JP4262226B2 - Polishing apparatus and polishing method - Google Patents

Polishing apparatus and polishing method Download PDF

Info

Publication number
JP4262226B2
JP4262226B2 JP2005198004A JP2005198004A JP4262226B2 JP 4262226 B2 JP4262226 B2 JP 4262226B2 JP 2005198004 A JP2005198004 A JP 2005198004A JP 2005198004 A JP2005198004 A JP 2005198004A JP 4262226 B2 JP4262226 B2 JP 4262226B2
Authority
JP
Japan
Prior art keywords
polishing
grindstone
workpiece
fluid
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005198004A
Other languages
Japanese (ja)
Other versions
JP2007015046A (en
Inventor
奈津子 池田
良衛 金子
一樹 上段
雅一 高津
篤 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano TEM Co Ltd
Original Assignee
Nano TEM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano TEM Co Ltd filed Critical Nano TEM Co Ltd
Priority to JP2005198004A priority Critical patent/JP4262226B2/en
Publication of JP2007015046A publication Critical patent/JP2007015046A/en
Application granted granted Critical
Publication of JP4262226B2 publication Critical patent/JP4262226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は砥石を用いて被加工物の表面を研磨加工する研磨装置および研磨方法に関する。   The present invention relates to a polishing apparatus and a polishing method for polishing a surface of a workpiece using a grindstone.

砥石は硬質の粒子つまり砥粒を結合材で固めて形成される工具である。砥石を用いた加工には、研削加工と研磨加工とがあり、習慣的には荒加工は研削加工と言われ、仕上げ加工は研磨加工と言われている。これらの加工は、砥石を被加工物つまりワークに押し付けた状態のもとで砥石と被加工物とを相対的に移動させることによって被加工物表面つまり被加工面を砥粒により多数の切りくずとして削り取る加工であって、両者は機能的には同義でありこの明細書では両者を含めて研磨加工と言う。   A grindstone is a tool formed by solidifying hard particles, that is, abrasive grains with a binder. There are two types of processing using a grindstone: grinding processing and polishing processing. Routine processing is customarily referred to as grinding processing, and finishing processing is referred to as polishing processing. In these processes, the surface of the workpiece, i.e., the surface to be processed, is moved by the abrasive grains by relatively moving the grindstone and the workpiece while the grindstone is pressed against the workpiece, i.e., the workpiece. The two are functionally synonymous, and in this specification, both are referred to as polishing.

砥石を用いて研磨加工される被加工物には種々のものがあり、例えばサファイア基板やシリコン基板の表面を研磨加工するためにも砥石が用いられている。サファイア基板は青色や白色のLEDを製造するために使用されており、これらのLEDはサファイア基板の上に窒化物半導体デバイスをエピタキシャル成長により形成することにより製造され、半導体集積回路はシリコン等の単結晶基板の上に半導体デバイスを形成することにより製造される。シリコン基板はシリコンインゴットを薄い板状にスライシングすることにより製造され、半導体デバイスを形成する前に回路形成面は研磨加工により高い表面荒さに鏡面仕上げされる。同様にサファイア基板も表面は研磨加工により表面仕上げされる。   There are various types of workpieces that are polished using a grindstone. For example, a grindstone is used for polishing the surface of a sapphire substrate or a silicon substrate. Sapphire substrates are used to manufacture blue and white LEDs. These LEDs are manufactured by forming nitride semiconductor devices on a sapphire substrate by epitaxial growth, and the semiconductor integrated circuit is a single crystal such as silicon. It is manufactured by forming a semiconductor device on a substrate. A silicon substrate is manufactured by slicing a silicon ingot into a thin plate shape, and before forming a semiconductor device, a circuit forming surface is mirror-finished to a high surface roughness by polishing. Similarly, the surface of the sapphire substrate is finished by polishing.

スライシングされた基板を被加工物として、その表面を鏡面仕上げしたり基板の厚みを薄くするために砥石により基板は研磨加工されており、研磨加工時には砥石と被加工物との間に水道水や研磨液を塗布して砥石および被加工物を冷却するようにしている。   A sliced substrate is used as a workpiece, and the substrate is polished with a grindstone to mirror-finish the surface or reduce the thickness of the substrate. Tap water or water is used between the grindstone and the workpiece during polishing. A polishing liquid is applied to cool the grindstone and the workpiece.

砥石と被加工物とを冷却するには、加工時に砥石の表面に冷却液として塗布された研磨液等が充分に砥石の加工面と被加工物の被加工面との間に入り込むようにする必要があるが、外部から加工面または被加工面に冷却液を塗布しただけでは充分に両方の間に冷却液が入り込まずに、研磨加工時に被加工物は加熱されることがある。被加工物が部分的にも過加熱されると、被加工物に熱変形や熱歪みが発生し、高品質の研磨加工を行うことができず、製品の歩留まりを低下させることになる。   In order to cool the grindstone and the workpiece, the polishing liquid applied as a coolant to the grindstone surface during machining should be sufficiently inserted between the grindstone surface and the workpiece surface. Although it is necessary, the workpiece may be heated during the polishing process because the coolant does not sufficiently enter between the processing surface or the processing surface from the outside and the coolant does not sufficiently enter between the two. If the workpiece is partially overheated, thermal deformation or thermal distortion occurs in the workpiece, and high-quality polishing cannot be performed, resulting in a decrease in product yield.

砥石の加工面には研磨加工により研磨粉が付着して目詰まりを発生させることになるので、目詰まりを除去して砥粒を加工面に露出させるために加工面を所定時間の研磨加工が終了した後に、ドレッサを用いてドレッシング処理を行っている。この処理は加工面を取り除く処理であり、加工面が摩耗することになるので、ドレッシング処理が繰り返された砥石は、薄くなってしまい使用することができなくなる。   Since the polishing powder adheres to the processed surface of the grindstone and clogs are generated, the processed surface is polished for a predetermined time in order to remove the clogging and expose the abrasive grains to the processed surface. After finishing, dressing is performed using a dresser. This process is a process for removing the processed surface, and the processed surface is worn. Therefore, the grindstone on which the dressing process is repeated becomes thin and cannot be used.

砥石を用いた研磨加工時には、砥石の砥粒が被加工面に所定の面圧となって接触するように、砥石と被加工物に所定の押し付け力が加わるようにしており、外部から砥石に対し被加工面に垂直方向の推力を加えるようにしているが、外部から推力を加える場合には面圧を高精度に調整することが困難であり、特に砥石と被加工物との間にこれらに塗布された冷却液が介在していると、砥粒が確実に被加工面に接触せず加工能率が低下することになる。   At the time of polishing using a grindstone, a predetermined pressing force is applied to the grindstone and the work piece so that the abrasive grains of the grindstone come into contact with the work surface at a predetermined surface pressure. On the other hand, thrust in the vertical direction is applied to the work surface. However, when thrust is applied from the outside, it is difficult to adjust the surface pressure with high accuracy, especially between the grindstone and the work piece. If the coolant applied to the surface is interposed, the abrasive grains do not reliably contact the surface to be processed, and the processing efficiency is reduced.

本発明の目的は、砥石および被加工物の冷却効率を高めて高品質の研磨加工を行い得るようにすることにある。   An object of the present invention is to increase the cooling efficiency of a grindstone and a workpiece so that high-quality polishing can be performed.

本発明の他の目的は、砥石の加工面のドレッシング頻度を少なくして砥石寿命を高めることにある。   Another object of the present invention is to reduce the dressing frequency of the processed surface of the grindstone and increase the life of the grindstone.

本発明の他の目的は、砥石の砥粒に加わる面圧を調整し加工能率を向上することにある。   Another object of the present invention is to improve the working efficiency by adjusting the surface pressure applied to the abrasive grains of the grindstone.

本発明の研磨装置は、被加工物の被加工面を研磨加工する研磨装置であって、砥粒、結合材および気孔を有し平坦な加工面が設けられた多孔質の砥石と、前記加工面と前記被加工面とを接触させた状態のもとで、前記砥石と前記被加工物とを相対的に摺動させる駆動手段と、前記砥石が取り付けられる砥石ホルダーに形成され、前記砥石の前記気孔を介して前記加工面に連通する流体通路と、前記流体通路に接続され、前記被加工面と前記加工面との間に形成される研磨空隙に前記砥石の前記気孔を介して加圧された流体を供給し前記研磨空隙に加圧された流体の流れを形成する加圧流体供給手段と、前記流体通路に接続され、前記砥石の前記気孔を負圧状態にし、前記研磨空隙に流体を流入させて流体を前記気孔を介して前記流体通路に導く負圧生成手段と、前記加圧流体供給手段又は前記負圧生成手段により生成される圧力を調整して前記研磨空隙の厚みを変化させる圧力調整手段とを有することを特徴とする。 The polishing apparatus of the present invention is a polishing apparatus that polishes a work surface of a workpiece, and includes a porous grindstone that has abrasive grains, a binder, and pores and is provided with a flat work surface. A driving means for relatively sliding the grindstone and the work piece in a state where the surface and the work surface are in contact with each other, and a grindstone holder to which the grindstone is attached. A fluid passage communicating with the machining surface via the pores, and a polishing gap connected between the fluid passage and formed between the workpiece surface and the machining surface is pressurized via the pores of the grindstone a pressurized fluid supply means for forming a flow of the fluid pressure in the polishing gap supplying fluid, connected to said fluid passageway, said pores of said grinding wheel in the negative pressure state, the fluid in the polishing gap Into the fluid passage through the pores. A negative pressure generating means, and having a pressure adjusting means for changing the thickness of the polishing gap by adjusting the pressure generated by the pressurized fluid supply means or said negative pressure generating means.

本発明の研磨装置は、前記砥粒がダイヤモンドとCBNのいずれかの単体またはこれらの混合体であることを特徴とする。   The polishing apparatus of the present invention is characterized in that the abrasive grains are any one of diamond and CBN or a mixture thereof.

本発明の研磨装置は、前記砥石がダイヤモンドとCBNのいずれかの単体またはこれらの混合体、あるいは前記単体または前記混合体と炭化ケイ素、ムライト、または溶融アルミナの少なくともいずれかの混合体を含む主研磨領域と、ダイヤモンド、溶融アルミナまたは炭化ケイ素の単体または混合体を含み前記主研磨領域よりも低い硬度の副研磨領域とを有することを特徴とする。   In the polishing apparatus of the present invention, the grindstone includes a single element of diamond and CBN or a mixture thereof, or a mixture of at least one of the single element or the mixture and silicon carbide, mullite, or molten alumina. It has a polishing region and a sub-polishing region having a hardness lower than that of the main polishing region, including a single substance or a mixture of diamond, molten alumina, or silicon carbide.

本発明の研磨方法は、被加工物の被加工面を研磨加工する研磨方法であって、砥粒、結合材および気孔を有し平坦な加工面が設けられた多孔質の砥石の前記加工面と前記被加工面とを接触させた状態のもとで、前記砥石と前記被加工物とを相対的に摺動させながら、前記被加工面と前記加工面との間に形成される研磨空隙に前記砥石の前記気孔を介して加圧された流体を供給し前記研磨空隙に加圧された流体の流れを形成する第一の研磨工程と、前記砥石の前記気孔を負圧状態にし、前記研磨空隙に流体を流入させて流体を前記気孔を介して前記流体通路に導く負圧生成する第二の研磨工程とを実行し、前記第一の研磨工程又は前記第二の研磨工程において生成される圧力を調整して前記研磨空隙の厚みを変化させることを特徴とする。 The polishing method of the present invention is a polishing method for polishing a work surface of a workpiece, and is a work surface of a porous grindstone having abrasive grains, a binder, and pores and provided with a flat work surface. A polishing gap formed between the work surface and the work surface while relatively sliding the grindstone and the work piece in a state where the work surface is in contact with the work surface a first polishing step of forming a flow of the pressure fluid in through the pores of the grinding wheel by supplying a pressurized fluid the polishing gap, the pores of the grinding wheel to a negative pressure state, the And a second polishing step for generating a negative pressure for introducing a fluid into the polishing gap and guiding the fluid to the fluid passage through the pores, and generated in the first polishing step or the second polishing step. And adjusting the pressure to change the thickness of the polishing gap .

本発明によれば、通気性を有する多孔質の砥石を貫通させて空気や液体等の流体を砥石の加工面に流すようにしたので、砥石および被加工物表面を流体によって効率的に冷却することができ、砥石および被加工物に過加熱が発生することを確実に防止できる。   According to the present invention, a porous grindstone having air permeability is penetrated so that a fluid such as air or liquid flows on the processing surface of the grindstone, so that the grindstone and the workpiece surface are efficiently cooled by the fluid. It is possible to reliably prevent overheating of the grindstone and the workpiece.

本発明によれば、砥石の気孔により得られる砥石の通気性を利用して砥石からこの加工面に向けて流体を吐出させることにより、砥石の加工面に研磨粉が付着することを防止でき、砥石の目詰まり発生を防止できる。これにより、砥石のドレッシング処理の頻度を少なくして砥石寿命を伸ばすことができる。   According to the present invention, it is possible to prevent the abrasive powder from adhering to the processing surface of the grindstone by discharging the fluid from the grindstone toward the processing surface using the air permeability of the grindstone obtained by the pores of the grindstone. The clogging of the grindstone can be prevented. Thereby, the frequency of the dressing process of the grindstone can be reduced and the grindstone life can be extended.

本発明によれば、砥石と被加工物との間に形成される研磨空隙を大気圧よりも高い圧力状態として研磨空隙に加圧流体の流れを形成した加工工程と、研磨空隙を大気圧よりも低い圧力状態として研磨空隙に流体の流れを形成した加工工程とを実行して被加工物を研磨加工するので、砥石の目詰まりを防止しつつ研磨加工効率を高めることができる。また、砥粒が被加工物に加える面圧を調整することができ、研磨加工精度を高めることができる。 According to the present invention, the processing step in which the polishing gap formed between the grindstone and the workpiece is in a pressure state higher than atmospheric pressure to form a flow of pressurized fluid in the polishing gap, and the polishing gap from atmospheric pressure. since polishing a workpiece by performing a processing step of forming a flow of fluid material in the polishing gap as low pressure conditions, it is possible to increase the polishing efficiency while preventing clogging of the grinding wheel. Further, the surface pressure applied by the abrasive grains to the workpiece can be adjusted, and the polishing accuracy can be increased.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1(A)〜(C)は本発明の研磨装置を用いて被加工物の平面を研磨加工する場合の研磨加工パターンを示す概略図であり、研磨加工は砥石と被加工物の少なくとも一方を回転させることによって砥石と被加工物とを相対的に摺動させることにより行われる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1A to 1C are schematic views showing a polishing pattern in the case of polishing a flat surface of a workpiece using the polishing apparatus of the present invention, and the polishing is at least one of a grindstone and a workpiece. Is performed by relatively sliding the grindstone and the workpiece by rotating the.

図1(A)に示す研磨装置は、被加工物Wを支持するワークテーブル1と砥石Gを保持して回転する砥石ホルダー2とを有し、被加工物Wの被加工面に円板状の砥石Gの端面からなる平坦な加工面を接触させた状態のもとで砥石Gを符号Rで示すように回転させることにより砥石Gを被加工物Wに対し摺動させて被加工面の研磨加工を行う。被加工物Wと砥石Gとの相対位置を変化させて加工部位を変えるためにワークテーブル1は、図1(A)においてX方向とY方向に移動自在となっている。このタイプの研磨装置において、砥石ホルダー2をX方向とY方向に移動させることにより砥石Gと被加工物Wとの相対位置を変化させるようにすることもでき、ワークテーブル1をX方向とY方向の一方に移動するようにし、砥石ホルダー2をX方向とY方向の他方に移動するようにしても良い。   The polishing apparatus shown in FIG. 1A has a work table 1 that supports a workpiece W and a grindstone holder 2 that holds and rotates a grindstone G, and has a disk shape on the workpiece surface of the workpiece W. The grindstone G is slid with respect to the workpiece W by rotating the grindstone G as indicated by the symbol R in a state where the flat machining surface consisting of the end face of the grindstone G is in contact with the workpiece surface. Polishing is performed. In order to change the processing part by changing the relative position of the workpiece W and the grindstone G, the work table 1 is movable in the X direction and the Y direction in FIG. In this type of polishing apparatus, the relative position between the grindstone G and the workpiece W can be changed by moving the grindstone holder 2 in the X direction and the Y direction. The grindstone holder 2 may be moved to the other of the X direction and the Y direction.

図1(B)に示す研磨装置は、砥石Gを固定する砥石ホルダー2と被加工物Wを保持して回転するチャック3とを有し、被加工物Wの被加工面と砥石Gの加工面とを接触させた状態で被加工物Wを回転させることにより被加工物Wを砥石Gに対し摺動させて被加工面の研磨加工を行う。被加工物Wと砥石Gとの相対位置を変化させるためにチャック3はX方向およびY方向に移動自在となっている。   The polishing apparatus shown in FIG. 1B includes a grindstone holder 2 that fixes a grindstone G and a chuck 3 that holds and rotates the workpiece W, and the work surface of the workpiece W and the grindstone G are processed. By rotating the workpiece W in contact with the surface, the workpiece W is slid with respect to the grindstone G to polish the workpiece surface. In order to change the relative position between the workpiece W and the grindstone G, the chuck 3 is movable in the X direction and the Y direction.

図1(C)に示す研磨装置は、被加工物Wを支持して回転させる回転テーブル1と砥石Gを保持して回転する砥石ホルダー2とを有し、被加工物Wの被加工面に円板状の砥石Gの平坦な加工面を接触させた状態のもとで回転テーブル1と砥石ホルダー2とをそれぞれ矢印Rで示すように回転させることにより砥石Gを被加工物Wに対し摺動させて被加工面の研磨加工を行う。被加工物Wと砥石Gとの相対位置を変化させるために砥石ホルダー2はX方向に移動自在となっている。   The polishing apparatus shown in FIG. 1C has a rotary table 1 that supports and rotates the workpiece W and a grindstone holder 2 that holds and rotates the grindstone G, and is provided on the workpiece surface of the workpiece W. The grindstone G is slid with respect to the workpiece W by rotating the rotary table 1 and the grindstone holder 2 as indicated by arrows R in a state where the flat work surface of the disc-shaped grindstone G is in contact. It is moved to polish the work surface. In order to change the relative position between the workpiece W and the grindstone G, the grindstone holder 2 is movable in the X direction.

図1(A),(C)に示す研磨装置は、被加工物Wが下側となり砥石Gが上側となっており、被加工面が水平になっているが、被加工物Wと砥石Gの上下関係を逆にしても良く、被加工面が垂直となるように砥石ホルダー2とテーブル1を水平に配置するようにしても良い。同様に、図1(B)に示す研磨装置においても被加工物Wと砥石Gの上下関係を逆にしても良く、砥石ホルダー2およびチャック3を水平に配置するようにしても良い。   In the polishing apparatus shown in FIGS. 1A and 1C, the workpiece W is on the lower side and the grindstone G is on the upper side, and the workpiece surface is horizontal. The upper and lower relationships may be reversed, and the grindstone holder 2 and the table 1 may be arranged horizontally so that the work surface is vertical. Similarly, in the polishing apparatus shown in FIG. 1B, the vertical relationship between the workpiece W and the grindstone G may be reversed, and the grindstone holder 2 and the chuck 3 may be disposed horizontally.

図2は上述したタイプとは相違したタイプの本発明の研磨装置を示す断面図である。図3(A)は図2におけるA−A線に沿う方向から見た砥石ホルダーを示す断面図であり、図3(B)は他のタイプの研磨装置における(A)と同様の部分を示す断面図である。   FIG. 2 is a cross-sectional view showing a polishing apparatus of the present invention of a type different from the type described above. 3A is a cross-sectional view showing the grindstone holder viewed from the direction along the line AA in FIG. 2, and FIG. 3B shows the same part as (A) in another type of polishing apparatus. It is sectional drawing.

図2に示す研磨装置は、被加工物Wを支持して回転させるチャック11と砥石Gを保持して回転する砥石ホルダー12とを有し、被加工物Wの被加工面Waに砥石Gの加工面Gaを接触させた状態のもとで砥石ホルダー12とチャック11とを回転させることにより砥石Gを被加工物Wに対し摺動させて被加工面Waの研磨加工を行う。この研磨装置はチャック11が砥石ホルダー12の上方に配置され、それぞれの回転中心軸が垂直方向となっているが、チャック11と砥石ホルダー12の上下関係を逆にしても良く、それぞれを回転中心軸が水平方向となるように水平に配置するようにしても良い。   The polishing apparatus shown in FIG. 2 includes a chuck 11 that supports and rotates the workpiece W and a grindstone holder 12 that holds and rotates the grindstone G, and the grindstone G is placed on the processing surface Wa of the workpiece W. The grindstone G is slid with respect to the workpiece W by rotating the grindstone holder 12 and the chuck 11 in a state in which the machining surface Ga is in contact with the workpiece W, thereby polishing the workpiece surface Wa. In this polishing apparatus, the chuck 11 is disposed above the grindstone holder 12 and the respective rotation center axes are in the vertical direction. However, the vertical relationship between the chuck 11 and the grindstone holder 12 may be reversed. You may make it arrange | position horizontally so that an axis | shaft may become a horizontal direction.

チャック11はワーク回転シャフト13の先端に取り付けられており、バキュームチャックとなっている。チャック11は複数の吸気孔14が形成されたチャック板15を有し、ワーク回転シャフト13は図示しないモータにより回転駆動されるようになっている。それぞれの吸気孔14に連通する真空流路16がワーク回転シャフト13に形成されており、真空流路16はロータリジョイント17を介して真空ポンプ18に接続され、真空ポンプ18とロータリジョイント17とを接続する真空供給路19には流路開閉弁20が取り付けられている。したがって、真空ポンプ18を作動させて真空流路16を大気圧よりも低い圧力にすると、吸気孔14内に外部空気が流入して被加工物Wはチャック11に真空吸着されて保持される。   The chuck 11 is attached to the tip of the work rotation shaft 13 and serves as a vacuum chuck. The chuck 11 has a chuck plate 15 in which a plurality of intake holes 14 are formed, and the workpiece rotating shaft 13 is driven to rotate by a motor (not shown). A vacuum flow path 16 communicating with each intake hole 14 is formed in the work rotation shaft 13, and the vacuum flow path 16 is connected to a vacuum pump 18 via a rotary joint 17, and the vacuum pump 18 and the rotary joint 17 are connected to each other. A channel opening / closing valve 20 is attached to the vacuum supply channel 19 to be connected. Therefore, when the vacuum pump 18 is operated to set the vacuum flow path 16 to a pressure lower than the atmospheric pressure, external air flows into the intake hole 14 and the workpiece W is vacuum-adsorbed and held on the chuck 11.

ワーク回転シャフト13は上下方向に移動自在となっており、チャック11に支持された被加工物Wを砥石Gに向けて接近離反移動させることができるとともに、被加工物Wを砥石Gに接触させた状態でワーク回転シャフト13およびチャック11の自重により被加工物Wに対して押し付け力を加えることができる。この自重による押し付け力に加えて、空気圧シリンダなどによりワーク回転シャフト13に推力を加えて被加工物Wに対して押し付け力を付加するようにしても良い。   The workpiece rotating shaft 13 is movable in the vertical direction, and the workpiece W supported by the chuck 11 can be moved toward and away from the grindstone G, and the workpiece W is brought into contact with the grindstone G. In this state, a pressing force can be applied to the workpiece W by the dead weight of the workpiece rotating shaft 13 and the chuck 11. In addition to the pressing force due to its own weight, a pressing force may be applied to the workpiece W by applying a thrust to the workpiece rotating shaft 13 by a pneumatic cylinder or the like.

砥石Gは砥粒を結合材で固めて形成されており、内部には微細な気孔が形成された多孔質構造となっている。これにより、図2に示すように連なった気孔を介して平坦な加工面Gaとこの反対側面Gbとの間で空気や液体等の流体を貫通させることができ、空気や液体を貫通させるように砥石Gは通気性を有している。図示する砥石Gは環状となっており、外周面には封孔処理層10が形成され、内周面は砥石支持プレート23に設けられた突起部に嵌合して封止されている。ただし、砥石Gの外周面と内周面に非多孔質の部材からなる枠を取り付けるようにして内外周面からの流体の漏れを防止するようにしても良い。   The grindstone G is formed by solidifying abrasive grains with a binder, and has a porous structure in which fine pores are formed. As a result, fluid such as air or liquid can be passed between the flat processed surface Ga and the opposite side surface Gb through the continuous pores as shown in FIG. The grindstone G has air permeability. The grindstone G shown in the figure has an annular shape, the sealing treatment layer 10 is formed on the outer circumferential surface, and the inner circumferential surface is fitted and sealed with a protrusion provided on the grindstone support plate 23. However, it is also possible to prevent leakage of fluid from the inner and outer peripheral surfaces by attaching frames made of non-porous members to the outer peripheral surface and inner peripheral surface of the grindstone G.

砥石Gが取り付けられる砥石ホルダー12は、砥石回転シャフト21に一体となって設けられており、複数の流体案内孔22が形成された砥石支持プレート23を有し、砥石回転シャフト21は図示しないモータにより回転駆動されるようになっている。それぞれの流体案内孔22に連通スペース24aを介して連通する流体通路24が砥石回転シャフト21に形成されており、流体通路24はロータリジョイント25を介して真空ポンプ26に接続され、真空ポンプ26とロータリジョイント25とを接続する流体案内路27aには流路開閉弁28aと圧力調整弁29aとが取り付けられている。したがって、流路開閉弁28aを開いた状態のもとで真空ポンプ26を作動させると、流体通路24および流体案内孔22を介して多孔質の砥石Gの気孔は真空ポンプ26に連通して大気圧よりも低い真空状態ないし負圧状態となり、砥石Gの加工面Gaには外部から気孔内に周囲空気や液体が流入することになる。   The grindstone holder 12 to which the grindstone G is attached is provided integrally with the grindstone rotating shaft 21 and has a grindstone support plate 23 in which a plurality of fluid guide holes 22 are formed. The grindstone rotating shaft 21 is a motor (not shown). Is driven to rotate. A fluid passage 24 communicating with each fluid guide hole 22 via a communication space 24 a is formed in the grindstone rotating shaft 21, and the fluid passage 24 is connected to a vacuum pump 26 via a rotary joint 25. A fluid on / off valve 28a and a pressure regulating valve 29a are attached to a fluid guide path 27a that connects the rotary joint 25. Therefore, when the vacuum pump 26 is operated with the flow path opening / closing valve 28a opened, the pores of the porous grindstone G communicate with the vacuum pump 26 via the fluid passage 24 and the fluid guide hole 22 and are large. A vacuum state or a negative pressure state lower than the atmospheric pressure is entered, and ambient air or liquid flows into the pores from the outside into the processed surface Ga of the grindstone G.

ロータリジョイント25には加圧ポンプ31が接続され、加圧ポンプ31とロータリジョイント25とを接続する流体案内流路27bには流路開閉弁28bと圧力調整弁29bとが取り付けられている。加圧ポンプ31は容器32内に収容された水道水や研磨液等の液体を加圧して吐出し、流路開閉弁28bを開いた状態のもとで加圧ポンプ31を作動させると、液体が流体通路24および流体案内孔22を介して多孔質の砥石Gの気孔内に入り込み加工面Gaから流出することになる。   A pressure pump 31 is connected to the rotary joint 25, and a channel opening / closing valve 28 b and a pressure adjustment valve 29 b are attached to the fluid guide channel 27 b connecting the pressure pump 31 and the rotary joint 25. The pressurization pump 31 pressurizes and discharges liquid such as tap water and polishing liquid stored in the container 32, and when the pressurization pump 31 is operated with the flow path opening / closing valve 28b opened, Enters the pores of the porous grindstone G through the fluid passage 24 and the fluid guide hole 22 and flows out of the processing surface Ga.

真空ポンプ26は負圧生成手段を構成し、加圧ポンプ31は加圧流体供給手段を構成し、圧力調整弁29a,29bは圧力調整手段を構成している。なお、 加圧ポンプ31を圧縮空気を吐出するコンプレッサとすることにより、加工面Gaから空気を流出させるようにしても良い。 The vacuum pump 26 constitutes negative pressure generating means, the pressurizing pump 31 constitutes pressurized fluid supply means, and the pressure regulating valves 29a and 29b constitute pressure regulating means. In addition, you may make it let air flow out from the process surface Ga by making the pressurization pump 31 into the compressor which discharges compressed air.

図3(A)に示すように、流体案内孔22を砥石ホルダー12の砥石支持プレート23に分散して形成するようにしても良く、図3(B)に示すように砥石ホルダー12にそれぞれ流体通路24に連通する複数本の連通孔24bを形成し、それぞれに連通させて直線状に流体案内孔22を砥石支持プレート23に形成するようにしても良い。   As shown in FIG. 3 (A), the fluid guide holes 22 may be formed in a distributed manner on the grindstone support plate 23 of the grindstone holder 12, and as shown in FIG. A plurality of communication holes 24 b communicating with the passage 24 may be formed, and the fluid guide holes 22 may be formed in the grindstone support plate 23 linearly in communication with each other.

図4は図2に示された砥石Gとこれに接触した状態の被加工物Wの一部を拡大して示す断面図であり、砥石Gは多数の砥粒41と砥粒相互を連結する結合材42とにより形成され、内部には微細な気孔43が形成されており、気孔43によって砥石Gは加工面Gaとその反対側面Gbとの間に流体が流れるように通気性を有している。砥石Gとしての強度を維持しつつ砥石G内に流体が流れるようにするには、気孔率ε、つまり砥石容積に占める気孔43の容積の比率を10〜60%の範囲とし、気孔径を1〜200μmの範囲とすることが好ましいことが実験により判明した。   FIG. 4 is an enlarged cross-sectional view showing the grindstone G shown in FIG. 2 and a part of the workpiece W in contact with the grindstone G. The grindstone G connects a large number of abrasive grains 41 and the abrasive grains. A fine pore 43 is formed inside, and the grindstone G has air permeability so that a fluid flows between the processed surface Ga and the opposite side surface Gb. Yes. In order to allow fluid to flow in the grindstone G while maintaining the strength as the grindstone G, the porosity ε, that is, the ratio of the volume of the pores 43 to the grindstone volume is in the range of 10 to 60%, and the pore diameter is 1 Experiments have shown that it is preferable to be in the range of ~ 200 μm.

砥石Gの加工面Gaはミクロ的に観察すると砥粒41の粒径に応じて凹凸面となっており、研磨加工前の被加工物Wの被加工面Waは表面荒さに応じた凹凸面となっているので、加工面Gaと被加工面Waとを接触させた状態のもとでは、ミクロ的に観察すると被加工面Waの全体に加工面Gaが接触することはなく、加工面Gaと被加工面Waとの間には研磨空隙Sが層状となって形成されることになる。砥粒41が被加工面Waに直接接触する部分には研磨空隙Sは形成されないが、研磨空隙Sは全体的に非接触の部分を介して層状に連なって研磨層となっている。   When the processing surface Ga of the grindstone G is observed microscopically, it is an uneven surface according to the grain size of the abrasive grains 41, and the work surface Wa of the workpiece W before polishing is an uneven surface according to the surface roughness. Therefore, when the processing surface Ga and the processing surface Wa are brought into contact with each other, the processing surface Ga does not come into contact with the entire processing surface Wa when observed microscopically. A polishing gap S is formed in a layered manner between the processing surface Wa. The polishing void S is not formed in the portion where the abrasive grains 41 are in direct contact with the surface Wa to be processed, but the polishing void S forms a polishing layer that is continuously layered through a non-contact portion as a whole.

したがって、加工面Gaと被加工面Waとが押し付けられた状態のもとで、真空ポンプ26を作動させて流体通路24を介して砥石G内の気孔43を負圧状態とすると、砥石Gは通気性を有するので外部の空気が加工面Gaから砥石G内に流入し、加工面Gaと被加工面Waとの間に形成される研磨空隙Sには空気の流れが形成されることになり、砥石Gおよび被加工物Wはともに研磨空隙Sを流れる空気により冷却される。砥石Gと被加工物Wとに水道水や研磨液等の液体を塗布するようにすると、液体が空気とともに砥石Gの気孔内を貫通して砥石Gを冷却することになり、空気と液体によって砥石Gの冷却が行われる。   Accordingly, when the work surface Ga and the work surface Wa are pressed against each other, when the vacuum pump 26 is operated and the pores 43 in the grindstone G are brought into a negative pressure state via the fluid passage 24, the grindstone G is Since it has air permeability, external air flows into the grindstone G from the processing surface Ga, and an air flow is formed in the polishing gap S formed between the processing surface Ga and the processing surface Wa. The grindstone G and the workpiece W are both cooled by the air flowing through the polishing gap S. When a liquid such as tap water or a polishing liquid is applied to the grindstone G and the workpiece W, the liquid penetrates through the pores of the grindstone G together with the air to cool the grindstone G. The grindstone G is cooled.

しかも、研磨空隙Sの圧力は負圧生成手段としての真空ポンプ26により所定の真空度に設定され、研磨空隙Sが真空状態となると、加工面Gaと被加工面 Waとの密着力が増加して、加工面Gaと被加工面Waとに加わる面圧を増加させることができるとともに、砥粒41が直接被加工面Waに接触し、研磨空隙Sを負圧状態にしないで研磨加工を行う場合よりも単位時間当たりの研磨量を大きくすることができる。圧力調整手段としての圧力調整弁29aにより研磨空隙Sの圧力を変化させると、研磨空隙Sの厚みが変化するとともに面圧を変化させることができるので、単位時間当たりの研磨量を研磨空隙Sの圧力調整によって調整することができる。 In addition, the pressure of the polishing gap S is set to a predetermined degree of vacuum by the vacuum pump 26 as a negative pressure generating means, and when the polishing gap S is in a vacuum state, the adhesion between the processing surface Ga and the processing surface Wa increases. Thus, the surface pressure applied to the processing surface Ga and the processing surface Wa can be increased, and the abrasive grains 41 are in direct contact with the processing surface Wa, and polishing is performed without bringing the polishing gap S into a negative pressure state. The polishing amount per unit time can be increased as compared with the case. When the pressure of the polishing gap S is changed by the pressure adjusting valve 29a as the pressure adjusting means, the thickness of the polishing gap S and the surface pressure can be changed. It can be adjusted by adjusting the pressure.

例えば、研磨空隙Sの真空度を高めて面圧を高くすると被加工面Waに接触する加工面Gaの砥粒41の数が増加して研磨量を増加させることができ、真空度を低くして研磨空隙Sの圧力を大気圧に近づけると被加工面Waに接触する砥粒の数が減少して研磨量は減少するが、被加工面Waの仕上げ精度を高めることができる。したがって、同一の砥石Gを用いても、研磨空隙Sの圧力調整によって研磨量や被加工面Waの仕上げ面荒さを変化させることができる。   For example, if the degree of vacuum of the polishing gap S is increased and the surface pressure is increased, the number of abrasive grains 41 on the processed surface Ga in contact with the processing surface Wa can be increased, and the amount of polishing can be increased. When the pressure of the polishing gap S is brought close to atmospheric pressure, the number of abrasive grains in contact with the processing surface Wa is reduced and the polishing amount is reduced, but the finishing accuracy of the processing surface Wa can be increased. Therefore, even if the same grindstone G is used, the polishing amount and the finished surface roughness of the work surface Wa can be changed by adjusting the pressure of the polishing gap S.

一方、加工面Gaと被加工面Waとが押し付けられた状態のもとで、加圧ポンプ31を作動させて流体通路24を介して砥石G内の気孔43内に液体を注入すると、液体が加工面Gaから研磨空隙S内に吐出されるので、加工面Gaと被加工面Waとの間には液体の流れが形成されることになり、砥石Gおよび被加工物Wはともに流れる液体により冷却される。しかも、研磨空隙S内の液体の圧力を加圧流体供給手段としての加圧ポンプ31により大気圧よりも高い所定の圧力に設定すると、加工面Gaと被加工面Waとの間の研磨空隙Sの厚み寸法が増加して、加工面Gaと被加工面Waとに加わる面圧を小さくすることができる。圧力調整手段としての圧力調整弁29bにより研磨空隙Sの圧力を変化させると、研磨空隙Sの厚みが変化するとともに面圧を変化させることができるので、研磨量や被加工面Waの仕上げ面荒さを研磨空隙Sの圧力調整によって調整することができる。   On the other hand, when the processing surface Ga and the processing surface Wa are pressed, the pressure pump 31 is operated to inject the liquid into the pores 43 in the grindstone G through the fluid passage 24. Since it is discharged from the processing surface Ga into the polishing gap S, a liquid flow is formed between the processing surface Ga and the processing surface Wa, and the grindstone G and the workpiece W are both caused by the flowing liquid. To be cooled. In addition, when the pressure of the liquid in the polishing gap S is set to a predetermined pressure higher than the atmospheric pressure by the pressurizing pump 31 as the pressurized fluid supply means, the polishing gap S between the processing surface Ga and the processing surface Wa. As a result, the surface pressure applied to the processed surface Ga and the processed surface Wa can be reduced. When the pressure of the polishing gap S is changed by the pressure adjusting valve 29b as the pressure adjusting means, the thickness of the polishing gap S is changed and the surface pressure can be changed. Therefore, the polishing amount and the finished surface roughness of the work surface Wa are changed. Can be adjusted by adjusting the pressure of the polishing gap S.

しかも、砥石Gから研磨空隙S内に液体を吐出させると、研磨加工時に研磨粉が加工面Gaに付着することが防止されるので、砥石Gの目詰まり発生を防止することができ、砥石Gのドレッシング頻度を大幅に減少させて加工能率を向上させることができる。したがって、真空ポンプ26を作動させて研磨空隙S内を大気圧よりも低い圧力に設定して所定の研磨加工を行う工程と、加圧ポンプ31から液体または空気を砥石Gに供給して研磨加工を行う工程とを混在させると、砥石の面圧を調整するとともに研磨空隙Sに流体を流しつつ研磨加工を行うことができ、加工時に加工面Gaに付着した研磨粉を除去することができるとともに、ドレッシング頻度を大幅に減少させることができる。   In addition, when the liquid is discharged from the grindstone G into the polishing gap S, the abrasive powder is prevented from adhering to the processed surface Ga during the grinding process, so that the clogging of the grindstone G can be prevented. The processing efficiency can be improved by greatly reducing the frequency of dressing. Accordingly, the vacuum pump 26 is operated to perform a predetermined polishing process by setting the inside of the polishing gap S to a pressure lower than the atmospheric pressure, and the polishing process is performed by supplying liquid or air from the pressure pump 31 to the grindstone G. In addition to adjusting the surface pressure of the grindstone, it is possible to perform polishing while flowing a fluid through the polishing gap S, and to remove polishing powder adhering to the processing surface Ga during processing. The dressing frequency can be greatly reduced.

図5は図2に示された砥石Gを示す斜視図であり、砥石Gは主研磨領域45と副研磨領域46とを有し、それぞれは砥石Gの厚み方向に延びており、主研磨領域45は副研磨領域46よりも砥石硬度が高くなっている。それぞれの研磨領域45,46は砥粒41と結合材42とを一体に焼結により固めて形成されており、それぞれ内部に気孔43が形成されて通気性を有している。主研磨領域45は加工面Gaにおいては四角形になって全体的に格子状となり、その内側が副研磨領域46となっている。ただし、主研磨領域45の平面形状としては、四角形に限られず、六角形や八角形としても良く、平行線状または放射線状に形成するようにしても良い。   FIG. 5 is a perspective view showing the grindstone G shown in FIG. 2. The grindstone G has a main polishing region 45 and a sub-polishing region 46, each extending in the thickness direction of the grindstone G. 45 has a grinding wheel hardness higher than that of the sub-polishing region 46. Each of the polishing regions 45 and 46 is formed by solidifying the abrasive grains 41 and the binder 42 together by sintering, and has pores 43 formed therein so as to have air permeability. The main polishing region 45 is square on the processing surface Ga and has a lattice shape as a whole, and the inside thereof is a sub-polishing region 46. However, the planar shape of the main polishing region 45 is not limited to a quadrangle, and may be a hexagonal shape or an octagonal shape, or may be formed in a parallel line shape or a radial shape.

図示する主研磨領域45の砥粒41としては、ダイヤモンドつまりダイヤモンド砥粒が使用されており、その平均粒径は0.1〜300μmとなっている。ただし、ダイヤモンドに代えて、立方晶窒化ホウ素(CBN)砥粒つまりCBNを使用するようにしても良く、ダイヤモンドとCBNとの混合物を使用するようにしても良い。これに対して、副研磨領域46の砥粒41としては、ダイヤモンドやCBNよりも硬度が低い炭化ケイ素SiCつまりGC、ムライト(3Al2O3-2SiO2)、または溶融アルミナAl2O3つまりWAの単体或いはこれらの混合体が使用されており、その平均粒径は、0.1〜300μmとなっている。このように、主研磨領域45の砥粒41をダイヤモンドとし、副研磨領域46の砥粒41にダイヤモンドを使用しないことにより、ダイヤモンドの使用量を少なくすることが可能となるが、砥石Gに硬度が相違した主研磨領域45と副研磨領域46とを形成することなく、砥石Gの砥粒41を全てダイヤモンドやCBNにより形成するようにしても良い。 As the abrasive grains 41 in the main polishing region 45 shown in the figure, diamond, that is, diamond abrasive grains, is used, and the average particle diameter is 0.1 to 300 μm. However, instead of diamond, cubic boron nitride (CBN) abrasive grains, that is, CBN may be used, or a mixture of diamond and CBN may be used. On the other hand, as the abrasive grains 41 in the sub-polishing region 46, silicon carbide SiC or GC, mullite (3Al 2 O 3 -2SiO 2 ), or molten alumina Al 2 O 3 or WA, which has a lower hardness than diamond or CBN. Or a mixture thereof is used, and the average particle size is 0.1 to 300 μm. As described above, by using diamond as the abrasive grains 41 in the main polishing region 45 and not using diamond in the abrasive particles 41 in the sub-polishing region 46, the amount of diamond used can be reduced. The abrasive grains 41 of the grindstone G may all be formed of diamond or CBN without forming the main polishing area 45 and the sub-polishing area 46 that are different from each other.

主研磨領域45および副研磨領域46の結合材42としては、ビトリファイドボンドが使用されているが、それぞれの結合材42としてはビトリファイドボンド以外に、レジノイドボンド、メタルボンド、電着ボンドなど種々のボンド材を使用することができる。   Vitrified bonds are used as the bonding material 42 of the main polishing region 45 and the sub-polishing region 46. As the bonding materials 42, various bonds such as resinoid bonds, metal bonds, electrodeposition bonds, etc., other than vitrified bonds are used. Material can be used.

このように、副研磨領域46は溶融アルミナ、ムライトまたは炭化ケイ素からなる砥粒41により形成され、主研磨領域45はこれよりも硬度が高いダイヤモンドを砥粒41として形成されているので、図示する砥石Gを用いて研磨加工を行うと、副研磨領域46の加工面Gaが主研磨領域45の加工面Gaよりも先に磨耗することになり、主研磨領域45の加工面Gaは副研磨領域46の加工面Gaよりも、約10μm程度突出した状態となってそのエッジにより主として研磨加工が行われ、研磨加工により主研磨領域45には常に切り刃のエッジが研磨加工に伴って創成される。ただし、副研磨領域46の砥粒41にダイヤモンドを含有させるようにしても良い。   Thus, the sub-polishing region 46 is formed by abrasive grains 41 made of fused alumina, mullite, or silicon carbide, and the main polishing region 45 is formed by using diamond having a hardness higher than that as the abrasive grains 41. When the grinding process is performed using the grindstone G, the processing surface Ga of the sub-polishing region 46 is worn before the processing surface Ga of the main polishing region 45, and the processing surface Ga of the main polishing region 45 is the sub-polishing region. The edge of the processing surface Ga protrudes about 10 μm from the processed surface Ga of 46 and is mainly polished by the edge, and the edge of the cutting edge is always created in the main polishing region 45 by the polishing process. . However, the abrasive grains 41 in the sub-polishing region 46 may contain diamond.

主研磨領域45よりも副研磨領域46が先に磨耗するのであれば、つまり砥石Gの加工面Gaの磨耗量が主研磨領域45よりも大きいのであれば、それぞれの領域を構成する砥粒41および結合材42の種類等は上述した場合に限られない。たとえば、それぞれの研磨領域45,46の砥粒41を同種の砥粒としてそれぞれの結合材42を相違させるようにしても良い。また、それぞれの領域の砥粒41を同種とするとともに主研磨領域45の砥粒粒径を副研磨領域46の砥粒粒径よりも大きくするようにしても良く、その場合にはそれぞれの結合材42を同種としても異種としても良い。すなわち、主研磨領域45よりも副研磨領域46が先に摩耗、つまり副研磨領域46の摩耗量が主研磨領域45よりも大きいことを実現するために、第1にそれぞれの砥粒41の種類と大きさと量を調整する方法と、第2にそれぞれの結合材42の種類と量等を適切に設定する方法との一方またはこれらの組み合わせにより最適な砥石Gを得ることができる。   If the sub-polishing region 46 is worn earlier than the main polishing region 45, that is, if the wear amount of the processing surface Ga of the grindstone G is larger than that of the main polishing region 45, the abrasive grains 41 constituting each region The type of the binding material 42 is not limited to the case described above. For example, the abrasive grains 41 in the respective polishing regions 45 and 46 may be the same kind of abrasive grains, and the respective binders 42 may be made different. Further, the abrasive grains 41 in the respective regions may be of the same type, and the abrasive grain size in the main polishing region 45 may be made larger than the abrasive grain size in the sub-polishing region 46. The material 42 may be the same or different. That is, in order to realize that the sub-polishing region 46 is worn before the main polishing region 45, that is, the amount of wear of the sub-polishing region 46 is larger than that of the main polishing region 45, first, the type of each abrasive grain 41 The optimum grindstone G can be obtained by one or a combination of the method of adjusting the size and amount, and the second method of appropriately setting the type, amount, etc. of the respective binding materials 42.

このように、副研磨領域46よりも主研磨領域45の硬度が高く、つまり摩耗し難く設定されていれば良く、副研磨領域46としてはダイヤモンドとCBNのいずれかの単体またはこれらの混合体、或いはこれらの単体またはこれらの混合体と炭化ケイ素、ムライト、溶融アルミナの少なくともいずれかとの混合体とすることができる。ダイヤモンドとCBNの単体またはこれらの混合体と他の砥粒との混合体を使用する場合には、ダイヤモンドとCBNの単体またはこれらの混合体を10〜100%の体積割合で含有し、結合材42を含めた主研磨領域45におけるダイヤモンドとCBNの単体またはこれらの混合体を5〜65%の体積割合で含有することが好ましい。   Thus, it is sufficient that the hardness of the main polishing region 45 is higher than that of the sub-polishing region 46, that is, it is set so as not to wear easily. As the sub-polishing region 46, either diamond or CBN alone or a mixture thereof, Alternatively, these simple substances or a mixture thereof and at least one of silicon carbide, mullite, and molten alumina can be used. In the case of using a single body of diamond and CBN or a mixture of these and other abrasive grains, it contains a single body of diamond and CBN or a mixture thereof in a volume ratio of 10 to 100%, and a binder The main polishing region 45 including 42 preferably contains diamond and CBN alone or a mixture thereof in a volume ratio of 5 to 65%.

図5に示すように主研磨領域45と副研磨領域46とを有する砥石Gを用いて研磨加工を行うと、被加工物Wの表面には副研磨領域46の加工面Gaとこれよりも硬度が高い主研磨領域45の加工面Gaとが繰り返して接触することになる。これにより、上述したように、副研磨領域46の加工面Gaが主研磨領域45の加工面Gaよりも先に磨耗することになり、研磨加工時に砥石Gから欠落した砥粒41は、欠落して研磨空隙S内に入り込んで、一種の遊離砥粒として機能することになる。このように、欠落した砥粒が一種の遊離砥粒として機能することから、主研磨領域45の加工面Gaは副研磨領域46の加工面Gaよりも突出した状態、つまりドレッシング処理された状態となって研磨加工されるので、ドレッシング効果による被加工物Wに対する研磨能を維持したまま、深い圧痕を被加工面Waに残すことなく、良好な研磨加工品質を得ることができる。さらに、被加工物Wの被加工面Waは、主として主研磨領域45の加工面Gaにより研磨加工され、補助的に副研磨領域46の加工面Gaにより研削加工されることになり、補助的な加工面Gaが主研磨領域45の加工面Gaよりも早く磨耗することから、主研磨領域45の加工面Gaには切り刃エッジが常に露出した状態に保持される。   As shown in FIG. 5, when polishing is performed using a grindstone G having a main polishing region 45 and a sub-polishing region 46, the surface of the workpiece W has a processed surface Ga of the sub-polishing region 46 and a hardness higher than this. The processing surface Ga of the main polishing region 45 having a high height is repeatedly contacted. Thereby, as described above, the processing surface Ga of the sub-polishing region 46 is worn before the processing surface Ga of the main polishing region 45, and the abrasive grains 41 that are missing from the grindstone G during the polishing process are missing. Then, it enters the polishing gap S and functions as a kind of loose abrasive grains. Thus, since the missing abrasive grains function as a kind of loose abrasive grains, the processed surface Ga of the main polishing region 45 protrudes from the processed surface Ga of the sub-polishing region 46, that is, a dressed state. Thus, since the polishing process is performed, a good polishing process quality can be obtained without leaving a deep indentation on the processing surface Wa while maintaining the polishing ability for the workpiece W due to the dressing effect. Furthermore, the work surface Wa of the work piece W is mainly polished by the work surface Ga of the main polishing region 45 and supplementarily ground by the work surface Ga of the sub-polishing region 46. Since the processing surface Ga wears faster than the processing surface Ga of the main polishing region 45, the cutting edge is always exposed on the processing surface Ga of the main polishing region 45.

しかも、主研磨領域45における加工面Gaが副研磨領域46の加工面Gaよりも突出した状態となるので、砥石Gにより被加工物Wに加えられる押し付け力によって主研磨領域45における砥粒41には大きな分担荷重が加わることになり、砥粒41に加わる面圧が大きくなる。これにより、砥粒41により被加工物Wの表面を削り取る機能が高まり、加工能率が向上する。このことは、研磨空隙Sを大気圧よりも低い負圧状態として被加工面Waおよび砥粒に加わる面圧を大きくしても達成され、研磨能率を高めることが可能となる。   Moreover, since the processing surface Ga in the main polishing region 45 protrudes beyond the processing surface Ga in the sub-polishing region 46, the pressing force applied to the workpiece W by the grindstone G causes the abrasive grains 41 in the main polishing region 45 to be pressed. A large shared load is applied, and the surface pressure applied to the abrasive grains 41 increases. Thereby, the function which scrapes off the surface of the to-be-processed object W by the abrasive grain 41 increases, and processing efficiency improves. This is achieved even when the polishing void S is in a negative pressure state lower than the atmospheric pressure and the surface pressure applied to the work surface Wa and the abrasive grains is increased, and the polishing efficiency can be increased.

図6(A)は図2に示した研磨装置の全体構成を示す側面図であり、図6(B)は図6(A)の正面図であり、図7は図6(B)におけるB−B線に沿う拡大断面図である。   6A is a side view showing the overall configuration of the polishing apparatus shown in FIG. 2, FIG. 6B is a front view of FIG. 6A, and FIG. 7 is B in FIG. 6B. It is an expanded sectional view which follows the -B line.

研磨装置は図2に示した砥石回転シャフト21が回転自在に組み込まれた基台51と、この基台51に設けられた研磨ヘッド52とを有しており、研磨ヘッド52には2本のワーク回転シャフト13がそれぞれ回転自在に設けられている。したがって、図示する研磨装置は、同時に2つの被加工物Wを研磨加工することができる。   The polishing apparatus includes a base 51 in which the grindstone rotating shaft 21 shown in FIG. 2 is rotatably incorporated, and a polishing head 52 provided on the base 51. The polishing head 52 includes two polishing heads. Work rotation shafts 13 are rotatably provided. Therefore, the illustrated polishing apparatus can polish two workpieces W at the same time.

砥石回転シャフト21には図7に示すようにプーリ53が固定され、図6(A)に示すように基台51に固定されたモータ54のプーリ55とプーリ53との間にはベルト56が掛け渡されており、砥石回転シャフト21はモータ54により回転駆動される。砥石回転シャフト21に取り付けられたロータリジョイント25には流体案内路を構成するホース57が接続されており、このホース57を介してロータリジョイント25には図2に示した真空ポンプ26と加圧ポンプ31のいずれか一方または両方が接続される。   A pulley 53 is fixed to the grindstone rotating shaft 21 as shown in FIG. 7, and a belt 56 is provided between the pulley 55 of the motor 54 fixed to the base 51 and the pulley 53 as shown in FIG. The grindstone rotating shaft 21 is driven to rotate by a motor 54. A hose 57 constituting a fluid guide path is connected to the rotary joint 25 attached to the grindstone rotating shaft 21, and the vacuum pump 26 and the pressure pump shown in FIG. 2 are connected to the rotary joint 25 via the hose 57. Either or both of 31 are connected.

研磨ヘッド52にはこれに水平方向に固定されたガイドレール58に沿って摺動する摺動台59が設けられており、摺動台59にはそれぞれのワーク回転シャフト13が上下方向に移動自在かつ回転自在に設けられている。それぞれのワーク回転シャフト13の上端部側にはスプライン61が設けられ、このスプライン61に噛み合うプーリ62が摺動台59に回転自在に組み込まれ、プーリ62と摺動台59に固定されたモータ63のプーリ64との間にはベルト65が掛け渡されており、モータ63によりワーク回転シャフト13は回転駆動される。ワーク回転シャフト13は摺動台59に上下動自在に装着されたスリーブ65内に組み込まれており、スリーブ65を介してワーク回転シャフト13を上下動してこれを砥石Gに向けて接近離反移動させるために、摺動台59に取り付けられた空気圧シリンダ66のピストンロッド67がスリーブ65に連結されている。ワーク回転シャフト13の端部にはロータリジョイント17が取り付けられており、このロータリジョイント17は図2に示すように真空ポンプ18に接続されている。図7は図6に示すように研磨ヘッド52に設けられた2本のワーク回転シャフト13の一方を示すが、両方とも同一の構造となっている。   The polishing head 52 is provided with a slide base 59 that slides along a guide rail 58 that is fixed to the polishing head 52 in the horizontal direction. Each work rotation shaft 13 is movable in the vertical direction on the slide base 59. And it is rotatably provided. A spline 61 is provided on the upper end side of each work rotating shaft 13, and a pulley 62 meshing with the spline 61 is rotatably incorporated in a slide base 59, and a motor 63 fixed to the pulley 62 and the slide base 59. A belt 65 is stretched between the pulley 64 and the work rotation shaft 13 is driven to rotate by the motor 63. The work rotation shaft 13 is incorporated in a sleeve 65 that is mounted on the slide base 59 so as to be movable up and down. The work rotation shaft 13 is moved up and down via the sleeve 65 and moved toward and away from the grindstone G. For this purpose, the piston rod 67 of the pneumatic cylinder 66 attached to the slide base 59 is connected to the sleeve 65. A rotary joint 17 is attached to the end of the work rotation shaft 13 and this rotary joint 17 is connected to a vacuum pump 18 as shown in FIG. FIG. 7 shows one of the two workpiece rotating shafts 13 provided on the polishing head 52 as shown in FIG. 6, both of which have the same structure.

図5および図6に示す研磨装置により円板状の被加工物Wの表面を研磨加工するには、それぞれの真空チャック11に被加工物Wを保持させた状態のもとで空気圧シリンダ66によりワーク回転シャフト13を砥石Gに向けて接近移動させる。モータ63によりワーク回転シャフト13を回転させるとともにモータ54により砥石回転シャフト21を回転させながら砥石Gの加工面Gaに被加工物Wの被加工面Waを接触させる。両方のモータ54,63により砥石Gと被加工物Wは相対的に摺動した状態となり、この状態のもとで真空ポンプ26を駆動させると加工面Gaと被加工面Waとの間に形成される研磨空隙Sには砥石Gの気孔を介して負圧空気の流れが発生するとともに、研磨空隙S内は負圧状態となって大気圧よりも低い圧力が発生した状態となる。一方、加圧ポンプ31から空気や液体を研磨空隙S内に供給すると、研磨空隙S内は大気圧よりも高い圧力が発生した状態となる。それぞれの圧力は、圧力調整弁29a,29bにより調整される。このように研磨空隙S内の圧力を調整し研磨空隙Sの厚みを変化させることにより被加工面Waに接触する砥粒41の数を変化させることができ、研磨量や被加工面Waの仕上げ精度を調整することができる。   In order to polish the surface of the disk-shaped workpiece W by the polishing apparatus shown in FIGS. 5 and 6, the pneumatic cylinder 66 is used with the workpiece W held by the respective vacuum chucks 11. The work rotation shaft 13 is moved toward the grindstone G. The workpiece rotating shaft 13 is rotated by the motor 63 and the processing surface Wa of the workpiece W is brought into contact with the processing surface Ga of the grindstone G while rotating the grindstone rotating shaft 21 by the motor 54. The grindstone G and the workpiece W are slid relative to each other by both the motors 54 and 63, and when the vacuum pump 26 is driven in this state, the grinding wheel G and the workpiece surface Wa are formed. A negative pressure air flow is generated in the polishing gap S through the pores of the grindstone G, and the inside of the polishing gap S is in a negative pressure state, and a pressure lower than the atmospheric pressure is generated. On the other hand, when air or liquid is supplied from the pressurizing pump 31 into the polishing gap S, a pressure higher than the atmospheric pressure is generated in the polishing gap S. The respective pressures are adjusted by pressure adjusting valves 29a and 29b. Thus, by adjusting the pressure in the polishing gap S and changing the thickness of the polishing gap S, the number of abrasive grains 41 in contact with the work surface Wa can be changed, and the polishing amount and the finish of the work surface Wa are finished. The accuracy can be adjusted.

本発明の研磨装置を用いた研磨加工方法としては、被加工物の被加工面と砥石の加工面との間の研磨空隙Sに液体等の流体を加圧ポンプ31から供給して研磨空隙Sに加圧流体の流れを形成する研磨工程と、研磨空隙Sに真空ポンプ26により負圧状態にし、そこに空気を供給して研磨空隙Sに流体の流れを形成する研磨工程とを実行し、さらにはこれらの研磨工程を交互に複数回ずつ繰り返すと、砥石のドレッシング頻度を少なくして砥石寿命を高めるとともに、砥石と被加工物の冷却効率を 高めて高品質の研磨加工を行うことができる。 As a polishing method using the polishing apparatus of the present invention, a fluid such as a liquid is supplied from a pressurizing pump 31 to a polishing gap S between a processing surface of a workpiece and a processing surface of a grindstone. a polishing step for forming a flow of pressurized fluid to, and the negative pressure state by the vacuum pump 26 to the polishing gap S, there execute a polishing step for forming a flow of supply air abrasive gap S in the flow body Furthermore, if these polishing steps are repeated alternately several times, the dressing frequency of the grinding wheel is reduced to increase the grinding wheel life, and the cooling efficiency of the grinding wheel and the workpiece can be increased to perform high-quality polishing. it can.

本発明の研磨装置を用いた研磨加工方法としては、さらに、それぞれの研磨加工時に圧力調整弁29a,29bにより研磨空隙S内の圧力を研磨加工の進行に伴って変化させるようにして研磨加工を行う方式があり、圧力を変化させることにより単位時間当たりの研磨量を変化させることができる。   As a polishing method using the polishing apparatus of the present invention, the polishing process is further performed by changing the pressure in the polishing gap S with the progress of the polishing process by the pressure adjusting valves 29a and 29b during each polishing process. There is a method of performing, and the amount of polishing per unit time can be changed by changing the pressure.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。たとえば、本発明の研磨装置は、加工面Gaと被加工面Waとが接触した状態で摺動するタイプであれば、図1に示した種々のタイプの研磨装置に適用することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, the polishing apparatus of the present invention can be applied to the various types of polishing apparatuses shown in FIG. 1 as long as the processing surface Ga and the processing surface Wa are in a sliding state.

(A)〜(C)は砥石を用いて被加工物の平面を研磨加工する場合の研磨加工パターンを示す概略図である。(A)-(C) are schematic which shows the grinding | polishing processing pattern in the case of grind | polishing the plane of a to-be-processed object using a grindstone. 本発明の一実施の形態である研磨装置を示す断面図である。It is sectional drawing which shows the grinding | polishing apparatus which is one embodiment of this invention. (A)は図2におけるA−A線に沿う方向から見た砥石ホルダーを示す断面図であり、(B)は他のタイプの研磨装置における(A)と同様の部分を示す断面図である。(A) is sectional drawing which shows the grindstone holder seen from the direction in alignment with the AA in FIG. 2, (B) is sectional drawing which shows the part similar to (A) in other types of grinding | polishing apparatus. . 図2に示された砥石とこれに接触した状態の被加工物の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of workpiece in the state contacted with the grindstone shown by FIG. 図2に示された砥石を示す斜視図である。FIG. 3 is a perspective view showing the grindstone shown in FIG. 2. (A)は図2に示した研磨装置の全体構成を示す側面図であり、(B)は(A)の正面図である。(A) is a side view which shows the whole structure of the grinding | polishing apparatus shown in FIG. 2, (B) is a front view of (A). 図6(B)におけるB−B線に沿う拡大断面図である。It is an expanded sectional view which follows the BB line in Drawing 6 (B).

符号の説明Explanation of symbols

11 チャック
12 砥石ホルダー
13 ワーク回転シャフト
21 砥石回転シャフト
22 流体案内孔
24 流体通路
25 ロータリジョイント
26 真空ポンプ
29a,29b 圧力調整弁
31 加圧ポンプ
41 砥粒
42 結合材
43 気孔
45 主研磨領域
46 副研磨領域
G 砥石
Ga 加工面
S 研磨空隙
W 被加工物
Wa 被加工面
11 Chuck 12 Grinding wheel holder 13 Work rotation shaft 21 Grinding wheel rotation shaft 22 Fluid guide hole 24 Fluid passage 25 Rotary joint 26 Vacuum pump 29a, 29b Pressure adjusting valve 31 Pressure pump 41 Abrasive grain 42 Bonding material 43 Pore 45 Main polishing area 46 Secondary Polishing area G Grinding wheel Ga Processing surface S Polishing gap W Workpiece Wa Waving surface

Claims (4)

被加工物の被加工面を研磨加工する研磨装置であって、
砥粒、結合材および気孔を有し平坦な加工面が設けられた多孔質の砥石と、
前記加工面と前記被加工面とを接触させた状態のもとで、前記砥石と前記被加工物とを相対的に摺動させる駆動手段と、
前記砥石が取り付けられる砥石ホルダーに形成され、前記砥石の前記気孔を介して前記加工面に連通する流体通路と、
前記流体通路に接続され、前記被加工面と前記加工面との間に形成される研磨空隙に前記砥石の前記気孔を介して加圧された流体を供給し前記研磨空隙に加圧された流体の流れを形成する加圧流体供給手段と、
前記流体通路に接続され、前記砥石の前記気孔を負圧状態にし、前記研磨空隙に外部から流体を流入させて前記研磨空隙に流体の流れを形成し、該流体を前記気孔を介して前記流体通路に導く負圧生成手段と
前記加圧流体供給手段又は前記負圧生成手段により生成される圧力を調整して前記研磨空隙の厚みを変化させる圧力調整手段とを有することを特徴とする研磨装置。
A polishing apparatus for polishing a workpiece surface of a workpiece,
A porous grindstone having abrasive grains, binders and pores and provided with a flat working surface;
Driving means for relatively sliding the grindstone and the workpiece under a state in which the processing surface and the processing surface are in contact with each other;
A fluid passage formed in a grindstone holder to which the grindstone is attached, and communicating with the processing surface via the pores of the grindstone;
Connected to the fluid passage, wherein is pressure in the polishing gap through the pores of the grinding wheel by supplying a pressurized fluid to the polishing gap formed between the workpiece surface and the processing surface fluid Pressurized fluid supply means for forming a flow of
Connected to the fluid passage, the pores of the grindstone are brought into a negative pressure state, a fluid is flowed into the polishing gap from the outside to form a fluid flow in the polishing gap, and the fluid is passed through the pores to the fluid. Negative pressure generating means for guiding to the passage ;
A polishing apparatus comprising pressure adjusting means for adjusting the pressure generated by the pressurized fluid supply means or the negative pressure generating means to change the thickness of the polishing gap .
請求項1記載の研磨装置において、前記砥粒はダイヤモンドとCBNのいずれかの単体またはこれらの混合体であることを特徴とする研磨装置。   The polishing apparatus according to claim 1, wherein the abrasive grains are any one of diamond and CBN or a mixture thereof. 請求項1記載の研磨装置において、前記砥石はダイヤモンドとCBNのいずれかの単体またはこれらの混合体、あるいは前記単体または前記混合体と炭化ケイ素、ムライト、または溶融アルミナの少なくともいずれかの混合体を含む主研磨領域と、ダイヤモンド、溶融アルミナまたは炭化ケイ素の単体または混合体を含み前記主研磨領域よりも低い硬度の副研磨領域とを有することを特徴とする研磨装置。   2. The polishing apparatus according to claim 1, wherein the grindstone is one of diamond and CBN or a mixture thereof, or the single or the mixture and at least one of silicon carbide, mullite, and molten alumina. A polishing apparatus, comprising: a main polishing region including: and a sub-polishing region having a hardness lower than that of the main polishing region including a simple substance or a mixture of diamond, molten alumina, or silicon carbide. 被加工物の被加工面を研磨加工する研磨方法であって、
砥粒、結合材および気孔を有し平坦な加工面が設けられた多孔質の砥石の前記加工面と前記被加工面とを接触させた状態のもとで、前記砥石と前記被加工物とを相対的に摺動させながら、
前記被加工面と前記加工面との間に形成される研磨空隙に前記砥石の前記気孔を介して加圧された流体を供給し前記研磨空隙に加圧された流体の流れを形成する第一の研磨工程と、
前記砥石の前記気孔を負圧状態にし、前記研磨空隙に流体を流入させて流体を前記気孔を介して前記流体通路に導く負圧生成する第二の研磨工程とを実行し、
前記第一の研磨工程又は前記第二の研磨工程において生成される圧力を調整して前記研磨空隙の厚みを変化させることを特徴とする研磨方法。
A polishing method for polishing a workpiece surface of a workpiece,
The grindstone and the work piece are in contact with the work surface and the work surface of a porous grindstone having abrasive grains, binders and pores and provided with a flat work surface. While relatively sliding
First to form a flow of the fluid pressure in the polishing gap supplying pressurized fluid through the pores of the grinding wheel to the grinding gap formed between the workpiece surface and the processing surface Polishing process of
Performing a second polishing step in which the pores of the grindstone are brought into a negative pressure state, a fluid is caused to flow into the polishing gap, and a negative pressure is generated to guide the fluid to the fluid passage through the pores ;
A polishing method comprising adjusting the pressure generated in the first polishing step or the second polishing step to change the thickness of the polishing gap.
JP2005198004A 2005-07-06 2005-07-06 Polishing apparatus and polishing method Expired - Fee Related JP4262226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198004A JP4262226B2 (en) 2005-07-06 2005-07-06 Polishing apparatus and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198004A JP4262226B2 (en) 2005-07-06 2005-07-06 Polishing apparatus and polishing method

Publications (2)

Publication Number Publication Date
JP2007015046A JP2007015046A (en) 2007-01-25
JP4262226B2 true JP4262226B2 (en) 2009-05-13

Family

ID=37752639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198004A Expired - Fee Related JP4262226B2 (en) 2005-07-06 2005-07-06 Polishing apparatus and polishing method

Country Status (1)

Country Link
JP (1) JP4262226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217108A1 (en) * 2016-06-13 2017-12-21 バンドー化学株式会社 Abrasive

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280041A (en) * 2009-06-05 2010-12-16 Disco Abrasive Syst Ltd Grinding wheel
JP5511343B2 (en) * 2009-12-09 2014-06-04 株式会社ナノテム Polishing equipment
JP6231334B2 (en) * 2013-09-10 2017-11-15 株式会社ナノテム Thin plate substrate grinding method and grinding apparatus used therefor
CN106141911A (en) * 2015-03-30 2016-11-23 江苏东方砂轮有限公司 A kind of grinding head of improved structure
CN107495370A (en) * 2017-08-31 2017-12-22 湄潭县京贵茶树花产业发展有限公司 The extracting method of active ingredient in Tea Flower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217108A1 (en) * 2016-06-13 2017-12-21 バンドー化学株式会社 Abrasive
JP6340142B2 (en) * 2016-06-13 2018-06-06 バンドー化学株式会社 Abrasive
CN109311141A (en) * 2016-06-13 2019-02-05 阪东化学株式会社 Grind material

Also Published As

Publication number Publication date
JP2007015046A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4262226B2 (en) Polishing apparatus and polishing method
JP5373171B1 (en) Grinding wheel and grinding / polishing apparatus using the same
JP4336340B2 (en) Polishing method and polishing apparatus
US10919125B2 (en) Grindstone
JP2007118119A (en) Grindstone
JP2009095952A (en) Manufacturing method of wafer
JP6302889B2 (en) Whetstone
JP2008073832A (en) Grinding wheel for manufacturing thin wafer and grinding method
JP2012124331A (en) Planarization method of hard brittle wafer
JPS63288655A (en) Method and device for grinding ceramics
JP4746788B2 (en) Super-abrasive wheel for surface honing, dressing method thereof, and grinding apparatus using the wheel
JP2828377B2 (en) Grinding method and apparatus
TWI705874B (en) millstone
JP2017196725A (en) Wrapping polishing surface plate and device using the same
JP6231334B2 (en) Thin plate substrate grinding method and grinding apparatus used therefor
TWI621502B (en) Double chemical mechanical polishing trimming system and method thereof
CN111136589B (en) Preparation method of abrasive grain boundary bonding and fixing grinding tool
JP6286196B2 (en) Grinding wheel and grinding apparatus using the same
JP6178216B2 (en) Grinding / lapping / polishing method and apparatus thereof
JP2023155970A (en) Hard metal bound diamond composite material surface machining tool
KR100552912B1 (en) Diamond tools
TWI231246B (en) Method for polishing diamond wafer
JP2014200868A (en) Polishing device
JPS6384860A (en) Surface polishing device
JP2001088007A (en) Flatness control method and device of polishing material surface and carrier therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080922

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4262226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees