14 | 1999-06-28 | 日本電気株式会社 | 差動増幅回路 |
US5451914A (en) * | 1994-07-05 | 1995-09-19 | Motorola, Inc. | Multi-layer radio frequency transformer |
-
2000
- 2000-06-13 JP JP2000176491A patent/JP4267181B2/ja not_active Expired - Fee Related
-
2001
- 2001-03-14 US US09/805,103 patent/US6927629B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001358546A (ja) | 2001-12-26 |
US20020057132A1 (en) | 2002-05-16 |
US6927629B2 (en) | 2005-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6308058B1 (en) | Image reject mixer | |
US8279003B2 (en) | Differential RF amplifier | |
EP1829202B1 (en) | Direct conversion device with compensation means for a transmission path of a wireless communication equipment | |
JP3504731B2 (ja) | 能動ミキサ | |
US7332933B2 (en) | Circuit for compensating for the declination of balanced impedance elements and a frequency mixer | |
US8040166B2 (en) | Frequency multiplier | |
US8299838B2 (en) | Combined mixer and balun design | |
US20030013419A1 (en) | Differential to single-ended converter with large output swing | |
GB2331193A (en) | Image reject mixer arrangements | |
JP2002076235A (ja) | 半導体装置 | |
JP5128680B2 (ja) | ミキサ回路 | |
JP4267181B2 (ja) | 差動アンプ回路、差動変換回路及びミキサ回路 | |
US20090261903A1 (en) | Variable gain rf amplifier | |
JP2004120478A (ja) | ミキサ回路及び差動増幅回路 | |
KR20070106009A (ko) | 저잡음 혼합기 회로, 잡음 감소 회로, 수신기 회로,고주파수 수신기 및 잡음 감소 방법 | |
JP3382128B2 (ja) | 差動増幅器 | |
JP4015222B2 (ja) | 可変帯域幅を有する増幅器回路 | |
EP1160717A1 (en) | Analog multiplying circuit and variable gain amplifying circuit | |
JP2914258B2 (ja) | ダブルバランスミキサ回路 | |
JP3097563B2 (ja) | 利得可変増幅器 | |
EP0853373A1 (en) | Double balanced mixer | |
JP2005184608A (ja) | 通信用半導体集積回路 | |
JP2007506326A (ja) | 高性能低雑音増幅器 | |
EP1154567B1 (en) | Radio frequency amplifier and tuner | |
CN118381485B (zh) | 一种宽带高平衡单端转差分阻抗变换器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050830 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090218 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140227 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |