JP2008139001A - Refrigerating plant - Google Patents

Refrigerating plant Download PDF

Info

Publication number
JP2008139001A
JP2008139001A JP2006328687A JP2006328687A JP2008139001A JP 2008139001 A JP2008139001 A JP 2008139001A JP 2006328687 A JP2006328687 A JP 2006328687A JP 2006328687 A JP2006328687 A JP 2006328687A JP 2008139001 A JP2008139001 A JP 2008139001A
Authority
JP
Japan
Prior art keywords
oil
pipe
compressor
refrigerant
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006328687A
Other languages
Japanese (ja)
Other versions
JP4274235B2 (en
Inventor
Satoshi Kono
聡 河野
Shinya Matsuoka
慎也 松岡
Masahiro Oka
昌弘 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006328687A priority Critical patent/JP4274235B2/en
Priority to PCT/JP2007/073059 priority patent/WO2008069092A1/en
Publication of JP2008139001A publication Critical patent/JP2008139001A/en
Application granted granted Critical
Publication of JP4274235B2 publication Critical patent/JP4274235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the amount of oil deposited on a refrigerant pipe by collecting extra oil (surplus refrigerating machine oil) discharged from a compressor. <P>SOLUTION: To an oil separator 22, an oil reservoir container 32 is connected into which separated refrigerating machine oil flows to be reserved. Between the oil reservoir container 32 and a suction pipe 2b of the compressor 21, an oil outflow pipe 35 is connected in which the refrigerating machine oil flows from the oil reservoir container 32. An on-off valve 33 is provided in the oil outflow pipe 35. The extra oil amount of the refrigerating machine oil stored in the compressor 21 is calculated in accordance with the length of a communication pipe in a refrigerant circuit 20, and the on-off valve 33 is changed over into an opened condition for every predetermined time depending on the surplus oil amount. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍装置に関し、特に、圧縮機の余剰油の回収対策に係るものである。     The present invention relates to a refrigeration apparatus, and particularly relates to measures for recovering excess oil in a compressor.

従来より、圧縮機を有して冷凍サイクルを行う冷凍装置が知られている。例えば特許文献1の冷凍装置は、圧縮機と凝縮器と膨張弁と蒸発器とが順に冷媒配管によって接続された閉回路である冷媒回路を備えている。この冷媒回路では、圧縮機から吐出された高圧冷媒が凝縮行程、膨張行程および蒸発行程を順に経て圧縮機に戻る。
特開2001−304699号公報
Conventionally, a refrigeration apparatus having a compressor and performing a refrigeration cycle is known. For example, the refrigeration apparatus of Patent Document 1 includes a refrigerant circuit that is a closed circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by a refrigerant pipe. In this refrigerant circuit, the high-pressure refrigerant discharged from the compressor returns to the compressor through a condensation process, an expansion process, and an evaporation process in order.
JP 2001-304699 A

ところで、上述した圧縮機のケーシング内には、一般に、各摺動部を潤滑するための冷凍機油の貯留部が設けられている。そして、圧縮機では、各摺動部に供給された冷凍機油の一部が圧縮された高圧冷媒と共に吐出されてしまう。したがって、一般には、圧縮機の吐出配管に油分離器を設けて冷媒と冷凍機油とを分離し、その分離した冷凍機油を圧縮機の吸入側に戻すようにしている。     Incidentally, in the above-described compressor casing, generally, a refrigerating machine oil storage section for lubricating each sliding section is provided. And in a compressor, a part of refrigerating machine oil supplied to each sliding part will be discharged with the compressed high-pressure refrigerant. Therefore, in general, an oil separator is provided in the discharge pipe of the compressor to separate the refrigerant and the refrigerating machine oil, and the separated refrigerating machine oil is returned to the suction side of the compressor.

ところが、油分離器において、冷凍機油を完全には分離しきれないため、分離されなかった冷凍機油はそのまま冷媒と共に冷媒回路を流れることになる。そして、冷媒回路を流れる冷凍機油の一部は、冷媒と共に再び圧縮機へ戻るが、残りは冷媒配管等に付着して留まってしまう。したがって、このままでは、圧縮機における冷凍機油の戻り量が不足して潤滑不良が生じるため、従来では、予め冷媒配管等に付着する分だけ多く見積もった量の冷凍機油が圧縮機に収容されている。     However, since the refrigeration oil cannot be completely separated in the oil separator, the refrigeration oil that has not been separated flows through the refrigerant circuit together with the refrigerant. A part of the refrigerating machine oil flowing through the refrigerant circuit returns to the compressor together with the refrigerant, but the rest adheres to the refrigerant pipe and the like. Therefore, since the amount of return of the refrigeration oil in the compressor is insufficient in this state, poor lubrication occurs, and conventionally, the amount of refrigeration oil estimated in advance by the amount adhering to the refrigerant pipe or the like is stored in the compressor. .

ここで、圧縮機に収容する冷凍機油の量は、搭載される冷凍装置の冷媒配管の総長に応じて変更すればよいが、これでは多大な手間と労力がかかってしまうため、冷媒配管の総長が最も長いものに合わせて一律同量に設定されているのが一般的である。しかしながら、その圧縮機を冷媒配管の総長が短いタイプの冷凍装置に搭載した場合、余剰な冷凍機油が発生することになる。そうすると、圧縮機から流出して冷媒配管等に付着する冷凍機油の量が増大する。これにより、冷媒配管における冷媒の流動損失が増大し、圧縮機の負荷が増大するという問題があった。     Here, the amount of refrigerating machine oil to be accommodated in the compressor may be changed according to the total length of the refrigerant pipe of the refrigeration apparatus to be mounted. However, this requires a great deal of labor and labor, so the total length of the refrigerant pipe. Is generally set to the same amount according to the longest. However, when the compressor is mounted on a refrigeration apparatus having a short refrigerant pipe length, excess refrigeration oil is generated. If it does so, the quantity of the refrigeration oil which flows out out of a compressor and adheres to refrigerant | coolant piping etc. will increase. As a result, there is a problem that the flow loss of the refrigerant in the refrigerant pipe increases and the load on the compressor increases.

本発明は、斯かる点に鑑みてなされたものであり、その目的は、圧縮機を有する冷凍装置において、圧縮機から吐出される余剰油(余剰な冷凍機油)を回収して、冷媒配管等に付着する油量を低減することである。     The present invention has been made in view of such a point, and an object of the present invention is to recover surplus oil (surplus refrigerating machine oil) discharged from the compressor in a refrigeration apparatus having a compressor, and to perform refrigerant piping or the like. Is to reduce the amount of oil adhering to the surface.

第1の発明は、圧縮機(21)と、該圧縮機(21)の吐出側に接続された油分離器(22)と、該油分離器(22)に連通し、該油分離器(22)で分離された冷凍機油を貯留させるための油溜め容器(32)と、該油溜め容器(32)と上記圧縮機(21)の吸入側とに接続され且つ開閉弁(33)を有して上記油溜め容器(32)の冷凍機油を上記圧縮機(21)の吸入側に戻す接続管(35)とを有し、蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備えている冷凍装置である。     The first invention communicates with the compressor (21), the oil separator (22) connected to the discharge side of the compressor (21), the oil separator (22), and the oil separator ( 22) an oil sump container (32) for storing the refrigerating machine oil separated in (22); and an oil supply container (32) connected to the suction side of the compressor (21) and having an on-off valve (33). And a connecting pipe (35) for returning the refrigeration oil in the oil reservoir (32) to the suction side of the compressor (21), and a refrigerant circuit (20) for performing a vapor compression refrigeration cycle. Refrigeration equipment.

上記の発明では、冷媒回路(20)において、冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。つまり、圧縮機(21)から吐出された高圧冷媒は、凝縮行程(放熱行程)、膨張行程および蒸発行程を順に経て再び圧縮機(21)へ戻る。圧縮機(21)には、冷凍機油が収容されている。圧縮機(21)から冷媒と共に流出した冷凍機油は、殆どが油分離器(22)で分離される。油分離器(22)で分離されなかった僅かな冷凍機油は、冷媒と共に流れて、一部が冷媒配管等に付着して留まり、残りが冷媒と共に圧縮機(21)へ吸入される。     In the above invention, the refrigerant is circulated in the refrigerant circuit (20) to perform the vapor compression refrigeration cycle. That is, the high-pressure refrigerant discharged from the compressor (21) returns to the compressor (21) again through the condensation process (heat radiation process), the expansion process, and the evaporation process in order. The compressor (21) contains refrigeration oil. Most of the refrigeration oil that flows out of the compressor (21) together with the refrigerant is separated by the oil separator (22). A small amount of refrigerating machine oil that has not been separated by the oil separator (22) flows together with the refrigerant, a part of which remains attached to the refrigerant pipe or the like, and the rest is sucked into the compressor (21) together with the refrigerant.

上記油分離器(22)で分離された冷凍機油の全ては、油溜め容器(32)に貯留(回収)される。つまり、圧縮機(21)から流出した冷凍機油の殆どが油溜め容器(32)に貯留される。このままでは、冷凍機油が油溜め容器(32)に貯留されていき、圧縮機(21)には戻らないため、圧縮機(21)の冷凍機油が不足して潤滑不良が生じる。そこで、接続管(35)の開閉弁(33)を開くことにより、油溜め容器(32)の冷凍機油が圧縮機(21)の吸入側へ流れる。したがって、運転中における開閉弁(33)の開閉時間を調節することにより、油溜め容器(32)の冷凍機油の貯留量が調節される。これにより、圧縮機(21)に余剰な冷凍機油が収容されても、その余剰油を油溜め容器(32)に貯留させる(回収する)ことができる。そうすると、油分離器(22)を通過して冷媒回路(20)を流れる冷凍機油の量が抑制され、冷媒配管に付着する油量が減少する。     All the refrigerating machine oil separated by the oil separator (22) is stored (recovered) in the oil sump container (32). That is, most of the refrigerating machine oil that has flowed out of the compressor (21) is stored in the oil reservoir (32). In this state, the refrigerating machine oil is stored in the oil sump container (32) and does not return to the compressor (21). Therefore, the refrigerating machine oil in the compressor (21) is insufficient, resulting in poor lubrication. Therefore, by opening the on-off valve (33) of the connection pipe (35), the refrigeration oil in the oil reservoir (32) flows to the suction side of the compressor (21). Therefore, the amount of refrigerating machine oil stored in the oil sump container (32) is adjusted by adjusting the opening / closing time of the on-off valve (33) during operation. Thereby, even if surplus refrigeration oil is stored in the compressor (21), the surplus oil can be stored (recovered) in the oil reservoir (32). Then, the amount of refrigerating machine oil flowing through the oil separator (22) and flowing through the refrigerant circuit (20) is suppressed, and the amount of oil adhering to the refrigerant pipe is reduced.

第2の発明は、上記第1の発明において、上記油分離器(22)と油溜め容器(32)とは、上記油分離器(22)の冷凍機油が流通する流通管(31)で接続されている。一方、上記油溜め容器(32)は、上記油分離器(22)の下方に配置されているものである。     In a second aspect based on the first aspect, the oil separator (22) and the oil reservoir (32) are connected by a flow pipe (31) through which the refrigeration oil of the oil separator (22) flows. Has been. On the other hand, the oil reservoir container (32) is disposed below the oil separator (22).

上記の発明では、図1に示すように、油溜め容器(32)が油分離器(22)の下方に位置しているので、油分離器(22)で分離された冷凍機油がその自重で流通管(31)を通って油溜め容器(32)に流入する。したがって、油分離器(22)から油溜め容器(32)に冷凍機油を流入させる手段を別途設ける必要がない。つまり、本発明の油溜め容器(32)は、油分離器(22)から冷凍機油がその自重で流れ落ちる位置に設けられている。     In the above invention, as shown in FIG. 1, the oil sump container (32) is located below the oil separator (22), so that the refrigerating machine oil separated by the oil separator (22) is its own weight. It flows into the sump container (32) through the flow pipe (31). Therefore, it is not necessary to separately provide means for allowing the refrigeration oil to flow from the oil separator (22) into the oil reservoir (32). That is, the oil sump container (32) of the present invention is provided at a position where the refrigerating machine oil flows down from the oil separator (22) by its own weight.

第3の発明は、上記第1の発明において、上記油溜め容器(32)にガス冷媒が封入されている。そして、上記冷媒回路(20)は、開閉弁(36)を有し、一端が油溜め容器(32)内のガス冷媒空間に連通し且つ他端が上記接続管(35)における開閉弁(33)の下流に接続されて油溜め容器(32)内を減圧するための減圧管(38)を備えている。     In a third aspect based on the first aspect, a gas refrigerant is sealed in the oil reservoir (32). The refrigerant circuit (20) has an on-off valve (36), one end communicating with the gas refrigerant space in the oil reservoir (32) and the other end on the on-off valve (33) in the connection pipe (35). ) And a pressure reducing pipe (38) for decompressing the oil sump container (32).

上記の発明では、図2に示すように、減圧管(38)が油溜め容器(32)と圧縮機(21)の吸入側とを連通させている。したがって、開閉弁(36)を開くと、油溜め容器(32)のガス冷媒が減圧管(38)を通って圧縮機(21)の吸入側に流れ、油溜め容器(32)内が減圧される。そうすると、油分離器(22)内は圧縮機(21)の吐出圧力とほぼ同じ圧力になっており、その油分離器(22)と油溜め容器(32)との間に圧力差が生じる。この圧力差により、油分離器(22)の冷凍機油が油溜め容器(32)に流入する。これにより、油分離器(22)で分離された冷凍機油が油溜め容器(32)に貯留(回収)される。     In the above invention, as shown in FIG. 2, the pressure reducing pipe (38) communicates the oil reservoir (32) with the suction side of the compressor (21). Therefore, when the on-off valve (36) is opened, the gas refrigerant in the oil reservoir (32) flows to the suction side of the compressor (21) through the decompression pipe (38), and the oil reservoir (32) is depressurized. The Then, the pressure inside the oil separator (22) is almost the same as the discharge pressure of the compressor (21), and a pressure difference is generated between the oil separator (22) and the oil reservoir (32). Due to this pressure difference, the refrigerating machine oil in the oil separator (22) flows into the oil reservoir (32). Thereby, the refrigerating machine oil separated by the oil separator (22) is stored (recovered) in the oil reservoir container (32).

第4の発明は、上記第1の発明において、上記冷媒回路(20)の冷媒配管長さに基づいて上記圧縮機(21)に収容された冷凍機油の余剰油量を算出し、該余剰油量に応じて予め定められた所定時間毎に接続管(35)の開閉弁(33)を開く制御手段(40)を備えているものである。     According to a fourth invention, in the first invention, the surplus oil amount of the refrigerating machine oil stored in the compressor (21) is calculated based on a refrigerant pipe length of the refrigerant circuit (20), and the surplus oil is calculated. Control means (40) for opening the on-off valve (33) of the connection pipe (35) at predetermined time intervals determined in advance according to the amount is provided.

上記の発明では、実際の冷媒回路(20)の冷媒配管長さに基づいて冷凍機油の余剰油量が算出される。圧縮機(21)に収容される冷凍機油の量には、想定する最長の冷媒配管長さに対して付着する冷凍機油の付着量が考慮されている。したがって、実際の冷媒配管長さが想定したよりも短い場合、その短い分だけ余剰油量が発生し、その余剰油量が実際の冷媒配管長さから算出される。なお、ここで言う冷媒配管長さとは、例えば図1に示すように、室内熱交換器(26)の両端部から四路切換弁(23)の第2ポートまでの配管および膨張機構(25)までの配管の長さと、各熱交換器(24,26)のチューブ長さをいう。     In the above invention, the surplus oil amount of the refrigerating machine oil is calculated based on the refrigerant pipe length of the actual refrigerant circuit (20). The amount of refrigerating machine oil to be accommodated in the longest refrigerant pipe length assumed in consideration of the amount of refrigerating machine oil accommodated in the compressor (21) is taken into consideration. Therefore, when the actual refrigerant pipe length is shorter than expected, an excess oil amount is generated by that short amount, and the excess oil amount is calculated from the actual refrigerant pipe length. In addition, the refrigerant | coolant piping length said here, for example, as shown in FIG. 1, piping from the both ends of an indoor heat exchanger (26) to the 2nd port of a four-way selector valve (23), and an expansion mechanism (25) The length of the pipes up to and the tube length of each heat exchanger (24, 26).

そして、本発明では、算出された余剰油量に応じて所定時間が予め設定されており、その所定時間毎に開閉弁(33)が開状態に切り換わる。開閉弁(33)が開くと、油溜め容器(32)から冷凍機油が接続管(35)を通って圧縮機(21)に流入する。これにより、油溜め容器(32)において冷凍機油の貯留量が調節される。つまり、開閉弁(33)の開閉タイミングを変更することにより、油溜め容器(32)の冷凍機油量が調節され、所望の余剰油量を油溜め容器(32)に貯留させることができる。     And in this invention, predetermined time is preset according to the calculated excess oil amount, and the on-off valve (33) switches to an open state for every predetermined time. When the on-off valve (33) is opened, refrigeration oil flows from the oil reservoir (32) through the connection pipe (35) into the compressor (21). Thereby, the amount of refrigerating machine oil stored in the oil reservoir container (32) is adjusted. That is, by changing the opening / closing timing of the on-off valve (33), the amount of refrigerating machine oil in the oil reservoir (32) is adjusted, and a desired surplus oil amount can be stored in the oil reservoir (32).

第5の発明は、上記第3の発明において、上記冷媒回路(20)の冷媒配管長さに基づいて上記圧縮機(21)に収容された冷凍機油の余剰油量を算出し、該余剰油量に応じて予め定められた所定時間毎に、接続管(35)の開閉弁(33)を開くと共に減圧管(38)の開閉弁(36)を閉じる制御手段(40)を備えているものである。     According to a fifth invention, in the third invention, the surplus oil amount of the refrigerating machine oil stored in the compressor (21) is calculated based on the refrigerant pipe length of the refrigerant circuit (20), and the surplus oil is calculated. Provided with a control means (40) for opening the on-off valve (33) of the connecting pipe (35) and closing the on-off valve (36) of the pressure reducing pipe (38) at a predetermined time according to the amount It is.

上記の発明では、上述した第4の発明と同様に、実際の冷媒回路(20)の冷媒配管長さに基づいて冷凍機油の余剰油量が算出される。そして、算出された余剰油量に応じて所定時間が予め設定され、その所定時間毎に接続管(35)の開閉弁(33)が開状態に、減圧管(38)の開閉弁(36)が閉状態に切り換わる。つまり、減圧管(38)の開閉弁(36)が開くと、接続管(35)の開閉弁(33)が閉じられ、減圧管(38)の開閉弁(36)が閉じられると、接続管(35)の開閉弁(33)が開く。     In the above invention, similarly to the above-described fourth invention, the surplus oil amount of the refrigerating machine oil is calculated based on the actual refrigerant pipe length of the refrigerant circuit (20). A predetermined time is preset according to the calculated surplus oil amount, and the on-off valve (33) of the connecting pipe (35) is opened at every predetermined time, and the on-off valve (36) of the pressure reducing pipe (38). Switches to the closed state. That is, when the on-off valve (36) of the pressure reducing pipe (38) is opened, the on-off valve (33) of the connecting pipe (35) is closed, and when the on-off valve (36) of the pressure reducing pipe (38) is closed, the connecting pipe The open / close valve (33) of (35) opens.

上記減圧管(38)の開閉弁(36)が開状態では、油溜め容器(32)が減圧されてその油溜め容器(32)に油分離器(22)の冷凍機油が貯留されていく。また、接続管(35)の開閉弁(33)が開状態では、油溜め容器(32)から圧縮機(21)の吸入側へ冷凍機油が流れる。つまり、各開閉弁(33,36)の開閉タイミングを変更することにより、油溜め容器(32)における冷凍機油の流入量と流出量が調節される。したがって、油溜め容器(32)に余剰分の冷凍機油を貯留させることができる。     When the on-off valve (36) of the pressure reducing pipe (38) is in the open state, the oil reservoir (32) is depressurized and the refrigerating machine oil of the oil separator (22) is stored in the oil reservoir (32). Further, when the on-off valve (33) of the connection pipe (35) is in the open state, the refrigeration oil flows from the oil reservoir (32) to the suction side of the compressor (21). That is, by changing the opening / closing timing of each on-off valve (33, 36), the inflow amount and outflow amount of refrigerating machine oil in the oil sump container (32) are adjusted. Therefore, surplus refrigerating machine oil can be stored in the oil sump container (32).

第6の発明は、上記第4または第5の発明において、上記制御手段(40)は、冷媒回路(20)の冷媒配管長さに応じて該冷媒配管に冷凍機油が付着する付着量を推定し、その推定付着量から上記圧縮機(21)に収容された冷凍機油の余剰油量を算出するように構成されているものである。     In a sixth aspect based on the fourth or fifth aspect, the control means (40) estimates the amount of attachment of refrigeration oil to the refrigerant pipe according to the refrigerant pipe length of the refrigerant circuit (20). And the excess oil amount of the refrigerating machine oil accommodated in the compressor (21) is calculated from the estimated adhesion amount.

上記の発明では、実際の冷媒配管長さからその冷媒配管に対する冷凍機油の付着量が推定される。そして、この推定した付着量と、想定した最長の冷媒配管長さに対する冷凍機油の付着量との差が、圧縮機(21)に収容された冷凍機油の余剰分として算出される。     In said invention, the adhesion amount of the refrigeration oil with respect to the refrigerant | coolant piping is estimated from actual refrigerant | coolant piping length. Then, the difference between the estimated adhesion amount and the refrigeration oil adhesion amount with respect to the assumed longest refrigerant pipe length is calculated as a surplus of the refrigeration oil accommodated in the compressor (21).

第7の発明は、上記第4または第5の発明において、上記制御手段(40)は、算出した余剰油量が多いほど上記所定時間を長くするように構成されているものである。     According to a seventh aspect, in the fourth or fifth aspect, the control means (40) is configured to increase the predetermined time as the calculated surplus oil amount increases.

上記の発明では、油溜め容器(32)に貯留させる余剰油量が多いほど、所定時間が長くなる。この所定時間が長くなるに従って、油溜め容器(32)からの冷凍機油の流出量が減少する。つまり、運転中において、接続管(35)の開閉弁(33)の開いている時間が短くなる。これにより、油溜め容器(32)における冷凍機油の貯留量が増大する。     In the above invention, the larger the amount of surplus oil stored in the oil reservoir (32), the longer the predetermined time. As the predetermined time increases, the amount of refrigerating machine oil flowing out from the oil reservoir (32) decreases. That is, during operation, the time during which the on-off valve (33) of the connection pipe (35) is open is shortened. Thereby, the amount of refrigerating machine oil stored in the oil sump container (32) increases.

第8の発明は、上記第4または第5の発明において、熱源側熱交換器(24)、上記圧縮機(21)、上記油分離器(22)および上記油溜め容器(32)が収納される熱源ユニット(11)と、利用側熱交換器(26)が収納される利用ユニット(12)とを備えているものである。そして、上記冷媒回路(20)の冷媒配管長さは、上記熱源ユニット(11)と利用ユニット(12)とを繋ぐ連絡配管(2c,2d)の長さである。     In an eighth aspect based on the fourth or fifth aspect, the heat source side heat exchanger (24), the compressor (21), the oil separator (22), and the oil sump container (32) are accommodated. Heat source unit (11) and a utilization unit (12) in which a utilization side heat exchanger (26) is accommodated. The refrigerant pipe length of the refrigerant circuit (20) is the length of the connecting pipe (2c, 2d) that connects the heat source unit (11) and the utilization unit (12).

上記の発明では、冷媒回路(20)において、熱源側熱交換器(24)で凝縮(放熱)した冷媒が連絡配管(2d)を通って利用側熱交換器(26)へ流れて、蒸発する。蒸発した冷媒は、連絡配管(2c)を通って圧縮機(21)へ戻る。または、冷媒回路(20)において、圧縮機(21)から吐出された冷媒は、連絡配管(2c)を通って利用側熱交換器(26)へ流れて凝縮(放熱)し、その後、連絡配管(2d)を通って熱源側熱交換器(24)へ流れて蒸発する。     In the above invention, in the refrigerant circuit (20), the refrigerant condensed (heat dissipated) in the heat source side heat exchanger (24) flows through the connecting pipe (2d) to the use side heat exchanger (26) and evaporates. . The evaporated refrigerant returns to the compressor (21) through the communication pipe (2c). Alternatively, in the refrigerant circuit (20), the refrigerant discharged from the compressor (21) flows through the connecting pipe (2c) to the use side heat exchanger (26) and condenses (heatsinks), and then connects to the connecting pipe. It flows through (2d) to the heat source side heat exchanger (24) and evaporates.

一般に、冷凍装置(10)は、その設置場所によって特に連絡配管(2c,2d)の長さに差が出る。つまり、冷凍装置(10)の設置場所によっては連絡配管(2c,2d)が長くなり、その分配管の付着油量が多くなる。そこで、本発明では、圧縮機(21)に収容された冷凍機油の余剰油量が連絡配管(2c,2d)の長さに基づいて算出される。したがって、冷凍機油の余剰油量が的確に把握される。     Generally, in the refrigeration apparatus (10), the length of the connecting pipes (2c, 2d) varies depending on the installation location. That is, depending on the installation location of the refrigeration apparatus (10), the connecting pipe (2c, 2d) becomes longer, and the amount of oil attached to the pipe increases accordingly. Therefore, in the present invention, the surplus oil amount of the refrigeration oil accommodated in the compressor (21) is calculated based on the length of the connecting pipe (2c, 2d). Therefore, the excess oil amount of refrigeration oil is grasped exactly.

第9の発明は、上記第8の発明において、上記利用ユニット(12)が複数設けられて互いに並列接続されているものである。そして、上記冷媒回路(20)の冷媒配管長さは、上記熱源ユニット(11)と各利用ユニット(12)とを繋ぐ連絡配管(2c,2d)の平均長さである。     According to a ninth aspect, in the eighth aspect, a plurality of the use units (12) are provided and connected in parallel to each other. And the refrigerant | coolant piping length of the said refrigerant circuit (20) is an average length of the connection piping (2c, 2d) which connects the said heat-source unit (11) and each utilization unit (12).

上記の発明では、各利用ユニット(12)に対して連絡配管(2c,2d)が分岐して繋がっている。この場合、各利用ユニット(12)に対する連絡配管(2c,2d)の長さは、その利用ユニット(12)の設置場所によって互いに異なる。そこで、本発明では、圧縮機(21)に収容された冷凍機油の余剰油量が各利用ユニット(12)の連絡配管(2c,2d)の平均長さに基づいて算出される。したがって、冷凍機油の余剰油量が過不足なく把握される。     In the above invention, the connecting pipes (2c, 2d) are branched and connected to each utilization unit (12). In this case, the length of the connecting pipe (2c, 2d) for each usage unit (12) differs depending on the installation location of the usage unit (12). Therefore, in the present invention, the surplus oil amount of the refrigeration oil accommodated in the compressor (21) is calculated based on the average length of the connecting pipes (2c, 2d) of each usage unit (12). Therefore, the excess oil amount of refrigeration oil is grasped without excess or deficiency.

以上説明したように、本発明によれば、油分離器(22)で分離された冷凍機油が流入して貯留される油溜め容器(32)と、その油溜め容器(32)に貯留した冷凍機油を圧縮機(21)の吸入側に戻す接続管(35)を設けるようにした。したがって、圧縮機(21)から流出して油分離器(22)で分離された冷凍機油の全てを油溜め容器(32)に回収し、その回収した冷凍機油の一部を任意に圧縮機(21)に戻すことができる。これにより、運転中において、常に油溜め容器(32)に余剰分の冷凍機油を貯留させることができ、油分離器(22)を通過して冷媒回路(20)を流れる冷凍機油の量を抑制することができる。よって、冷凍機油が冷媒配管に必要以上に付着するのを防止することができる。その結果、冷媒配管における冷媒の流動損失を低減でき、また各熱交換器(24,26)の熱交換効率を向上させることができる。     As described above, according to the present invention, the oil reservoir (32) in which the refrigerating machine oil separated by the oil separator (22) flows in and stored, and the refrigeration stored in the oil reservoir (32) are stored. A connecting pipe (35) for returning the machine oil to the suction side of the compressor (21) is provided. Therefore, all the refrigerating machine oil that has flowed out of the compressor (21) and separated by the oil separator (22) is collected in the oil reservoir (32), and a part of the collected refrigerating machine oil can be optionally compressed ( 21). As a result, during operation, the excess refrigeration oil can always be stored in the oil sump container (32), and the amount of refrigeration oil flowing through the refrigerant circuit (20) through the oil separator (22) is suppressed. can do. Therefore, it can prevent that refrigeration oil adheres to refrigerant | coolant piping more than necessary. As a result, the flow loss of the refrigerant in the refrigerant piping can be reduced, and the heat exchange efficiency of each heat exchanger (24, 26) can be improved.

また、第2の発明によれば、油溜め容器(32)を油分離器(22)の下方に配置するようにしたので、油分離器(22)の冷凍機油をその自重によって油溜め容器(32)に流入させることができる。これにより、油分離器(22)から油溜め容器(32)に冷凍機油を流入させる手段を別途設ける必要がなく、冷凍装置のコンパクト化およびコスト低減を図ることができる。     According to the second invention, since the oil reservoir (32) is arranged below the oil separator (22), the refrigerating machine oil in the oil separator (22) is taken up by its own weight in the oil reservoir ( 32). Thereby, it is not necessary to separately provide a means for allowing the refrigerating machine oil to flow from the oil separator (22) to the oil reservoir (32), and the refrigeration apparatus can be made compact and the cost can be reduced.

また、第3の発明によれば、油溜め容器(32)を減圧する減圧管(38)を設けるようにしたので、油溜め容器(32)と油分離器(22)の配置関係に問題なく、油分離器(22)の冷凍機油を油溜め容器(32)に流入させることができる。したがって、油溜め容器(32)の設置自由度を高めることができ、冷凍装置の簡素化を図ることができる。     According to the third aspect of the invention, since the pressure reducing pipe (38) for reducing the pressure of the oil reservoir (32) is provided, there is no problem in the arrangement relationship between the oil reservoir (32) and the oil separator (22). The refrigerating machine oil of the oil separator (22) can be caused to flow into the oil reservoir (32). Therefore, the degree of freedom of installation of the oil sump container (32) can be increased, and the refrigeration apparatus can be simplified.

また、第4、第5および第6の発明によれば、また、開閉弁(33)の開閉タイミングを配管総長に応じて算出した余剰油量に基づいて定めるようにしたので、油溜め容器(32)に余剰分の冷凍機油を確実に貯留させることができる。つまり、圧縮機(21)の潤滑に必要な冷凍機油量を圧縮機(21)に確実に戻すことができる。したがって、圧縮機(21)の潤滑不良を防止しつつ、余分な冷凍機油を回収することができる。     According to the fourth, fifth and sixth inventions, the opening / closing timing of the on-off valve (33) is determined based on the surplus oil amount calculated according to the total length of the pipe. It is possible to reliably store surplus refrigeration oil in 32). That is, the amount of refrigerating machine oil necessary for lubricating the compressor (21) can be reliably returned to the compressor (21). Accordingly, excess refrigeration oil can be recovered while preventing poor lubrication of the compressor (21).

また、第7の発明によれば、算出された余剰油量が多いほど、接続管(35)の開閉弁(33)の閉じている時間を長くするようにした。つまり、算出された余剰油量が少ないほど、接続管(35)の開閉弁(33)の閉じている時間を短くするようにした。これにより、余剰油量に応じて開閉弁(33)を適切に制御することができ、確実に油溜め容器(32)に余剰分の冷凍機油を貯留させることができる。     According to the seventh aspect of the invention, the longer the calculated surplus oil amount, the longer the closing time of the on-off valve (33) of the connection pipe (35). In other words, the smaller the calculated excess oil amount, the shorter the closing time of the on-off valve (33) of the connecting pipe (35). Thereby, the on-off valve (33) can be appropriately controlled according to the surplus oil amount, and surplus refrigerating machine oil can be reliably stored in the oil sump container (32).

また、第8の発明によれば、熱源ユニット(11)と利用ユニット(12)とを繋ぐ連絡配管(2c,2d)の長さに基づいて冷凍機油の余剰油量を算出するようにしたので、設置場所に応じて適切に余剰油量を把握することができる。したがって、圧縮機(21)内の余分な冷凍機油を確実に回収することができる。     According to the eighth aspect of the invention, the surplus oil amount of the refrigerating machine oil is calculated based on the length of the connecting pipe (2c, 2d) connecting the heat source unit (11) and the utilization unit (12). The amount of surplus oil can be grasped appropriately according to the installation location. Therefore, excess refrigeration oil in the compressor (21) can be reliably recovered.

また、第9の発明によれば、利用ユニット(12)が複数並列に接続されている場合、各利用ユニット(12)の連絡配管(2c,2d)の平均長さに基づいて冷凍機油の余剰油量を算出するようにした。したがって、余剰油量を過不足なく把握することができ、圧縮機(21)内の余分な冷凍機油を確実に回収することができる。     According to the ninth invention, when a plurality of usage units (12) are connected in parallel, the surplus of refrigeration oil is based on the average length of the connecting pipes (2c, 2d) of each usage unit (12). The amount of oil was calculated. Therefore, the excess oil amount can be grasped without excess or deficiency, and excess refrigeration oil in the compressor (21) can be reliably recovered.

本発明の実施形態を図面に基づいて詳細に説明する。     Embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。図1に示すように、本実施形態の空気調和装置(10)は、冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備えている。この空気調和装置(10)は、本発明に係る冷凍装置を構成している。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. As shown in FIG. 1, the air-conditioning apparatus (10) of this embodiment includes a refrigerant circuit (20) that performs a vapor compression refrigeration cycle by circulating refrigerant. This air conditioner (10) constitutes a refrigeration apparatus according to the present invention.

上記冷媒回路(20)には、圧縮機(21)と、油分離器(22)と、四路切換弁(23)と、室外熱交換器(24)と、膨張機構(25)と、室内熱交換器(26)とが設けられている。そして、これら圧縮機(21)や四路切換弁(23)などは、互いに冷媒配管によって接続されている。     The refrigerant circuit (20) includes a compressor (21), an oil separator (22), a four-way switching valve (23), an outdoor heat exchanger (24), an expansion mechanism (25), an indoor And a heat exchanger (26). The compressor (21), the four-way switching valve (23), and the like are connected to each other by a refrigerant pipe.

具体的に、この冷媒回路(20)において、圧縮機(21)の吸入管(2b)は、四路切換弁(23)の第3ポートに接続されている。圧縮機(21)の吐出管(2a)は、油分離器(22)を介して四路切換弁(23)の第1ポートに接続されている。油分離器(22)は、圧縮機(21)から吐出された高圧冷媒と冷凍機油とを分離するためのものである。四路切換弁(23)の第4ポートは、室外熱交換器(24)の一端に接続されている。室外熱交換器(24)の他端は、膨張機構(25)を介して室内熱交換器(26)の一端に接続されている。室内熱交換器(26)の他端は、四路切換弁(23)の第2ポートに接続されている。     Specifically, in this refrigerant circuit (20), the suction pipe (2b) of the compressor (21) is connected to the third port of the four-way switching valve (23). The discharge pipe (2a) of the compressor (21) is connected to the first port of the four-way switching valve (23) via the oil separator (22). The oil separator (22) is for separating the high-pressure refrigerant discharged from the compressor (21) and the refrigerating machine oil. The fourth port of the four-way selector valve (23) is connected to one end of the outdoor heat exchanger (24). The other end of the outdoor heat exchanger (24) is connected to one end of the indoor heat exchanger (26) via the expansion mechanism (25). The other end of the indoor heat exchanger (26) is connected to the second port of the four-way switching valve (23).

上記圧縮機(21)は、例えば、全密閉型の高圧ドーム型スクロール圧縮機で構成されている。つまり、圧縮機(21)のケーシング内が高圧空間になっている。そして、図示しないが、そのケーシングの底部には、冷凍機油の貯留部が設けられている。     The compressor (21) is constituted by, for example, a hermetic high-pressure dome type scroll compressor. That is, the inside of the casing of the compressor (21) is a high pressure space. And although not shown in figure, the storage part of the refrigeration oil is provided in the bottom part of the casing.

上記室外熱交換器(24)および室内熱交換器(26)は、いわゆるクロスフィン式のフィン・アンド・チューブ型熱交換器である。つまり、これら熱交換器(24,26)は、複数のアルミニウム製のフィンに、銅製のチューブが貫通している。そして、室外熱交換器(24)および室内熱交換器(26)の近傍には、それぞれ室外ファン(27)および室内ファン(28)が設けられている。室外熱交換器(24)は、冷媒が室外ファン(27)によって取り込まれた室外空気と熱交換する熱源側熱交換器を構成している。室内熱交換器(26)は、冷媒が室内ファン(28)によって取り込まれた室内空気と熱交換する利用側熱交換器を構成している。膨張機構(25)は、開度可変の膨張弁によって構成されている。     The outdoor heat exchanger (24) and the indoor heat exchanger (26) are so-called cross fin type fin-and-tube heat exchangers. That is, in these heat exchangers (24, 26), a copper tube passes through a plurality of aluminum fins. An outdoor fan (27) and an indoor fan (28) are provided in the vicinity of the outdoor heat exchanger (24) and the indoor heat exchanger (26), respectively. The outdoor heat exchanger (24) constitutes a heat source side heat exchanger in which the refrigerant exchanges heat with the outdoor air taken in by the outdoor fan (27). The indoor heat exchanger (26) constitutes a use side heat exchanger in which the refrigerant exchanges heat with the indoor air taken in by the indoor fan (28). The expansion mechanism (25) is an expansion valve with a variable opening.

上記四路切換弁(23)は、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する第1状態(図1に実線で示す状態)と、第1ポートと第2ポートが連通し且つ第3ポートと第4ポートが連通する第2状態(図1に破線で示す状態)とに切り換わるように構成されている。つまり、冷媒回路(20)において、四路切換弁(23)が第1状態の場合、冷媒が冷房サイクルで循環し、室外熱交換器(24)が凝縮器(放熱器)として、室内熱交換器(26)が蒸発器としてそれぞれ機能する。また、冷媒回路(20)において、四路切換弁(23)が第2状態の場合、冷媒が暖房サイクルで循環し、室外熱交換器(24)が蒸発器として、室内熱交換器(26)が凝縮器(放熱器)としてそれぞれ機能する。     The four-way switching valve (23) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the fourth port communicate with each other, and the second port and the third port communicate with each other; It is configured to switch to a second state (state indicated by a broken line in FIG. 1) in which the two ports communicate and the third port and the fourth port communicate. That is, in the refrigerant circuit (20), when the four-way switching valve (23) is in the first state, the refrigerant circulates in the cooling cycle, and the outdoor heat exchanger (24) serves as a condenser (heat radiator) to exchange the heat in the room. Vessels (26) each function as an evaporator. In the refrigerant circuit (20), when the four-way switching valve (23) is in the second state, the refrigerant circulates in the heating cycle, the outdoor heat exchanger (24) serves as an evaporator, and the indoor heat exchanger (26). Each function as a condenser (heat radiator).

上記冷媒回路(20)には、本発明の特徴として、余剰油回収機構(30)が設けられている。この余剰油回収機構(30)は、油流入管(31)、油溜め容器(32)、開閉弁(33)、キャピラリチューブ(34)および油流出管(35)を備えている。     The refrigerant circuit (20) is provided with a surplus oil recovery mechanism (30) as a feature of the present invention. The surplus oil recovery mechanism (30) includes an oil inflow pipe (31), an oil reservoir (32), an on-off valve (33), a capillary tube (34), and an oil outflow pipe (35).

上記油溜め容器(32)は、密閉された容器を構成し、油流入管(31)によって油分離器(22)に接続されている。油溜め容器(32)は、油分離器(22)の下方に配置されている。そして、油溜め容器(32)は、油分離器(22)で分離された冷凍機油がその自重で油流入管(31)を通って流入するように構成されている。つまり、余剰油回収機構(30)は、圧縮機(21)から流出して油分離器(22)で分離された冷凍機油の全てを油溜め容器(32)に回収するように構成されている。なお、油流入管(31)は、本発明に係る流通管を構成している。     The oil sump container (32) constitutes a sealed container and is connected to the oil separator (22) by an oil inflow pipe (31). The oil reservoir (32) is disposed below the oil separator (22). And the oil sump container (32) is comprised so that the refrigerating machine oil isolate | separated by the oil separator (22) may flow in through the oil inflow pipe (31) with its own weight. That is, the surplus oil recovery mechanism (30) is configured to recover all the refrigerating machine oil that has flowed out of the compressor (21) and separated by the oil separator (22) into the oil reservoir (32). . The oil inflow pipe (31) constitutes a flow pipe according to the present invention.

上記油流出管(35)は、油溜め容器(32)の底部と、圧縮機(21)の吸入管(2b)の途中とに接続され、本発明に係る接続管を構成している。この油流出管(35)には、油溜め容器(32)側から順に上記開閉弁(33)およびキャピラリチューブ(34)が設けられている。つまり、余剰油回収機構(30)では、開閉弁(33)が開くことで、油溜め容器(32)の冷凍機油が油流出管(35)を通って圧縮機(21)の吸入管(2b)へ流れるように構成されている。また、油流出管(35)を流れる冷凍機油は、キャピラリチューブ(34)によって所定流量に調整される。なお、開閉弁(33)は、電磁弁で構成されている。     The oil outflow pipe (35) is connected to the bottom of the oil sump container (32) and the midway of the suction pipe (2b) of the compressor (21) to constitute a connection pipe according to the present invention. The oil outlet pipe (35) is provided with the on-off valve (33) and the capillary tube (34) in order from the oil reservoir container (32) side. In other words, in the surplus oil recovery mechanism (30), the open / close valve (33) is opened so that the refrigerating machine oil in the oil reservoir (32) passes through the oil outflow pipe (35) and the suction pipe (2b) of the compressor (21). ). The refrigerating machine oil flowing through the oil outflow pipe (35) is adjusted to a predetermined flow rate by the capillary tube (34). The on-off valve (33) is composed of a solenoid valve.

この冷凍装置(10)は、上述した圧縮機(21)、油分離器(22)、四路切換弁(23)、室外熱交換器(24)、膨張機構(25)、室外ファン(27)および余剰油回収機構(30)が収納された室外機(11)と、室内熱交換器(27)および室内ファン(28)が収納された室内機(12)とを備えている。室外機(11)および室内機(12)は、本発明に係る熱源ユニットおよび利用ユニットを構成している。     This refrigeration apparatus (10) includes the compressor (21), oil separator (22), four-way switching valve (23), outdoor heat exchanger (24), expansion mechanism (25), outdoor fan (27) And an outdoor unit (11) in which the surplus oil recovery mechanism (30) is stored, and an indoor unit (12) in which the indoor heat exchanger (27) and the indoor fan (28) are stored. The outdoor unit (11) and the indoor unit (12) constitute a heat source unit and a utilization unit according to the present invention.

上記室外機(11)と室内機(12)は、連絡配管である連絡ガス配管(2c)および連絡液配管(2d)によって繋がっている。具体的に、連絡液配管(2d)は、膨張機構(25)と室内熱交換器(26)の一端との間に接続されている。連絡ガス配管(2c)は、室内熱交換器(26)の他端と四路切換弁(23)の第2ポートとの間に接続されている。つまり、連絡ガス配管(2c)および連絡液配管(2d)は、冷媒回路(20)の一部を構成している。     The outdoor unit (11) and the indoor unit (12) are connected by a communication gas pipe (2c) and a communication liquid pipe (2d) which are communication pipes. Specifically, the communication liquid pipe (2d) is connected between the expansion mechanism (25) and one end of the indoor heat exchanger (26). The communication gas pipe (2c) is connected between the other end of the indoor heat exchanger (26) and the second port of the four-way switching valve (23). That is, the communication gas pipe (2c) and the communication liquid pipe (2d) constitute a part of the refrigerant circuit (20).

上記空気調和装置(10)は、コントローラ(40)を備えている。コントローラ(40)には、余剰油量算出部(41)と開閉弁制御部(42)が設けられている。     The air conditioner (10) includes a controller (40). The controller (40) is provided with a surplus oil amount calculation unit (41) and an on-off valve control unit (42).

上記余剰油量算出部(41)は、連絡ガス配管(2c)および連絡液配管(2d)の合計長さ(以下、連絡配管長さという。)が手動入力される。そして、余剰油量算出部(41)は、入力された連絡配管長さに基づいて圧縮機(21)内の冷凍機油のうち余剰分(以下、余剰油量という。)を算出するように構成されている。つまり、本実施形態では、連絡配管長さを本発明に係る冷媒配管長さとしている。具体的に、「余剰油量」は以下の式により算出される。     The surplus oil amount calculation unit (41) manually inputs the total length of the communication gas pipe (2c) and the communication liquid pipe (2d) (hereinafter referred to as the communication pipe length). The surplus oil amount calculation unit (41) is configured to calculate a surplus (hereinafter referred to as surplus oil amount) of the refrigeration oil in the compressor (21) based on the input connection pipe length. Has been. That is, in this embodiment, the communication pipe length is the refrigerant pipe length according to the present invention. Specifically, the “surplus oil amount” is calculated by the following equation.

「余剰油量」=「設計付着油量」−「実機付着油量」
ここに、先ず、付着油量とは、圧縮機(21)から流出した冷凍機油が油分離器(22)で分離されずにそのまま流れて、冷媒配管および各熱交換器(24,26)のチューブに付着する推定量であり、連絡配管長さに応じて推定される。そして、「設計付着油量」とは、想定される最長の連絡配管長さに対して推定した付着油量である。つまり、何れの空気調和装置に対しても一律に定められる固定値である。「実機付着油量」とは、実際の空気調和装置(10)における連絡配管長さに対して推定される付着油量であり、本発明に係る付着量である。したがって、余剰油量算出部(41)において、入力された実際の連絡配管長さに応じた「実機付着油量」が推定されて、「余剰油量」が算出される。
"Excess oil amount" = "Designed oil amount"-"Actual oil amount"
Here, first, the amount of attached oil means that the refrigerating machine oil flowing out from the compressor (21) flows as it is without being separated by the oil separator (22), and the refrigerant pipe and each heat exchanger (24, 26) This is an estimated amount that adheres to the tube, and is estimated according to the length of the connecting pipe. The “designed amount of attached oil” is the amount of attached oil estimated with respect to the assumed longest connection pipe length. That is, it is a fixed value that is uniformly determined for any air conditioner. The “actual machine attached oil amount” is the attached oil amount estimated with respect to the communication pipe length in the actual air conditioner (10), and is the attached amount according to the present invention. Therefore, the “surplus oil amount” is calculated in the surplus oil amount calculation unit (41) by estimating the “actual machine attached oil amount” corresponding to the input actual connection pipe length.

上記開閉弁制御部(42)は、冷凍機油を余剰油量算出部(41)で算出された余剰油量の分だけ油溜め容器(32)に貯留させるように、開閉弁(33)を制御する。具体的に、開閉弁制御部(42)は、予め余剰油量に応じて定められた所定時間T1毎に開閉弁(33)を開状態にする。所定時間T1は、算出された余剰油量が多いほど長くなるように設定されている。つまり、余剰油回収機構(30)は、運転時常に油分離器(22)から油溜め容器(32)に冷凍機油が流入するが、油溜め容器(32)に余剰油量以上の冷凍機油が貯留されないように、定期的に油溜め容器(32)から冷凍機油を圧縮機(21)へ戻すようにしている。なお、詳細な制御内容については後述する。     The on-off valve control unit (42) controls the on-off valve (33) so that the refrigeration oil is stored in the oil sump container (32) by the amount of surplus oil calculated by the surplus oil amount calculation unit (41). To do. Specifically, the on-off valve control unit (42) opens the on-off valve (33) every predetermined time T1 determined in advance according to the excess oil amount. The predetermined time T1 is set to be longer as the calculated excess oil amount is larger. In other words, the surplus oil recovery mechanism (30) always has refrigeration oil flowing from the oil separator (22) into the sump container (32) during operation, but refrigeration oil exceeding the surplus oil amount has entered the sump container (32). In order not to be stored, the refrigeration oil is periodically returned from the oil reservoir (32) to the compressor (21). Detailed control contents will be described later.

−運転動作−
次に、上記空気調和装置(10)の運転動作について説明する。この空気調和装置(10)は、冷房運転と暖房運転とが切換可能に構成されている。
-Driving action-
Next, the operation of the air conditioner (10) will be described. The air conditioner (10) is configured to be switchable between a cooling operation and a heating operation.

〈冷房運転〉
この冷房運転では、冷媒回路(20)において、冷媒が図1に実線の矢印で示す方向に循環し、冷房サイクルが行われる。具体的に、四路切換弁(23)が第1状態に設定され、膨張機構(25)の開度が適宜調節される。この状態で、圧縮機(21)が駆動されると(運転が開始されると)、圧縮機(21)から吐出管(2a)に吐出された高圧冷媒は、油分離器(22)を介して室外熱交換器(24)へ流れる。室外熱交換器(24)では、高圧冷媒が室外空気へ放熱して凝縮する。室外熱交換器(24)で凝縮した冷媒は、膨張機構(25)で減圧された後、室内熱交換器(26)へ流れる。室内熱交換器(26)では、低圧冷媒が室内空気から吸熱して蒸発する。室内空気は、冷却されて室内へ供給される。室内熱交換器(26)で蒸発した低圧冷媒は、吸入管(2b)から圧縮機(21)へ吸入される。
<Cooling operation>
In this cooling operation, in the refrigerant circuit (20), the refrigerant circulates in the direction indicated by the solid line arrow in FIG. 1, and a cooling cycle is performed. Specifically, the four-way selector valve (23) is set to the first state, and the opening degree of the expansion mechanism (25) is appropriately adjusted. In this state, when the compressor (21) is driven (operation is started), the high-pressure refrigerant discharged from the compressor (21) to the discharge pipe (2a) passes through the oil separator (22). To the outdoor heat exchanger (24). In the outdoor heat exchanger (24), the high-pressure refrigerant dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (24) is depressurized by the expansion mechanism (25) and then flows to the indoor heat exchanger (26). In the indoor heat exchanger (26), the low-pressure refrigerant absorbs heat from the indoor air and evaporates. The room air is cooled and supplied to the room. The low-pressure refrigerant evaporated in the indoor heat exchanger (26) is drawn into the compressor (21) through the suction pipe (2b).

〈暖房運転〉
この暖房運転では、冷媒回路(20)において、冷媒が図1に破線の矢印で示す方向に循環し、暖房サイクルが行われる。具体的に、四路切換弁(23)が第2状態に設定され、膨張機構(25)の開度が適宜調節される。この状態で、圧縮機(21)が駆動されると、圧縮機(21)から高圧冷媒が吐出管(2a)に吐出され、油分離器(22)を介して室内熱交換器(26)へ流れる。室内熱交換器(26)では、高圧冷媒が室内空気へ放熱して凝縮する。室内空気は、加熱されて室内へ供給される。室内熱交換器(26)で凝縮した冷媒は、膨張機構(25)で減圧された後、室外熱交換器(24)へ流れる。室外熱交換器(24)では、低圧冷媒が室外空気から吸熱して蒸発する。室外熱交換器(24)で蒸発した低圧冷媒は、吸入管(2b)から圧縮機(21)へ吸入される。
<Heating operation>
In this heating operation, in the refrigerant circuit (20), the refrigerant circulates in the direction indicated by the dashed arrow in FIG. 1, and a heating cycle is performed. Specifically, the four-way selector valve (23) is set to the second state, and the opening degree of the expansion mechanism (25) is adjusted as appropriate. In this state, when the compressor (21) is driven, high-pressure refrigerant is discharged from the compressor (21) to the discharge pipe (2a), and then to the indoor heat exchanger (26) via the oil separator (22). Flowing. In the indoor heat exchanger (26), the high-pressure refrigerant dissipates heat to the indoor air and condenses. The room air is heated and supplied to the room. The refrigerant condensed in the indoor heat exchanger (26) is depressurized by the expansion mechanism (25) and then flows to the outdoor heat exchanger (24). In the outdoor heat exchanger (24), the low-pressure refrigerant absorbs heat from the outdoor air and evaporates. The low-pressure refrigerant evaporated in the outdoor heat exchanger (24) is sucked into the compressor (21) from the suction pipe (2b).

〈余剰油回収機構の動作およびコントローラの制御動作〉
先ず、運転開始前に、開閉弁(33)が閉状態に設定されると共に、連絡配管長さが余剰油量算出部(41)に手動入力される。そして、余剰油量算出部(41)において余剰油量が算出される。
<Excess oil recovery mechanism operation and controller control operation>
First, before the operation is started, the on-off valve (33) is set to the closed state, and the communication pipe length is manually input to the surplus oil amount calculation unit (41). Then, the surplus oil amount calculation unit (41) calculates the surplus oil amount.

次に、運転が開始されると、圧縮機(21)から冷凍機油が冷媒と共に流出し、その殆どが油分離器(22)で分離される。分離された冷凍機油は、その自重により油流入管(31)を通って油溜め容器(32)に流入する。また、油分離器(22)で分離されなかった僅かな冷凍機油は、冷媒と共に冷媒回路(20)を流れる。その冷凍機油の一部は、連絡配管(2c,2d)や各熱交換器(24,26)のチューブに付着して留まり、残りは、冷媒と共に圧縮機(21)へ戻る。     Next, when the operation is started, the refrigeration oil flows out of the compressor (21) together with the refrigerant, and most of the oil is separated by the oil separator (22). The separated refrigerating machine oil flows into the oil reservoir (32) through the oil inflow pipe (31) by its own weight. A small amount of refrigeration oil that has not been separated by the oil separator (22) flows through the refrigerant circuit (20) together with the refrigerant. A part of the refrigeration oil stays attached to the connecting pipe (2c, 2d) and the tubes of the heat exchangers (24, 26), and the rest returns to the compressor (21) together with the refrigerant.

運転開始から所定時間T1が経過すると、開閉弁制御部(42)により、開閉弁(33)が開状態に切り換えられる。この所定時間T1の間は、油溜め容器(32)の冷凍機油の貯留量が増大していく。そして、開状態に切り換えてから所定時間T2が経過すると、再び開閉弁制御部(42)によって開閉弁(33)が閉じられる。この開閉弁(33)が開いている間(所定時間T2の間)は、油分離器(22)から油溜め容器(32)に冷凍機油が流入する一方、油溜め容器(32)から冷凍機油が所定の流量で圧縮機(21)の吸入管(2b)へ流出する。続いて、開閉弁(33)が閉じられてから所定時間T1が経過すると、再び開閉弁(33)が所定時間T2の間開状態に切り換えられ、この開閉制御が繰り返される。これにより、常に油溜め容器(32)には余剰分の冷凍機油が貯留される。また、所定時間T1は、算出された余剰油量が多くなるに従って長くなるので、確実に余剰分の冷凍機油が油溜め容器(32)に貯留される。     When a predetermined time T1 elapses from the start of operation, the on-off valve controller (42) switches the on-off valve (33) to the open state. During this predetermined time T1, the amount of refrigerating machine oil stored in the oil reservoir (32) increases. And when predetermined time T2 passes after switching to an open state, an on-off valve control part (42) will close an on-off valve (33) again. While the on-off valve (33) is open (during a predetermined time T2), the refrigerating machine oil flows from the oil separator (22) into the oil sump container (32), while the refrigerating machine oil from the oil sump container (32). Flows out to the suction pipe (2b) of the compressor (21) at a predetermined flow rate. Subsequently, when a predetermined time T1 elapses after the opening / closing valve (33) is closed, the opening / closing valve (33) is switched to the open state again for the predetermined time T2, and this opening / closing control is repeated. Thereby, the surplus refrigeration oil is always stored in the oil sump container (32). Further, since the predetermined time T1 becomes longer as the calculated surplus oil amount increases, the surplus refrigerating machine oil is reliably stored in the oil sump container (32).

−実施形態1の効果−
本実施形態によれば、油分離器(22)で分離された冷凍機油が流入して貯留される油溜め容器(32)と、その油溜め容器(32)に貯留した冷凍機油を圧縮機(21)の吸入管(2b)に戻す油流出管(35)を設けるようにした。したがって、圧縮機(21)から流出して油分離器(22)で分離された冷凍機油の全てを油溜め容器(32)に回収し、その回収した冷凍機油の一部を任意に圧縮機(21)に戻すことができる。これにより、運転中において、常に油溜め容器(32)に余剰分の冷凍機油を貯留させることができ、油分離器(22)を通過して冷媒回路(20)を流れる冷凍機油の量を抑制することができる。よって、冷凍機油が連絡配管(2c,2d)や各熱交換器(24,26)のチューブに必要以上に付着するのを防止することができる。その結果、冷媒配管における冷媒の流動損失を低減でき、また各熱交換器(24,26)の熱交換効率を向上させることができる。
-Effect of Embodiment 1-
According to this embodiment, the oil reservoir (32) in which the refrigerating machine oil separated by the oil separator (22) flows in and stored, and the refrigerating machine oil stored in the oil reservoir (32) are compressed by the compressor ( An oil spill pipe (35) that returns to the suction pipe (2b) of 21) is provided. Therefore, all the refrigerating machine oil that has flowed out of the compressor (21) and separated by the oil separator (22) is collected in the oil reservoir (32), and a part of the collected refrigerating machine oil can be optionally compressed ( 21). As a result, during operation, the excess refrigeration oil can always be stored in the oil sump container (32), and the amount of refrigeration oil flowing through the refrigerant circuit (20) through the oil separator (22) is suppressed. can do. Therefore, it is possible to prevent the refrigeration oil from adhering more than necessary to the communication pipes (2c, 2d) and the tubes of the heat exchangers (24, 26). As a result, the flow loss of the refrigerant in the refrigerant piping can be reduced, and the heat exchange efficiency of each heat exchanger (24, 26) can be improved.

また、油溜め容器(32)を油分離器(22)の下方に配置して、油分離器(22)の冷凍機油をその自重で油溜め容器(32)へ導くことができる。したがって、油分離器(22)から油溜め容器(32)に冷凍機油を導入する動力手段を別途設けることなく、簡易な構成で余剰な冷凍機油を油溜め容器(32)に回収することができる。その結果、コンパクト且つ低コストな空気調和装置(10)を提供することができる。     Further, the oil reservoir container (32) can be disposed below the oil separator (22), and the refrigerating machine oil of the oil separator (22) can be guided to the oil reservoir container (32) by its own weight. Accordingly, surplus refrigeration oil can be recovered in the oil reservoir container (32) with a simple configuration without separately providing power means for introducing the refrigerator oil from the oil separator (22) to the oil reservoir container (32). . As a result, a compact and low-cost air conditioner (10) can be provided.

また、実機付着油量は、連絡配管長さに応じて大きく変動するところ、その連絡配管長さに基づいて実機付着油量を推定して余剰油量を算出するようにしたので、的確な余剰油量を把握することができる。そして、算出した余剰油量に基づいて開閉弁(33)の開閉タイミングを定めるようにしたので、油溜め容器(32)に余剰分の冷凍機油を確実に貯留させつつ、潤滑に必要な冷凍機油を圧縮機(21)へ確実に戻すことができる。したがって、圧縮機(21)の潤滑不良を防止しつつ、余剰な冷凍機油を回収することができる。     In addition, the amount of oil attached to the actual machine greatly fluctuates depending on the length of the connecting pipe. Since the amount of oil attached to the actual machine is estimated based on the length of the connecting pipe, the excess oil amount is calculated. The amount of oil can be grasped. And since the opening / closing timing of the on-off valve (33) is determined based on the calculated surplus oil amount, the refrigerating machine oil necessary for lubrication is ensured while the surplus refrigerating machine oil is reliably stored in the oil reservoir (32). Can be reliably returned to the compressor (21). Therefore, excess refrigeration oil can be recovered while preventing poor lubrication of the compressor (21).

《発明の実施形態2》
本発明の実施形態2について説明する。図2に示すように、本実施形態の空気調和装置(10)は、上述した実施形態1において余剰油回収機構(30)の構成を変更したものである。つまり、本実施形態は、上記実施形態1の余剰油回収機構(30)において、減圧管(38)を設けるようにした。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. As shown in FIG. 2, the air conditioner (10) of the present embodiment is obtained by changing the configuration of the surplus oil recovery mechanism (30) in the first embodiment. That is, in this embodiment, the pressure reducing pipe (38) is provided in the surplus oil recovery mechanism (30) of the first embodiment.

上記減圧管(38)の一端は、油溜め容器(32)に接続され、その油溜め容器(32)内のガス空間(冷媒ガス空間)に連通している。減圧管(38)の他端は、油流出管(35)におけるキャピラリチューブ(34)の下流側に接続され、圧縮機(21)の吸入側に連通している。そして、この減圧管(38)には、油溜め容器(32)側から順に、開閉弁(36)およびキャピラリチューブ(37)が設けられている。なお、開閉弁(36)は、電磁弁で構成されている。     One end of the pressure reducing pipe (38) is connected to the oil sump container (32) and communicates with a gas space (refrigerant gas space) in the oil sump container (32). The other end of the pressure reducing pipe (38) is connected to the downstream side of the capillary tube (34) in the oil outflow pipe (35) and communicates with the suction side of the compressor (21). The pressure reducing pipe (38) is provided with an on-off valve (36) and a capillary tube (37) in order from the oil reservoir (32) side. The on-off valve (36) is a solenoid valve.

つまり、本実施形態の余剰油回収機構(30)は、減圧管(38)の開閉弁(36)が開くことで、油溜め容器(32)内のガス冷媒が圧縮機(21)の吸入管(2b)に吸入されてその油溜め容器(32)内を減圧するように構成されている。これにより、油分離器(22)内は圧縮機(21)の吐出圧力とほぼ同圧になっているため、油分離器(22)と油溜め容器(32)との間に圧力差が生じる。そして、この圧力差により、油分離器(22)の冷凍機油が油流入管(31)を通って油溜め容器(32)に流入する。     That is, the surplus oil recovery mechanism (30) of the present embodiment is configured such that the gas refrigerant in the oil reservoir (32) is sucked into the suction pipe of the compressor (21) by opening the on-off valve (36) of the pressure reducing pipe (38). The oil reservoir (32) is depressurized by being sucked into (2b). As a result, the pressure inside the oil separator (22) is almost the same as the discharge pressure of the compressor (21), so that a pressure difference is generated between the oil separator (22) and the oil reservoir (32). . Due to this pressure difference, the refrigerating machine oil in the oil separator (22) flows into the oil reservoir (32) through the oil inflow pipe (31).

このように、本実施形態では、油分離器(22)で分離された冷凍機油をその自重で油溜め容器(32)に導入させなくても、減圧管(38)の開閉弁(36)を開くことにより油分離器(22)の冷凍機油を確実に油溜め容器(32)に回収することができる。したがって、上記実施形態1のように油溜め容器(32)を油分離器(22)の下方に配置する必要がなく、油分離器(22)の側方や上方に配置してもよい。つまり、油溜め容器(32)の設置自由度が高まり、空気調和装置(10)のコンパクト化を図ることができる。     Thus, in this embodiment, the open / close valve (36) of the pressure reducing pipe (38) is not required to introduce the refrigerating machine oil separated by the oil separator (22) into its sump container (32) by its own weight. By opening, the refrigerating machine oil of the oil separator (22) can be reliably recovered in the oil reservoir (32). Therefore, it is not necessary to arrange the oil reservoir (32) below the oil separator (22) as in the first embodiment, and the oil reservoir (32) may be arranged on the side or above the oil separator (22). That is, the degree of freedom of installation of the oil sump container (32) is increased, and the air conditioner (10) can be made compact.

本実施形態のコントローラ(40)は、以下のような制御動作を行う。     The controller (40) of the present embodiment performs the following control operation.

上記余剰油量算出部(41)は、上記実施形態1と同様に、連絡配管長さが手動入力され、その連絡配管長さに基づいて「余剰油量」を算出する。一方、開閉弁制御部(42)は、油流出管(35)の開閉弁(33)と減圧管(38)の開閉弁(36)とを交互に開閉させる。具体的に、開閉弁制御部(42)は、実施形態1と同様に、余剰油量に応じて予め設定された所定時間T1毎に油流出管(35)の開閉弁(33)を開状態にする。そして、開閉弁制御部(42)は、油流出管(35)の開閉弁(33)を開いたときは減圧管(38)の開閉弁(36)を閉じて、油流出管(35)の開閉弁(33)を閉じたときは減圧管(38)の開閉弁(36)を開くように構成されている。つまり、開閉弁制御部(42)は、余剰油量に応じて予め設定された所定時間T1毎に減圧管(38)の開閉弁(36)を閉状態にする。     Similarly to the first embodiment, the surplus oil amount calculation unit (41) manually inputs the communication pipe length, and calculates the “surplus oil amount” based on the communication pipe length. On the other hand, the on-off valve controller (42) alternately opens and closes the on-off valve (33) of the oil outflow pipe (35) and the on-off valve (36) of the pressure reducing pipe (38). Specifically, the on-off valve control unit (42) opens the on-off valve (33) of the oil outflow pipe (35) every predetermined time T1 set in advance according to the excess oil amount, as in the first embodiment. To. When the on / off valve control section (42) opens the on / off valve (33) of the oil outflow pipe (35), the on / off valve (36) of the decompression pipe (38) is closed to close the oil outflow pipe (35). When the on-off valve (33) is closed, the on-off valve (36) of the pressure reducing pipe (38) is opened. That is, the on-off valve control unit (42) closes the on-off valve (36) of the pressure reducing pipe (38) every predetermined time T1 set in advance according to the surplus oil amount.

−運転動作−
次に、本実施形態の余剰油回収機構(30)の動作およびコントローラ(40)の制御動作について説明する。なお、冷房運転および暖房運転の冷媒流れについては上記実施形態1と同様である。
-Driving action-
Next, the operation of the surplus oil recovery mechanism (30) and the control operation of the controller (40) of this embodiment will be described. The refrigerant flow in the cooling operation and the heating operation is the same as that in the first embodiment.

先ず、運転開始前に、油流出管(35)の開閉弁(33)が閉状態に設定されると共に減圧管(38)の開閉弁(36)が開状態に設定され、連絡配管長さが余剰油量算出部(41)に手動入力される。そして、余剰油量算出部(41)において余剰油量が算出される。     First, before starting the operation, the on-off valve (33) of the oil outflow pipe (35) is set to the closed state and the on-off valve (36) of the pressure reducing pipe (38) is set to the open state, Manually input to the surplus oil amount calculation unit (41). Then, the surplus oil amount calculation unit (41) calculates the surplus oil amount.

次に、運転が開始されると、圧縮機(21)から冷凍機油が冷媒と共に流出し、その殆どが油分離器(22)で分離される。一方、油溜め容器(32)内のガス冷媒が減圧管(38)および油流出管(35)を通って圧縮機(21)へ吸入される。これにより、油溜め容器(32)内が減圧される。     Next, when the operation is started, the refrigeration oil flows out of the compressor (21) together with the refrigerant, and most of the oil is separated by the oil separator (22). On the other hand, the gas refrigerant in the oil sump container (32) is sucked into the compressor (21) through the pressure reducing pipe (38) and the oil outflow pipe (35). Thereby, the pressure in the oil reservoir (32) is reduced.

油分離器(22)で分離された冷凍機油は、油分離器(22)と油溜め容器(32)との圧力差により、油流入管(31)を通って油溜め容器(32)に流入する。また、油分離器(22)で分離されなかった僅かな冷凍機油は、冷媒と共に冷媒回路(20)を流れる。その冷凍機油の一部は、冷媒配管や各熱交換器(24,26)のチューブに付着して留まり、残りは、冷媒と共に圧縮機(21)へ戻る。     The refrigerating machine oil separated by the oil separator (22) flows into the oil reservoir (32) through the oil inflow pipe (31) due to the pressure difference between the oil separator (22) and the oil reservoir (32). To do. A small amount of refrigeration oil that has not been separated by the oil separator (22) flows through the refrigerant circuit (20) together with the refrigerant. A part of the refrigerating machine oil stays attached to the refrigerant piping and the tubes of the heat exchangers (24, 26), and the rest returns to the compressor (21) together with the refrigerant.

運転開始から所定時間T1が経過すると、開閉弁制御部(42)により、減圧管(38)の開閉弁(36)が閉状態に、油流出管(35)の開閉弁(33)が開状態にそれぞれ切り換えられる。この所定時間T1の間は、油溜め容器(32)の冷凍機油の貯留量が増大していく。そして、各開閉弁(33,36)を切り換えてから所定時間T2が経過すると、再び開閉弁制御部(42)により、油流出管(35)の開閉弁(33)が閉状態に、減圧管(38)の開閉弁(36)が開状態にそれぞれ切り換えられる。油流出管(35)の開閉弁(33)が開いている間(所定時間T2の間)は、油溜め容器(32)から冷凍機油が所定の流量で圧縮機(21)の吸入管(2b)へ流出する。その際、油溜め容器(32)において、冷凍機油の流出量と同量の冷凍機油が油分離器(22)から流入する。このように、各開閉弁(33,36)の開閉が繰り返される。これにより、常に油溜め容器(32)には余剰分の冷凍機油が貯留されることになる。     When a predetermined time T1 has elapsed from the start of operation, the on-off valve controller (42) closes the on-off valve (36) of the pressure reducing pipe (38) and opens the on-off valve (33) of the oil outflow pipe (35). Respectively. During this predetermined time T1, the amount of refrigerating machine oil stored in the oil reservoir (32) increases. Then, when a predetermined time T2 has elapsed after switching each on-off valve (33, 36), the on-off valve control unit (42) again closes the on-off valve (33) of the oil outflow pipe (35) to the pressure reducing pipe. The open / close valve (36) of (38) is switched to the open state. While the on / off valve (33) of the oil outflow pipe (35) is open (during a predetermined time T2), the refrigerating machine oil is supplied from the oil reservoir (32) at a predetermined flow rate to the suction pipe (2b) of the compressor (21). ). At that time, in the oil reservoir (32), the same amount of refrigerating machine oil as that of the refrigerating machine oil flows from the oil separator (22). In this manner, the opening / closing of the on-off valves (33, 36) is repeated. As a result, surplus refrigerating machine oil is always stored in the oil sump container (32).

−実施形態2の効果−
本実施形態によれば、余剰油回収機構(30)に減圧管(38)を設けるようにしたので、油分離器(22)と油溜め容器(32)の位置関係に問題なく、油分離器(22)で分離された冷凍機油を油溜め容器(32)に回収することができる。したがって、油溜め容器(32)の設置制限を緩和することができ、空気調和装置(10)のコンパクト化を図ることができる。
-Effect of Embodiment 2-
According to the present embodiment, since the pressure reducing pipe (38) is provided in the surplus oil recovery mechanism (30), there is no problem in the positional relationship between the oil separator (22) and the oil reservoir (32), and the oil separator The refrigerating machine oil separated in (22) can be collected in the oil reservoir (32). Therefore, the installation restriction of the oil sump container (32) can be relaxed, and the air conditioner (10) can be made compact.

また、減圧管(38)の開閉弁(36)の開閉タイミングを連絡配管長さに応じて算出した余剰油量に基づいて定めるようにしたので、確実に油溜め容器(32)に余剰分の冷凍機油を貯留させることができる。その他の構成、作用および効果については実施形態1と同様である。     Moreover, since the opening / closing timing of the opening / closing valve (36) of the pressure reducing pipe (38) is determined based on the excess oil amount calculated according to the length of the connecting pipe, it is ensured that the oil reservoir (32) has an excess amount. Refrigerating machine oil can be stored. Other configurations, operations, and effects are the same as those in the first embodiment.

《発明の実施形態3》
本発明の実施形態3について説明する。図3に示すように、本実施形態の空気調和装置(10)は、上記実施形態1において、室内機(12)が複数(本実施形態では、2台)設けられ、互いに並列接続されているものである。さらに、本実施形態の冷媒回路(20)は、上記実施形態1における膨張機構(25)に代えて、室外膨張機構(25a)および室内膨張機構(25b)を備えているものである。
<< Embodiment 3 of the Invention >>
Embodiment 3 of the present invention will be described. As shown in FIG. 3, the air conditioner (10) of the present embodiment is provided with a plurality of indoor units (12) (two in this embodiment) in the first embodiment and connected in parallel to each other. Is. Furthermore, the refrigerant circuit (20) of the present embodiment includes an outdoor expansion mechanism (25a) and an indoor expansion mechanism (25b) instead of the expansion mechanism (25) in the first embodiment.

具体的に、室外機(11)から延びる連絡ガス配管(2c)および連絡液配管(2d)は、分岐して各室内機(12)に繋がっている。室外膨張機構(25a)は、室外機(11)に収納され、室外熱交換器(24)と連絡液配管(2d)との間に接続されている。室内膨張機構(25b)は、各室内機(12)に収納され、室内熱交換器(26)と連絡液配管(2d)との間に接続されている。     Specifically, the communication gas pipe (2c) and the communication liquid pipe (2d) extending from the outdoor unit (11) are branched and connected to each indoor unit (12). The outdoor expansion mechanism (25a) is housed in the outdoor unit (11), and is connected between the outdoor heat exchanger (24) and the communication liquid pipe (2d). The indoor expansion mechanism (25b) is housed in each indoor unit (12), and is connected between the indoor heat exchanger (26) and the communication liquid pipe (2d).

この場合、冷房運転では、室外膨張機構(25a)が全開状態に設定され、各室内膨張機構(25b)の開度が適宜調節される。この冷房運転では、室外熱交換器(24)で凝縮(放熱)した冷媒が連絡液配管(2d)を通って各室内機(12)へ分流し、室内膨張機構(25b)で減圧された後、室内熱交換器(26)で蒸発する。また、暖房運転では、各室内膨張機構(25b)が全開状態に設定され、室外膨張機構(25a)の開度が適宜調節される。この暖房運転では、圧縮機(21)の吐出冷媒が連絡ガス配管(2c)を通って各室内機(12)へ分流し、室内熱交換器(26)で凝縮(放熱)した後、連絡液配管(2d)へ流れる。その他の運転動作は、上記実施形態1と同様である。     In this case, in the cooling operation, the outdoor expansion mechanism (25a) is set to a fully open state, and the opening degree of each indoor expansion mechanism (25b) is appropriately adjusted. In this cooling operation, after the refrigerant condensed (radiated) in the outdoor heat exchanger (24) is diverted to each indoor unit (12) through the connecting liquid pipe (2d) and depressurized by the indoor expansion mechanism (25b) Evaporates in the indoor heat exchanger (26). In the heating operation, each indoor expansion mechanism (25b) is set to a fully open state, and the opening degree of the outdoor expansion mechanism (25a) is appropriately adjusted. In this heating operation, the refrigerant discharged from the compressor (21) is diverted to each indoor unit (12) through the communication gas pipe (2c), condensed (heat radiation) in the indoor heat exchanger (26), and then connected to the communication liquid. It flows into the pipe (2d). Other driving operations are the same as those in the first embodiment.

本実施形態のコントローラ(40)において、余剰油量算出部(41)は、各室内機(12)の連絡配管長さの平均長さが手動入力される。そして、余剰油量算出部(41)は、入力された平均長さに基づいて「余剰油量」を算出するように構成されている。つまり、連絡配管長さの平均長さに応じた「実機付着油量」が推定され、「余剰油量」が算出される。     In the controller (40) of the present embodiment, the surplus oil amount calculation unit (41) is manually input the average length of the communication pipe length of each indoor unit (12). The surplus oil amount calculation unit (41) is configured to calculate the “surplus oil amount” based on the input average length. That is, the “actual machine oil amount” corresponding to the average length of the communication pipe length is estimated, and the “surplus oil amount” is calculated.

本実施形態では、各室内機(12)に対する連絡配管長さが異なるが、その平均長さに基づいて余剰油量を算出するので、過不足なく余剰油量が把握することができる。したがって、余剰な冷凍機油を確実に油溜め容器(32)に回収することができる。その他の構成、作用および効果は、実施形態1と同様である。     In the present embodiment, the length of the connecting pipe for each indoor unit (12) is different, but since the surplus oil amount is calculated based on the average length, the surplus oil amount can be grasped without excess or deficiency. Therefore, surplus refrigeration oil can be reliably recovered in the oil reservoir (32). Other configurations, operations, and effects are the same as those in the first embodiment.

《その他の実施形態》
上記各実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About each said embodiment, it is good also as the following structures.

例えば、上記各実施形態において、油流出管(35)の開閉弁(33)が開いている時間(所定時間T2)を一定時間としたが、算出される余剰油量に応じて変更するようにしてもよい。この場合、余剰油量が多くなるに従って、所定時間T2を短くする。     For example, in each of the embodiments described above, the time (predetermined time T2) during which the on-off valve (33) of the oil outflow pipe (35) is open is set to a certain time, but is changed according to the calculated surplus oil amount. May be. In this case, the predetermined time T2 is shortened as the excess oil amount increases.

また、上記実施形態2では、減圧管(38)の開閉弁(36)を所定時間T1毎に閉状態に切り換えたが、常に開状態にするようにしてもよい。     Moreover, in the said Embodiment 2, although the on-off valve (36) of the pressure reduction pipe | tube (38) was switched to the closed state for every predetermined time T1, you may make it always open.

また、上記各実施形態では、連絡配管長さに基づいて余剰油量を算出するようにしたが、これに限らず、連絡配管長さと各熱交換器(24,26)のチューブ長さの総長に基づいて余剰油量を算出するようにしてもよい。この場合、より適切な実機付着油量が推定され、余剰油量が確実に把握される。なお、上記以外の配管の長さを加味するようにしてもよいことは、勿論である。     In each of the above embodiments, the surplus oil amount is calculated based on the communication pipe length. However, the present invention is not limited to this, and the total length of the communication pipe length and the tube length of each heat exchanger (24, 26). The excess oil amount may be calculated based on the above. In this case, a more appropriate actual machine attached oil amount is estimated, and the surplus oil amount is reliably grasped. Of course, other pipe lengths may be taken into account.

また、上記実施形態2において室内機(12)を複数並列に設けた場合も、実施形態3と同様に、各室内機(12)に対する連絡配管長さの平均長さに基づいて余剰油量を算出するようにすればよい。     In addition, when a plurality of indoor units (12) are provided in parallel in the second embodiment, as in the third embodiment, the surplus oil amount is determined based on the average length of the connecting pipe length for each indoor unit (12). What is necessary is just to calculate.

また、上記各実施形態では、各開閉弁(33,36)に電磁弁を用いるようにしたが、これに代えて、開度調整可能な流量調整弁を用いるようにしてもよい。その場合、キャピラリチューブ(34,37)は省略される。     Moreover, in each said embodiment, although the solenoid valve was used for each on-off valve (33,36), it may replace with this and may use the flow volume adjustment valve which can adjust an opening degree. In that case, the capillary tubes (34, 37) are omitted.

また、上記各実施形態では、空気調和装置について説明したが、これに限らず、本発明は、圧縮機の吐出側に油分離器が接続された冷媒回路を備えている冷凍装置(例えば、冷蔵庫等)であれば、如何なるものにも適用してもよい。     In each of the above embodiments, the air conditioner has been described. However, the present invention is not limited to this, and the present invention is a refrigeration apparatus (for example, a refrigerator) including a refrigerant circuit having an oil separator connected to the discharge side of the compressor. Etc.) as long as they are applicable.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、圧縮機の吐出側に油分離器が接続された冷媒回路を備えている冷凍装置として有用である。     As described above, the present invention is useful as a refrigeration apparatus including a refrigerant circuit in which an oil separator is connected to the discharge side of a compressor.

実施形態1に係る空気調和装置の構成を示す配管系統図である。1 is a piping system diagram illustrating a configuration of an air conditioner according to Embodiment 1. FIG. 実施形態2に係る空気調和装置の構成を示す配管系統図である。It is a piping system diagram which shows the structure of the air conditioning apparatus which concerns on Embodiment 2. 実施形態3に係る空気調和装置の構成を示す配管系統図である。It is a piping system diagram which shows the structure of the air conditioning apparatus which concerns on Embodiment 3.

符号の説明Explanation of symbols

10 空気調和装置(冷凍装置)
11 室外機(熱源ユニット)
12 室内機(利用ユニット)
20 冷媒回路
21 圧縮機
22 油分離器
24 室外熱交換器(熱源側熱交換器)
26 室内熱交換器(利用側熱交換器)
32 油溜め容器
33 開閉弁
35 油流出管(接続管)
36 開閉弁
38 減圧管
40 コントローラ(制御手段)
2c 連絡ガス配管(連絡配管)
2d 連絡液配管(連絡配管)
10 Air conditioning equipment (refrigeration equipment)
11 Outdoor unit (heat source unit)
12 Indoor unit (Usage unit)
20 Refrigerant circuit
21 Compressor
22 Oil separator
24 Outdoor heat exchanger (heat source side heat exchanger)
26 Indoor heat exchanger (use side heat exchanger)
32 Oil sump container
33 On-off valve
35 Oil spill pipe (connection pipe)
36 On-off valve
38 Pressure reducer
40 Controller (control means)
2c Communication gas piping (Communication piping)
2d Communication liquid piping (Communication piping)

Claims (9)

圧縮機(21)と、該圧縮機(21)の吐出側に接続された油分離器(22)と、該油分離器(22)に連通し、該油分離器(22)で分離された冷凍機油を貯留させるための油溜め容器(32)と、該油溜め容器(32)と上記圧縮機(21)の吸入側とに接続され且つ開閉弁(33)を有して上記油溜め容器(32)の冷凍機油を上記圧縮機(21)の吸入側に戻す接続管(35)とを有し、蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備えている
ことを特徴とする冷凍装置。
The compressor (21), the oil separator (22) connected to the discharge side of the compressor (21), and the oil separator (22) communicated with and separated by the oil separator (22). An oil reservoir container (32) for storing refrigerating machine oil, the oil reservoir container connected to the oil reservoir container (32) and the suction side of the compressor (21) and having an on-off valve (33) A refrigeration circuit comprising a refrigerant circuit (20) having a connection pipe (35) for returning the refrigeration oil of (32) to the suction side of the compressor (21) and performing a vapor compression refrigeration cycle. apparatus.
請求項1において、
上記油分離器(22)と油溜め容器(32)とは、上記油分離器(22)の冷凍機油が流通する流通管(31)で接続される一方、
上記油溜め容器(32)は、上記油分離器(22)の下方に配置されている
ことを特徴とする冷凍装置。
In claim 1,
While the oil separator (22) and the oil reservoir (32) are connected by a circulation pipe (31) through which the refrigeration oil of the oil separator (22) flows,
The refrigeration apparatus, wherein the oil reservoir (32) is disposed below the oil separator (22).
請求項1において、
上記油溜め容器(32)は、ガス冷媒が封入されており、
上記冷媒回路(20)は、開閉弁(36)を有し、一端が油溜め容器(32)内のガス冷媒空間に連通し且つ他端が上記接続管(35)における開閉弁(33)の下流に接続されて油溜め容器(32)内を減圧するための減圧管(38)を備えている
ことを特徴とする冷凍装置。
In claim 1,
The oil sump container (32) is filled with a gas refrigerant,
The refrigerant circuit (20) has an on-off valve (36), one end communicates with the gas refrigerant space in the oil reservoir (32), and the other end of the on-off valve (33) in the connection pipe (35). A refrigerating apparatus comprising a pressure reducing pipe (38) connected to the downstream side for reducing the pressure in the oil reservoir (32).
請求項1において、
上記冷媒回路(20)の冷媒配管長さに基づいて上記圧縮機(21)に収容された冷凍機油の余剰油量を算出し、該余剰油量に応じて予め定められた所定時間毎に接続管(35)の開閉弁(33)を開く制御手段(40)を備えている
ことを特徴とする冷凍装置。
In claim 1,
Based on the refrigerant pipe length of the refrigerant circuit (20), the surplus oil amount of the refrigerating machine oil accommodated in the compressor (21) is calculated, and connected at predetermined intervals determined in advance according to the surplus oil amount. A refrigeration apparatus comprising control means (40) for opening an on-off valve (33) of the pipe (35).
請求項3において、
上記冷媒回路(20)の冷媒配管長さに基づいて上記圧縮機(21)に収容された冷凍機油の余剰油量を算出し、該余剰油量に応じて予め定められた所定時間毎に、接続管(35)の開閉弁(33)を開くと共に減圧管(38)の開閉弁(36)を閉じる制御手段(40)を備えている
ことを特徴とする冷凍装置。
In claim 3,
Based on the refrigerant pipe length of the refrigerant circuit (20), the surplus oil amount of the refrigerating machine oil accommodated in the compressor (21) is calculated, and every predetermined time predetermined according to the surplus oil amount, A refrigeration apparatus comprising control means (40) for opening the on-off valve (33) of the connecting pipe (35) and closing the on-off valve (36) of the pressure reducing pipe (38).
請求項4または5において、
上記制御手段(40)は、冷媒回路(20)の冷媒配管長さに応じて該冷媒配管に冷凍機油が付着する付着量を推定し、その推定付着量から上記圧縮機(21)に収容された冷凍機油の余剰油量を算出するように構成されている
ことを特徴とする冷凍装置。
In claim 4 or 5,
The control means (40) estimates the amount of attachment of refrigeration oil to the refrigerant pipe according to the refrigerant pipe length of the refrigerant circuit (20), and is stored in the compressor (21) from the estimated adhesion amount. A refrigerating apparatus configured to calculate an excess oil amount of the refrigerating machine oil.
請求項4または5において、
上記制御手段(40)は、算出した余剰油量が多いほど上記所定時間を長くするように構成されている
ことを特徴とする冷凍装置。
In claim 4 or 5,
The said control means (40) is comprised so that the said predetermined time may be lengthened, so that the calculated excess oil amount is large.
請求項4または5において、
熱源側熱交換器(24)、上記圧縮機(21)、上記油分離器(22)および上記油溜め容器(32)が収納される熱源ユニット(11)と、利用側熱交換器(26)が収納される利用ユニット(12)とを備え、
上記冷媒回路(20)の冷媒配管長さは、上記熱源ユニット(11)と利用ユニット(12)とを繋ぐ連絡配管(2c,2d)の長さである
ことを特徴とする冷凍装置。
In claim 4 or 5,
A heat source unit (11) in which the heat source side heat exchanger (24), the compressor (21), the oil separator (22) and the oil reservoir (32) are housed, and a use side heat exchanger (26) And a usage unit (12) in which
The refrigerant pipe length of the refrigerant circuit (20) is the length of the connecting pipe (2c, 2d) connecting the heat source unit (11) and the utilization unit (12).
請求項8において、
上記利用ユニット(12)は、複数設けられて互いに並列接続され、
上記冷媒回路(20)の冷媒配管長さは、上記熱源ユニット(11)と各利用ユニット(12)とを繋ぐ連絡配管(2c,2d)の平均長さである
ことを特徴とする冷凍装置。
In claim 8,
A plurality of the usage units (12) are provided and connected in parallel to each other,
The refrigerant pipe length of the refrigerant circuit (20) is an average length of connecting pipes (2c, 2d) connecting the heat source unit (11) and each utilization unit (12).
JP2006328687A 2006-12-05 2006-12-05 Refrigeration equipment Expired - Fee Related JP4274235B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006328687A JP4274235B2 (en) 2006-12-05 2006-12-05 Refrigeration equipment
PCT/JP2007/073059 WO2008069092A1 (en) 2006-12-05 2007-11-29 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328687A JP4274235B2 (en) 2006-12-05 2006-12-05 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2008139001A true JP2008139001A (en) 2008-06-19
JP4274235B2 JP4274235B2 (en) 2009-06-03

Family

ID=39491991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328687A Expired - Fee Related JP4274235B2 (en) 2006-12-05 2006-12-05 Refrigeration equipment

Country Status (2)

Country Link
JP (1) JP4274235B2 (en)
WO (1) WO2008069092A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157301A1 (en) * 2008-06-27 2009-12-30 サンデン株式会社 Refrigeration cycle
WO2010113461A1 (en) * 2009-03-31 2010-10-07 サンデン株式会社 Cooling system
WO2013099047A1 (en) 2011-12-27 2013-07-04 三菱電機株式会社 Air conditioner
WO2017220702A1 (en) * 2016-06-24 2017-12-28 Danfoss A/S A method for controlling pressure and oil level in an oil receiver of a vapour compressions system
CN107975978A (en) * 2017-11-10 2018-05-01 广东美的暖通设备有限公司 Multi-line system and its compressor oil amount adjustment method and regulating device
WO2019111342A1 (en) 2017-12-06 2019-06-13 三菱電機株式会社 Refrigeration cycle device
WO2019111341A1 (en) 2017-12-06 2019-06-13 三菱電機株式会社 Refrigeration cycle device
JP2021139520A (en) * 2020-03-03 2021-09-16 ダイキン工業株式会社 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743157B (en) * 2014-01-09 2016-08-31 广东美的制冷设备有限公司 The method for controlling oil return of compressor assembly, air-conditioner and compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241590A (en) * 1993-02-19 1994-08-30 Hitachi Ltd Oil cycle system for screw refrigerator
JPH11337194A (en) * 1998-05-28 1999-12-10 Mitsubishi Electric Corp Chiller
JP2002257427A (en) * 2001-02-28 2002-09-11 Mitsubishi Electric Corp Refrigerating air conditioner and its operating method
JP2004205175A (en) * 2002-12-26 2004-07-22 Toshiba Kyaria Kk Refrigerator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157301A1 (en) * 2008-06-27 2009-12-30 サンデン株式会社 Refrigeration cycle
JP2010007978A (en) * 2008-06-27 2010-01-14 Sanden Corp Refrigerating cycle
WO2010113461A1 (en) * 2009-03-31 2010-10-07 サンデン株式会社 Cooling system
JP2010236795A (en) * 2009-03-31 2010-10-21 Sanden Corp Cooling system
WO2013099047A1 (en) 2011-12-27 2013-07-04 三菱電機株式会社 Air conditioner
JPWO2013099047A1 (en) * 2011-12-27 2015-04-30 三菱電機株式会社 Air conditioner
EP2801769A4 (en) * 2011-12-27 2015-12-02 Mitsubishi Electric Corp Air conditioner
US9488396B2 (en) 2011-12-27 2016-11-08 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2017220702A1 (en) * 2016-06-24 2017-12-28 Danfoss A/S A method for controlling pressure and oil level in an oil receiver of a vapour compressions system
CN109312969A (en) * 2016-06-24 2019-02-05 丹佛斯有限公司 A method of the pressure and oil level in oily receiver for controlling vapor compression system
CN107975978A (en) * 2017-11-10 2018-05-01 广东美的暖通设备有限公司 Multi-line system and its compressor oil amount adjustment method and regulating device
WO2019091431A1 (en) * 2017-11-10 2019-05-16 广东美的暖通设备有限公司 Multi-split system and method and device for adjusting oil volume of compressor of multi-split system
US11280527B2 (en) 2017-11-10 2022-03-22 Gd Midea Heating & Ventilating Equipment Co., Ltd. Multi-split system and method and apparatus for adjusting oil volume of compressor of multi-split system
WO2019111342A1 (en) 2017-12-06 2019-06-13 三菱電機株式会社 Refrigeration cycle device
WO2019111341A1 (en) 2017-12-06 2019-06-13 三菱電機株式会社 Refrigeration cycle device
US11306952B2 (en) 2017-12-06 2022-04-19 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US11365923B2 (en) 2017-12-06 2022-06-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2021139520A (en) * 2020-03-03 2021-09-16 ダイキン工業株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP4274235B2 (en) 2009-06-03
WO2008069092A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4274235B2 (en) Refrigeration equipment
JP3925545B2 (en) Refrigeration equipment
JP5327308B2 (en) Hot water supply air conditioning system
JP5632973B2 (en) Combined dual refrigeration cycle equipment
WO2012043377A1 (en) Refrigeration circuit
JP6678332B2 (en) Outdoor unit and control method for air conditioner
KR101190492B1 (en) Hot water supply device associated with heat pump
JP6283815B2 (en) Air conditioner
JP2006170537A (en) Heat exchange system
JP2006071174A (en) Refrigerating device
JP2012132586A (en) Refrigeration cycle device
JP5145026B2 (en) Air conditioner
US7140198B2 (en) Air conditioner
JP2007232265A (en) Refrigeration unit
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP4902585B2 (en) Air conditioner
JP4608303B2 (en) Vapor compression heat pump
JP2008116135A (en) Heat exchanger and refrigeration device
WO2009119375A1 (en) Refrigeration device
JP2010139098A (en) Refrigerating cycle device and water heater having the same
JP4635595B2 (en) Heat exchange system
KR101418155B1 (en) An air conditioner
WO2015122170A1 (en) Air conditioner
JP2015152241A (en) Outdoor unit of air conditioner
KR20050043089A (en) Heat pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees