JP4258553B2 - Heat source unit and refrigeration system - Google Patents

Heat source unit and refrigeration system Download PDF

Info

Publication number
JP4258553B2
JP4258553B2 JP2007020592A JP2007020592A JP4258553B2 JP 4258553 B2 JP4258553 B2 JP 4258553B2 JP 2007020592 A JP2007020592 A JP 2007020592A JP 2007020592 A JP2007020592 A JP 2007020592A JP 4258553 B2 JP4258553 B2 JP 4258553B2
Authority
JP
Japan
Prior art keywords
refrigerant
main circuit
heat exchanger
oil
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007020592A
Other languages
Japanese (ja)
Other versions
JP2008185295A (en
Inventor
聡 河野
慎也 松岡
昌弘 岡
和秀 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007020592A priority Critical patent/JP4258553B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to PCT/JP2008/051384 priority patent/WO2008093718A1/en
Priority to CN2008800035111A priority patent/CN101595351B/en
Priority to US12/525,203 priority patent/US8297073B2/en
Priority to KR1020097017943A priority patent/KR101096851B1/en
Priority to EP08704151.3A priority patent/EP2128543A4/en
Priority to AU2008210830A priority patent/AU2008210830B2/en
Publication of JP2008185295A publication Critical patent/JP2008185295A/en
Application granted granted Critical
Publication of JP4258553B2 publication Critical patent/JP4258553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、熱源ユニット及び冷凍装置に関し、特に、冷媒回路の冷媒調整対策に係るものである。     The present invention relates to a heat source unit and a refrigeration apparatus, and particularly relates to measures for adjusting refrigerant in a refrigerant circuit.

従来、空気調和装置には、特許文献1に開示されているように、圧縮機と室外熱交換器と室外膨張弁と室内膨張弁と室内熱交換器とが順に接続された冷媒回路を備えているものがある。そして、上記冷媒回路の室外膨張弁と室内膨張弁との間には、冷媒を貯留するためのレシーバが設けられている。     Conventionally, as disclosed in Patent Document 1, an air conditioner includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, an outdoor expansion valve, an indoor expansion valve, and an indoor heat exchanger are sequentially connected. There is something. A receiver for storing the refrigerant is provided between the outdoor expansion valve and the indoor expansion valve of the refrigerant circuit.

一方、従来、空気調和装置には、特許文献2に開示されているように、圧縮機と室外熱交換器と膨張弁と室内熱交換器とが順に接続された冷媒回路を備えているものがある。そして、上記冷媒回路の圧縮機の吸入側には、液冷媒とガス冷媒とを分離するためのアキュムレータが設けられている。
特開2006−214610号公報 特開2006−78087号公報
On the other hand, conventionally, as disclosed in Patent Document 2, an air conditioner includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected. is there. An accumulator for separating the liquid refrigerant and the gas refrigerant is provided on the suction side of the compressor of the refrigerant circuit.
JP 2006-214610 A JP 2006-78087 A

しかしながら、従来の特許文献1及び2の何れの空気調和装置においても、冷媒回路におけるメイン回路にレシーバ又はアキュムレータが設けられているので、熱損失が生ずるという問題があった。     However, in any of the conventional air conditioners of Patent Documents 1 and 2, there is a problem that heat loss occurs because a receiver or an accumulator is provided in the main circuit of the refrigerant circuit.

つまり、上記冷媒回路のメイン回路にレシーバを設けている空気調和装置では、暖房運転時に余剰の液冷媒が溜まり込み、この液冷媒から外気に放熱されることになる。しかも、暖房運転時に常時循環している液冷媒から放熱されることから、熱損失が大きいという問題があった。     That is, in an air conditioner in which a receiver is provided in the main circuit of the refrigerant circuit, surplus liquid refrigerant accumulates during heating operation and is radiated from the liquid refrigerant to the outside air. Moreover, since heat is radiated from the liquid refrigerant that is constantly circulating during heating operation, there is a problem that heat loss is large.

一方、上記冷媒回路のメイン回路にアキュムレータを設けている空気調和装置では、冷房運転時に余剰の液冷媒が溜まり込むと、外気温度が高いことから、この液冷媒から外気に放熱されることになる。しかも、冷房運転時に常時循環している液冷媒から放熱されることから、熱損失が大きいという問題があった。     On the other hand, in an air conditioner in which an accumulator is provided in the main circuit of the refrigerant circuit, if excess liquid refrigerant accumulates during cooling operation, the outside air temperature is high, so that heat is radiated from the liquid refrigerant to the outside air. . Moreover, since heat is radiated from the liquid refrigerant that is constantly circulating during the cooling operation, there is a problem that heat loss is large.

本発明は、斯かる点に鑑みてなされたものであり、冷凍運転時の熱損失の低減を図ることを目的とする。     This invention is made | formed in view of such a point, and aims at reduction of the heat loss at the time of freezing operation.

本発明は、冷媒回路のメイン回路とは別個のサブ回路で冷媒調節を行うようにしたものである。     In the present invention, refrigerant adjustment is performed in a sub circuit separate from the main circuit of the refrigerant circuit.

第1の発明は、低圧ガスライン(4a)が接続された圧縮機(21)と、一端が上記圧縮機(21)に連通し且つ他端が液ライン(4a)に接続された熱源側熱交換器(22)とを備え、上記低圧ガスライン(4a)と圧縮機(21)と熱源側熱交換器(22)と液ライン(4a)とが冷媒回路(40)のメイン回路(43)の一部を構成する熱源ユニットを対象としている。そして、一端が上記メイン回路(43)の液ライン(4a)に接続され且つ他端が上記メイン回路(43)の低圧ガスライン(4a)に接続されて上記メイン回路(43)と別に設けられ、上記メイン回路(43)の冷媒を貯留するサブ回路(70)を備えている。     The first invention is a compressor (21) to which a low-pressure gas line (4a) is connected, and heat source side heat having one end communicating with the compressor (21) and the other end connected to a liquid line (4a). The low pressure gas line (4a), the compressor (21), the heat source side heat exchanger (22), and the liquid line (4a) are the main circuit (43) of the refrigerant circuit (40). The heat source unit that constitutes a part of is intended. One end is connected to the liquid line (4a) of the main circuit (43) and the other end is connected to the low-pressure gas line (4a) of the main circuit (43) so as to be provided separately from the main circuit (43). And a sub circuit (70) for storing the refrigerant of the main circuit (43).

更に、上記サブ回路(70)は、一端が上記液ライン(4a)に接続され且つ他端が上記低圧ガスライン(4a)に接続されたサブ通路(71)と、該サブ通路(71)に設けられ、上記メイン回路(43)の冷媒を貯留する冷媒調節器(72)と、上記液ライン(4a)及び低圧ガスライン(4a)と冷媒調節器(72)との連通及び遮断を行うための切換機構(73)とを備えている。 Further, the sub circuit (70) includes a sub passage (71) having one end connected to the liquid line (4a) and the other end connected to the low pressure gas line (4a), and the sub passage (71). A refrigerant regulator (72) for storing the refrigerant of the main circuit (43), and the liquid line (4a), the low-pressure gas line (4a) and the refrigerant regulator (72) are connected to and disconnected from each other. Switching mechanism (73).

加えて、上記冷媒回路(40)は、上記圧縮機(21)の吐出側に設けられた油分離器(60)と、該油分離器(60)の油を圧縮機(21)に戻す油戻し通路(61)と、該油戻し通路(61)と冷媒調節器(72)とを繋ぎ、連通遮断可能な油導入管(77)とを備え、上記圧縮機(21)に充填された潤滑油が多い場合、メイン回路(43)の油を冷媒調節器(72)に回収し、冷媒調節器(72)に回収した油量が多すぎる場合、冷媒調節器(72)の油をメイン回路(43)に供給する。In addition, the refrigerant circuit (40) includes an oil separator (60) provided on the discharge side of the compressor (21), and oil that returns the oil in the oil separator (60) to the compressor (21). Lubricant filled with the compressor (21), comprising a return passage (61), an oil introduction pipe (77) that connects the oil return passage (61) and the refrigerant regulator (72) and is capable of blocking communication. If there is a lot of oil, the oil in the main circuit (43) is collected in the refrigerant regulator (72). If the amount of oil collected in the refrigerant regulator (72) is too much, the oil in the refrigerant regulator (72) Supply to (43).

第2の発明は、第1の発明の熱源ユニット(20)を備えた冷凍装置であって、上記熱源ユニット(20)に利用側熱交換器(31)を有する利用ユニット(30)が接続されて冷媒回路(40)のメイン回路(43)が構成される一方、上記メイン回路(43)の冷媒量が過剰になると該メイン回路(43)の余剰冷媒を冷媒調節器(72)に貯留するように切換機構(73)を制御する冷媒量制御手段(91)が設けられている。 The second invention is a refrigeration apparatus comprising the heat source unit (20) of the first invention, wherein a use unit (30) having a use side heat exchanger (31) is connected to the heat source unit (20). The main circuit (43) of the refrigerant circuit (40) is configured, and when the amount of refrigerant in the main circuit (43) becomes excessive, the excess refrigerant of the main circuit (43) is stored in the refrigerant regulator (72). Thus, a refrigerant amount control means (91) for controlling the switching mechanism (73) is provided.

第3の発明は、第2の発明において、上記冷媒量制御手段(91)は、上記メイン回路(43)の冷媒量が不足になると該メイン回路(43)の不足冷媒を冷媒調節器(72)からメイン回路(43)に供給するように切換機構(73)を制御する。 According to a third aspect , in the second aspect , the refrigerant amount control means (91) causes the refrigerant regulator (72) to supply the shortage refrigerant in the main circuit (43) when the refrigerant amount in the main circuit (43) becomes insufficient. ) To control the switching mechanism (73) so as to be supplied to the main circuit (43).

第4の発明は、第2の発明において、上記冷媒量制御手段(91)は、凝縮器となる熱源側熱交換器(22)又は利用側熱交換器(31)における過冷却度に基づいて上記メイン回路(43)の冷媒過剰か否かを判定するように構成されている。 In a fourth aspect based on the second aspect , the refrigerant amount control means (91) is based on the degree of supercooling in the heat source side heat exchanger (22) or the use side heat exchanger (31) serving as a condenser. It is configured to determine whether or not the refrigerant in the main circuit (43) is excessive.

第5の発明は、第3の発明において、上記冷媒量制御手段(91)は、凝縮器となる熱源側熱交換器(22)又は利用側熱交換器(31)における過冷却度に基づいて上記メイン回路(43)の冷媒不足か否かを判定するように構成されている。 In a fifth aspect based on the third aspect , the refrigerant amount control means (91) is based on the degree of supercooling in the heat source side heat exchanger (22) or the use side heat exchanger (31) serving as a condenser. The main circuit (43) is configured to determine whether or not the refrigerant is insufficient.

第6の発明は、第2の発明において、上記冷媒量制御手段(91)は、起動後の圧縮機(21)の吐出冷媒圧力の変化に基づいて上記メイン回路(43)の冷媒過剰か否かを判定するように構成されている。 In a sixth aspect based on the second aspect , the refrigerant amount control means (91) determines whether or not the refrigerant in the main circuit (43) is excessive based on a change in refrigerant pressure discharged from the compressor (21) after startup. or that is configured to determine.

〈機能〉
上記第1の発明では、メイン回路(43)の冷媒が多い場合、余剰冷媒をサブ回路(70)に回収する。具体的に、切換機構(70)を切り換えてメイン回路(43)の冷媒を冷媒調節器(72)に回収する。
<function>
In the said 1st invention, when there are many refrigerant | coolants of a main circuit (43), a surplus refrigerant | coolant is collect | recovered to a subcircuit (70). Specifically, the refrigerant in the main circuit switches the changeover mechanism (70) (43) is recovered to the refrigerant regulator (72).

また、上記圧縮機(21)に充填された潤滑油が多い場合、油分離器(60)から油戻し通路(61)を介して圧縮機(60)に戻る油の一部を油導入管(77)を介して冷媒調節器(72)に回収する。When the lubricating oil filled in the compressor (21) is large, a part of the oil returning from the oil separator (60) to the compressor (60) through the oil return passage (61) 77) to the refrigerant regulator (72).

特に、第2の発明では、冷媒量制御手段(91)が切換機構(70)を切り換え制御してメイン回路(43)の冷媒を冷媒調節器(72)に回収する。一方、第3の発明では、上記メイン回路(43)の冷媒が不足する場合、冷媒量制御手段(91)が切換機構(70)を切り換え制御してメイン回路(43)の不足冷媒を冷媒調節器(72)からメイン回路(43)に供給する。 In particular, in the second invention, the refrigerant amount control means (91) controls the switching mechanism (70) to recover the refrigerant in the main circuit (43) to the refrigerant regulator (72). On the other hand, in the third invention, when the refrigerant in the main circuit (43) runs short, the refrigerant amount control means (91) controls the switching mechanism (70) to control the shortage refrigerant in the main circuit (43). From the container (72) to the main circuit (43).

第4の発明では、冷媒量制御手段(91)が凝縮器となる熱源側熱交換器(22)又は利用側熱交換器(31)における過冷却度に基づいて上記メイン回路(43)の冷媒過剰か否かを判定し、第5の発明は、上記冷媒量制御手段(91)が凝縮器となる熱源側熱交換器(22)又は利用側熱交換器(31)における過冷却度に基づいて上記メイン回路(43)の冷媒不足か否かを判定する。 In the fourth invention, the refrigerant in the main circuit (43) based on the degree of supercooling in the heat source side heat exchanger (22) or the use side heat exchanger (31) in which the refrigerant amount control means (91) serves as a condenser. Whether the refrigerant amount is excessive or not is determined, and the fifth aspect of the invention is based on the degree of supercooling in the heat source side heat exchanger (22) or the use side heat exchanger (31) in which the refrigerant amount control means (91) serves as a condenser. It is then determined whether or not the refrigerant in the main circuit (43) is insufficient.

また、第6の発明では、冷媒量制御手段(91)が起動後の圧縮機(21)の吐出冷媒圧力の変化に基づいて上記メイン回路(43)の冷媒過剰か否かを判定する。 Further, in the sixth aspect of the invention, the refrigerant amount controlling means (91) is you determine refrigerant excess or not of the main circuit (43) based on the change of the discharge refrigerant pressure of the compressor after startup (21).

上記本発明によれば、冷媒回路(40)のメイン回路(43)とは別個のサブ回路(70)に余剰冷媒を貯留するようにしたために、熱損失の低減を図ることができる。つまり、冷凍運転時に冷媒は冷媒回路(40)のメイン回路(43)を常時循環する。この冷媒が常時循環するメイン回路(43)とは別個のサブ回路(70)に冷媒を貯留するので、常時循環する冷媒からの外部への放熱を抑制することができる。この結果、熱損失の改善を図ることができる。     According to the present invention, since the excess refrigerant is stored in the sub circuit (70) separate from the main circuit (43) of the refrigerant circuit (40), heat loss can be reduced. That is, the refrigerant circulates constantly through the main circuit (43) of the refrigerant circuit (40) during the refrigeration operation. Since the refrigerant is stored in the sub circuit (70) separate from the main circuit (43) in which the refrigerant is constantly circulated, it is possible to suppress heat dissipation from the refrigerant that is circulated to the outside. As a result, heat loss can be improved.

また、第1の発明及び第2の発明によれば、上記サブ回路(70)に設けた冷媒調節器(72)に冷媒を貯留するようにしているので、メイン回路(43)の冷媒量を確実に調整することができる。 According to the first and second inventions, since the refrigerant is stored in the refrigerant regulator (72) provided in the sub circuit (70), the amount of refrigerant in the main circuit (43) is reduced. It can be adjusted reliably.

また、第1の発明によれば、余剰の油を冷媒調節器(72)に貯留することができるので、油付着による熱交換器の伝熱性能の低下を防止することができる。更に、冷媒の貯留と油の貯留とを1つの容器で行うことができるので、部品点数の削減を図ることができる。Moreover, according to 1st invention, since excess oil can be stored in a refrigerant | coolant regulator (72), the fall of the heat exchanger performance of the heat exchanger by oil adhesion can be prevented. Furthermore, since the refrigerant can be stored and the oil can be stored in one container, the number of parts can be reduced.

また、第3の発明によれば、上記メイン回路(43)の冷媒が不足すると、冷媒調節器(72)に貯留していた液冷媒をメイン回路(43)に供給するようにしているので、メイン回路(43)の冷媒量を正確に調整することができる。 According to the third invention, when the refrigerant in the main circuit (43) is insufficient, the liquid refrigerant stored in the refrigerant regulator (72) is supplied to the main circuit (43). The amount of refrigerant in the main circuit (43) can be adjusted accurately.

また、第4の発明及び第5の発明によれば、上記冷媒の過不足を冷媒の過冷却度で判定しているので、冷凍運転等の通常運転時の冷媒量を正確に判定することができる。 Further, according to the fourth and fifth aspects of the invention, since the excess or deficiency of the refrigerant is determined by the degree of refrigerant subcooling, it is possible to accurately determine the amount of refrigerant during normal operation such as refrigeration operation. can Ru.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〈発明の実施形態1〉
本実施形態1は、図1及び図2に示すように、本発明の冷凍装置をマルチ型の空気調和装置(10)に適用したものである。該空気調和装置(10)は、本発明の熱源ユニットである室外ユニット(20)を備えると共に、利用ユニットである室内ユニット(30)を複数台備え、冷暖房運転の切り換え可能な冷媒回路(40)を備えている。
<Embodiment 1>
In Embodiment 1, as shown in FIGS. 1 and 2, the refrigeration apparatus of the present invention is applied to a multi-type air conditioner (10). The air conditioner (10) includes an outdoor unit (20) that is a heat source unit of the present invention, a plurality of indoor units (30) that are utilization units, and a refrigerant circuit (40) that can be switched between cooling and heating operations. It has.

上記室外ユニット(20)は、圧縮機(21)と熱源側熱交換器である室外熱交換器(22)と過冷却熱交換器(23)を備えると共に、第1切換弁(24)及び第2切換弁(25)を備えている。     The outdoor unit (20) includes a compressor (21), an outdoor heat exchanger (22) that is a heat source side heat exchanger, and a supercooling heat exchanger (23), and includes a first switching valve (24) and a first switching valve (24). Two switching valves (25) are provided.

上記圧縮機(21)の吐出側には吐出管(50)の一端が接続され、該圧縮機(21)の吸入側には低圧ガス管(51)の一端が接続されている。上記吐出管(50)は第1切換弁(24)を介して室外熱交換器(22)の一端に接続されている。上記吐出管(50)には高圧ガス管(52)の一端が接続され、該高圧ガス管(52)の他端は、開閉自在な接続ポート(5a)に構成されている。そして、本実施形態において、上記高圧ガス管(52)の接続ポート(5a)は閉鎖されている。     One end of a discharge pipe (50) is connected to the discharge side of the compressor (21), and one end of a low-pressure gas pipe (51) is connected to the suction side of the compressor (21). The discharge pipe (50) is connected to one end of the outdoor heat exchanger (22) via the first switching valve (24). One end of a high-pressure gas pipe (52) is connected to the discharge pipe (50), and the other end of the high-pressure gas pipe (52) is configured as an openable / closable connection port (5a). In this embodiment, the connection port (5a) of the high-pressure gas pipe (52) is closed.

上記高圧ガス管(52)には、高圧分岐管(53)の一端が接続され、該高圧分岐管(53)の他端は第2切換弁(25)に接続されている。     One end of the high-pressure branch pipe (53) is connected to the high-pressure gas pipe (52), and the other end of the high-pressure branch pipe (53) is connected to the second switching valve (25).

上記低圧ガス管(51)の他端は、開閉自在な接続ポート(5b)に構成されている。そして、本実施形態において、上記低圧ガス管(51)の接続ポート(5b)は閉鎖されている。更に、上記低圧ガス管(51)には、第1低圧分岐管(54)の一端と第2低圧分岐管(55)の一端が接続され、該第1低圧分岐管(54)の他端は第1切換弁(24)に接続され、上記第2低圧分岐管(55)の他端は第2切換弁(25)に接続されている。     The other end of the low-pressure gas pipe (51) is configured as an openable / closable connection port (5b). In this embodiment, the connection port (5b) of the low-pressure gas pipe (51) is closed. Furthermore, one end of a first low-pressure branch pipe (54) and one end of a second low-pressure branch pipe (55) are connected to the low-pressure gas pipe (51), and the other end of the first low-pressure branch pipe (54) is connected to the low-pressure gas pipe (51). Connected to the first switching valve (24), the other end of the second low-pressure branch pipe (55) is connected to the second switching valve (25).

上記第2切換弁(25)には接続ガス管(56)の一端が接続され、該接続ガス管(56)の他端は、開閉自在な接続ポート(5c)に構成されている。     One end of a connection gas pipe (56) is connected to the second switching valve (25), and the other end of the connection gas pipe (56) is configured as an openable / closable connection port (5c).

上記第1切換弁(24)及び第2切換弁(25)は、四路切換弁で構成され、1つのポートが閉鎖されている。     The first switching valve (24) and the second switching valve (25) are four-way switching valves, and one port is closed.

そして、上記第1切換弁(24)は、吐出管(50)が室外熱交換器(22)に連通し且つ第1低圧分岐管(54)の端部が閉鎖された状態(図2実線状態の冷房運転状態)と、吐出管(50)の端部が閉鎖され且つ第1低圧分岐管(54)が室外熱交換器(22)に連通した状態(図2破線状態の暖房運転状態)とに切り換わる。     In the first switching valve (24), the discharge pipe (50) communicates with the outdoor heat exchanger (22) and the end of the first low-pressure branch pipe (54) is closed (the solid line state in FIG. 2). Cooling operation state), a state where the end of the discharge pipe (50) is closed, and the first low-pressure branch pipe (54) communicates with the outdoor heat exchanger (22) (heating operation state in the broken line state in FIG. 2) Switch to.

また、上記第2切換弁(25)は、高圧分岐管(53)の端部が閉鎖され且つ接続ガス管(56)が第2低圧分岐管(55)に連通した状態(図2実線状態の冷房運転状態)と、高圧分岐管(53)が接続ガス管(56)に連通し且つ第2低圧分岐管(55)の端部が閉鎖された状態(図2破線状態の暖房運転状態)とに切り換わる。     In the second switching valve (25), the end of the high-pressure branch pipe (53) is closed and the connecting gas pipe (56) communicates with the second low-pressure branch pipe (55) (in the state of the solid line in FIG. 2). A cooling operation state), a state in which the high-pressure branch pipe (53) communicates with the connecting gas pipe (56), and the end of the second low-pressure branch pipe (55) is closed (a heating operation state in a broken line state in FIG. 2); Switch to.

上記室外熱交換器(22)の他端には、液管(57)の一端が接続され、該液管(57)の他端は、開閉自在な接続ポート(5d)に構成されている。上記液管(57)の途中には、室外熱交換器(22)から接続ポート(5d)に向かって室外膨張弁(26)と過冷却熱交換器(23)とが順に設けられている。該過冷却熱交換器(23)には、過冷却通路(58)が接続されている。該過冷却通路(58)の一端は、室外膨張弁(26)と過冷却熱交換器(23)との間に接続され、過冷却膨張弁(27)と過冷却熱交換器(23)とが順に接続され、他端が低圧ガス管(51)に接続されている。そして、上記過冷却熱交換器(23)は、液管(57)を流れる液冷媒の一部を分岐して減圧し、液管(57)を流れる液冷媒を過冷却するように構成されている。     One end of a liquid pipe (57) is connected to the other end of the outdoor heat exchanger (22), and the other end of the liquid pipe (57) is configured as an openable / closable connection port (5d). In the middle of the liquid pipe (57), an outdoor expansion valve (26) and a supercooling heat exchanger (23) are sequentially provided from the outdoor heat exchanger (22) toward the connection port (5d). A supercooling passage (58) is connected to the supercooling heat exchanger (23). One end of the supercooling passage (58) is connected between the outdoor expansion valve (26) and the supercooling heat exchanger (23), and the supercooling expansion valve (27) and the supercooling heat exchanger (23) Are connected in order, and the other end is connected to the low-pressure gas pipe (51). The supercooling heat exchanger (23) is configured to branch and depressurize part of the liquid refrigerant flowing through the liquid pipe (57) and to supercool the liquid refrigerant flowing through the liquid pipe (57). Yes.

上記吐出管(50)は、油分離器(60)が設けられている。そして、該油分離器(60)には、油戻し通路(61)の一端が接続されている。該油戻し通路(61)は、キャピラリチューブ(62)が設けられ、他端が低圧ガス管(51)の圧縮機(21)の吸込側に接続されている。     The discharge pipe (50) is provided with an oil separator (60). One end of an oil return passage (61) is connected to the oil separator (60). The oil return passage (61) is provided with a capillary tube (62), and the other end is connected to the suction side of the compressor (21) of the low-pressure gas pipe (51).

また、上記液管(57)の接続ポート(5d)には、液配管(41)が接続され、上記接続ガス管(56)の接続ポート(5c)にはガス配管(42)が接続されている。     The liquid pipe (41) is connected to the connection port (5d) of the liquid pipe (57), and the gas pipe (42) is connected to the connection port (5c) of the connection gas pipe (56). Yes.

上記液配管(41)とガス配管(42)との間には、複数台の室内ユニット(30)が互いに並列に接続されている。     A plurality of indoor units (30) are connected in parallel between the liquid pipe (41) and the gas pipe (42).

上記室内ユニット(30)は、利用側熱交換器である室内熱交換器(31)を備え、該室内熱交換器(31)の液側は、室内液管(32)によって液配管(41)に接続され、上記室内熱交換器(31)のガス側は、室内ガス管(33)によってガス配管(42)に接続されている。上記室内ガス管(33)には室内膨張弁(34)が設けられている。     The indoor unit (30) includes an indoor heat exchanger (31) that is a use side heat exchanger, and the liquid side of the indoor heat exchanger (31) is connected to a liquid pipe (41) by an indoor liquid pipe (32). The gas side of the indoor heat exchanger (31) is connected to the gas pipe (42) by the indoor gas pipe (33). The indoor gas pipe (33) is provided with an indoor expansion valve (34).

そして、上記冷媒回路(40)には、冷暖房運転時に圧縮機(21)から吐出した冷媒が室外熱交換器(22)及び室内熱交換器(31)を流れて圧縮機(21)に戻る冷媒循環を行うメイン回路(43)が構成されている。つまり、上記メイン回路(43)は、圧縮機(21)、吐出管(50)、室外熱交換器(22)、液管(57)、液配管(41)、室内液管(32)、室内熱交換器(31)、室内ガス管(33)、ガス配管(42)、接続ガス管(56)、第2低圧分岐管(55)、低圧ガス管(51)、高圧ガス管(52)、高圧分岐管(53)によって構成されている。また、上記液管(57)と液配管(41)とによって液ライン(4a)が構成され、上記ガス配管(42)と低圧ガス管(51)と第1低圧分岐管(54)とによって低圧ガスライン(4a)が構成されている。     In the refrigerant circuit (40), the refrigerant discharged from the compressor (21) during the cooling / heating operation flows through the outdoor heat exchanger (22) and the indoor heat exchanger (31) and returns to the compressor (21). A main circuit (43) for circulation is configured. That is, the main circuit (43) includes the compressor (21), the discharge pipe (50), the outdoor heat exchanger (22), the liquid pipe (57), the liquid pipe (41), the indoor liquid pipe (32), the indoor Heat exchanger (31), indoor gas pipe (33), gas pipe (42), connecting gas pipe (56), second low pressure branch pipe (55), low pressure gas pipe (51), high pressure gas pipe (52), It is comprised by the high voltage | pressure branch pipe (53). The liquid pipe (57) and the liquid pipe (41) constitute a liquid line (4a), and the gas pipe (42), the low-pressure gas pipe (51), and the first low-pressure branch pipe (54) have a low pressure. A gas line (4a) is configured.

一方、上記室外ユニット(20)には、本発明の特徴とするサブ回路(70)が設けられている。該サブ回路(70)は、メイン回路(43)の冷媒を貯留するものであり、サブ通路(71)と冷媒調節器(72)と切換機構(73)と油導入管(77)とを備えている。上記サブ通路(71)の一端は、液ライン(4a)である液管(57)における過冷却熱交換器(23)と接続ポート(5d)の間に接続され、他端が低圧ガス管(51)に接続されている。     On the other hand, the outdoor unit (20) is provided with a sub circuit (70) which is a feature of the present invention. The sub circuit (70) stores the refrigerant of the main circuit (43), and includes a sub passage (71), a refrigerant regulator (72), a switching mechanism (73), and an oil introduction pipe (77). ing. One end of the sub passage (71) is connected between the supercooling heat exchanger (23) and the connection port (5d) in the liquid pipe (57) which is the liquid line (4a), and the other end is a low-pressure gas pipe ( 51) is connected.

上記冷媒調節器(72)は、所定の液冷媒を貯留可能な密閉容器に構成され、サブ通路(71)の回収管(74)が上部に接続され、サブ通路(71)の戻し管(75)が下部に接続されている。また、上記サブ通路(71)にはガス抜き管(76)が設けられ、該ガス抜き管(76)の一端は冷媒調節器(72)の上部に接続され、他端がサブ通路(71)の戻し管(75)に接続されている。     The refrigerant regulator (72) is configured as an airtight container capable of storing a predetermined liquid refrigerant, the recovery pipe (74) of the sub passage (71) is connected to the upper portion, and the return pipe (75 of the sub passage (71) ) Is connected to the bottom. The sub-passage (71) is provided with a gas vent pipe (76), one end of the gas vent pipe (76) is connected to the upper part of the refrigerant regulator (72), and the other end is connected to the sub-passage (71). Connected to the return pipe (75).

上記油導入管(77)は、連通遮断可能に構成され、油分離器(60)から圧縮機(21)に戻る油の一部を冷媒調節器(72)に導くものであり、一端が油戻し通路(61)に接続され、他端が冷媒調節器(72)に接続されている。     The oil introduction pipe (77) is configured to be able to cut off communication, and part of the oil returning from the oil separator (60) to the compressor (21) is guided to the refrigerant regulator (72), and one end of the oil introduction pipe (77) Connected to the return passage (61), the other end is connected to the refrigerant regulator (72).

上記切換機構(73)は、上記液ライン(4a)及び低圧ガスライン(4a)と冷媒調節器(72)との連通及び遮断を行うものであり、サブ通路(71)の回収管(74)に設けられた回収弁(7a)と、戻し管(75)に設けられた戻し弁(7b)と、ガス抜き管(76)に設けられたガス抜き弁(7c)と、油導入管(77)に設けられた導入弁(7d)とより構成されている。尚、上記回収管(74)には、冷媒調節器(72)への流れのみを許容する逆止弁(7e)が設けられ、上記戻し管(75)にはキャピラリチューブ(7f)が設けられている。     The switching mechanism (73) communicates and shuts off the liquid line (4a) and the low-pressure gas line (4a) and the refrigerant regulator (72). The recovery pipe (74) of the sub-passage (71) A recovery valve (7a) provided in the return pipe (75), a return valve (7b) provided in the return pipe (75), a gas release valve (7c) provided in the gas release pipe (76), and an oil introduction pipe (77 ) And the introduction valve (7d) provided in the above. The recovery pipe (74) is provided with a check valve (7e) that allows only the flow to the refrigerant regulator (72), and the return pipe (75) is provided with a capillary tube (7f). ing.

また、上記圧縮機(21)の吐出側には、高圧冷媒圧力を検出する高圧圧力センサ(80)が設けられ、上記圧縮機(21)の吸込側には、低圧冷媒圧力を検出する低圧圧力センサ(81)が設けられている。また、上記室外熱交換器(22)の液側には、該室外熱交換器(22)から流出する液冷媒温度を検出する室外液温センサ(82)が設けられ、上記室内熱交換器(31)の液側には、該室内熱交換器(31)から流出する液冷媒温度を検出する室内液温センサ(83)が設けられている。     A high pressure sensor (80) for detecting high pressure refrigerant pressure is provided on the discharge side of the compressor (21), and a low pressure pressure for detecting low pressure refrigerant pressure is provided on the suction side of the compressor (21). A sensor (81) is provided. An outdoor liquid temperature sensor (82) for detecting the temperature of the liquid refrigerant flowing out from the outdoor heat exchanger (22) is provided on the liquid side of the outdoor heat exchanger (22), and the indoor heat exchanger ( On the liquid side of 31), an indoor liquid temperature sensor (83) for detecting the temperature of the liquid refrigerant flowing out of the indoor heat exchanger (31) is provided.

上記高圧圧力センサ(80)、低圧圧力センサ(81)、室外液温センサ(82)及び室内液温センサ(83)の検出信号は、コントローラ(90)に入力されている。     Detection signals from the high pressure sensor (80), the low pressure sensor (81), the outdoor liquid temperature sensor (82), and the indoor liquid temperature sensor (83) are input to the controller (90).

上記コントローラ(90)は、冷暖房の運転を制御すると共に、冷媒量制御手段である冷媒量制御部(91)が設けられている。     The controller (90) controls the cooling / heating operation, and is provided with a refrigerant amount control unit (91) as refrigerant amount control means.

上記冷媒量制御部(91)は、メイン回路(43)の冷媒量が過剰になると該メイン回路(43)の余剰冷媒を冷媒調節器(72)に貯留するように切換機構(73)を制御する一方、メイン回路(43)の冷媒量が不足になると該メイン回路(43)の不足冷媒を冷媒調節器(72)からメイン回路(43)に供給するように切換機構(73)を制御する。しかも、上記冷媒量制御部(91)は、凝縮器となる室外熱交換器(22)又は室内熱交換器(31)における過冷却度に基づいて上記メイン回路(43)の冷媒過剰か否か及び冷媒不足か否かを判定するように構成されている。     The refrigerant amount control unit (91) controls the switching mechanism (73) so that the excess refrigerant of the main circuit (43) is stored in the refrigerant regulator (72) when the refrigerant amount of the main circuit (43) becomes excessive. On the other hand, when the amount of refrigerant in the main circuit (43) becomes insufficient, the switching mechanism (73) is controlled so that the insufficient refrigerant in the main circuit (43) is supplied from the refrigerant regulator (72) to the main circuit (43). . Moreover, the refrigerant quantity control unit (91) determines whether or not the refrigerant in the main circuit (43) is excessive based on the degree of supercooling in the outdoor heat exchanger (22) or the indoor heat exchanger (31) serving as a condenser. And it is comprised so that it may be determined whether it is a refrigerant | coolant shortage.

具体的に、上記冷媒量制御部(91)は、冷房運転時に高圧圧力センサ(80)の検出圧力に基づく高圧圧力相当飽和温度と室外液温センサ(82)の検出温度とにより過冷却度を導出し、暖房運転時に高圧圧力センサ(80)の検出圧力に基づく高圧圧力相当飽和温度と室内液温センサ(83)の検出温度とにより過冷却度を導出する。     Specifically, during the cooling operation, the refrigerant amount control unit (91) determines the degree of supercooling based on the saturation temperature corresponding to the high pressure based on the detected pressure of the high pressure sensor (80) and the detected temperature of the outdoor liquid temperature sensor (82). The degree of supercooling is derived from the saturation temperature corresponding to the high pressure based on the pressure detected by the high pressure sensor (80) and the temperature detected by the indoor liquid temperature sensor (83) during heating operation.

そして、上記冷媒量制御部(91)は、過冷却度が予め設定された値より大きくなると、回収弁(7a)とガス抜き弁(7c)とを開口してメイン回路(43)の液冷媒を冷媒調節器(72)に回収する。上記冷媒量制御部(91)は、過冷却度が予め設定された値より小さくなると、戻し弁(7b)を開口して冷媒調節器(72)の液冷媒をメイン回路(43)に供給する。     The refrigerant amount control unit (91) opens the recovery valve (7a) and the gas vent valve (7c) and opens the liquid refrigerant in the main circuit (43) when the degree of supercooling exceeds a preset value. Is recovered in the refrigerant regulator (72). When the degree of supercooling becomes smaller than a preset value, the refrigerant amount control unit (91) opens the return valve (7b) and supplies the liquid refrigerant of the refrigerant regulator (72) to the main circuit (43). .

また、上記圧縮機(21)に充填された潤滑油が多い場合、導入弁(7d)とガス抜き弁(7c)とを開口してメイン回路(43)の油を冷媒調節器(72)に回収する。つまり、本実施形態の室外ユニット(20)は、図2に示すように1台のみが接続される場合の他、複数台が並列に接続される場合がある。したがって、上記圧縮機(21)には、複数台の室外ユニット(20)が接続されて使用される場合に対応可能な油量が充填されている。したがって、1台の室外ユニット(20)のみが接続される場合には、油量過多となる。そこで、1台の室外ユニット(20)のみが使用される場合の油量は、充填量から判別することができることから、上記潤滑油が多い場合、導入弁(7d)とガス抜き弁(7c)とを所定時間開口してメイン回路(43)の油を冷媒調節器(72)に回収する。     If the compressor (21) contains a large amount of lubricating oil, the inlet valve (7d) and the gas vent valve (7c) are opened to allow the oil in the main circuit (43) to enter the refrigerant regulator (72). to recover. That is, the outdoor unit (20) of this embodiment may be connected in parallel in addition to the case where only one unit is connected as shown in FIG. Therefore, the compressor (21) is filled with an oil amount that can be used when a plurality of outdoor units (20) are connected and used. Therefore, when only one outdoor unit (20) is connected, the amount of oil is excessive. Therefore, the amount of oil when only one outdoor unit (20) is used can be determined from the filling amount. Therefore, when the lubricating oil is large, the introduction valve (7d) and the gas vent valve (7c) And the oil in the main circuit (43) is collected in the refrigerant regulator (72).

尚、上記回収した油量が多すぎる場合、戻し弁(7b)を開口して冷媒調節器(72)の油をメイン回路(43)に供給する。     If the amount of recovered oil is too large, the return valve (7b) is opened to supply oil from the refrigerant regulator (72) to the main circuit (43).

−運転動作−
次に、上記空気調和装置(10)の運転動作について説明する。
-Driving action-
Next, the operation of the air conditioner (10) will be described.

〈冷房運転〉
冷房運転では、図2実線矢符で示すように、第1切換弁(24)及び第2切換弁(25)が実線状態に切り換わる。この状態で圧縮機(21)を運転すると、冷媒が冷媒回路(40)のメイン回路(43)を流れて循環する。
<Cooling operation>
In the cooling operation, as indicated by solid line arrows in FIG. 2, the first switching valve (24) and the second switching valve (25) are switched to the solid line state. When the compressor (21) is operated in this state, the refrigerant flows through the main circuit (43) of the refrigerant circuit (40) and circulates.

具体的に、圧縮機(21)から吐出された冷媒は、室外熱交換器(22)で室外空気と熱交換して凝縮する。凝縮した液冷媒は、各室内ユニット(30)に流れ、室内膨張弁(34)で減圧された後、室内熱交換器(31)で室内空気と熱交換して蒸発する。蒸発したガス冷媒は、室外ユニット(20)に流れ、圧縮機(21)に戻る。この冷媒循環を繰り返して室内を冷房する。尚、過冷却熱交換器(23)においては、液管(57)を流れる液冷媒の一部が過冷却通路(58)に分岐され、過冷却膨張弁(27)を介して液管(57)を流れる液冷媒を過冷却し、圧縮機(21)に戻る。     Specifically, the refrigerant discharged from the compressor (21) is condensed by exchanging heat with outdoor air in the outdoor heat exchanger (22). The condensed liquid refrigerant flows into each indoor unit (30), is decompressed by the indoor expansion valve (34), and then evaporates by exchanging heat with the indoor air in the indoor heat exchanger (31). The evaporated gas refrigerant flows into the outdoor unit (20) and returns to the compressor (21). This refrigerant circulation is repeated to cool the room. In the supercooling heat exchanger (23), a part of the liquid refrigerant flowing through the liquid pipe (57) is branched into the supercooling passage (58), and the liquid pipe (57 ) Is supercooled and returned to the compressor (21).

〈暖房運転〉
暖房運転では、図2一点鎖線矢符で示すように、第1切換弁(24)及び第2切換弁(25)が破線状態に切り換わる。この状態で圧縮機(21)を運転すると、冷媒が冷媒回路(40)のメイン回路(43)を流れて循環する。
<Heating operation>
In the heating operation, the first switching valve (24) and the second switching valve (25) are switched to a broken line state, as indicated by a one-dot chain arrow in FIG. When the compressor (21) is operated in this state, the refrigerant flows through the main circuit (43) of the refrigerant circuit (40) and circulates.

具体的に、圧縮機(21)から吐出された冷媒は、各室内ユニット(30)に流れ、室内熱交換器(31)で室内空気と熱交換して凝縮する。凝縮した液冷媒は、室外ユニット(20)に流れ、室外膨張弁(26)で減圧された後、室外熱交換器(22)で室外空気と熱交換して蒸発する。蒸発したガス冷媒は、圧縮機(21)に戻る。この冷媒循環を繰り返して室内を暖房する。尚、過冷却熱交換器(23)においては、液管(57)を流れる液冷媒の一部が過冷却通路(58)に分岐され、過冷却膨張弁(27)を介して液管(57)を流れる液冷媒を過冷却し、圧縮機(21)に戻る。     Specifically, the refrigerant discharged from the compressor (21) flows into each indoor unit (30) and is condensed by exchanging heat with indoor air in the indoor heat exchanger (31). The condensed liquid refrigerant flows into the outdoor unit (20), is decompressed by the outdoor expansion valve (26), and evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (22). The evaporated gas refrigerant returns to the compressor (21). This refrigerant circulation is repeated to heat the room. In the supercooling heat exchanger (23), a part of the liquid refrigerant flowing through the liquid pipe (57) is branched into the supercooling passage (58), and the liquid pipe (57 ) Is supercooled and returned to the compressor (21).

〈サブ回路(70)の機能〉
上記冷房運転時及び暖房運転時において、メイン回路(43)の冷媒が多い場合、過冷却度に基づいて余剰冷媒をサブ回路(70)に回収する。
<Function of sub circuit (70)>
In the cooling operation and the heating operation, if the main circuit (43) has a large amount of refrigerant, the excess refrigerant is collected in the sub circuit (70) based on the degree of supercooling.

具体的に、冷房運転時には、冷媒量制御部(91)が高圧圧力センサ(80)の高圧冷媒圧力と室外液温センサ(82)の液冷媒温度に基づいて室外熱交換器(22)における冷媒の過冷却度を導出する。また、暖房運転時には、冷媒量制御部(91)が高圧圧力センサ(80)の高圧冷媒圧力と室内液温センサ(83)の液冷媒温度に基づいて室内熱交換器(31)における冷媒の過冷却度を導出する。     Specifically, during the cooling operation, the refrigerant amount control unit (91) causes the refrigerant in the outdoor heat exchanger (22) to be based on the high-pressure refrigerant pressure of the high-pressure sensor (80) and the liquid refrigerant temperature of the outdoor liquid temperature sensor (82). The degree of supercooling is derived. Further, during the heating operation, the refrigerant amount control unit (91) causes the refrigerant excess in the indoor heat exchanger (31) based on the high pressure refrigerant pressure of the high pressure sensor (80) and the liquid refrigerant temperature of the indoor liquid temperature sensor (83). Deriving the degree of cooling.

そして、上記冷媒量制御部(91)は、過冷却度が予め設定された値より大きくなると、回収弁(7a)とガス抜き弁(7c)とを開口してメイン回路(43)の液冷媒を冷媒調節器(72)に回収する。尚、その際、戻し弁(7b)及び導入弁(7d)は閉鎖されている。     The refrigerant amount control unit (91) opens the recovery valve (7a) and the gas vent valve (7c) and opens the liquid refrigerant in the main circuit (43) when the degree of supercooling exceeds a preset value. Is recovered in the refrigerant regulator (72). At this time, the return valve (7b) and the introduction valve (7d) are closed.

一方、上記冷媒量制御部(91)は、過冷却度が予め設定された値より小さくなると、戻し弁(7b)を開口して冷媒調節器(72)の液冷媒をメイン回路(43)に供給する。尚、その際、回収弁(7a)とガス抜き弁(7c)と導入弁(7d)とは閉鎖されている。     On the other hand, when the degree of supercooling becomes smaller than a preset value, the refrigerant amount control unit (91) opens the return valve (7b) and transfers the liquid refrigerant of the refrigerant regulator (72) to the main circuit (43). Supply. At this time, the recovery valve (7a), the gas vent valve (7c), and the introduction valve (7d) are closed.

また、上記圧縮機(21)に充填された潤滑油が多い場合、導入弁(7d)とガス抜き弁(7c)とを開口してメイン回路(43)の油を冷媒調節器(72)に回収する。つまり、上記圧縮機(21)から吐出される冷媒と共に油が吐出され、その吐出された油が油分離器(60)から油戻し通路(61)を介して圧縮機(60)に戻ることになる。上記油分離器(60)から戻る油が冷媒調節器(72)に回収される。その際、回収弁(7a)と戻し弁(7b)とは閉鎖されている。また、上記回収した油量が多すぎる場合、戻し弁(7b)を開口して冷媒調節器(72)の油をメイン回路(43)に供給する。その際、回収弁(7a)とガス抜き弁(7c)と導入弁(7d)とは閉鎖されている。     If the compressor (21) contains a large amount of lubricating oil, the inlet valve (7d) and the gas vent valve (7c) are opened to allow the oil in the main circuit (43) to enter the refrigerant regulator (72). to recover. That is, oil is discharged together with the refrigerant discharged from the compressor (21), and the discharged oil returns from the oil separator (60) to the compressor (60) through the oil return passage (61). Become. The oil returning from the oil separator (60) is collected in the refrigerant regulator (72). At that time, the recovery valve (7a) and the return valve (7b) are closed. When the amount of recovered oil is too large, the return valve (7b) is opened to supply oil from the refrigerant regulator (72) to the main circuit (43). At that time, the recovery valve (7a), the gas vent valve (7c), and the introduction valve (7d) are closed.

−実施形態1の効果−
以上のように、本実施形態によれば、冷媒回路(40)のメイン回路(43)とは別個のサブ回路(70)に余剰冷媒を貯留するようにしたために、熱損失の低減を図ることができる。つまり、冷暖房等の空調運転時に冷媒は冷媒回路(40)のメイン回路(43)を常時循環する。この冷媒が常時循環するメイン回路(43)とは別個のサブ回路(70)に冷媒を貯留し、このサブ回路(70)では冷媒が常時循環しないので、常時循環する冷媒からの外部への放熱を抑制することができる。この結果、熱損失の改善を図ることができる。
-Effect of Embodiment 1-
As described above, according to the present embodiment, the excess refrigerant is stored in the sub circuit (70) separate from the main circuit (43) of the refrigerant circuit (40), so that heat loss can be reduced. Can do. That is, the refrigerant circulates constantly through the main circuit (43) of the refrigerant circuit (40) during the air conditioning operation such as air conditioning. The refrigerant is stored in a sub-circuit (70) that is separate from the main circuit (43) in which the refrigerant circulates constantly. In this sub-circuit (70), the refrigerant does not circulate at all times. Can be suppressed. As a result, heat loss can be improved.

また、上記サブ回路(70)に設けた冷媒調節器(72)に冷媒を貯留するようにしているので、メイン回路(43)の冷媒量を確実に調整することができる。     Moreover, since the refrigerant is stored in the refrigerant regulator (72) provided in the sub circuit (70), the refrigerant amount of the main circuit (43) can be adjusted reliably.

また、上記メイン回路(43)の冷媒が不足すると、冷媒調節器(72)に貯留していた液冷媒をメイン回路(43)に供給するようにしているので、メイン回路(43)の冷媒量を正確に調整することができる。     Further, when the refrigerant in the main circuit (43) is insufficient, the liquid refrigerant stored in the refrigerant regulator (72) is supplied to the main circuit (43), so the refrigerant amount in the main circuit (43) Can be adjusted accurately.

また、上記冷媒の過不足を冷媒の過冷却度で判定しているので、冷暖房運転等の通常運転時の冷媒量を正確に判定することができる。     Moreover, since the excess or deficiency of the refrigerant is determined by the degree of refrigerant subcooling, the refrigerant amount during normal operation such as air conditioning operation can be accurately determined.

また、余剰の油を冷媒調節器(72)に貯留することができるので、油付着による熱交換器の伝熱性能の低下を防止することができる。更に、冷媒の貯留と油の貯留とを1つの容器で行うことができるので、部品点数の削減を図ることができる。     Moreover, since excess oil can be stored in the refrigerant regulator (72), it is possible to prevent a decrease in heat transfer performance of the heat exchanger due to oil adhesion. Furthermore, since the refrigerant can be stored and the oil can be stored in one container, the number of parts can be reduced.

〈発明の実施形態2〉
本実施形態2は、図3に示すように、実施形態1が1つの室外ユニット(20)で構成されたのに代わり、2台の室外ユニット(20)を設けると共に、室内ユニット(30)の冷暖房同時運転を可能にしたものである。尚、上記実施形態1のガス配管(42)に代わり、高圧ガス配管(44)と低圧ガス配管(45)とが設けられている。
<Embodiment 2 of the invention>
As shown in FIG. 3, the second embodiment is provided with two outdoor units (20) instead of the first embodiment configured with one outdoor unit (20). It enables air-conditioning simultaneous operation. Note that a high-pressure gas pipe (44) and a low-pressure gas pipe (45) are provided instead of the gas pipe (42) of the first embodiment.

具体的に、上記各室外ユニット(20)は互いに並列に設けられている。上記各室外ユニット(20)の接続ガス管(56)は高圧ガス配管(44)に接続され、低圧ガス管(51)は低圧ガス配管(45)に接続され、液管(57)は液配管(41)に接続されている。     Specifically, the outdoor units (20) are provided in parallel with each other. The connecting gas pipe (56) of each outdoor unit (20) is connected to the high pressure gas pipe (44), the low pressure gas pipe (51) is connected to the low pressure gas pipe (45), and the liquid pipe (57) is the liquid pipe. (41) connected.

一方、上記各室内ユニット(30)は、BSユニットである分岐ユニット(35)を介して高圧ガス配管(44)と低圧ガス配管(45)と液配管(41)とに接続されている。つまり、上記各室内ユニット(30)の室内液管(32)は液配管(41)に接続され、室内ガス管(33)は、高圧ガス配管(44)と低圧ガス配管(45)とに切換可能に接続されている。     On the other hand, each indoor unit (30) is connected to a high pressure gas pipe (44), a low pressure gas pipe (45), and a liquid pipe (41) via a branch unit (35) which is a BS unit. That is, the indoor liquid pipe (32) of each indoor unit (30) is connected to the liquid pipe (41), and the indoor gas pipe (33) is switched between the high pressure gas pipe (44) and the low pressure gas pipe (45). Connected as possible.

上記分岐ユニット(35)は、液管(3a)を備えると共に、高圧弁(3b)を有する高圧ガス管(3c)と、低圧弁(3d)を有する低圧ガス管(3d)とを備えている。そして、上記各室内ユニット(30)は、暖房運転時は高圧弁(3b)を開き、低圧弁(3d)を閉じる。また、上記各室内ユニット(30)は、冷房運転時は低圧弁(3d)を開き、高圧弁(3b)を閉じる。これによって、上記各室内ユニット(30)で冷房運転又は暖房運転が行われる。     The branch unit (35) includes a liquid pipe (3a), a high-pressure gas pipe (3c) having a high-pressure valve (3b), and a low-pressure gas pipe (3d) having a low-pressure valve (3d). . Each indoor unit (30) opens the high-pressure valve (3b) and closes the low-pressure valve (3d) during the heating operation. Each indoor unit (30) opens the low pressure valve (3d) and closes the high pressure valve (3b) during the cooling operation. Thereby, the cooling operation or the heating operation is performed in each of the indoor units (30).

その他のサブ回路(70)などの構成、作用及び効果は実施形態1と同じである。     Other configurations, operations, and effects of the sub circuit (70) are the same as those of the first embodiment.

〈その他の実施形態〉
本発明は、上記実施形態について、以下のような構成としてもよい。
<Other embodiments>
The present invention may be configured as follows with respect to the above embodiment.

上記各実施形態は、空気調和装置(10)について説明したが、本発明は、室外ユニット(20)である熱源ユニットのみであってもよい。     Although each said embodiment demonstrated the air conditioning apparatus (10), this invention may be only a heat source unit which is an outdoor unit (20).

また、上記実施形態1及び2において、冷媒量制御手段である冷媒量制御部(91)は、過冷却度に基づいて上記メイン回路(43)の過不足を判定するようにしたが、圧縮機(21)の吐出冷媒圧力の変化に基づいて冷媒過剰か否かを判定するようにしてもよい。つまり、メイン回路(43)の冷媒が過剰な場合、起動後の圧縮機(21)の吐出冷媒圧力が大きく上昇する。そこで、上記冷媒量制御部(91)は、高圧圧力センサの検出圧力から起動後の圧縮機(21)の吐出冷媒圧力の変化を導出し、この変化に基づいて上記メイン回路(43)の冷媒過剰か否かを判定するようにしてもよい。     In the first and second embodiments, the refrigerant quantity control unit (91), which is the refrigerant quantity control means, determines whether the main circuit (43) is excessive or insufficient based on the degree of supercooling. It may be determined whether or not the refrigerant is excessive based on the change in the discharge refrigerant pressure in (21). That is, when the refrigerant in the main circuit (43) is excessive, the discharged refrigerant pressure of the compressor (21) after the start up greatly increases. Therefore, the refrigerant amount control unit (91) derives a change in the refrigerant pressure discharged from the compressor (21) after startup from the detected pressure of the high pressure sensor, and based on this change, the refrigerant in the main circuit (43) You may make it determine whether it is excessive.

また、上記サブ回路(70)の回収弁(7a)などは実施形態1及び2に限定されるものではない。     The recovery valve (7a) of the sub circuit (70) is not limited to the first and second embodiments.

また、上記室外ユニット(20)は、補助熱交換器ユニットを接続するようにしてもよい。つまり、高圧ガス管(52)と接続ガス管(56)と低圧ガス管(51)とに補助熱交換器ユニットの補助熱交換器を接続するようにしてもよい。この補助熱交換器ユニットにより、室外ユニット(20)の凝縮能力及び蒸発能力を補うようにしてもよい。     The outdoor unit (20) may be connected to an auxiliary heat exchanger unit. That is, the auxiliary heat exchanger of the auxiliary heat exchanger unit may be connected to the high pressure gas pipe (52), the connection gas pipe (56), and the low pressure gas pipe (51). You may make it supplement the condensation capability and evaporation capability of an outdoor unit (20) with this auxiliary heat exchanger unit.

また、上記実施形態2において、室外ユニット(20)は3台以上であってもよいことは勿論である。     In the second embodiment, it is needless to say that there may be three or more outdoor units (20).

尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、
について有用である。
As described above, the present invention
Useful for.

図1は、実施形態1の室外ユニットを示す回路構成図である。FIG. 1 is a circuit configuration diagram illustrating an outdoor unit according to the first embodiment. 図2は、実施形態1の空気調和装置を示す回路構成図である。FIG. 2 is a circuit configuration diagram illustrating the air conditioning apparatus of the first embodiment. 図3は、実施形態2の空気調和装置を示す回路構成図である。FIG. 3 is a circuit configuration diagram showing the air conditioning apparatus of the second embodiment.

符号の説明Explanation of symbols

10 空気調和装置
20 室外ユニット(熱源ユニット)
21 圧縮機
22 室外熱交換器(熱源側熱交換器)
30 室内ユニット(利用ユニット)
31 室内熱交換器(利用側熱交換器)
40 冷媒回路
43 メイン回路
4a 液ライン
4b 低圧ガスライン
60 油分離器
61 油戻し通路
70 サブ回路
71 サブ通路
72 冷媒調節器
73 切換機構
91 冷媒量制御部(冷媒量制御手段)
10 Air conditioner
20 Outdoor unit (heat source unit)
21 Compressor
22 Outdoor heat exchanger (heat source side heat exchanger)
30 Indoor units (units used)
31 Indoor heat exchanger (use side heat exchanger)
40 Refrigerant circuit
43 Main circuit
4a Liquid line
4b Low pressure gas line
60 Oil separator
61 Oil return passage
70 Sub circuit
71 Sub passage
72 Refrigerant regulator
73 Switching mechanism
91 Refrigerant amount control unit (refrigerant amount control means)

Claims (6)

低圧ガスライン(4a)が接続された圧縮機(21)と、一端が上記圧縮機(21)に連通し且つ他端が液ライン(4a)に接続された熱源側熱交換器(22)とを備え、上記低圧ガスライン(4a)と圧縮機(21)と熱源側熱交換器(22)と液ライン(4a)とが冷媒回路(40)のメイン回路(43)の一部を構成する熱源ユニットであって、
一端が上記メイン回路(43)の液ライン(4a)に接続され且つ他端が上記メイン回路(43)の低圧ガスライン(4a)に接続されて上記メイン回路(43)と別に設けられ、上記メイン回路(43)の冷媒を貯留するサブ回路(70)を備え
上記サブ回路(70)は、一端が上記液ライン(4a)に接続され且つ他端が上記低圧ガスライン(4a)に接続されたサブ通路(71)と、該サブ通路(71)に設けられ、上記メイン回路(43)の冷媒を貯留する冷媒調節器(72)と、上記液ライン(4a)及び低圧ガスライン(4a)と冷媒調節器(72)との連通及び遮断を行うための切換機構(73)とを備える一方、
上記冷媒回路(40)は、
上記圧縮機(21)の吐出側に設けられた油分離器(60)と、
該油分離器(60)の油を圧縮機(21)に戻す油戻し通路(61)と、
該油戻し通路(61)と冷媒調節器(72)とを繋ぎ、連通遮断可能な油導入管(77)とを備え、
上記圧縮機(21)に充填された潤滑油が多い場合、メイン回路(43)の油を冷媒調節器(72)に回収し、冷媒調節器(72)に回収した油量が多すぎる場合、冷媒調節器(72)の油をメイン回路(43)に供給する
ことを特徴とする熱源ユニット。
A compressor (21) to which a low-pressure gas line (4a) is connected; a heat source side heat exchanger (22) having one end communicating with the compressor (21) and the other end connected to a liquid line (4a); The low-pressure gas line (4a), the compressor (21), the heat source side heat exchanger (22), and the liquid line (4a) constitute a part of the main circuit (43) of the refrigerant circuit (40). A heat source unit,
One end is connected to the liquid line (4a) of the main circuit (43) and the other end is connected to the low-pressure gas line (4a) of the main circuit (43) to be provided separately from the main circuit (43). A sub-circuit (70) for storing refrigerant in the main circuit (43) ,
The sub circuit (70) is provided in a sub passage (71) having one end connected to the liquid line (4a) and the other end connected to the low pressure gas line (4a), and the sub passage (71). , A refrigerant regulator (72) for storing refrigerant in the main circuit (43), and switching for connecting and disconnecting the liquid line (4a) and the low-pressure gas line (4a) with the refrigerant regulator (72). While comprising a mechanism (73)
The refrigerant circuit (40)
An oil separator (60) provided on the discharge side of the compressor (21);
An oil return passage (61) for returning the oil in the oil separator (60) to the compressor (21);
An oil introduction pipe (77) that connects the oil return passageway (61) and the refrigerant regulator (72) and is capable of blocking communication;
If the compressor (21) is filled with a large amount of lubricating oil, the oil in the main circuit (43) is collected in the refrigerant regulator (72), and if the amount of oil collected in the refrigerant regulator (72) is too large, A heat source unit, characterized in that the oil of the refrigerant regulator (72) is supplied to the main circuit (43) .
請求項1の熱源ユニット(20)を備えた冷凍装置であって、
上記熱源ユニット(20)に利用側熱交換器(31)を有する利用ユニット(30)が接続されて冷媒回路(40)のメイン回路(43)が構成される一方、
上記メイン回路(43)の冷媒量が過剰になると該メイン回路(43)の余剰冷媒を冷媒調節器(72)に貯留するように切換機構(73)を制御する冷媒量制御手段(91)が設けられている
ことを特徴とする冷凍装置。
A refrigeration apparatus comprising the heat source unit (20) of claim 1 ,
While the utilization unit (30) having the utilization side heat exchanger (31) is connected to the heat source unit (20) to constitute the main circuit (43) of the refrigerant circuit (40),
Refrigerant amount control means (91) for controlling the switching mechanism (73) to store the excess refrigerant in the main circuit (43) in the refrigerant regulator (72) when the amount of refrigerant in the main circuit (43) becomes excessive. A refrigeration apparatus characterized by being provided.
請求項2において、
上記冷媒量制御手段(91)は、上記メイン回路(43)の冷媒量が不足になると該メイン回路(43)の不足冷媒を冷媒調節器(72)からメイン回路(43)に供給するように切換機構(73)を制御する
ことを特徴とする冷凍装置。
In claim 2 ,
When the amount of refrigerant in the main circuit (43) becomes insufficient, the refrigerant amount control means (91) supplies the insufficient refrigerant in the main circuit (43) from the refrigerant regulator (72) to the main circuit (43). A refrigeration apparatus that controls the switching mechanism (73).
請求項2において、
上記冷媒量制御手段(91)は、凝縮器となる熱源側熱交換器(22)又は利用側熱交換器(31)における過冷却度に基づいて上記メイン回路(43)の冷媒過剰か否かを判定するように構成されている
ことを特徴とする冷凍装置。
In claim 2 ,
The refrigerant quantity control means (91) determines whether the refrigerant in the main circuit (43) is excessive based on the degree of supercooling in the heat source side heat exchanger (22) or the use side heat exchanger (31) serving as a condenser. A refrigeration apparatus configured to determine
請求項3において、
上記冷媒量制御手段(91)は、凝縮器となる熱源側熱交換器(22)又は利用側熱交換器(31)における過冷却度に基づいて上記メイン回路(43)の冷媒不足か否かを判定するように構成されている
ことを特徴とする冷凍装置。
In claim 3 ,
The refrigerant amount control means (91) determines whether or not the main circuit (43) has a shortage of refrigerant based on the degree of supercooling in the heat source side heat exchanger (22) or the use side heat exchanger (31) serving as a condenser. A refrigeration apparatus configured to determine
請求項2において、
上記冷媒量制御手段(91)は、起動後の圧縮機(21)の吐出冷媒圧力の変化に基づいて上記メイン回路(43)の冷媒過剰か否かを判定するように構成されている
ことを特徴とする冷凍装置。
In claim 2 ,
The refrigerant amount control means (91) is configured to determine whether or not the main circuit (43) has excessive refrigerant based on a change in refrigerant discharge pressure of the compressor (21) after startup. Refrigeration equipment characterized.
JP2007020592A 2007-01-31 2007-01-31 Heat source unit and refrigeration system Expired - Fee Related JP4258553B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007020592A JP4258553B2 (en) 2007-01-31 2007-01-31 Heat source unit and refrigeration system
CN2008800035111A CN101595351B (en) 2007-01-31 2008-01-30 Heat source unit and refrigeration device
US12/525,203 US8297073B2 (en) 2007-01-31 2008-01-30 Heat source unit and refrigeration system
KR1020097017943A KR101096851B1 (en) 2007-01-31 2008-01-30 Heat source unit and refrigeration device
PCT/JP2008/051384 WO2008093718A1 (en) 2007-01-31 2008-01-30 Heat source unit and refrigeration device
EP08704151.3A EP2128543A4 (en) 2007-01-31 2008-01-30 Heat source unit and refrigeration device
AU2008210830A AU2008210830B2 (en) 2007-01-31 2008-01-30 Heat source unit and refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020592A JP4258553B2 (en) 2007-01-31 2007-01-31 Heat source unit and refrigeration system

Publications (2)

Publication Number Publication Date
JP2008185295A JP2008185295A (en) 2008-08-14
JP4258553B2 true JP4258553B2 (en) 2009-04-30

Family

ID=39674026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020592A Expired - Fee Related JP4258553B2 (en) 2007-01-31 2007-01-31 Heat source unit and refrigeration system

Country Status (7)

Country Link
US (1) US8297073B2 (en)
EP (1) EP2128543A4 (en)
JP (1) JP4258553B2 (en)
KR (1) KR101096851B1 (en)
CN (1) CN101595351B (en)
AU (1) AU2008210830B2 (en)
WO (1) WO2008093718A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517087B2 (en) * 2007-02-20 2013-08-27 Bergstrom, Inc. Combined heating and air conditioning system for vehicles
JP4245064B2 (en) * 2007-05-30 2009-03-25 ダイキン工業株式会社 Air conditioner
JP2010127531A (en) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp Refrigeration air conditioner
CN102395842B (en) * 2009-04-17 2015-03-11 大金工业株式会社 Heat source unit
JP5484889B2 (en) * 2009-12-25 2014-05-07 三洋電機株式会社 Refrigeration equipment
JP5484890B2 (en) * 2009-12-25 2014-05-07 三洋電機株式会社 Refrigeration equipment
DK2339265T3 (en) 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
JP5595766B2 (en) * 2010-03-25 2014-09-24 三洋電機株式会社 Refrigeration equipment
JP2012207826A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
JP2012207823A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Refrigerating cycle device
KR101921538B1 (en) 2012-02-23 2018-11-23 엘지전자 주식회사 Air conditioner and Control method of the same
JP6073651B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP5973336B2 (en) * 2012-12-14 2016-08-23 シャープ株式会社 Air conditioner
CN107044741B (en) 2013-01-25 2019-08-30 特灵国际有限公司 Refrigerant cooling and lubricating system with refrigerant vapour draft tube liner
JP5751355B1 (en) * 2014-01-31 2015-07-22 ダイキン工業株式会社 Refrigeration equipment
JP6621616B2 (en) * 2014-09-03 2019-12-18 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
JP6545252B2 (en) * 2015-03-04 2019-07-17 三菱電機株式会社 Refrigeration cycle device
KR102581680B1 (en) * 2017-02-01 2023-09-22 엘지전자 주식회사 Outdoor unit of an air conditioner
KR102549600B1 (en) * 2017-02-14 2023-06-29 엘지전자 주식회사 Air conditioner
CN108644983B (en) * 2018-05-15 2021-04-27 广东Tcl智能暖通设备有限公司 Multi-split air conditioning system and control method and control device thereof
CN113432350A (en) * 2020-03-20 2021-09-24 青岛海尔空调电子有限公司 Pipeline oil cleaning device for air conditioning system and air conditioning system
JP7407920B2 (en) * 2020-05-11 2024-01-04 三菱電機株式会社 Refrigeration cycle equipment

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175961U (en) 1983-05-13 1984-11-24 株式会社東芝 air conditioner
US4912937A (en) * 1988-04-25 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
US5140827A (en) * 1991-05-14 1992-08-25 Electric Power Research Institute, Inc. Automatic refrigerant charge variation means
JPH0579357U (en) 1992-03-19 1993-10-29 三菱重工業株式会社 Air conditioner
JP3060770B2 (en) * 1993-02-26 2000-07-10 ダイキン工業株式会社 Refrigeration equipment
JPH1047799A (en) 1996-07-26 1998-02-20 Toshiba Corp Freezing cycle device
TW336270B (en) * 1997-01-17 1998-07-11 Sanyo Electric Ltd Compressor and air conditioner
JP2000146322A (en) * 1998-11-16 2000-05-26 Zexel Corp Refrigerating cycle
JP2000292037A (en) 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP3931739B2 (en) 2002-06-12 2007-06-20 株式会社デンソー Refrigeration cycle equipment
KR100437805B1 (en) * 2002-06-12 2004-06-30 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same
JP3775358B2 (en) * 2002-07-12 2006-05-17 ダイキン工業株式会社 Refrigeration equipment
JP3650088B2 (en) 2002-07-30 2005-05-18 ▲クム▼ 洙 陳 Heat pump equipment
KR100447204B1 (en) * 2002-08-22 2004-09-04 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same
JP3896472B2 (en) * 2002-09-04 2007-03-22 株式会社日立製作所 Refrigeration equipment
CN100412470C (en) * 2003-04-02 2008-08-20 大金工业株式会社 Refrigeration device
JP3767586B2 (en) * 2003-08-19 2006-04-19 ダイキン工業株式会社 Refrigeration equipment
US7010927B2 (en) * 2003-11-07 2006-03-14 Carrier Corporation Refrigerant system with controlled refrigerant charge amount
CN2682346Y (en) 2003-11-14 2005-03-02 河南新飞电器有限公司 Oil return apparatus of compressor
JP2006052934A (en) * 2004-07-12 2006-02-23 Sanyo Electric Co Ltd Heat exchange apparatus and refrigerating machine
WO2006025354A1 (en) * 2004-09-01 2006-03-09 Matsushita Electric Industrial Co., Ltd. Heat pump
JP2006078087A (en) 2004-09-09 2006-03-23 Daikin Ind Ltd Refrigeration unit
KR100631545B1 (en) * 2004-11-03 2006-10-09 엘지전자 주식회사 Multi air conditioner with evaporation tank
JP4670329B2 (en) * 2004-11-29 2011-04-13 三菱電機株式会社 Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
JP2006214610A (en) 2005-02-01 2006-08-17 Daikin Ind Ltd Refrigerating device
US7415838B2 (en) * 2005-02-26 2008-08-26 Lg Electronics Inc Second-refrigerant pump driving type air conditioner
JP2006292214A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Addition method of refrigerant amount determining function of air conditioner, and air conditioner
US20070251256A1 (en) * 2006-03-20 2007-11-01 Pham Hung M Flash tank design and control for heat pumps

Also Published As

Publication number Publication date
KR20090115174A (en) 2009-11-04
CN101595351B (en) 2011-01-19
EP2128543A4 (en) 2017-04-05
US8297073B2 (en) 2012-10-30
CN101595351A (en) 2009-12-02
JP2008185295A (en) 2008-08-14
AU2008210830B2 (en) 2011-04-28
US20100089085A1 (en) 2010-04-15
WO2008093718A1 (en) 2008-08-07
AU2008210830A1 (en) 2008-08-07
EP2128543A1 (en) 2009-12-02
KR101096851B1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP4258553B2 (en) Heat source unit and refrigeration system
US9683768B2 (en) Air-conditioning apparatus
JP4120682B2 (en) Air conditioner and heat source unit
JP5125116B2 (en) Refrigeration equipment
JP5324749B2 (en) Refrigeration equipment
JP3925545B2 (en) Refrigeration equipment
JP5992089B2 (en) Air conditioner
US20130098072A1 (en) Air conditioner and control method thereof
JP6598882B2 (en) Refrigeration cycle equipment
JP2008139001A (en) Refrigerating plant
JP6493460B2 (en) Refrigeration equipment
JP5145026B2 (en) Air conditioner
WO2019017350A1 (en) Freezer
WO2018025934A1 (en) Heat source unit for refrigeration device
JP2007232265A (en) Refrigeration unit
WO2016189739A1 (en) Air conditioning device
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
CN111919073B (en) Refrigerating device
WO2015182484A1 (en) Freezer device
KR102390900B1 (en) Multi-type air conditioner and control method for the same
JP4532517B2 (en) Air conditioner
WO2022029845A1 (en) Air conditioner
JP6042037B2 (en) Refrigeration cycle equipment
JP2006300507A (en) Refrigeration device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4258553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees