JP4263043B2 - 左右輪荷重差関係演算方法、荷重差制御装置及び車両制御装置 - Google Patents
左右輪荷重差関係演算方法、荷重差制御装置及び車両制御装置 Download PDFInfo
- Publication number
- JP4263043B2 JP4263043B2 JP2003208491A JP2003208491A JP4263043B2 JP 4263043 B2 JP4263043 B2 JP 4263043B2 JP 2003208491 A JP2003208491 A JP 2003208491A JP 2003208491 A JP2003208491 A JP 2003208491A JP 4263043 B2 JP4263043 B2 JP 4263043B2
- Authority
- JP
- Japan
- Prior art keywords
- force
- wheel
- vehicle body
- load difference
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Regulating Braking Force (AREA)
- Vehicle Body Suspensions (AREA)
Description
【発明の属する技術分野】
本発明は、左右輪荷重差関係演算方法、荷重差制御装置及び車両制御装置に係り、より詳細には、車両の車体運動を制御することの可能な車両制御装置及びこの車両制御装置に関連する荷重差制御装置及び左右輪荷重差関係演算方法に関する。
【0002】
【従来の技術】
車両の操縦安定性向上のためのロール剛性配分を制御する従来技術としては、車両運動がオーバーステア傾向にあるときには、ロール剛性配分を前輪側に、即ち、前輪側左右輪の荷重移動を後輪側左右輪の荷重移動よりも相対的に大きくすると共に、車両運動がアンダーステア傾向にあるときには、ロール剛性配分を後輪側に、即ち、前輪側左右輪の荷重移動を後輪側左右輪の荷重移動よりも相対的に小さくすることによって車両スタビリティの向上を狙うものがある(特許文献1参照。)。
【0003】
【特許文献1】
特開平10-086622公報
【0004】
【発明が解決しようとする課題】
しかし、上記従来技術では車両運動がアンダーステアまたはオーバーステアの傾向を示したと判断されたときのみ作動するものである。従って、判断ロジックが働かないまま限界に至った場合には、ロール剛性配分制御は作動せず、限界性能向上に寄与することはできない。
【0005】
本発明は、上記事実に鑑み成されたもので、車両運動がアンダーステアまたはオーバーステアの傾向を示したか否かを判断することなく、車両の車体運動がどうあるべきかという情報に基づき、限界性能を向上させるための車両制御装置及びこの車両制御装置に関連する荷重差制御装置及び左右輪荷重差関係演算方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的達成するため請求項1記載の発明に係る左右輪荷重差関係演算方法は、各輪のタイヤ発生力を、接地荷重に応じて変化する限界摩擦円内に設定し、所定の車体運動を得るための車体に加えるべき車体発生合力の方向とヨーモーメントと車体に加えるべき前記車体発生合力との割合に基づいて、前記車体発生合力の方向と該ヨーモーメントを達成すると共に前記車体発生合力を最大化する前左右輪の荷重差と後左右輪の荷重差との関係を表わすロール剛性配分を演算する。
【0011】
ところで、上記のように、車体運動の限界性能を最大化する前左右輪の荷重差と後左右輪の荷重差との関係を表わすロール剛性配分が予め得られれば、ドライバが望む車体運動を表す車体運動情報から該関係を表わすロール剛性配分を用いて、左右輪荷重差等の車体運動を制御することができる。
【0012】
即ち、請求項2記載の発明にかかる荷重差制御装置は、ドライバが望む車体運動を表す車体運動情報を入力する入力手段と、請求項1に記載の左右輪荷重差関係演算方法により演算された関係を表わすロール剛性配分と、前記入力された車体運動情報と、に基づいて、左右輪荷重差を制御する荷重差制御手段と、を備えている。
【0013】
このように、車体運動の限界性能を最大化する前左右輪の荷重差と後左右輪の荷重差との関係を表わすロール剛性配分を予め記憶しているので、ドライバが望む車体運動を表す車体運動情報から該関係を表わすロール剛性配分を用いて左右輪荷重差を制御するので、車両運動がアンダーステアまたはオーバーステアの傾向を示したか否かを判断することなく、車体運動を制御することができる。
【0014】
請求項3記載の発明にかかる車両制御装置は、請求項2記載の荷重差制御装置と、前記関係を表わすロール剛性配分を求める際に使用した各輪接地荷重から演算される限界摩擦円に基づいて、所定の車体運動を得るための車体に加えるべき車体発生合力の方向とヨーモーメントを達成すると共に前記車体発生合力を最大化することを特徴とする各輪のタイヤ発生力制御装置と、を備えている。
【0015】
請求項4記載の発明にかかる車両制御装置は、前記各輪のタイヤ発生力制御装置は、各輪の操舵角と、各輪の制動力及び駆動力の少なくとも一方と、を制御する制御手段を備えている。
【0016】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を詳細に説明する。
【0017】
図1に示すように、本実施の形態に係る車両制御装置は、ドライバの操作に応じた車両挙動を実現するために必要なヨーモーメントと車体合力方向に基づきロール剛性配分を演算するとともにサスペンションを制御する、ロール剛性配分演算、制御器12、演算されたロール剛性配分と各輪の摩擦係数μの推定値、車体合力の大きさ、方向に基づき各輪の限界摩擦円を推定する、演算手段としての限界摩擦円推定器14、及び推定された各論の限界摩擦円と必要なヨーモーメント、車体合力の大きさ、方向に基づき各輪の操舵角と制動力および駆動力の少なくとも一方を制御する、制御手段としての操舵、制駆動制御器16を備えている。
【0018】
なお、ロール剛性配分は、前左右輪の荷重差と後左右輪の荷重差との関係に対応する。限界摩擦円推定器14と操舵、制駆動制御器16とにより、車体運動制御手段が構成される。
【0019】
ここで、ロール剛性配分演算、制御器12は、ドライバの操作に応じた車両挙動を実現するために必要なヨーモーメントと車体合力方向に基づき限界車体合力を最大化させるロール剛性配分を予め演算しかつ記憶している。以下、ロール剛性配分の導出原理(左右輪荷重差関係演算方法)を説明する。なお、本実施の形態では、タイヤに発生する最大摩擦力がタイヤへの荷重に図2に示すように、非線型に依存していることを前提としている。
【0020】
まず、各輪の摩擦円が与えられたときの操舵、制駆動の最適制御について説明する。
【0021】
図1に示す4輪車両運動モデルについて、4輪の各々で発生するタイヤ発生力の合力として車体に加えられる力(発生合力)の方向θ(車両前後方向を基準とした角度)と各車輪の限界摩擦円の大きさ(半径)Fimax(ただし、i=1〜4であり、i=1は左前輪、i=2は右前輪、i=3は左後輪、i=4は右後輪を各々表している。)が既知である場合に、各輪のタイヤ発生力の大きさは、限界摩擦円の大きさに等しい、即ち、各輪のタイヤと路面との間に生じる摩擦円の最大値を出力するという仮定の下で、目的とするヨーモーメントを確保しつつ、最大の発生合力、すなわち車体に発生する加速度(または減速度)を最大にするための各車輪のタイヤ発生力の方向を求める。この各車輪のタイヤ発生力の方向は、発生合力方向と単輪発生力(各車輪のタイヤ発生力)との成す角度qiで表す。
【0022】
なお、限界摩擦円は、タイヤがグリップを失わないで車両の運動性能を制御できる限界を表す円であり、限界摩擦円の大きさは車輪と路面との間に生じるタイヤ摩擦力の最大値を表しており、各輪のμ推定値または仮想μ値と各輪の荷重に基づいて求めることができる。タイヤの摩擦力は、進行方向(駆動力)と横方向(右方向または左方向)の摩擦力との合成であり、何れかの方向の摩擦力が100%、すなわち限界摩擦円の大きさに一致した場合、他方向の摩擦力はゼロになる。この摩擦力の範囲をベクトル図で現わすと、図11に示すように略円形で表現できることから限界摩擦円と呼ばれている。なお、制動力は駆動力と逆方向になる。
【0023】
ところで、図3の4輪車両運動モデルについて、図4に示すように発生合力の方向をx軸、x軸に垂直な方向をy軸とする座標変換を実施すると、各タイヤの位置(x,y)=(bi,ai)は、以下の式で表すことができる。
【0024】
【数1】
【0025】
ただし、Tfは前輪間の間隔、Trは後輪間の間隔、Lfは車両重心から前輪間の中点までの距離、Lrは車両重心から後輪間の中点までの距離であり、aiはx軸からの距離、biはy軸からの距離を各々表している。
【0026】
また、現時点の車両重心周りで発生すべきヨーモーメントをMz0とすると、各車輪のタイヤ発生力の方向を示す角度qiには、以下の拘束条件が存在することになる。
【0027】
【数2】
【0028】
(9)式は、y方向には合力が発生しないことを拘束条件で表したものであり、(10)式は車両重心回りのモーメントがヨーモーメントMz0であることを拘束条件で表したものである。
【0029】
したがって、発生合力を最大化する問題は、(9)、(10)式の拘束条件を満足し、かつ以下の(11)式で表されるx軸方向の力の和Jを最大化する角度qiを求める問題となる。
【0030】
【数3】
【0031】
この問題は、非線形の最適化問題として数値的な収束演算によって求めることが可能であるが、以下で説明するように近似による解の導出が可能である。
【0032】
まず、(9)、(10)式を1次近似すると次式が得られる。
【0033】
【数4】
【0034】
また、(11)式については2次近似によって次式を得る。
【0035】
【数5】
【0036】
さらに、(14)式の最大化は、次式の最小化に置き換えることができる。
【0037】
【数6】
【0038】
という変数変換を行うと(15)式は、
【0039】
【数7】
【0040】
を満足するユークリッドノルム最小のpiを求める問題に置き換えられ、次式のように解くことができる。
【0041】
【数8】
【0042】
だたし、
【0043】
【数9】
【0044】
である。また、diagは対角行列を、+は擬似逆行列を表している。(20)-(24)式によって導出されたqiは直接各輪の発生力方向として操舵と制動または操舵と駆動の統合制御に利用することもできるし、(9)-(11)式の非線形最適化における収束演算の初期値として利用することもできる。一般に非線形最適化問題では、初期値を最適値の近傍に取ることによって収束演算の収束が速くなるという性質があり、(20)-(24)式の解を初期値として利用することによって演算効率を高める効果が期待できる。また、(21)-(24)式は、対象となる輪の位置から他の輪までの車体合成力方向距離と限界摩擦円の大きさとの積の和を表しており、結局各輪の力の方向の車体合成力方向に対する角度は、それぞれの輪の位置から他の輪までの車体合成力方向距離と限界摩擦円の大きさとの積の和に比例していることを表し表している。さらに、ai、 biは車体合成力方向θの関数であることを考えると、各輪の力の方向の車体合成力方向に対する角度は、車体合成力方向と各輪の限界摩擦円の大きさの関数として記述できることを表している。
【0045】
ところで、(20)-(24)式によって導出された近似解を中心に(9)、(10)式をテーラー展開して線形化し、線形化後の式から再び擬似逆行列を用いて解を導出、さらにこの解を中心に(9)、(10)式をテーラー展開するという繰り返し演算が考えられる。まず、(9)、(10)式をqi0中心にテーラー展開すると
【0046】
【数10】
【0047】
が得られる。また、(11)式をqi0中心に2次のテーラー展開で近似すると、
【0048】
【数11】
【0049】
となる。ここで、
【0050】
【数12】
【0051】
とすると、(27)式の最大化は、
【0052】
【数13】
【0053】
の最小化問題となる。また、(28)式より、
【0054】
【数14】
【0055】
となることから、(25)、(26)式に(30)式を代入し、整理すると、
【0056】
【数15】
【0057】
が得られる。ここで、(31)、(32)式を満足しつつ、(29)式を最小化するpiは、
【0058】
【数16】
【0059】
となる。したがって、(27)式を最小化するqiは、
【0060】
【数17】
【0061】
と演算される。この漸化式の収束(qi = qi0)は、(9)、(10)式をqi0周りで線形化した代数方程式(25)、(26)式を満たし、かつ(11)式をqi0周りで近似した(27)式を最大化するqiがqi = qi0となることを意味している。(25)、(26)式において、qi = qi0とすると
【0062】
【数18】
【0063】
となることから、qi0は(9)、(10)式を満たし、かつ(11)式の評価関数を極大化する局所最適解となっていることがわかる。
【0064】
この制御則(qiの最適化)は各輪で最大タイヤ発生力を利用するという条件付で発生力の方向のみの最適化を目的としたものであり、最大タイヤ発生力以下のタイヤ発生力を利用することによって車体発生合力を増加できる可能性が残されている。このため、つぎに、タイヤ発生力をパラメータとして扱った場合の最適化について検討する。最適化の議論にあたり、まず、(9)、(10)式に相当する拘束条件を次式のように評価関数に取り込む。
【0065】
【数19】
【0066】
であり、(37)式を最小化する、 を求める問題を考える。ここで、qiについて最適化を行うと、最適化演算後の状態において
【0067】
【数20】
【0068】
が成立する。これは、各輪のタイヤ発生力Fiを増加させるほど評価関数が減少すことを意味しており、例えば各輪のタイヤ発生力を微増させた後に再びqiについての最適化を行うロジックを繰り返すことによって、タイヤ発生力は最大タイヤ発生力となる。これは、各輪の最大摩擦力を利用して発生力の方向をパラメータとして最適化を図る手法が摩擦円内の任意のタイヤ発生力を利用する制御則の中で最適、すなわち最大の車体発生合力を得る制御則となっていることを示すものである。
【0069】
図5は、レーンチェンジの初期段階を仮定し、一定のヨーモーメント(1000Nm)を確保しつつ、車体横力を最大化させることを目的として、前輪は最大タイヤ発生力をすべて横力として利用するとともに、後輪はヨーモーメント確保のために最大横力の86%を横力として利用したときの車体横力を示したものである。これは、操舵制御のみでレーンチェンジ性能を最大限発揮させることに対応しており、前輪の最大タイヤ発生力でレーンチェンジ性能が制約されている。また、各輪のタイヤ発生力は、すべて同一(横方向)の方向を向いており、qi =0となっていることから、タイヤ発生力の大きさを制約条件として考えた下では、最適な制御となっていることがわかる。
【0070】
一方、図6は、各輪の最大摩擦力を利用して発生力の方向をパラメータとして最適化を図る手法によって最適化されたときの車体横力を示しており、左右輪の制駆動力差によってヨーモーメントを発生させるDYC(ダイレクト・ヨーモーメント・コントロール)を組み合わせて前後輪のタイヤ発生力をすべて利用することによって限界性能が向上する(限界横加速度が6%増加)ことがわかる。なお、このシミュレーションでは、前後輪のロール剛性配分は60:40として荷重移動後の摩擦円を図2の特性に基づき導出している。
【0071】
上記では、各輪の摩擦円が与えられたときの操舵、制駆動の最適制御について議論したが、次に、サスペンション制御を更に組み合わせ、ロール剛性配分を制御パラメータとして各輪摩擦円の大きさを変化させたときの最適制御(車体合力最大化)について考える。
【0072】
前述したように、最大タイヤ発生力は荷重に関して図2に示すような非線形特性を有している。即ち、左右輪の荷重差が小さいほど左右2輪の最大タイヤ発生力の合計は大きくなる。このため、例えば限界レーンチェンジのときには、十分なヨーモーメントを確保する必要のあるレーンチェンジ初期段階においては、後輪のロール剛性配分を高めて前輪の左右荷重差を小さくし前2輪の最大タイヤ発生力を増加させるとともに、ヨーモーメント抑制の必要のあるレーンチェンジ終了段階においては、前輪のロール剛性配分を高めて後輪の左右荷重差を小さくし後2輪の最大タイヤ発生力を増加させることによって限界レーンチェンジにおける性能向上が期待できる。ここでは、所望のヨーモーメントや発生合力の方向に依存したロール剛性配分の適値が存在することを示し、車体発生合力を最大化するためのロール剛性配分制御則を導出する。
【0073】
図7は、図6と同じ1000Nmのヨーモーメントを得るとともに車体横力を最大化する操舵、制駆動統合制御時の横加速度を前輪ロール剛性配分をパラメータとして示したものである。ここでは、ロール剛性配分に応じた各輪の最大タイヤ発生力を導出し、この各輪最大タイヤ発生力の条件下で最適な操舵、制駆動統合制御を上記手法で導出した結果を示している。
【0074】
即ち、前輪ロール剛性配分をパラメータとして変化させると、これに伴い、前輪の左右輪各々の荷重は変化し、これにより、前輪の左右輪各々の最大タイヤ発生力は、図2に示すように、変化する。即ち、前輪の左右輪各々の最大摩擦円の大きさが変化する。この大きさを用いて、(11)式、又は、(20)式〜(24)式、若しくは(34)式から、各輪のタイヤ発生力の方向(qi)を求め、横加速度を求める。即ち、前輪ロール剛性配分をパラメータとして変化させる毎に、各輪のタイヤ発生力の方向(qi)を求め、横加速度を求める。その結果、図7に示す関係が得られる。
【0075】
図7より、ロール剛性配分を変化させ、各輪の最大タイヤ発生力の配分を変化させることによって車体発生合力が変化するとともに、車体発生合力を最大化する最適なロール剛性配分が存在していることがわかる。即ち、前輪の割合が0.43(後輪の割合は0.57)として得られる。
【0076】
図8は、図7における最適ロール剛性配分(前輪の割合が0.43、後輪の割合が0.57)時の各輪の限界摩擦円と、統合制御時の各輪の例えば、(34)式等から得られる発生力方向を図示したものである。ロール剛性配分の最適化によって図6の結果と比較して前輪左右輪間における限界摩擦円の大きさの差が小さくなり、車体横加速度の大きさが、6.9644m/s2から7.4431 m/s2に増加していることがわかる。
【0077】
上記図7に示した例では、ヨーモーメントを一定としているが、図9では、図7で導出した最適ロール剛性配分(最適操舵、制駆動、サス統合制御)で得られる横加速度を、ヨーモーメントを変化させて示したものである。必要なヨーモーメントが大きいほど(正の値)前輪のロール剛性配分を小さく前輪の最大タイヤ発生力を増加させるとともに、必要なヨーモーメントが小さいほど(負の値)前輪のロール剛性配分を大きく後輪の最大タイヤ発生力を増加させることで限界性能の向上が達成できることがわかる。
【0078】
上記図7及び図9に示した例では、車体合力方向を一定としているが、図10では、図9の例にさらに車体合力方向(0は加速、π/2は旋回、πは減速に対応)をパラメータとして変化させたときの最適な、すなわち車体発生合力を最大化させるロール剛性配分を3次元マップとして示したものである。この図10より、例えば、前輪に大きなタイヤ発生力が必要となるにも関わらず荷重が小さくなる、すなわち加速しながらレーンチェンジを開始する状況(車体発生合力方向<π/2、ヨーモーメント正)において、ロール剛性配分を後輪側に移すことで前輪タイヤ発生力を確保し、車体発生合力の向上に寄与することが理解できる。結局、図10に示したロール剛性配分、および前報の操舵、制駆動統合制御則によって限界性能を最大限引き出すための操舵、制駆動、サス統合制御が実現できる。
【0079】
以上説明したように、ロール剛性配分演算、制御器12は、ドライバの操作に応じた車両挙動を実現するために必要なヨーモーメントと車体合力方向に基づき限界車体合力を最大化させるロール剛性配分を、図9、図10に示すようにマップとして記憶している。なお、マップに代えて、データテーブルや関係式により記憶するようにしてもよい。
【0080】
次に、本実施の形態の作用を説明する。
【0081】
本実施の形態では、各輪のグリップ余裕度を最大化する統合制御法を実現する。
【0082】
ロール剛性配分演算、制御器12は、所望のヨーモーメントと車体合力方向から図9のマップに基づき最適ロール剛性配分を演算し、アクティブサスペンションまたは前輪2輪および後輪2輪間に設置されたアクティブスタビによって、該演算された最適ロール剛性配分を実現する。このロール剛性配分は、限界性能を最大限引き出すための値であるが、非限界領域においてこの値に設定することによって、タイヤ発生力の余裕を最大化することになる。
【0083】
次に、限界摩擦円推定器14は、演算されたロール剛性配分と各輪ごとの摩擦係数μの推定値、車体の前後加速度、横加速度から各輪ごとの限界摩擦円の大きさを演算する。
【0084】
ここで、限界摩擦円の大きさは次のようにして演算する。
【0085】
ロール剛性配分と前後、横加速度から各輪の接地荷重を次式に基づいて推定演算する。各輪の静止荷重は、
【0086】
【数21】
【0087】
と演算できる。ただし、Fzi0:各輪の静止荷重(i=1、2、3、4、1:左前輪、2:右前輪、3:左後輪、4:右後輪)、M:車両質量、g:重力加速度である。また、静止荷重からの変動をΔFziとすると、車体姿勢の釣り合いから、
【0088】
【数22】
【0089】
ただし、h:重心高、γrall:ロール剛性配分(前輪の負担率)、gx:前後加速度、gy:横加速度という関係が存在する。したがって、各輪の荷重変動は、(48)-(51)式を解くことによって、
【0090】
【数23】
【0091】
として求められる。ここでは、各輪の荷重変動を演算するために車体の前後方向、横方向の加速度信号を用いているが、次式のように所望の車体発生合力の大きさF0と方向θに基づいて推定演算を行っても良い。この場合、車体の前後加速度、横加速度を計測するセンサが不要となる。
【0092】
【数24】
【0093】
したがって、各輪の接地荷重Fziは、(46)、(47)式に(52)または(53)式を加算することによって次式に示すように演算される。
【0094】
【数25】
【0095】
つぎに、各輪の限界摩擦円の大きさFimaxは、各輪の摩擦係数μの推定値μiと各輪の接地荷重Fziから
【0096】
【数26】
【0097】
と演算される。
【0098】
次に、操舵、制駆動制御器16は、上記のように推定された各論の限界摩擦円と必要なヨーモーメント、車体合力の大きさ、方向に基づき各輪の操舵角と制動力および駆動力の少なくとも一方を制御する。
【0099】
即ち、(55)式を(34)式の漸化式に代入し、収束演算後のqiを求め、さらに(11)式に代入して、限界車体発生合力の大きさJを演算する。ここで、所望の車体発生合力の大きさが限界車体発生合力の大きさより大きい場合には、限界車体発生合力を出力させるべく各輪のタイヤ発生力を限界摩擦円の大きさに設定するとともに、qiを実現するための操舵、制駆動統合制御を実行する。また、所望の車体発生合力の大きさが限界車体発生合力の大きさより小さい場合には、各輪のμ利用率をγ(0<γ<1)とした最適問題を解く。ここでの拘束条件は、
【0100】
【数27】
【0101】
すなわち、
【0102】
【数28】
【0103】
と表される。また、車体発生合力の大きさを拘束条件として表すと
【0104】
【数29】
【0105】
すなわち、
【0106】
【数30】
【0107】
となる。したがって、各輪のグリップ余裕を最大化する協調法は(56)-(58)を満足し、摩擦係数μの利用率γを最小にするqiを求める問題となる。また、この問題は、F0≠0のときには(57)、(58)式を整理することによって、
【0108】
【数31】
【0109】
と(56)式を満足しかつ、
【0110】
【数32】
【0111】
を最大化するqiを求める問題と考えることもできる。限界車体合力発生時同様に近似解の導出を考える場合、(56)、(59)式は、
【0112】
【数33】
【0113】
となり、また(60)式は、(14)式に一致する。このため、限界車体合力発生時同様(16)式の変数変換を実施し、
【0114】
【数34】
【0115】
を満足するユークリッドノルム最小のpiを求める問題に置き換えられ、次式のように解くことができる。
【0116】
【数35】
【0117】
だたし、
【0118】
【数36】
【0119】
である。また、diagは対角行列を、+は擬似逆行列を表している。(65)-(69)式によって導出されたqiは直接各輪の発生力方向として操舵と制動または操舵と駆動の統合制御に利用することもできるし、(65)-(69)式の非線形最適化における収束演算の初期値として利用することもできる。なお、テーラー展開に基づく繰り返し演算によって精度の良い近似解を求める漸化式は、次式のように与えられる。
【0120】
【数37】
【0121】
ただし、
【0122】
【数38】
【0123】
である。なお、摩擦係数μの利用率γは、こうして導出されたqiから
【0124】
【数39】
【0125】
に基づき演算される。また、各輪の制駆動力は、各輪のμ利用率γ、限界摩擦円の大きさFimaxおよび方向qi +θから
【0126】
【数40】
【0127】
と導出できる。また、同様に各輪の横力は、
【0128】
【数41】
【0129】
と導出できる。各輪の舵角は、例えばブラッシュモデルと車両運動モデルに基づいて演算することができる。ブラッシュモデルは、タイヤ発生力特性を理論式に基づいて記述したモデルであり。タイヤ発生力がブラッシュモデルに従って発生すると仮定すると、限界摩擦力Fimax、摩擦係数μの利用率γ、発生力の方向qi +θからスリップ角βiを
【0130】
【数42】
【0131】
ただし、
【0132】
【数43】
【0133】
ここで、Ks:ドライビングスティッフネス、Kβ:コーナリングスティッフネスである。さらに各輪の舵角は、スリップ角から車両運動モデルに基づいて演算される。すなわち、車速v、操舵角、アクセル開度、ブレーキ踏力などから目標となる車両運動状態量として演算されるヨー角速度r0、車体スリップ角β0から
【0134】
【数44】
【0135】
と演算することができる。
【0136】
そして、操舵、制御駆動制御器16は、上記演算により得られた各輪の舵角((76)式〜(79)式)及び制駆動力((72)式)から、各輪の操舵角と、各輪の制動力及び駆動力の少なくとも一方と、を制御する。
【0137】
以上説明したように本実施の形態では、ドライバの操作に応じた車両挙動を実現するために必要なヨーモーメントと車体合力方向に基づき限界車体合力を最大化させるロール剛性配分を演算している。このため、車両運動がオーバーステアまたはアンダーステアの挙動が生じない状態であっても常に最適なロール剛性配分を実現できるという特徴がある。
【0138】
本実施の形態で実現される限界車体合力を最大化させるロール剛性配分は、操舵、制駆動の制御を前提としたものであり、同時に操舵、制駆動を制御することによって必要なヨーモーメントを確保しつつ、最大化された限界車体合力を実現することができる。
【0139】
また、ドライバが限界内の余裕のある走行を意図した場合には、各輪のグリップ余裕度を最大化した操舵、制駆動、懸架系統合制御が実現される。
【0140】
更に、本実施の形態では、操舵制御と制駆動制御の協調を実施する際に、常に各輪のμ利用率を均等にすることが可能となり、路面や横風などの外乱に対し最も余裕のある運動性能を示すことが可能である。
【0141】
なお、本実施の形態では、所望ヨーモーメントを確保しつつ、最大の発生合力、すなわち、車体に発生する加速度(又は減速度)を最大にすることを目的としているが、ヨーモーメントと車体発生力の大きさの割合を一定にしつつ、両者の大きさを最大にすることを目的にすることもできる。この場合、ドライバの操作に応じた車両挙動を実現するために必要なヨーモーメントと車体発生合力に応じたロール剛性配分を導出するためのマップは、ヨーモーメントと車体発生合力の大きさの割合と、車体発生合力の方向を入力とし、そのときの最適なロール剛性配分を出力とする3次元マップとなる。図12に、3次元マップを示す。所望のヨーモーメントが車体合力の大きさに比較して大きく正の値の場合(スピン方向のモーメントが必要な場合)、前輪ロール剛性配分は小さく、即ち、ロール剛性配分を後輪側に移すとともに、所望のヨーモーメントが車体合力の大きさに比較して大きく負の場合(アンチスピン方向のモーメントが必要な場合)、前輪ロール剛性配分は大きく、すなわちロール剛性配分を前輪側に移すマップとなっている。また、図13には、この場合の車両制御装置の構成を示すブロック図を示す。なお、図13に示すように、この場合の車両制御装置は、図1に示す構成と略同様であるが、ヨーモーメント及び車体合力の大きさを入力し、ヨーモーメント及び車体合力の商をロール剛性配分演算、制御機12に出力する除算器18を更に備えている点で相違する。
【0142】
なお、以上説明した実施の形態では、前左右輪の荷重差と後左右輪の荷重差との関係として左右輪のロール剛性配分(前左右輪の荷重差と後左右輪の荷重差との割合)を求めているが、本発明はこれに限定されるものではなく、前左右輪の荷重差と後左右輪の荷重差との比を求めるようにしてもよい。
【0143】
【発明の効果】
以上説明したように本発明は、車体運動の限界性能を最大化する前左右輪の荷重差と後左右輪の荷重差との関係を表わすロール剛性配分を予め記憶しているので、ドライバが望む車体運動を表す車体運動情報から該関係を表わすロール剛性配分を用いて左右輪荷重差を制御するので、車両運動がアンダーステアまたはオーバーステアの傾向を示したか否かを判断することなく、車体運動を制御することができる、という効果を有する。
【図面の簡単な説明】
【図1】本実施の形態に係る車両制御装置の構成を示すブロック図である。
【図2】タイヤに発生する最大摩擦力の荷重依存性を示すグラムである。
【図3】車両運動モデルを示す概略図である。
【図4】図1の車両運動モデルにおける発生合力に対応した座標系を示す概略図である。
【図5】レーンチェンジの初期段階を仮定し、一定のヨーモーメント(1000Nm)を確保しつつ、車体横力を最大化させることを目的として、前輪は最大タイヤ発生力をすべて横力として利用するとともに、後輪はヨーモーメント確保のために最大横力の86%を横力として利用したときの車体横力を示した図である。
【図6】前後輪のタイヤ発生力をすべて利用することによって限界性能が向上した結果を示す図である。
【図7】 1000Nmのヨーモーメントを得るとともに車体横力を最大化する操舵、制駆動統合制御時の横加速度を前輪ロール剛性配分をパラメータとして示した、ロール剛性配分と横加速度との関係を示すグラフである。
【図8】図7における最適ロール剛性配分時の各輪の限界摩擦円と統合制御時の各輪の発生力方向を示した図である。
【図9】図7で導出した最適ロール剛性配分(最適操舵、制駆動、サス統合制御)で得られる横加速度を、ヨーモーメントを変化させて示した、横加速度、ヨーモーメント、及びロール剛性配分の関係を示したグラフである。
【図10】図9の関係に、更に車体合力方向をパラメータとして変化させたときの、車体合力方向、ヨーモーメント、及びロール剛性配分の関係を示したグラフである。
【図11】限界摩擦円を示すグラフである。
【図12】ヨーモーメントと車体発生合力の大きさの割合、車体発生合力の方向、及び最適なロール剛性配分の3次元マップである。
【図13】変形例に係る車両制御装置の構成を示すブロック図である。
【符号の説明】
12 ロール剛性配分演算、制御器
14 限界摩擦円推定器
16 操舵、制駆動制御器
Claims (4)
- 各輪のタイヤ発生力を、接地荷重に応じて変化する限界摩擦円内に設定し、所定の車体運動を得るための車体に加えるべき車体発生合力の方向とヨーモーメントと車体に加えるべき前記車体発生合力との割合に基づいて、前記車体発生合力の方向と該ヨーモーメントを達成すると共に前記車体発生合力を最大化する前左右輪の荷重差と後左右輪の荷重差との関係を表わすロール剛性配分を演算する左右輪荷重差演算方法。
- ドライバが望む車体運動を表す車体運動情報を入力する入力手段と、
請求項1に記載の左右輪荷重差関係演算方法により演算された前記関係を表わすロール剛性配分と前記入力された車体運動情報と、に基づいて、左右輪荷重差を制御する荷重差制御手段と、
を備えた荷重差制御装置。 - 請求項2記載の荷重差制御装置と、前記関係を表わすロール剛性配分を求める際に使用した各輪接地荷重から演算される限界摩擦円に基づいて、所定の車体運動を得るための車体に加えるべき車体発生合力の方向とヨーモーメントを達成すると共に前記車体発生合力を最大化することを特徴とする各輪のタイヤ発生力制御装置と、を備えた車両制御装置。
- 前記各輪のタイヤ発生力制御装置は、各輪の操舵角と、各輪の制動力及び駆動力の少なくとも一方と、を制御する制御手段を備えた請求項3記載の車両制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208491A JP4263043B2 (ja) | 2003-08-22 | 2003-08-22 | 左右輪荷重差関係演算方法、荷重差制御装置及び車両制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208491A JP4263043B2 (ja) | 2003-08-22 | 2003-08-22 | 左右輪荷重差関係演算方法、荷重差制御装置及び車両制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005067229A JP2005067229A (ja) | 2005-03-17 |
JP4263043B2 true JP4263043B2 (ja) | 2009-05-13 |
Family
ID=34401760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003208491A Expired - Fee Related JP4263043B2 (ja) | 2003-08-22 | 2003-08-22 | 左右輪荷重差関係演算方法、荷重差制御装置及び車両制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4263043B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4511815B2 (ja) * | 2003-09-26 | 2010-07-28 | アイシン精機株式会社 | サスペンション制御装置 |
JP4285343B2 (ja) | 2004-07-07 | 2009-06-24 | トヨタ自動車株式会社 | 車輌のロール剛性制御装置 |
FR2888810B1 (fr) * | 2005-07-25 | 2007-10-12 | Renault Sas | Procede de controle de l'orientation directionnelle d'un vehicule |
JP2007269295A (ja) * | 2006-03-31 | 2007-10-18 | Toyota Central Res & Dev Lab Inc | 車両運動制御装置及び制御方法 |
JP4781882B2 (ja) | 2006-03-31 | 2011-09-28 | 株式会社豊田中央研究所 | 車両運動制御装置及び制御方法 |
JP4796480B2 (ja) * | 2006-12-06 | 2011-10-19 | 株式会社豊田中央研究所 | 車両運動制御装置及び制御方法 |
JP5104102B2 (ja) * | 2007-07-31 | 2012-12-19 | 日産自動車株式会社 | 車両の駆動力配分制御装置 |
JP2009078759A (ja) * | 2007-09-27 | 2009-04-16 | Mazda Motor Corp | 車両用サスペンション制御装置 |
JP2009078758A (ja) * | 2007-09-27 | 2009-04-16 | Mazda Motor Corp | 車両用サスペンション制御装置 |
CN103318155B (zh) * | 2013-05-06 | 2015-03-11 | 山东交通学院 | 电动车辆驱动力矩与制动力矩优化分配方法 |
-
2003
- 2003-08-22 JP JP2003208491A patent/JP4263043B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005067229A (ja) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2568220C (en) | Control device for vehicle | |
US10384673B2 (en) | Method and device for controlling vehicle motion and vehicle equipped with same | |
JP4165380B2 (ja) | 車両制御方法及び車両制御装置 | |
US8521349B2 (en) | Vehicle steerability and stability control via independent wheel torque control | |
US8718872B2 (en) | Vehicle attitude controller | |
JP4445889B2 (ja) | 車両制御装置 | |
EP2433840A1 (en) | Motion control unit for vehicle based on jerk information | |
Huh et al. | Handling and driving characteristics for six-wheeled vehicles | |
JP4747722B2 (ja) | 車両の横転防止装置 | |
CN112572411A (zh) | 一种考虑轮胎侧偏特性的车辆底盘协调控制方法及系统 | |
JP4263043B2 (ja) | 左右輪荷重差関係演算方法、荷重差制御装置及び車両制御装置 | |
Koehler et al. | Improved energy efficiency and vehicle dynamics for battery electric vehicles through torque vectoring control | |
JP2019155970A (ja) | 車両の制御装置及び車両の制御方法 | |
CN117124868A (zh) | 制动驱动力控制装置 | |
Selby et al. | A coordination approach for DYC and active front steering | |
JP6267440B2 (ja) | 車両制御装置 | |
JP4423961B2 (ja) | 電動車両のモータ出力制御装置 | |
JP2018144646A (ja) | 姿勢制御装置 | |
Shim et al. | Using µ feedforward for vehicle stability enhancement | |
JP6506196B2 (ja) | 車輪制御装置 | |
JP4796480B2 (ja) | 車両運動制御装置及び制御方法 | |
JP2009502621A (ja) | 車両の操舵方向の制御方法 | |
Yu et al. | Vehicle handling assistant control system via independent rear axle torque biasing | |
Casanova et al. | On the optimisation of the longitudinal location of the mass centre of a formula one car for two circuits | |
JP4918787B2 (ja) | 4輪独立駆動車の駆動力配分装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |