JP4258414B2 - Detecting the amount of metal - Google Patents

Detecting the amount of metal Download PDF

Info

Publication number
JP4258414B2
JP4258414B2 JP2004093231A JP2004093231A JP4258414B2 JP 4258414 B2 JP4258414 B2 JP 4258414B2 JP 2004093231 A JP2004093231 A JP 2004093231A JP 2004093231 A JP2004093231 A JP 2004093231A JP 4258414 B2 JP4258414 B2 JP 4258414B2
Authority
JP
Japan
Prior art keywords
metal
vacuum chamber
amount
molten metal
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004093231A
Other languages
Japanese (ja)
Other versions
JP2005281723A (en
Inventor
知慶 久永
敦 渡辺
勝 鷲尾
稔文 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004093231A priority Critical patent/JP4258414B2/en
Publication of JP2005281723A publication Critical patent/JP2005281723A/en
Application granted granted Critical
Publication of JP4258414B2 publication Critical patent/JP4258414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、溶融金属の脱炭処理における真空槽内の地金付着量を検出する地金付着量検出方法に関する。   The present invention relates to a method for detecting the amount of attached metal in a vacuum chamber for detecting the amount of applied metal in a vacuum chamber in molten metal decarburization processing.

従来から、製鋼過程においては、特許文献1に示すように、溶融金属容器の上方に配置された真空槽内へ溶融金属を導入して環流させることにより、溶融金属中に含まれる炭素成分を除去する脱炭処理が行われている。
脱炭処理には、主に極低炭素鋼を製造するための処理である第一の処理と、主に低中炭素鋼を製造するための処理である第二の処理とがあり、第一の処理と第二の処理とを、同一の真空槽を用いて選択的に行う場合がある。ここで、第一の処理においては、溶融金属の脱炭反応を促進して炭素成分を多く除去する必要があるため、真空槽内を第二の処理よりも高真空環境とするとともに、真空槽内の溶融金属に向けて上方から酸素を吹き付けつつ、溶融金属を環流させている。一方、第二の処理においては、第一の処理よりも脱炭負荷は低いため、真空槽内の溶融金属に酸素を吹き付けずに、溶融金属を環流させている。
Conventionally, in the steelmaking process, as shown in Patent Document 1, the carbon component contained in the molten metal is removed by introducing the molten metal into a vacuum chamber disposed above the molten metal container and circulating it. Decarburization processing is performed.
The decarburization process includes a first process that is mainly a process for producing an ultra-low carbon steel and a second process that is a process for mainly producing a low and medium carbon steel. The process and the second process may be selectively performed using the same vacuum chamber. Here, in the first treatment, since it is necessary to accelerate the decarburization reaction of the molten metal and remove a large amount of carbon components, the vacuum chamber is made to have a higher vacuum environment than the second treatment, and the vacuum chamber The molten metal is circulated while blowing oxygen from above toward the inner molten metal. On the other hand, in the second treatment, since the decarburization load is lower than that in the first treatment, the molten metal is circulated without blowing oxygen to the molten metal in the vacuum chamber.

第一の処理または第二の処理を行うと真空槽内に地金が付着し、真空槽内に付着した地金は、ある程度まで堆積すると落下して脱炭処理中の溶融金属へ混入する。このとき、落下した地金及び脱炭処理中の溶融金属の両方に対し、脱炭処理が十分に行われないと、脱炭処理後の溶融金属に成分不良が生じてしまう。
また、同一の真空槽を用いて、異なる種類の溶融金属に対する脱炭処理を連続して行った場合、先に行われた脱炭処理において真空槽内に付着した地金が、後に行われる脱炭処理中に落下して溶融金属へ混入すると、後に脱炭処理を行った溶融金属に成分不良が生じる場合がある。
When the first treatment or the second treatment is performed, the metal is attached to the inside of the vacuum chamber, and the metal that has adhered to the vacuum chamber is dropped to a certain extent and falls into the molten metal being decarburized. At this time, if the decarburization process is not sufficiently performed on both the dropped metal and the molten metal being decarburized, a defective component is generated in the molten metal after the decarburization process.
In addition, when decarburization processing is continuously performed on different types of molten metal using the same vacuum tank, the bullion attached to the vacuum tank in the decarburization process performed earlier is removed later. If it falls during the charcoal treatment and is mixed into the molten metal, a component defect may occur in the molten metal that has been decarburized later.

これらの問題は、真空槽内に付着した地金を頻繁に除去することによって解決されるが、地金の除去作業にはコストがかかるとともに、地金の除去作業中は製鋼過程の作業ラインを停止する必要があるため、製鋼過程の作業効率が低下してしまう。
したがって、真空槽内に付着した地金を適切な時期に除去することが、溶融金属の品質管理及び製鋼過程の作業効率の点において重要である。これに対し、従来では、脱炭処理の内容に関わらず、脱炭処理を行った回数が所定回数に達した時点で、真空槽内の地金付着量が、地金が落下すると予想される所定地金付着量に達していると判断して、地金の除去作業を行っている。
特開昭56−79915号公報
These problems can be solved by frequently removing the bullion that has adhered to the vacuum chamber, but it is expensive to remove the bullion, and during the bullion removal work, a work line in the steelmaking process is required. Since it is necessary to stop, the working efficiency of the steelmaking process is reduced.
Therefore, it is important in terms of quality control of the molten metal and work efficiency of the steel making process to remove the metal in the vacuum chamber at an appropriate time. On the other hand, conventionally, regardless of the content of the decarburization process, when the number of decarburization processes reaches a predetermined number of times, the amount of metal in the vacuum chamber is expected to fall. It is determined that the predetermined amount of bullion adhesion has been reached, and bullion removal work is performed.
JP 56-79915 A

しかしながら、上記した従来の方法では、第一の処理と第二の処理との真空槽内の地金付着量の違いが反映されない。このため、脱炭処理を行った回数が所定回数に達した時点では、真空槽内の地金付着量が所定地金付着量に達していない場合や、所定地金付着量を超えている場合が想定される。
真空槽内の地金付着量が所定地金付着量に達していない場合には、地金の除去作業の回数が必要以上に増加することとなり、製鋼過程の作業効率が低下してしまう。また、真空槽内の地金付着量が所定地金付着量を超えている場合には、地金の除去作業を行う前に地金が落下して脱炭処理中の溶融金属に混入してしまい、脱炭処理後の溶融金属に成分不良が生じてしまう。
本発明は、上記のような問題点に着目してなされたもので、真空槽内の地金付着量を正確に検出することにより、真空槽内に付着した地金の除去作業を適切な時期に行うことが可能な地金付着量検出方法を提供することを課題とする。
However, the conventional method described above does not reflect the difference in the amount of metal in the vacuum chamber between the first treatment and the second treatment. For this reason, when the number of decarburization processes reaches a predetermined number, the amount of metal in the vacuum chamber does not reach the predetermined amount of metal or exceeds the amount of metal Is assumed.
If the amount of metal in the vacuum chamber does not reach the predetermined amount of metal, the number of metal removal operations will increase more than necessary, and the work efficiency of the steelmaking process will decrease. In addition, if the amount of metal in the vacuum chamber exceeds the specified amount of metal, the metal will drop and mix with the molten metal being decarburized before removing the metal. As a result, defective components occur in the molten metal after the decarburization treatment.
The present invention has been made paying attention to the above-mentioned problems, and by accurately detecting the amount of metal in the vacuum chamber, the removal work of the metal in the vacuum chamber can be performed at an appropriate time. It is an object of the present invention to provide a method for detecting the amount of adhesion of a bare metal that can be performed in a simple manner.

上記課題を解決するために、本発明のうち、請求項1に記載した発明は、同一の真空槽を用いて、真空槽内の溶融金属に酸素を吹き付けつつ当該溶融金属を環流させる第一の処理、または真空槽内の溶融金属に酸素を吹き付けずに当該溶融金属を環流させる第二の処理の一方を順次選択して、溶融金属の脱炭処理を行う真空槽内における地金付着量検出方法であって、
前記第一の処理を一回行ったときに前記真空槽内に付着する推定地金付着量と、前記第一の処理を行った回数とに基づいて真空槽内の地金付着量を検出することを特徴とするものである。
本発明によると、第一の処理に関する推定地金付着量と回数に基づいて真空槽内の地金付着量を検出するため、真空槽内の地金付着量の検出精度が向上する。
In order to solve the above-mentioned problems, the invention described in claim 1 is a first aspect in which the molten metal is circulated while blowing oxygen to the molten metal in the vacuum tank using the same vacuum tank. Detecting the amount of metal in the vacuum chamber where the molten metal is decarburized by sequentially selecting one of the processes or the second process of circulating the molten metal without blowing oxygen to the molten metal in the vacuum chamber A method,
And estimated bullion adhesion amount you attached to the vacuum chamber when performing once the first process, the bullion deposition amount in the vacuum chamber on the basis of the number of times that the first processing It is characterized by detecting.
According to the present invention, since the amount of metal adhesion in the vacuum chamber is detected based on the estimated amount of metal adhesion and the number of times related to the first process, the detection accuracy of the amount of metal adhesion in the vacuum chamber is improved.

以下に、その理由を説明する。
第二の処理によって真空槽内に付着した地金は、第二の処理よりも高真空環境で行われる第一の処理を行うと、真空槽内の溶融金属の湯面高さが高い位置となるために、付着した地金の一部分は除去される。一方、第一の処理では真空槽内の溶融金属に酸素を吹き付けるため、溶融金属にスピッティングが生じる。溶融金属にスピッティングが生じることによって真空槽内に飛散して付着する地金は、第二の処理を行ったときに真空槽内に付着する地金よりも高い位置に付着する。この地金は脱炭処理中の溶融金属によって除去されず、第二の処理によっても除去されないため、この地金の付着量を測定することにより、推定地金付着量を正確に求めることが可能となる。
The reason will be described below.
When the first treatment performed in a higher vacuum environment than the second treatment is performed on the bare metal attached to the inside of the vacuum vessel by the second treatment, the molten metal in the vacuum vessel is at a position where the molten metal surface height is high. In order to become, a part of the attached metal is removed. On the other hand, in the first treatment, oxygen is blown to the molten metal in the vacuum chamber, so that spitting occurs in the molten metal. The metal that scatters and adheres to the vacuum chamber due to spitting of the molten metal is attached to a higher position than the metal that adheres to the vacuum chamber when the second treatment is performed. Since this bullion is not removed by the molten metal during the decarburization process and is not removed by the second treatment, it is possible to accurately determine the estimated bullion adhesion amount by measuring the adhesion amount of this bullion. It becomes.

次に、請求項2に記載した発明は、請求項1に記載した発明であって、前記推定地金付着量を、前記第一の処理を行う毎に、第一の処理前と第一の処理後の真空槽の質量の差に基づいて求めることを特徴とするものである。
本発明によると、推定地金付着量をより正確に求めることが可能となる。
なお、第一の処理が数回行われた以降に行われる第一の処理についてのみ、推定地金付着量を求めたものを用いることが好ましい。以下に、その理由を説明する。
Next, the invention described in claim 2 is the invention described in claim 1, wherein the estimated amount of adhesion of the ingot is determined before and after the first process every time the first process is performed. It calculates | requires based on the difference of the mass of the vacuum chamber after a process, It is characterized by the above-mentioned.
According to the present invention, it is possible to determine the estimated metal adhesion amount more accurately.
In addition, it is preferable to use what calculated | required the estimation metal adhesion amount only about the 1st process performed after the 1st process was performed several times. The reason will be described below.

第一の処理は第二の処理よりも真空槽内の溶融金属の湯面高さが高いため、第二の処理を行った後に第一の処理を行うと、第二の処理を行ったときに真空槽内に付着した地金が除去される(図5を参照)。このため、第二の処理によって真空槽内に付着した地金が除去された後に行われる第一の処理について、推定地金付着量を求めることにより、推定地金付着量を正確に求めることが可能となる。   When the first treatment is performed after performing the second treatment, the first treatment has a higher molten metal surface height in the vacuum chamber than the second treatment. The bare metal adhering to the inside of the vacuum chamber is removed (see FIG. 5). For this reason, it is possible to accurately obtain the estimated metal adhesion amount by obtaining the estimated metal adhesion amount for the first process performed after the metal in the vacuum chamber is removed by the second treatment. It becomes possible.

本発明によれば、真空槽内に付着した地金の除去作業を適切な時期に行うことが可能となる。   According to the present invention, it is possible to perform the operation of removing the metal attached in the vacuum chamber at an appropriate time.

本発明に基づく第一の実施形態を、図面を参照して説明する。
まず、図1を参照して溶融金属の脱炭処理について説明する。なお、真空槽内の溶融金属に酸素を吹き付けつつ当該溶融金属を環流させる第一の処理は、以下、V処理とし、酸素を吹き付けずに行う第二の処理をL処理として説明を行う。
図1に示すように、溶融金属Sの脱炭処理は、溶融金属容器30内の溶融金属Sを真空槽20内に導入して環流させることにより、溶融金属S中に含まれる炭素成分を除去するものである。なお、図中には、真空槽20と溶融金属容器30の他に、後述する検出装置1が示されている。溶融金属Sの脱炭処理には、真空槽20内の溶融金属Sに酸素を吹き付けつつ溶融金属Sを環流させるV処理と、真空槽20内の溶融金属Sに酸素を吹き付けずに溶融金属Sを環流させるL処理とがある。
A first embodiment according to the present invention will be described with reference to the drawings.
First, the molten metal decarburization process will be described with reference to FIG. In addition, the 1st process which circulates the said molten metal while blowing oxygen to the molten metal in a vacuum chamber is hereafter described as V process, and demonstrates the 2nd process performed without spraying oxygen as L process.
As shown in FIG. 1, the decarburization treatment of the molten metal S removes the carbon component contained in the molten metal S by introducing the molten metal S in the molten metal container 30 into the vacuum chamber 20 and circulating it. To do. In addition, the detection apparatus 1 mentioned later other than the vacuum chamber 20 and the molten metal container 30 is shown in the figure. In the decarburization process of the molten metal S, a V process for circulating the molten metal S while blowing oxygen to the molten metal S in the vacuum tank 20, and a molten metal S without blowing oxygen to the molten metal S in the vacuum tank 20. And L treatment for refluxing.

真空槽20は、上部にランス24が設けられ、下部に上昇管26と下降管28が連結され、側壁に図示しない真空排気管が連結されている。また、真空槽20の外周部には支持枠22が設けられている。ランス24は、上下方向に移動可能となっており、溶融金属Sとの距離を任意の距離とすることが可能である。また、ランス24は、図外の酸素供給部から酸素を供給され、V処理を行うときのみ、真空槽20内の溶融金属Sに向けて上方から酸素を吹き付ける。上昇管26及び下降管28は、真空槽20内と外部とを連通している。真空排気管は、図外の真空ポンプに連結されており、真空ポンプは真空槽20内の真空度を調節可能となっている。なお、V処理を行うときは、L処理を行うときよりも真空槽20内の真空度を高くする。   The vacuum chamber 20 is provided with a lance 24 at the top, a rise pipe 26 and a down pipe 28 are connected to the bottom, and a vacuum exhaust pipe (not shown) is connected to the side wall. A support frame 22 is provided on the outer periphery of the vacuum chamber 20. The lance 24 is movable in the vertical direction, and the distance from the molten metal S can be set to an arbitrary distance. The lance 24 is supplied with oxygen from an oxygen supply unit (not shown) and blows oxygen from above toward the molten metal S in the vacuum chamber 20 only when V treatment is performed. The ascending pipe 26 and the descending pipe 28 communicate the inside of the vacuum chamber 20 with the outside. The vacuum exhaust pipe is connected to a vacuum pump (not shown), and the vacuum pump can adjust the degree of vacuum in the vacuum chamber 20. In addition, when performing V process, the vacuum degree in the vacuum chamber 20 is made higher than when performing L process.

溶融金属容器30は、図示しない移動機構及び昇降機構を備えており、左右方向への移動及び上下方向への昇降が可能となっている。溶融金属容器30を上昇させ、上昇管26及び下降管28を溶融金属容器30内の溶融金属Sへ浸漬させて、真空ポンプによって真空槽20内を高真空環境とすると、溶融金属容器30内の溶融金属Sが上昇管26内を上昇して、真空槽20内へ流入する。そして、真空槽20内へ流入した溶融金属Sは、下降管28の内部を下降して、溶融金属容器30内へ排出される。真空ポンプによって真空槽20内の真空度を低下させ、溶融金属容器30を下降させると、真空槽20内へ流入した溶融金属Sは、全て溶融金属容器30内へ排出される。   The molten metal container 30 includes a moving mechanism and an elevating mechanism (not shown), and can move in the left-right direction and elevate in the up-down direction. When the molten metal container 30 is raised, the ascending pipe 26 and the descending pipe 28 are immersed in the molten metal S in the molten metal container 30, and the inside of the vacuum chamber 20 is set to a high vacuum environment by a vacuum pump, The molten metal S rises in the ascending pipe 26 and flows into the vacuum chamber 20. Then, the molten metal S that has flowed into the vacuum chamber 20 descends inside the downcomer 28 and is discharged into the molten metal container 30. When the degree of vacuum in the vacuum chamber 20 is lowered by the vacuum pump and the molten metal container 30 is lowered, all of the molten metal S flowing into the vacuum chamber 20 is discharged into the molten metal container 30.

次に、本実施形態における、真空槽20内の地金Aの付着量を検出し、この地金Aの除去作業を適切な時期に行う方法の一例を説明する。
この方法は、L処理とV処理とを順次選択して行う際に、V処理を一回行う毎に、V処理を一回行ったときに真空槽20内に付着する推定地金付着量を求め、この求めた推定地金付着量の総和を算出することによって、真空槽20内の地金付着量を検出する。
Next, an example of a method for detecting the adhesion amount of the metal A in the vacuum chamber 20 and performing the metal A removal work at an appropriate time in this embodiment will be described.
This method, when carried out by sequentially selecting the L process and V processing, for each performed once V process, estimated bullion attached you attached to the vacuum chamber 20 when performing once V treatment The amount of metal in the vacuum chamber 20 is detected by calculating the amount and calculating the total sum of the estimated amounts of metal in the obtained vacuum.

そして、検出した真空槽20内の地金付着量が、地金Aが落下すると予想される所定地金付着量に達したときに、真空槽20内に付着した地金Aの除去作業を行うために適切な時期であると判断し、真空槽20内に付着した地金Aの除去作業を行うものである。
本実施形態によれば、真空槽20内の地金付着量の検出精度が向上するため、真空槽20内の地金付着量が所定地金付着量に達したことを適切に知ることが可能となり、真空槽20内に付着した地金Aの除去作業を適切な時期に行うことが可能となる。このため、製鋼過程の作業効率の低下や、脱炭処理後の溶融金属Sの成分不良を防止することが可能となる。
Then, when the detected amount of metal in the vacuum chamber 20 reaches a predetermined amount of metal in which the metal A is expected to fall, the metal A attached in the vacuum chamber 20 is removed. Therefore, it is determined that it is an appropriate time, and the metal A attached to the vacuum chamber 20 is removed.
According to this embodiment, since the detection accuracy of the amount of metal in the vacuum chamber 20 is improved, it is possible to appropriately know that the amount of metal in the vacuum chamber 20 has reached the predetermined amount of metal. Thus, the removal work of the metal A attached to the vacuum chamber 20 can be performed at an appropriate time. For this reason, it becomes possible to prevent the work efficiency of the steel making process from being lowered and the defective component of the molten metal S after the decarburization treatment.

推定地金付着量を求める方法の一例としては、V処理を一回行う毎に、V処理を行う前とV処理を行った後の真空槽20の質量の差に基づいて求める方法がある。以下に、この方法を用いて推定地金付着量を求める理由を説明する。
図2に、V処理を一回行ったときの、真空槽20内の地金付着量の変化を示す。V処理中の真空槽20内では、V処理を行う前に真空槽20内に付着していた地金Aが溶融金属Sによって除去されるため、図中に示されているように、真空槽20内の地金付着量が減少する。
As an example of a method for obtaining the estimated amount of metal adhesion, there is a method of obtaining each time the V treatment is performed based on a difference in mass of the vacuum chamber 20 before the V treatment and after the V treatment. The reason for obtaining the estimated amount of metal adhesion using this method will be described below.
In FIG. 2, the change of the metal adhesion amount in the vacuum chamber 20 when V process is performed once is shown. In the vacuum chamber 20 during the V treatment, since the metal A attached to the vacuum chamber 20 before the V treatment is removed by the molten metal S, as shown in FIG. The amount of attached metal in 20 decreases.

したがって、図中にIで示すように、溶融金属容器30の上昇開始前と下降完了後の真空槽20内の地金付着量の差に基づいて推定地金付着量を求めることにより、V処理中の真空槽20内における地金付着量の変化に影響されずに、推定地金付着量を正確に求めることが可能となる。
また、上記の方法を用いて推定地金付着量を求めるときは、V処理を連続して三回以上行い、三回目以降に行われるV処理においてのみ求めることが好ましい。以下に、その理由について説明する。
Accordingly, as indicated by I in the figure, the V metal treatment is obtained by obtaining the estimated metal adhesion amount based on the difference between the metal adhesion amount in the vacuum chamber 20 before the molten metal container 30 starts to rise and after the descent is completed. It is possible to accurately determine the estimated metal adhesion amount without being affected by the change in the metal adhesion amount in the inside vacuum chamber 20.
Moreover, when calculating | requiring an estimated metal adhesion amount using said method, it is preferable to perform V process continuously 3 times or more, and to obtain | require only in the V process performed after the 3rd time. The reason will be described below.

図3に、L処理中の真空槽20内の状態を示す。L処理中の真空槽20内には地金Aが付着する。なお、真空槽20内における溶融金属Sの湯面高さH は、真空槽20内の真空度の高さに比例する。
一方、図4に、V処理中の真空槽20の状態を示す。V処理中の真空槽20内はL処理中の真空槽20内よりも真空度が高いため、V処理中の溶融金属Sの湯面高さHはL処理中の溶融金属Sの湯面高さHよりも高くなる。このため、同一の真空槽20を用いてL処理の後にV処理を行うと、L処理中に真空槽20内に付着した地金AはV処理中の溶融金属Sによって除去される。
FIG. 3 shows a state in the vacuum chamber 20 during the L treatment. Bullion A L is attached to the vacuum chamber 20 during the L process. Note that the molten metal S surface height HL in the vacuum chamber 20 is proportional to the degree of vacuum in the vacuum chamber 20.
On the other hand, FIG. 4 shows the state of the vacuum chamber 20 during the V treatment. Since the vacuum chamber 20 in the V processing high vacuum than the vacuum chamber 20 in the L process, the molten metal surface height H V of the molten metal S in V processing the melt surface of the molten metal S in L process It becomes higher than the height HL . Therefore, when using the same vacuum chamber 20 performs V processed after L process, ingots A L adhering to the vacuum chamber 20 during the L process is removed by the molten metal S in V process.

また、V処理中の真空槽20内では、溶融金属Sに向けて上方から酸素を吹き付けているため、溶融金属Sにスピッティングが生じ、真空槽20内の高い位置に地金AVが付着する。真空槽の高い位置に付着した地金AVは、V処理中の溶融金属Sによって除去されることはなく、V処理を終了した後も真空槽20内に付着している。 Also, within the vacuum chamber 20 in the V process, since the blowing oxygen from above toward the molten metal S, spitting occurs in the molten metal S, bullion A V is attached to the high position of the vacuum chamber 20 To do. Bullion A V adhering to the high position of the vacuum chamber is not to be removed by the molten metal S in V process, adhering to the vacuum chamber 20 after exiting the V process.

図5に、同一の真空槽20を用いて、L処理を行った後にV処理を連続して数回行ったときの、真空槽20内の地金付着量の変化を示す。図中に示されているように、一回目及び二回目に行われたV処理では、L処理中に真空槽20内に付着した地金Aが除去されるため、真空槽20内の地金付着量は減少している。また、三回目以降に行われたV処理では、L処理中に真空槽20内に付着した地金Aが除去されているため、一回のV処理によって真空槽20内に付着する地金Aの質量が反映され、真空槽20内の地金付着量は平均的に増加している。したがって、V処理を連続して三回以上行い、三回目以降に行われるV処理において真空槽20内に付着する地金Aの質量が、推定地金付着量を正確に表すものとなる。   FIG. 5 shows a change in the amount of metal adhesion in the vacuum chamber 20 when the V treatment is performed several times continuously after performing the L treatment using the same vacuum chamber 20. As shown in the drawing, in the V treatment performed for the first time and the second time, the metal A attached to the vacuum chamber 20 during the L processing is removed, so the metal in the vacuum chamber 20 is removed. The amount of adhesion is decreasing. In addition, in the V treatment performed after the third time, the metal A attached in the vacuum chamber 20 during the L treatment is removed, so the metal A attached in the vacuum chamber 20 by one V treatment. Is reflected, and the amount of metal in the vacuum chamber 20 is increasing on average. Therefore, the V treatment is continuously performed three or more times, and the mass of the metal A attached to the vacuum chamber 20 in the V processing performed after the third time accurately represents the estimated metal adhesion amount.

次に、溶融金属容器30の上昇開始前と下降完了後の真空槽20内の地金付着量の差に基づいて推定地金付着量を求める方法として、ロードセルを備えた検出装置を用いる場合を例に挙げて説明する。
まず、この検出装置の構成について、図面を参照して説明する。
図1に示すように、この検出装置1は、支持台2に取り付けられたロードセル4と、変換部6と、演算部8と、検出部10とを備えている。支持台2は、真空槽20に設けられた支持枠22を介して、真空槽20を下方から支持する。
Next, as a method of obtaining the estimated amount of metal adhesion based on the difference between the amount of metal adhesion in the vacuum chamber 20 before the start of rising of the molten metal container 30 and after completion of the lowering, a case where a detection device equipped with a load cell is used is used. An example will be described.
First, the configuration of this detection apparatus will be described with reference to the drawings.
As shown in FIG. 1, the detection device 1 includes a load cell 4 attached to a support base 2, a conversion unit 6, a calculation unit 8, and a detection unit 10. The support 2 supports the vacuum chamber 20 from below via a support frame 22 provided in the vacuum chamber 20.

ロードセル4は、支持台2が支持枠22を介して真空槽20を支持したときに、支持台2と支持枠22との間に介装される位置に取り付けられており、支持台2が真空槽20から受ける下方向への圧力を検出し、この検出した圧力を変換部6へ出力する。
変換部6は、ロードセル4から入力された圧力を、真空槽20内に付着した地金Aと真空槽20との総質量に変換し、この総質量を演算部8に出力する。演算部8は、真空槽20のみの質量が記憶されており、変換部6から入力された総質量と真空槽20のみの質量とに基づき、真空槽20内に付着した地金Aの質量を演算し、この演算した地金Aの質量を検出部10に出力する。
The load cell 4 is attached to a position where the support base 2 is interposed between the support base 2 and the support frame 22 when the support base 2 supports the vacuum chamber 20 via the support frame 22. The downward pressure received from the tank 20 is detected, and the detected pressure is output to the converter 6.
The conversion unit 6 converts the pressure input from the load cell 4 into the total mass of the bare metal A and the vacuum chamber 20 attached in the vacuum chamber 20, and outputs this total mass to the calculation unit 8. The calculation unit 8 stores the mass of only the vacuum chamber 20, and calculates the mass of the metal A attached to the vacuum chamber 20 based on the total mass input from the conversion unit 6 and the mass of only the vacuum chamber 20. The calculated mass of the metal A is output to the detection unit 10.

検出部10は、センサ12と記憶部14とを有しており、センサ12は溶融金属容器30の昇降を検出し、記憶部14は演算部8から入力された真空槽20内に付着した地金Aの質量を記憶する。また、検出部10は、溶融金属容器30の上昇開始前に真空槽20内に付着した地金Aの質量と、溶融金属容器30の下降完了後に真空槽20内に付着した地金Aの質量とから推定地金付着量を求め、この求めた推定地金付着量をディスプレイ等に表示する。   The detection unit 10 includes a sensor 12 and a storage unit 14. The sensor 12 detects the rise and fall of the molten metal container 30, and the storage unit 14 is attached to the inside of the vacuum chamber 20 input from the calculation unit 8. The mass of gold A is memorized. Moreover, the detection part 10 is the mass of the metal A attached to the vacuum chamber 20 before the molten metal container 30 starts to rise, and the mass of the metal A attached to the vacuum tank 20 after the molten metal container 30 is lowered. From this, the estimated amount of attached metal is obtained, and the obtained estimated amount of attached metal is displayed on a display.

次に、検出装置1を用いた推定地金付着量の求め方について説明する。
まず、溶融金属容器30の上昇開始前に真空槽20からロードセル4に加わる圧力を検出し、この検出した圧力を変換部6に出力して、真空槽20内に付着した地金Aと真空槽20との総質量に変換する。そして、この総質量を演算部8に出力して、真空槽20内に付着した地金Aの質量を演算して検出部10に出力し、演算した質量を記憶部14に記憶する。
Next, how to determine the estimated amount of attached metal using the detection device 1 will be described.
First, the pressure applied to the load cell 4 from the vacuum chamber 20 is detected before the molten metal container 30 starts to rise, and the detected pressure is output to the conversion unit 6, and the metal A and the vacuum chamber adhered to the vacuum chamber 20. Convert to a total mass of 20. Then, the total mass is output to the calculation unit 8, the mass of the metal A attached in the vacuum chamber 20 is calculated and output to the detection unit 10, and the calculated mass is stored in the storage unit 14.

次に、溶融金属容器30の下降完了後に、溶融金属容器30の上昇開始前と同様の方法を用いて、真空槽20内に付着した地金Aの質量を演算して検出部10に出力し、演算した質量を記憶部14に記憶する。
そして、溶融金属容器30の下降完了後に真空槽20内に付着した地金Aの質量から、溶融金属容器30の上昇開始前に真空槽20内に付着した地金Aの質量を除くことにより、推定地金付着量を求め、求めた推定地金付着量をディスプレイ等に表示する。
Next, after the lowering of the molten metal container 30 is completed, the mass of the metal A attached in the vacuum chamber 20 is calculated and output to the detection unit 10 using the same method as before the rising of the molten metal container 30. The calculated mass is stored in the storage unit 14.
And, from the mass of the metal A attached in the vacuum tank 20 after the completion of the lowering of the molten metal container 30, by removing the mass of the metal A attached in the vacuum tank 20 before starting the rise of the molten metal container 30, The estimated amount of attached metal is obtained, and the obtained estimated amount of attached metal is displayed on a display or the like.

次に、本発明に基づく第二の実施形態を参照して説明する。なお、第一の実施の形態で説明したものと同一の構成については、同一の符号を付して詳細な説明を省略する。
本実施形態では、第一の実施の形態と異なり、V処理を一回行う毎に推定地金付着量を求めずに、あらかじめ求めた推定地金付着量を用いる。
まず、あらかじめ、V処理を一回行ったときに真空槽20内に付着する推定地金付着量を求めておく。
Next, a description will be given with reference to a second embodiment based on the present invention. In addition, about the same structure as what was demonstrated in 1st embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
In the present embodiment, unlike the first embodiment, the estimated ingot adhesion amount obtained in advance is used without obtaining the estimated ingot adhesion amount every time V processing is performed.
First, the estimated metal adhesion amount that adheres in the vacuum chamber 20 when the V treatment is performed once is obtained in advance.

次に、実際の脱炭処理においてV処理を行った回数をカウントし、この回数と推定地金付着量とを掛けることにより、現在の真空槽20内の地金付着量を検出する。
そして、検出した地金付着量が所定地金付着量に達したときに、真空槽20内に付着した地金Aの除去作業を行うために適切な時期であると判断して、真空槽20内に付着した地金Aの除去作業を行う。
Next, the number of times of performing the V process in the actual decarburization process is counted, and the present amount of metal adhesion in the vacuum chamber 20 is detected by multiplying this number by the estimated amount of metal adhesion.
Then, when the detected amount of attached metal reaches the predetermined amount of attached metal, it is determined that it is an appropriate time to remove the metal A attached to the vacuum chamber 20, and the vacuum chamber 20 The removal work of the metal A attached inside is performed.

本実施形態によれば、V処理を行った回数をカウントして推定地金付着量と掛けるだけで、真空槽内の地金付着量を求めることが可能となるため、作業効率の低下を防止することが可能となる。
なお、あらかじめ推定地金付着量を求めるときは、第一の実施形態と同様の方法によって求めてもよいが、これに限定されるものではなく、例えば、地金Aが完全に除去された状態の真空槽20を用いて求めてもよい。
According to this embodiment, it is possible to obtain the amount of metal in the vacuum chamber simply by counting the number of times V processing is performed and multiplying it by the estimated amount of metal in the vacuum chamber, thus preventing a reduction in work efficiency. It becomes possible to do.
In addition, when calculating | requiring estimated amount of bullion beforehand, you may obtain | require by the method similar to 1st embodiment, However, It is not limited to this, For example, the state in which bullion A was removed completely You may obtain | require using the vacuum chamber 20 of.

本実施形態で説明したものと同様の方法によって推定地金付着量を求め、この推定地金付着量とV処理を行った回数とを掛けることにより、真空槽内の地金付着量を検出した。そして、検出した地金付着量が所定地金付着量に達したときに、真空槽内に付着した地金の除去作業を行った。なお、所定地金付着量を25tとした。
本実施形態で説明したものと同様の方法によって推定地金付着量を求めたところ、推定地金付着量は0.5tと求められた。したがって、V処理を50回行ったときに、真空槽内の地金付着量が所定地金付着量に達し、真空槽内に付着した地金の除去作業を行うために適切な時期であると判断して、真空槽内に付着した地金の除去作業を行った。
The estimated amount of metal adhesion was determined by a method similar to that described in the present embodiment, and the amount of metal adhesion in the vacuum chamber was detected by multiplying the estimated amount of metal adhesion by the number of times V processing was performed. . Then, when the detected amount of attached metal reached the predetermined amount of attached metal, the removal work of the metal attached in the vacuum chamber was performed. In addition, the predetermined metal adhesion amount was 25 t.
When the estimated amount of metal adhesion was determined by the same method as described in the present embodiment, the estimated amount of metal adhesion was determined to be 0.5 t. Therefore, when the V treatment is performed 50 times, the amount of metal in the vacuum chamber reaches the predetermined amount of metal, and it is an appropriate time to remove the metal in the vacuum chamber. Judging, the removal work of the metal which adhered in the vacuum chamber was done.

そして、地金の除去作業を行う際に、実際に真空槽内に付着している地金の質量を測定したところ、実際に真空槽内に付着している地金の質量は、所定地金付着量とほぼ等量であることが確認された。したがって、本発明の地金付着量検出方法を用いることにより、真空槽内の地金付着量の検出精度が向上することが確認された。   And when removing the bullion, when we measured the mass of the bullion actually attached to the vacuum chamber, the mass of the bullion actually adhered to the vacuum chamber was It was confirmed that the amount was almost equal to the amount of adhesion. Therefore, it was confirmed that the detection accuracy of the amount of attached metal in the vacuum chamber is improved by using the method for detecting the amount of adhered metal of the present invention.

本発明の実施形態に係る地金付着量の検出装置の側面図である。It is a side view of the detection apparatus of the metal adhesion amount which concerns on embodiment of this invention. V処理を一回行ったときの、真空槽内の地金付着量の変化を示す図である。It is a figure which shows the change of the metal adhesion amount in a vacuum chamber when V process is performed once. L処理中の真空槽内の状態を示す図である。It is a figure which shows the state in the vacuum chamber in L process. V処理中の真空槽内の状態を示す図である。It is a figure which shows the state in the vacuum chamber in V process. V処理を数回行ったときの、真空槽内の地金付着量の変化量を示す図である。It is a figure which shows the variation | change_quantity of the metal adhesion amount in a vacuum chamber when V process is performed several times.

符号の説明Explanation of symbols

1 検出装置
2 支持台
4 ロードセル
6 変換部
8 演算部
10 検出部
12 センサ
14 記憶部
20 真空槽
22 支持枠
24 ランス
26 上昇管
28 下降管
30 溶融金属容器
A 地金
S 溶融金属
I 地金付着量の差
H 湯面高さ
DESCRIPTION OF SYMBOLS 1 Detection apparatus 2 Support stand 4 Load cell 6 Conversion part 8 Calculation part 10 Detection part 12 Sensor 14 Memory | storage part 20 Vacuum tank 22 Support frame 24 Lance 26 Rising pipe 28 Lowering pipe 30 Molten metal container A Ingot S Molten metal I Ingot adhesion Difference in amount H

Claims (2)

同一の真空槽を用いて、真空槽内の溶融金属に酸素を吹き付けつつ当該溶融金属を環流させる第一の処理、または真空槽内の溶融金属に酸素を吹き付けずに当該溶融金属を環流させる第二の処理の一方を順次選択して、溶融金属の脱炭処理を行う真空槽内における地金付着量検出方法であって、
前記第一の処理を一回行ったときに前記真空槽内に付着する推定地金付着量と、前記第一の処理を行った回数とに基づいて真空槽内の地金付着量を検出することを特徴とする地金付着量検出方法。
Using the same vacuum tank, the first treatment for circulating the molten metal while blowing oxygen to the molten metal in the vacuum tank, or the first process for circulating the molten metal without blowing oxygen to the molten metal in the vacuum tank A method for detecting the amount of adhesion of a metal in a vacuum chamber in which one of the two treatments is sequentially selected and decarburization of the molten metal is performed,
And estimated bullion adhesion amount you attached to the vacuum chamber when performing once the first process, the bullion deposition amount in the vacuum chamber on the basis of the number of times that the first processing A method for detecting the amount of metal adhesion.
前記推定地金付着量を、前記第一の処理を行う毎に、第一の処理前と第一の処理後の真空槽の質量の差に基づいて求めることを特徴とする請求項1に記載した地金付着量検出方法。   The estimated amount of metal adhesion is determined based on a difference in mass between vacuum chambers before and after the first treatment every time the first treatment is performed. Method for detecting the amount of attached metal.
JP2004093231A 2004-03-26 2004-03-26 Detecting the amount of metal Expired - Fee Related JP4258414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093231A JP4258414B2 (en) 2004-03-26 2004-03-26 Detecting the amount of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093231A JP4258414B2 (en) 2004-03-26 2004-03-26 Detecting the amount of metal

Publications (2)

Publication Number Publication Date
JP2005281723A JP2005281723A (en) 2005-10-13
JP4258414B2 true JP4258414B2 (en) 2009-04-30

Family

ID=35180446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093231A Expired - Fee Related JP4258414B2 (en) 2004-03-26 2004-03-26 Detecting the amount of metal

Country Status (1)

Country Link
JP (1) JP4258414B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428005B1 (en) * 2020-09-10 2022-08-03 주식회사 포스코 Apparatus and method for processing molten material

Also Published As

Publication number Publication date
JP2005281723A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4258414B2 (en) Detecting the amount of metal
CN105057634B (en) A kind of method and device of the quantitative molten metal of vacuum pumping
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
CN111304410A (en) Molten steel refining slag absorption preventing method and system
JP2015101742A (en) Vacuum degassing device and molten metal decarbonization processing method using the same
TWI778563B (en) Decarburization refining method of molten steel under reduced pressure
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
CN106191381B (en) A kind of method of the FeO in RH station fast eliminating clinkers
JP2003129123A (en) Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height
KR101246213B1 (en) Method for predicting dissolved oxygen quantity in vacuum degassing process
KR101388066B1 (en) Forecasting of temperature of molten steel
JP3327210B2 (en) Vacuum refining method and apparatus
JPH0617110A (en) Method for deciding completion of metal tapping
JP2001329310A (en) Device and method for easily controlling dipping depth
KR102428005B1 (en) Apparatus and method for processing molten material
JPH1068013A (en) Vacuum-decarburizing refining method of stainless steel
JP4075834B2 (en) Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel
JP2011021238A (en) Method for preventing clogging of ladle nozzle
JP5353320B2 (en) Vacuum degassing method, vacuum degassing apparatus and manufacturing method for molten steel
JPH02101110A (en) Method for assuming carbon concentration in vacuum degassing refining
JPS5831045A (en) Vacuum degassing method of molten metal and its device
JPH02209417A (en) Degassing refining method
CN104999049B (en) A kind of method and device of the quantitative molten metal of vacuum pumping
CN116858340A (en) KR desulfurized molten iron liquid level measuring method, device and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees