JP2003129123A - Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height - Google Patents

Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height

Info

Publication number
JP2003129123A
JP2003129123A JP2001319831A JP2001319831A JP2003129123A JP 2003129123 A JP2003129123 A JP 2003129123A JP 2001319831 A JP2001319831 A JP 2001319831A JP 2001319831 A JP2001319831 A JP 2001319831A JP 2003129123 A JP2003129123 A JP 2003129123A
Authority
JP
Japan
Prior art keywords
ladle
vacuum
vacuum chamber
molten metal
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001319831A
Other languages
Japanese (ja)
Inventor
Kan Yoshida
貫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001319831A priority Critical patent/JP2003129123A/en
Publication of JP2003129123A publication Critical patent/JP2003129123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating a minor diameter of a vacuum vessel, which can accurately estimate the minor diameter when the vacuum vessel is worn, and provide a method for controlling height using it. SOLUTION: This method for estimating the minor diameter of the vacuum vessel comprises previously determining the relation between an internal pressure of the vacuum vessel and a surface level of a molten metal in a ladle when the vacuum vessel is not worn on several minor diameters of the vacuum vessel, measuring the surface level of the molten metal and the pressure in the vacuum vessel after the pressure in the vacuum vessel reaches a predetermined pressure in degassing treatment; and estimating the minor diameter of this time of the vacuum vessel from these value; or storing these data while relating them with charge numbers, and estimating the minor diameter of the vacuum vessel based on these stored data. A method for keeping an immersion length of a dip tube in a constant range, includes controlling elevation of the ladle or the vacuum vessel, based on the estimated minor diameter and pressure in the vacuum vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、真空脱ガス装置
における真空槽の内径を推定する方法、および真空脱ガ
ス装置の取鍋または真空槽の高さを制御する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the inner diameter of a vacuum tank in a vacuum degassing apparatus, and a method for controlling the height of a ladle or vacuum tank of the vacuum degassing apparatus.

【0002】[0002]

【従来の技術】加工性が要求される鋼板や伸延性が要求
される鋼線は、その中に炭素(C)や窒素(N)が含ま
れていると加工性や伸延性が低下するので、これらの元
素の含有量を極力低下させることが必要である。また、
構造用厚板鋼材やラインパイプ用鋼材は、水素誘起割れ
を防止するため、鋼中に含まれる水素(H)の含有量を
できるだけ低下させなければならない。
2. Description of the Related Art Steel sheets requiring workability and steel wires requiring ductility, if carbon (C) or nitrogen (N) is contained therein, the workability and the ductility are deteriorated. It is necessary to reduce the contents of these elements as much as possible. Also,
In order to prevent hydrogen-induced cracking, steel plates for structural steel plates and steel products for line pipes are required to reduce the content of hydrogen (H) contained in the steel as much as possible.

【0003】前記の元素(C、NおよびH)は、C+O
=CO、2H=Hおよび2N=N の脱ガス反応によ
って液相である溶鋼から気相側へ移行する。その際、こ
れらの反応を進行させるためには、反応生成物であるC
O、HおよびNの分圧を下げることが必要となる。
そのため、前記の鋼を製造する際は、真空脱ガス方法が
採用されている。溶鋼の真空脱ガス法として一般的に用
いられる方法は、RH脱ガス法である。
The above elements (C, N and H) are C + O.
= CO, 2H = HTwoAnd 2N = N TwoThe degassing reaction of
Thus, the molten steel, which is the liquid phase, shifts to the gas phase side. At that time,
In order to proceed these reactions, the reaction product C
O, HTwoAnd NTwoIt is necessary to reduce the partial pressure of.
Therefore, when producing the above steel, the vacuum degassing method
Has been adopted. Generally used as a vacuum degassing method for molten steel
The method that can be used is the RH degassing method.

【0004】図1は、RH脱ガス装置の構成の一例を示
す部分縦断面図である。同図において、RH脱ガス装置
は、溶鋼1を収容する取鍋2と、浸漬管取付部3aが下
部の2個所に設けられ、真空排気管5、合金添加管6お
よびランス7が上部に設けられた真空槽3と、前記取鍋
2と真空槽3のいずれか一方を昇降させる図示を省略し
た昇降駆動部とを備える。真空槽3の下部に設けられた
浸漬管取付部3aには浸漬管4が取り付けられ、真空槽
3の上部に設けられた真空排気管5には、図示を省略し
た真空排気部が接続される。
FIG. 1 is a partial vertical sectional view showing an example of the structure of an RH degassing apparatus. In the figure, the RH degassing apparatus is provided with a ladle 2 for accommodating the molten steel 1 and a dip pipe mounting portion 3a at two lower portions, and a vacuum exhaust pipe 5, an alloy addition pipe 6 and a lance 7 at the upper portion. And a vacuum drive unit (not shown) for moving one of the ladle 2 and the vacuum chamber 3 up and down. The immersion pipe 4 is attached to the immersion pipe mounting portion 3a provided in the lower portion of the vacuum chamber 3, and the vacuum exhaust unit (not shown) is connected to the vacuum exhaust pipe 5 provided in the upper portion of the vacuum chamber 3. .

【0005】なお、取鍋2と真空槽3(浸漬管取付部3
aを含む)は、内部に耐火物が内張りされ、内張りされ
た耐火物が摩耗して使用限界に達するまで繰り返し使用
される。耐火物が摩耗して使用限界に達すると、新しい
耐火物が取鍋2および真空槽3に内張りされる。浸漬管
4は耐火物により構成され、耐火物が摩耗して使用限界
に達するまで繰り返し使用され、使用限界に達すると取
り替えられる。
Incidentally, the ladle 2 and the vacuum chamber 3 (the dipping pipe mounting portion 3
(including a) has a refractory material lined therein, and is repeatedly used until the lined refractory material wears and reaches a use limit. When the refractory material wears and reaches the limit of use, a new refractory material is lined in the ladle 2 and the vacuum chamber 3. The dip pipe 4 is made of a refractory material, and is repeatedly used until the refractory material is worn and reaches the use limit, and is replaced when the use limit is reached.

【0006】脱ガス処理の際は、取鍋2に収容された溶
鋼1中に2本の浸漬管4を浸漬し、一方の浸漬管4の内
壁に設けられた図示を省略した羽口から環流用ガスを吹
き込む。また、真空槽3に接続されている図示を省略し
た真空排気部により真空槽3内を減圧する。これによ
り、溶鋼1を一方の浸漬管4から真空槽3内に吸い上げ
るとともに、他方の浸漬管4から取鍋2に戻して溶鋼1
を取鍋2と減圧された真空槽3との間で循環させる。溶
鋼1は、この循環中に前記の脱ガス反応により脱ガス処
理される。
In the degassing process, two dipping tubes 4 are dipped in the molten steel 1 housed in the ladle 2, and reflux is carried out from a tuyere (not shown) provided on the inner wall of one dipping tube 4. Blow in the gas for use. Further, the inside of the vacuum chamber 3 is decompressed by a vacuum exhaust unit (not shown) connected to the vacuum chamber 3. As a result, the molten steel 1 is sucked up from the one immersion pipe 4 into the vacuum chamber 3 and returned from the other immersion pipe 4 to the ladle 2 to melt the molten steel 1
The ladle 2 is circulated between the ladle 2 and the depressurized vacuum chamber 3. The molten steel 1 is degassed by the above degassing reaction during this circulation.

【0007】また、脱ガス処理中に溶鋼1の温度低下を
防止するため、ランス7から真空槽3内の溶鋼1に向か
って酸素ガスが吹き込まれる。
Further, in order to prevent the temperature of the molten steel 1 from decreasing during the degassing process, oxygen gas is blown from the lance 7 toward the molten steel 1 in the vacuum chamber 3.

【0008】ところで、真空槽3内の圧力は、一般的に
は真空槽3内のガスの量(環流用ガス、酸素ガス、脱ガ
ス反応で生成したガス、リークガスなどの合計量)と真
空排気部の能力により決まり、通常、例えば1kPa程
度の圧力で脱ガス処理がおこなわれる。真空槽3内の圧
力が前記のように設定されると、これに伴い取鍋2から
真空槽3内に吸い上げられる溶鋼1の量も決まり、その
量に応じて取鍋2内の溶鋼1の湯面1aが低下する。ま
た、脱ガス処理中に合金添加管6からTi、Cr合金、
Mn合金などが添加されて溶鋼1の成分調整がおこなわ
れることがあり、このときは、真空槽3内の圧力が一時
的に高くなるため、取鍋2内の溶鋼1の湯面1aが上昇
する。
By the way, the pressure in the vacuum chamber 3 is generally the amount of gas in the vacuum chamber 3 (total amount of reflux gas, oxygen gas, gas generated by degassing reaction, leak gas, etc.) and vacuum exhaust. The degassing process is usually performed at a pressure of, for example, about 1 kPa depending on the capacity of the part. When the pressure in the vacuum tank 3 is set as described above, the amount of the molten steel 1 sucked up from the ladle 2 into the vacuum tank 3 is also determined accordingly, and the molten steel 1 in the ladle 2 The level 1a is lowered. In addition, Ti, Cr alloy,
The composition of molten steel 1 may be adjusted by adding Mn alloy or the like. At this time, since the pressure in vacuum chamber 3 temporarily increases, the molten metal 1 ladle 1 ladle 2 rises. To do.

【0009】この脱ガス処理の際、浸漬管4の下部は取
鍋2に収容された溶鋼1の湯面1aから溶鋼1中に浸漬
されるが、この浸漬管4の溶鋼1の湯面1aからの浸漬
長さを、一定範囲に保つことが重要である。すなわち、
浸漬管4の浸漬長さが長くなって、浸漬管4の上部に設
けられたフランジ4aが溶鋼1中に浸漬されると、フラ
ンジ4aに設けられた図示を省略した水冷管が溶損し、
水蒸気爆発が生じるおそれがある。一方、浸漬管4の浸
漬長さが短くなると、浸漬管4の大気に触れる部分の長
さが長くなるため、浸漬管4の側壁から侵入する大気の
量が多くなり、溶鋼1の成分に悪影響を及ぼすとともに
脱ガス処理の効率が悪くなる。また、浸漬管4にスラグ
が吸い込まれ、また浸漬管4が溶鋼1から抜けてしまう
おそれがあり、この場合は、脱ガス処理を中断せざるを
得なくなる。
During this degassing process, the lower part of the immersion pipe 4 is immersed in the molten steel 1 from the molten steel surface 1a of the molten steel 1 housed in the ladle 2. It is important to keep the dipping length from to within a certain range. That is,
When the immersion length of the immersion pipe 4 is increased and the flange 4a provided on the upper part of the immersion pipe 4 is immersed in the molten steel 1, the water cooling pipe (not shown) provided on the flange 4a is melted and damaged.
May cause steam explosion. On the other hand, when the immersion length of the immersion pipe 4 is shortened, the length of the portion of the immersion pipe 4 that is exposed to the atmosphere is increased, so that the amount of the atmosphere entering from the side wall of the immersion pipe 4 is increased and the composition of the molten steel 1 is adversely affected. And the efficiency of the degassing process becomes poor. Further, the immersion pipe 4 may be sucked with slag, and the immersion pipe 4 may come out of the molten steel 1. In this case, the degassing process must be interrupted.

【0010】そのため、脱ガス処理の際は、取鍋2また
は真空槽3の高さを制御して、浸漬管4の溶鋼1の湯面
1aからの浸漬長さを一定範囲に保つ必要がある。
Therefore, during the degassing process, it is necessary to control the height of the ladle 2 or the vacuum tank 3 to keep the immersion length of the immersion steel 4 of the molten steel 1 from the molten metal surface 1a within a certain range. .

【0011】浸漬管の浸漬長さを一定に保つために浸漬
管の昇降を制御する方法が特開平9−49013号公報
に示されている。この方法は、真空槽(又は取鍋)の昇
降補正量をHV(mm)、真空槽内の真空度をP(To
rr)、浸漬管の内径をDl(mm)、溶鋼の比重をρ
(g/cm)、取鍋の内径をDL(mm)、浸漬管の
外径をDO(mm)としたとき、下記(1)式により規
定される昇降補正量HVだけ真空槽または取鍋を昇降さ
せて、浸漬管の浸漬長さを真空槽内の真空度の変化に係
わらず一定に保つ。
Japanese Unexamined Patent Publication No. 9-49013 discloses a method of controlling the elevation of the immersion pipe in order to keep the immersion length of the immersion pipe constant. In this method, the up / down correction amount of the vacuum tank (or ladle) is HV (mm), and the vacuum degree in the vacuum tank is P (To
rr), the inner diameter of the immersion pipe is Dl (mm), and the specific gravity of the molten steel is ρ
(G / cm 3 ), the inner diameter of the ladle is DL (mm), and the outer diameter of the dip tube is DO (mm), only the elevation correction amount HV defined by the following equation (1) is used for the vacuum tank or the ladle. Is moved up and down to keep the immersion length of the immersion tube constant regardless of changes in the degree of vacuum in the vacuum chamber.

【0012】 HV=(760-P)×13.6×Dl/{ρ(DL-DO+Dl)} ・・(1) なお、この方法は、槽底を備えない真空槽の下部に、真
空槽の内径と同じ内径の1本の直胴型浸漬管を有する真
空脱ガス装置を対象としているが、このような制御の方
法は、前記のRH脱ガス装置の場合にも適用することが
できる。
HV = (760-P) × 13.6 × Dl 2 / {ρ (DL 2 -DO 2 + Dl 2 )} ··· (1) In addition, this method is used in the lower part of the vacuum chamber without the chamber bottom. The target is a vacuum degasser having one straight barrel type dip tube with the same inner diameter as the inner diameter of the vacuum tank, but such a control method should also be applied to the above-mentioned RH degasser. You can

【0013】しかし、前記の(1)式では、昇降補正量
HVは、真空槽内の真空度P、浸漬管の内径DI、浸漬
管の外径DOおよび取鍋の内径DLに基づいて計算され
るが、同公報の段落0026および(2)式によれば、
浸漬管の内径DLなどの寸法は一定値とされている。す
なわち、前記の方法では、繰り返し使用される真空槽の
内面に内張された耐火物が摩耗した場合、この摩耗によ
る真空槽の内径の増加は考慮されていない。
However, in the above equation (1), the elevation correction amount HV is calculated based on the vacuum degree P in the vacuum chamber, the inner diameter DI of the dip tube, the outer diameter DO of the dip tube and the inner diameter DL of the ladle. However, according to paragraphs 0026 and (2) of the publication,
The dimensions such as the inner diameter DL of the immersion tube are set to constant values. That is, in the above method, when the refractory material lined on the inner surface of the repeatedly used vacuum chamber is worn, the increase in the inner diameter of the vacuum chamber due to this wear is not taken into consideration.

【0014】そのため、真空槽が大型の場合、または繰
り返し使用される回数が少ない場合は、(1)式で計算
される昇降補正量HVの誤差は小さい。しかし、真空槽
が小型の場合、または繰り返し使用される回数が多い場
合は、この真空槽の摩耗による内径の増加が制御に大き
く影響し、前記の制御方法では誤差が大きくなり、操業
停止の原因になりかねない。
Therefore, when the vacuum chamber is large or the number of times of repeated use is small, the error of the elevation correction amount HV calculated by the equation (1) is small. However, if the vacuum chamber is small, or if it is repeatedly used many times, the increase in the inner diameter due to the wear of the vacuum chamber has a large effect on the control, and the above control method causes a large error and causes the operation to stop. Could be.

【0015】また、前記の(1)式で求められたHV
は、真空槽と取鍋との高さ位置の関係を一定とした状態
で求められた値であるため、浸漬管をHVだけ昇降させ
たときに、溶鋼中に浸漬される浸漬管の体積の増減は考
慮されていない。そのため、前記と同様に制御の誤差が
大きくなる。
The HV obtained by the above equation (1)
Is a value obtained with the height relationship between the vacuum tank and the ladle being constant, so that the volume of the immersion pipe immersed in the molten steel when the immersion pipe is moved up and down by HV. Increases and decreases are not considered. Therefore, the control error becomes large as described above.

【0016】[0016]

【発明が解決しようとする課題】この発明の課題は、真
空脱ガス装置において、真空槽に内張りされた耐火物が
摩耗した際の内径を精度よく推定することのできる真空
槽の内径推定方法、および真空槽が小型の場合または繰
り返し使用数が多い場合であっても、浸漬管の浸漬長さ
を一定範囲に精度良く保持することのできる取鍋または
真空槽の高さ制御方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is, in a vacuum degassing apparatus, a method for estimating an inner diameter of a vacuum chamber, which can accurately estimate the inner diameter when a refractory material lined in the vacuum chamber is worn, And a method for controlling the height of a ladle or a vacuum chamber that can accurately maintain the immersion length of the immersion tube within a certain range even when the vacuum chamber is small or the number of repeated uses is large. It is in.

【0017】[0017]

【課題を解決するための手段】この発明の要旨は、下記
(1)の真空脱ガス装置における真空槽の内径推定方法
と、(2)の真空脱ガス装置における高さ制御方法にあ
る。
The gist of the present invention resides in the following (1) method for estimating the inner diameter of a vacuum chamber in a vacuum degassing apparatus and (2) a height control method in a vacuum degassing apparatus.

【0018】(1)溶融金属を収容する取鍋と、下部に
浸漬管が設けられるとともに真空排気部に接続された真
空槽と、前記取鍋と真空槽のいずれか一方を昇降させる
昇降駆動部とを備え、取鍋に収容された溶融金属中に浸
漬管を浸漬して取鍋と減圧された真空槽との間で溶融金
属を循環させて脱ガス処理をおこなう真空脱ガス装置の
前記真空槽の内径を、次のA〜C、またはD〜Fのいず
れかにより推定することを特徴とする真空脱ガス装置に
おける真空槽の内径推定方法。 A.取鍋に収容された溶融金属中に浸漬管を浸漬すると
ともに取鍋と真空槽との高さ位置の関係を一定とした状
態における真空槽内の圧力と取鍋内の溶融金属の湯面レ
ベルとの関係を、真空槽の複数の内径の場合について予
め求めておく。 B.脱ガス処理の際は、取鍋に収容された溶融金属の一
部が真空槽内に達した時点より後で、取鍋内の溶融金属
の湯面レベルおよびそのときの真空槽内の圧力を測定す
る。 C.前記Bで測定された取鍋内の湯面レベルおよび真空
槽内の圧力と、前記予め求められた真空槽内の圧力と取
鍋内の溶融金属の湯面レベルとの関係とに基づき、湯面
レベルが測定された時点における真空槽の内径を推定す
る。 D.前記A〜Cの内径推定方法により複数のチャージに
ついて真空槽の内径を推定して保管する。 E.前記Dで保管された複数のチャージにおける真空槽
の内径に基づき、チャージ数と真空槽の内径との関係を
予め求めておく。 F.脱ガス処理の際は、現在のチャージ数と、前記Eで
予め求められたチャージ数と真空槽の内径との関係とに
基づき、現在の真空槽の内径を推定する。
(1) A ladle for containing molten metal, a vacuum tank provided with a dip tube at the bottom and connected to an evacuation unit, and an elevating / lowering drive unit for elevating either one of the ladle and the vacuum tank. The vacuum of the vacuum degassing apparatus, which is equipped with a vacuum degassing apparatus, in which a dipping tube is immersed in molten metal contained in a ladle to circulate the molten metal between the ladle and a vacuum chamber under reduced pressure to perform degassing treatment. A method for estimating the inner diameter of a vacuum tank in a vacuum degassing apparatus, characterized in that the inner diameter of the tank is estimated by any of the following A to C or D to F. A. The pressure in the vacuum tank and the level of molten metal in the ladle when the dipping pipe is immersed in the molten metal contained in the ladle and the height relationship between the ladle and the vacuum tank is constant. The relationship with and is obtained in advance for a plurality of inner diameters of the vacuum chamber. B. During the degassing process, the molten metal level in the ladle and the pressure in the vacuum tank at that time shall be measured after the molten metal contained in the ladle reaches the vacuum tank. taking measurement. C. Based on the relationship between the level of the molten metal in the ladle and the pressure in the vacuum tank measured in B, and the previously determined pressure in the vacuum vessel and the level of the molten metal in the ladle. Estimate the inner diameter of the vacuum chamber at the time the surface level was measured. D. The inner diameter of the vacuum chamber is estimated for a plurality of charges by the inner diameter estimation methods A to C and stored. E. The relationship between the number of charges and the inner diameter of the vacuum chamber is obtained in advance based on the inner diameter of the vacuum chamber in the plurality of charges stored in the above D. F. At the time of degassing, the current inner diameter of the vacuum chamber is estimated based on the current number of charges and the relationship between the number of charges previously obtained in E and the inner diameter of the vacuum chamber.

【0019】(2)溶融金属を収容する取鍋と、下部に
浸漬管が設けられるとともに真空排気部に接続された真
空槽と、前記取鍋と真空槽のいずれか一方を昇降させる
昇降駆動部とを備え、取鍋に収容された溶融金属中に浸
漬管を浸漬して取鍋と減圧された真空槽との間で溶融金
属を循環させて脱ガス処理をおこなう真空脱ガス装置の
前記取鍋または真空槽の高さを制御する方法であって、
真空槽内の圧力を測定し、浸漬管の浸漬長さを一定とし
たときの浸漬管の下端位置と浸漬管の初期の下端位置と
の差を前記D〜Fで推定された真空槽の内径と前記測定
された真空槽内の圧力とに基づいて求め、求めた浸漬管
の下端位置の差を補正すべく取鍋または真空槽を昇降さ
せることを特徴とする真空脱ガス装置における高さ制御
方法。
(2) A ladle for accommodating molten metal, a vacuum tank provided with a dip tube at the bottom and connected to a vacuum exhaust unit, and an elevating / lowering drive unit for elevating or lowering one of the ladle and the vacuum tank. And a vacuum degassing apparatus for performing degassing treatment by immersing the dipping tube in the molten metal contained in the ladle and circulating the molten metal between the ladle and the depressurized vacuum tank. A method of controlling the height of a pan or vacuum chamber, the method comprising:
The inner diameter of the vacuum chamber estimated in D to F by measuring the pressure in the vacuum chamber and estimating the difference between the lower end position of the immersion pipe and the initial lower end position of the immersion pipe when the immersion length of the immersion pipe is constant. And height control in a vacuum degassing device, characterized in that the ladle or the vacuum tank is moved up and down in order to correct the difference in the lower end position of the immersion pipe obtained based on the measured pressure in the vacuum tank. Method.

【0020】なお、本発明において、真空槽の内径と
は、真空槽内に内張りされた耐火物が形成する空間部の
内径を指す。
In the present invention, the inner diameter of the vacuum chamber means the inner diameter of the space formed by the refractory material lined in the vacuum chamber.

【0021】[0021]

【発明の実施の形態】まず、本発明の真空脱ガス装置に
おける真空槽の内径推定方法を、図1に示すRH脱ガス
装置を用いて溶鋼の脱ガス処理をおこなう場合につい
て、図2〜図4に基づいて説明する。なお、図1に示す
RH脱ガス装置の構成は、既に説明したので省略する。
図2は、真空槽内の圧力が大気圧の場合の溶鋼の状態を
示す縦断面図である。図3は、真空槽内が減圧されて、
溶鋼の一部が浸漬管および浸漬管取付部の内部に吸い上
げられた状態を示す縦断面図である。図4は、真空槽内
がさらに減圧されて、溶鋼の一部が真空槽内に吸い上げ
られた状態を示す縦断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a method for estimating the inner diameter of a vacuum chamber in a vacuum degassing apparatus according to the present invention will be described with reference to FIGS. 2 to 4 in the case of degassing molten steel using the RH degassing apparatus shown in FIG. 4 will be described. Note that the configuration of the RH degassing device shown in FIG. 1 has already been described, and will be omitted.
FIG. 2 is a vertical cross-sectional view showing a state of molten steel when the pressure in the vacuum chamber is atmospheric pressure. In Figure 3, the vacuum chamber is depressurized,
It is a longitudinal cross-sectional view showing a state in which a part of the molten steel has been sucked up inside the immersion pipe and the immersion pipe attachment portion. FIG. 4 is a vertical cross-sectional view showing a state where the inside of the vacuum tank is further decompressed and a part of the molten steel is sucked up into the vacuum tank.

【0022】これらの図2〜図4において、真空槽3の
内半径をR、浸漬管取付部3aおよび浸漬管4の内半
径をR、浸漬管4の外半径をR、取鍋2の内半径を
、浸漬管4の長さをA、浸漬管取付部3aの長さを
Bとする。
2 to 4, the inner radius of the vacuum chamber 3 is R 1 , the inner radius of the immersion pipe mounting portion 3a and the immersion pipe 4 is R 2 , the outer radius of the immersion pipe 4 is R 3 , and the ladle is ladle. The inner radius of 2 is R 4 , the length of the dip tube 4 is A, and the length of the dip tube mounting portion 3 a is B.

【0023】図2において、取鍋2内の溶鋼1の湯面レ
ベル(すなわち、真空槽3内の圧力が大気圧のときの湯
面レベル)を初期レベルLとし、初期レベルLから
浸漬管4の上部に形成されたフランジ4aの上端までの
距離をA、初期レベルLから浸漬管4の下端までの
距離、換言すれば浸漬管4の浸漬長さをAとする。ま
た、このときの浸漬管4の下端と取鍋2の底との距離を
とする。
[0023] In FIG. 2, molten metal surface level of the molten steel 1 in the ladle 2 (i.e., the pressure in the vacuum chamber 3 is melt-surface level when the atmospheric pressure) to the initial level L 0, dipping from an initial level L 0 It is assumed that the distance from the upper end of the flange 4a formed at the upper part of the tube 4 to A 1 is the distance from the initial level L 0 to the lower end of the immersion tube 4, that is, the immersion length of the immersion tube 4 is A 2 . Further, the distance between the lower end of the dipping tube 4 and the bottom of the ladle 2 at this time is H 0 .

【0024】図3および図4において、浸漬管4および
浸漬管取付部3aの内部、または真空槽3の内部に吸い
上げられた溶鋼1の湯面のレベルを湯面レベルL
し、取鍋2内の溶鋼1の下降した湯面のレベルを湯面レ
ベルLとし、湯面レベルLの初期レベルLからの
上昇量をX、湯面レベルLの初期レベルLからの
下降量をX、湯面レベルLと湯面レベルLとの差
をXとする。また、このときの浸漬管4の下端と取鍋2
の底との距離をHとする。なお、これらの単位は、全て
mmで表す。
In FIGS. 3 and 4, the level of the molten metal 1 sucked into the immersion pipe 4 and the immersion pipe mounting portion 3a or the vacuum tank 3 is defined as the molten metal level L 1 and the ladle 2 is used. The level of the molten steel 1 in which the level of the molten steel is lowered is defined as the level of the molten metal L 2, and the amount of increase in the level of the molten metal L 1 from the initial level L 0 is X 1 , and the amount of the molten metal level L 2 is decreased from the initial level L 0. The amount is X 2 , and the difference between the molten metal level L 1 and the molten metal level L 2 is X. In addition, the lower end of the dipping pipe 4 and the ladle 2 at this time
Let H be the distance from the bottom of. All these units are expressed in mm.

【0025】真空槽3内が減圧されると、取鍋2に収容
された溶鋼1の一部が浸漬管4および浸漬管取付部3a
内に吸い上げられる。すなわち、真空槽3内の圧力が下
がる(真空度が上昇する)と、図3に示すように、浸漬
管4および浸漬管取付部3a内の湯面は、初期レベルL
から上昇量X上昇して湯面レベルLとなり、取鍋
2内の湯面は、初期レベルLから下降量X下降して
湯面レベルLとなる。
When the pressure in the vacuum chamber 3 is reduced, part of the molten steel 1 contained in the ladle 2 is immersed in the dip pipe 4 and the dip pipe mounting portion 3a.
It is sucked up inside. That is, when the pressure in the vacuum chamber 3 decreases (the degree of vacuum rises), as shown in FIG. 3, the molten metal level in the dip tube 4 and the dip tube mounting portion 3a becomes the initial level L.
The amount of rise X 1 rises from 0 to the level L 1 , and the level of the molten metal in the ladle 2 falls from the initial level L 0 by the amount X 2 to reach the level L 2 .

【0026】さらに、真空槽3内が減圧されると、取鍋
2に収容された溶鋼1の一部は浸漬管4および浸漬管取
付部3aを通じて真空槽3内に吸い上げられる。すなわ
ち、図4に示すように、真空槽3内の湯面は、初期レベ
ルLから上昇量Xだけ上昇して湯面レベルLの位
置となり、取鍋2内の湯面は、初期レベルLから下降
量Xだけ下降して湯面レベルLの位置となる。この
とき、図2〜図4の状態において、次の2つの関係が成
立する。
Further, when the pressure inside the vacuum tank 3 is reduced, a part of the molten steel 1 contained in the ladle 2 is sucked up into the vacuum tank 3 through the immersion pipe 4 and the immersion pipe attachment portion 3a. That is, as shown in FIG. 4, the level of the molten metal in the vacuum tank 3 rises from the initial level L 0 by the amount of increase X 1 to the level of the molten metal level L 1 , and the level of the molten metal in the ladle 2 is initially set. The level is lowered from the level L 0 by the descending amount X 2 to reach the level of the molten metal level L 2 . At this time, in the states of FIGS. 2 to 4, the following two relationships are established.

【0027】その1つは.真空槽3の内部に存在する溶
鋼1の量、浸漬管4と浸漬管取付部3aの内部に存在す
る溶鋼1の量、および取鍋2内に存在する溶鋼1の量の
合計量は、図2〜図4の全ての状態において等しいこと
である。
One of them is. The total amount of the amount of molten steel 1 present inside the vacuum chamber 3, the amount of molten steel 1 present inside the immersion pipe 4 and the immersion pipe mounting portion 3a, and the amount of molten steel 1 present inside the ladle 2 is shown in FIG. 2 to 4 are the same in all states.

【0028】また、他の1つは、図3および図4におい
て、浸漬管4および浸漬管取付部3a内の湯面レベルL
、または真空槽3内の湯面レベルLと、取鍋2内の
湯面レベルLとの差X(L−L)で表される溶鋼
差圧は、大気圧と真空槽3内の圧力との差に等しいこと
である。
The other one is, as shown in FIGS. 3 and 4, the molten metal level L in the immersion pipe 4 and the immersion pipe mounting portion 3a.
1 , or the molten steel differential pressure represented by the difference X (L 1 −L 2 ) between the molten metal level L 1 in the vacuum tank 3 and the molten metal level L 2 in the ladle 2, is the atmospheric pressure and the vacuum tank. It is equal to the difference with the pressure in 3.

【0029】そこで、図3の状態において、真空槽3内
の圧力をP(kPa)とし、溶鋼1の密度をd(g/
cm)としたとき、前記の関係から次の(2)式およ
び(3)式が成立する。
Therefore, in the state of FIG. 3, the pressure in the vacuum chamber 3 is set to P 1 (kPa), and the density of the molten steel 1 is d (g / g /
cm 3 ), the following expressions (2) and (3) are established from the above relationship.

【0030】 2R ・X=(R -2R )・X ・・(2) X+X=(101-P)・(760/101)・(13.6/d) ・・(3) この(2)式および(3)式から、下降量Xは次の
(4)式により求めることができる。
2R 2 2 · X 1 = (R 4 2 −2R 3 2 ) · X 2 · (2) X 1 + X 2 = (101-P 1 ) · (760/101) · (13.6 / d ) · (3) From these equations (2) and (3), the descending amount X 2 can be obtained by the following equation (4).

【0031】 X=(101-P)・(760/101)・(13.6/d)・{2R /(R -2R +2R )} ・・(4) また、図4の状態において、真空槽3内の圧力をP
(kPa)としたとき、前記の関係から次の(5)式
および(6)式が成立する。
X 2 = (101-P 1 ) ・ (760/101) ・ (13.6 / d) ・ {2R 2 2 / (R 4 2 -2R 3 2 + 2R 2 2 )} ・ ・ (4) Also In the state of FIG. 4, the pressure in the vacuum chamber 3 is set to P
When 2 (kPa) is set, the following expressions (5) and (6) are established from the above relationship.

【0032】 R ・(X-B-A)+2R ・(B+A)=(R -2R )・X ・・(5) X+X=(101-P)・(760/101)・(13.6/d ) ・・(6) この(5)式および(6)式から、下降量Xは次の
(7)式により求めることができる。
R 1 2 · (X 1 −BA 1 ) + 2R 2 2 · (B + A 2 ) = (R 4 2 −2R 3 2 ) · X 2 ·· (5) X 1 + X 2 = ( 101-P 2 ) ・ (760/101) ・ (13.6 / d) ・ ・ (6) From these equations (5) and (6), the descending amount X 2 can be calculated by the following equation (7). .

【0033】 X={(101-P)・(760/101)・(13.6R /d)+(B+A)・(2R -R )}/(R - 2R +R ) ・・(7) したがって、使用する真空脱ガス装置の寸法として例え
ば設計値を用い、取鍋2内に収容される溶鋼1の量と浸
漬管4の初期の浸漬長さAとにより初期レベルL
設定すれば、前記の(4)式および(7)式により、脱
ガス処理中の取鍋2内に収容された溶鋼1の湯面の初期
レベルLからの下降量X、換言すれば(L
)で表される取鍋2内の湯面レベルLを真空槽3
内の圧力により計算することができる。
X 2 = {(101-P 2 ) ・ (760/101) ・ (13.6R 1 2 / d) + (B + A 1 ) ・ (2R 2 2 -R 1 2 )} / (R 1 2 -2R 3 2 + R 4 2 ) ··· (7) Therefore, for example, the design value is used as the size of the vacuum degassing device to be used, and the amount of molten steel 1 contained in the ladle 2 and the initial stage of the dipping pipe 4 are set. If the initial level L 0 is set according to the immersion length A 2 of the above, the initial level of the molten steel 1 stored in the ladle 2 during degassing is determined by the above equations (4) and (7). The amount of decrease X 2 from the level L 0 , in other words, (L 0
X 2 ), the level L 2 of the molten metal in the ladle 2 is set to the vacuum tank 3
It can be calculated by the pressure inside.

【0034】前記の(4)式および(7)式は、従来技
術で説明した直胴型浸漬管を有する真空脱ガス装置にお
ける高さ制御方法を、2本の浸漬管4を備えたをRH脱
ガス装置の高さ制御に単に適用しただけのもので、繰り
返し使用される真空槽3の摩耗による内径の増加量は考
慮されていない。
The above equations (4) and (7) are the height control method in the vacuum degassing apparatus having the straight barrel type immersion pipe described in the prior art, and the RH with two immersion pipes 4 is used. This is merely applied to the height control of the degassing device, and does not consider the increase in the inner diameter due to the wear of the vacuum chamber 3 that is repeatedly used.

【0035】そこで、本発明では、次の2通りの方法の
いずれかにより、真空槽3の摩耗に伴う内径を推定す
る。
Therefore, in the present invention, the inner diameter due to wear of the vacuum chamber 3 is estimated by either of the following two methods.

【0036】その1つは、次のA〜Cにより真空槽3の
内径を推定する方法である。
One of them is a method of estimating the inner diameter of the vacuum chamber 3 by the following AC.

【0037】A.取鍋2に収容された溶鋼1中に浸漬管
4を浸漬するとともに取鍋2と真空槽3との高さ位置の
関係を一定とした状態における真空槽3内の圧力と取鍋
2内の溶鋼1の湯面レベルとの関係を、真空槽3の複数
の内径の場合について予め計算により求めておく。
A. The pressure in the vacuum tank 3 and the pressure in the ladle 2 in a state where the dipping pipe 4 is immersed in the molten steel 1 housed in the ladle 2 and the height position relationship between the ladle 2 and the vacuum tank 3 is constant. The relationship with the molten metal level of the molten steel 1 is calculated in advance for a plurality of inner diameters of the vacuum chamber 3.

【0038】すなわち、前記の図2〜図4の状態で、使
用する真空脱ガス装置の真空槽3の内径として初期値
(例えば設計値)と摩耗による使用限界近くの値を用
い、真空槽3内の圧力が大気圧から脱ガス処理される際
の圧力より低い圧力までの間について、前記の(4)式
および(7)式に基づいて下降量Xを求め、真空槽3
内の圧力と取鍋2内の湯面レベルL(=初期レベルL
−下降量X)との関係を予め求めておく。
That is, in the state shown in FIGS. 2 to 4, the initial value (for example, a design value) and a value near the use limit due to wear are used as the inner diameter of the vacuum chamber 3 of the vacuum degassing apparatus to be used. From the atmospheric pressure to a pressure lower than the pressure at which the degassing process is performed, the descending amount X 2 is calculated based on the above equations (4) and (7), and the vacuum chamber 3
Internal pressure and level L 2 of ladle 2 (= initial level L
The relationship with 0 -falling amount X 2 ) is obtained in advance.

【0039】また、真空槽3の内径が初期値と真空槽3
の使用限界近くの内径との間のなるべく多くの場合につ
いて、前記と同様に真空槽3内の圧力と取鍋2内の湯面
レベルLとの関係を予め求めておく。
The inner diameter of the vacuum chamber 3 is the initial value and the vacuum chamber 3
The relationship between the pressure in the vacuum chamber 3 and the level L 2 of the molten metal in the ladle 2 is determined in advance for as many cases as possible between the inner diameter near the use limit of 1) and the inner diameter of the ladle 2.

【0040】図5は、前記(4)式および(7)式を用
いて求めた真空槽3内の圧力と取鍋2内の湯面レベルL
および湯面の下降量Xとの関係の一例を示す図であ
る。なお、同図では、真空槽3の内半径Rが設計値で
ある700mmの場合(直線V)、使用限界に近い1
000mmの場合(直線V)およびその中間の場合
(直線V)の3つの場合を示すが、前記のように、真
空槽の3の内径が設計値(例えば700mm)と使用限
界に近い値(例えば1000mm)との間の複数の場合
について求めておく。
FIG. 5 shows the pressure in the vacuum chamber 3 and the molten metal level L in the ladle 2 which are obtained by using the equations (4) and (7).
It is a diagram showing an example of the relationship between the decrease amount X 2 of 2 and molten metal surface. In the figure, when the inner radius R 2 of the vacuum chamber 3 is 700 mm, which is the design value (straight line V 1 ), it is close to the use limit of 1
Three cases are shown: a case of 000 mm (straight line V n ) and an intermediate case (straight line V i ). As described above, the inner diameter of 3 of the vacuum chamber is close to the design value (for example, 700 mm) and the usage limit. A plurality of cases (for example, 1000 mm) will be calculated.

【0041】同図からわかるように、真空槽3内の圧力
が大気圧(101kPa)から下がるに従い、取鍋2内
の湯面レベルLは直線Sのように緩やかに下降し、真
空槽3内の圧力がほぼ25kPaより低くなると、取鍋
2内の湯面レベルLは直線V、V、Vのように
急激に下降する。同図の場合、このほぼ25kPaの時
点で溶鋼1の一部が真空槽3内に達するため、この時点
から取鍋2内の湯面レベルLが急激に下降する。この
ほぼ25kPaより低い圧力における取鍋2内の湯面レ
ベルLの下降量は、直線V(真空槽3の内半径R
が700mmの場合)に比べて、直線Vおよび直線V
(真空槽3の内半径Rが1000mmの場合)の方
が多い。
As can be seen from the figure, as the pressure in the vacuum chamber 3 decreases from the atmospheric pressure (101 kPa), the level L 2 of the molten metal in the ladle 2 gradually drops along a straight line S, and the vacuum chamber 3 When the internal pressure becomes lower than approximately 25 kPa, the molten metal level L 2 in the ladle 2 sharply drops like the straight lines V 1 , V i and V n . In the case of the figure, part of the molten steel 1 reaches the inside of the vacuum tank 3 at the time of about 25 kPa, so that the molten metal level L 2 in the ladle 2 drops sharply from this time. The amount of decrease of the molten metal level L 2 in the ladle 2 at the pressure lower than approximately 25 kPa is the straight line V 1 (the inner radius R 2 of the vacuum chamber 3).
Is 700 mm), the straight line V n and the straight line V
n (when the inner radius R 2 of the vacuum chamber 3 is 1000 mm).

【0042】B.脱ガス処理の際は、取鍋2に収容され
た溶鋼1の一部が真空槽3内に達した時点より後で、取
鍋2内の溶鋼1の湯面レベルLおよびそのときの真空
槽3内の圧力Pを測定する。
B. In the degassing process, after the time when a part of the molten steel 1 stored in the ladle 2 reaches the vacuum tank 3, the molten steel 1 level L 2 in the ladle 2 and the vacuum at that time The pressure P 2 in the tank 3 is measured.

【0043】前記のように、脱ガス処理が開始されると
真空槽3内が減圧されて、取鍋2内の湯面レベルL
は、例えば図5の直線SおよびV(またはV、V
)のように低下する。図5の場合、真空槽3内の圧力
がほぼ25kPaより低い領域では、真空槽3の内径が
異なると、取鍋2内の湯面レベルLは、直線V、直
線Vまたは直線Vのように異なる。
As described above, when the degassing process is started, the pressure in the vacuum tank 3 is reduced, and the molten metal level L in the ladle 2 is lowered.
2 is, for example, the straight lines S and V 1 (or V i , V in FIG. 5)
n ). In the case of FIG. 5, in a region where the pressure in the vacuum tank 3 is lower than approximately 25 kPa, when the inner diameter of the vacuum tank 3 is different, the molten metal level L 2 in the ladle 2 is a straight line V 1 , a straight line V i or a straight line V 2. Different as n .

【0044】そこで、取鍋2内の溶鋼1の一部が前記図
4に示すように真空槽3内に達した時点より後で、換言
すれば、前記図5の場合では真空槽3内の圧力がほぼ2
5kPaより低くなったときに、取鍋2内の湯面レベル
とそのときの真空槽3内の圧力Pを測定する。
Therefore, after a part of the molten steel 1 in the ladle 2 reaches the vacuum chamber 3 as shown in FIG. 4, in other words, in the case of FIG. Pressure is almost 2
When it becomes lower than 5 kPa, the molten metal level L 2 in the ladle 2 and the pressure P 2 in the vacuum tank 3 at that time are measured.

【0045】湯面レベルLの測定方法にはこだわらな
い。しかし、取鍋2内に収容された溶鋼1の湯面の上部
には、蒸気、塵埃等が存在し、また高温であるため、湯
面レベルLを直接観察して測定することは困難であ
る。また、仮に直接観察することのできる検知器が存在
したとしても、取鍋2の上方は前記のように環境が悪い
ため、検知器の寿命が極めて短く実用的ではない。
The method of measuring the molten metal surface level L 2 is not limited to any particular method. However, it is difficult to directly observe and measure the molten metal level L 2 because steam, dust, and the like are present above the molten metal 1 contained in the ladle 2 and the temperature is high. is there. Even if there is a detector that can be directly observed, the environment above the ladle 2 is bad as described above, and therefore the life of the detector is extremely short and not practical.

【0046】本発明の真空槽3の内径推定方法では、湯
面レベルLの測定は、脱ガス処理中に連続しておこな
う必要はなく、前記の時点に少なくとも1回おこなえば
よい。そのため、例えば、長さが既知の棒鋼を取鍋2の
上部から溶鋼1中に挿入して湯面レベルLを測定す
る。すなわち、長さが既知の棒鋼を準備し、この棒鋼を
その上端が例えば取鍋2の上端位置と一致するまで溶鋼
1中に挿入し、所定の時間経過した後取り出してその長
さを測定する。棒鋼の溶鋼1中に挿入された部分は溶融
し、溶鋼1の湯面より上部の部分は残るので、この残っ
た部分の長さを測定することにより、湯面レベルL
測定される。
In the method for estimating the inner diameter of the vacuum chamber 3 according to the present invention, it is not necessary to continuously measure the molten metal level L 2 during the degassing process, but it is sufficient to measure the molten metal level L 2 at least once at the above-mentioned time point. Therefore, for example, a steel bar having a known length is inserted into the molten steel 1 from the upper portion of the ladle 2 to measure the molten metal level L 2 . That is, a steel bar having a known length is prepared, the steel bar is inserted into the molten steel 1 until the upper end thereof coincides with the upper end position of the ladle 2, and after a predetermined time has elapsed, the steel bar is taken out and the length thereof is measured. . The portion of the steel bar inserted into the molten steel 1 melts, and the portion above the molten metal surface of the molten steel 1 remains, so the molten metal level L 2 is measured by measuring the length of this remaining portion.

【0047】また、この湯面レベルLが測定されたと
きの真空槽3内の圧力Pを、真空排気部に設けられた
圧力計(真空度計)により測定する。
The pressure P 2 in the vacuum chamber 3 when the molten metal level L 2 is measured is measured by the pressure gauge (vacuum gauge) provided in the vacuum exhaust unit.

【0048】この湯面レベルLおよび圧力Pの測定
は、脱ガス処理の都度、すなわちチャージ毎におこなっ
てもよいし、真空槽3の内径を推定したいときにおこな
ってもよい。湯面レベルLおよび圧力Pの測定をチ
ャージ毎におこなえば、次のCで述べる真空槽3の内径
をチャージ毎に推定することができる。
The molten metal level L 2 and the pressure P 2 may be measured each time degassing is performed, that is, every charge, or when it is desired to estimate the inner diameter of the vacuum chamber 3. If the molten metal level L 2 and the pressure P 2 are measured for each charge, the inner diameter of the vacuum chamber 3 described in C below can be estimated for each charge.

【0049】C.前記Bで測定された取鍋2内の湯面レ
ベルLおよび真空槽3内の圧力P と、前記Aで予め
求められた真空槽3内の圧力Pと取鍋2内の溶鋼1の
湯面レベルLとの関係とに基づき、湯面レベルL
測定された時点における真空槽3の内径を推定する。
C. Surface level in ladle 2 measured in B above
Bell LTwoAnd the pressure P in the vacuum chamber 3 TwoAnd in A above
Obtained pressure P in the vacuum chamber 3TwoAnd molten steel 1 in ladle 2
Level LTwoBased on the relationship withTwoBut
The inner diameter of the vacuum chamber 3 at the time of measurement is estimated.

【0050】前記のように、真空槽3は、その内面に耐
火物が内張りされている。そして、真空槽3は、耐火物
が摩耗してその内径が限界に達するまで繰り返し使用さ
れる。すなわち、繰り返し使用される真空槽3の内径
は、チャージ数の増加とともに、耐火物の摩耗により大
きくなる。そのため、先に説明した(4)式または
(7)式に基づいて取鍋2内の湯面の下降量Xを求め
ても、実際の湯面の下降量X との間に誤差が生じる。
As described above, the vacuum chamber 3 has a resistance to the inner surface.
Fire is lined. The vacuum chamber 3 is made of refractory material.
Used repeatedly until its inner diameter reaches its limit
Be done. That is, the inner diameter of the vacuum chamber 3 that is repeatedly used
Increases due to the wear of refractory as the number of charges increases.
I hear Therefore, equation (4) described above or
Based on formula (7), the amount of downward movement of the molten metal in the ladle 2 XTwoSeeking
However, the actual amount of descent X TwoThere is an error between and.

【0051】この耐火物の摩耗により増加する真空槽3
の内径を、前記Bで測定された取鍋2内の湯面レベルL
および真空槽3内の圧力Pと、前記Aで予め求めら
れた真空槽3内の圧力と取鍋2内の湯面レベルとの関係
に基づき推定する。
Vacuum chamber 3 increased by wear of this refractory
The inner diameter of the molten metal is the level L in the ladle 2 measured in B above.
2 and the pressure P 2 in the vacuum tank 3 and the relationship between the pressure in the vacuum tank 3 and the level of the molten metal in the ladle 2 which are obtained in advance in A.

【0052】すなわち、前記Aで予め求められた図5
に、前記Bで測定された取鍋2内の湯面レベルLとそ
のときの真空槽3内の圧力Pを示す点zを記入し、直
線V〜Vのうち点zに最も近い直線を選択すれば、
選択された直線がそのときの真空槽3の内半径の場合の
真空槽3内の圧力と取鍋2内の湯面レベルとの関係を表
すことになる。
That is, FIG.
In the above, the point z indicating the level L 2 of the molten metal in the ladle 2 measured at B and the pressure P 2 in the vacuum tank 3 at that time is entered, and the point z of the straight lines V 1 to V n is the most If you select a straight line,
When the selected straight line is the inner radius of the vacuum tank 3 at that time, it represents the relationship between the pressure in the vacuum tank 3 and the molten metal level in the ladle 2.

【0053】ところで、真空槽3の摩耗後の内径、より
詳しくは、真空槽3の内面に内張りされた耐火物の摩耗
後の内径は、真空槽3の下部から真空槽3内の溶鋼1の
湯面レベルLまで同一とは限らない。そのため、前記
のようにして推定された真空槽3の内半径は、摩耗した
部分の平均内半径を表すことになる。
By the way, the inner diameter of the vacuum tank 3 after wear, more specifically, the inner diameter of the refractory material lined on the inner surface of the vacuum tank 3 after wear, is calculated from the lower portion of the vacuum tank 3 to the molten steel 1 in the vacuum tank 3. The surface level L 1 is not always the same. Therefore, the inner radius of the vacuum chamber 3 estimated as described above represents the average inner radius of the worn portion.

【0054】以上のA〜Cにより、取鍋2内の湯面レベ
ルLを測定したときの真空槽3の内径を推定すること
ができる。
From the above A to C, it is possible to estimate the inner diameter of the vacuum chamber 3 when the level L 2 of the molten metal in the ladle 2 is measured.

【0055】このA〜Cによる内径推定方法は、測定し
た取鍋2内の湯面レベルLを用いて、そのときの真空
槽3の内径を推定する方法である。そのため、RH脱ガ
ス装置の操業当初には有効な方法である。しかし、前記
のようにして複数のチャージについて真空槽3の内径を
推定して保管し、この保管したデータを用いれば、真空
槽3に内張りされた耐火物が使用限界に達して新しく内
張された以降の真空処理の際に、取鍋2内の湯面レベル
を測定しなくても、真空槽3の内径を推定すること
ができる。
The inner diameter estimating method according to A to C is a method of estimating the inner diameter of the vacuum tank 3 at that time by using the measured molten metal level L 2 in the ladle 2. Therefore, this is an effective method at the beginning of the operation of the RH degasser. However, if the inner diameter of the vacuum chamber 3 is estimated and stored for a plurality of charges as described above and the stored data is used, the refractory lined in the vacuum chamber 3 reaches the use limit and is newly lined. during the vacuum processing after the, even without measuring the molten metal surface level L 2 of the ladle 2, it is possible to estimate the internal diameter of the vacuum chamber 3.

【0056】すなわち、真空槽3の内径を推定する他の
1つは、次のD〜Fにより真空槽3の内径を推定する方
法である。
That is, another method of estimating the inner diameter of the vacuum chamber 3 is a method of estimating the inner diameter of the vacuum chamber 3 by the following D to F.

【0057】D.前記A〜Cの内径推定方法により複数
のチャージについて真空槽3の内径を推定して保管す
る。
D. The inner diameter of the vacuum chamber 3 is estimated and stored for a plurality of charges by the inner diameter estimating methods A to C.

【0058】前記のように、真空槽3は、その内面に内
張りされた耐火物が摩耗して使用限界に達するまで繰り
返し使用される。そこで、新しい耐火物が内張りされた
ときから、使用限界に達するまでの間の複数のチャージ
について、前記A〜Cにより真空槽3の内径を推定し、
その推定値をチャージ数と関連付けて保管する。ここ
で、チャージ数とは、真空槽3に新しい耐火物が内張り
された時点から、繰り返しおこなわれる真空処理の回数
を指す。
As described above, the vacuum chamber 3 is repeatedly used until the refractory material lined on the inner surface of the vacuum chamber 3 is worn and reaches the limit of use. Therefore, the inner diameter of the vacuum chamber 3 is estimated by the above-mentioned A to C for a plurality of charges from when the new refractory is lined up to when the usage limit is reached,
The estimated value is stored in association with the number of charges. Here, the number of charges refers to the number of times vacuum processing is repeatedly performed from the time when a new refractory is lined in the vacuum chamber 3.

【0059】なお、前記A〜Cによる真空槽3の内径の
推定は、チャージ毎におこなってもよいし、複数のチャ
ージ毎におこなってもよい。また、真空槽3に新しい耐
火物が内張りされた後使用限界に達する毎に、前記のA
〜Cによる推定を繰り返し、推定された内径の平均値を
チャージ数と関連付けて保管してもよい。
The estimation of the inner diameter of the vacuum chamber 3 by A to C may be performed for each charge or may be performed for a plurality of charges. Also, after the new refractory is lined in the vacuum chamber 3, the A
The estimation by ~ C may be repeated, and the estimated average value of the inner diameter may be stored in association with the number of charges.

【0060】E.前記Dで保管された複数のチャージに
おける真空槽3の内径に基づき、チャージ数と真空槽3
の内径との関係を予め求めておく。
E. Based on the inner diameter of the vacuum chamber 3 in the plurality of charges stored in D, the number of charges and the vacuum chamber 3
The relationship with the inner diameter of is obtained in advance.

【0061】前記Dで、チャージ毎に真空槽3の内径が
推定されて保管された場合は、そのチャージ数と推定さ
れた真空槽3の内径との関係を用いる。複数のチャージ
毎に真空槽3の内径が推定されて保管された場合は、真
空槽3の内径が推定されなかったチャージの真空槽3の
内径を、その前後に推定された真空槽3の内径の差とそ
の間のチャージ数に基づいて比例計算して求め、前記の
関係を求める。
When the inner diameter of the vacuum chamber 3 is estimated for each charge and stored in D, the relationship between the number of charges and the estimated inner diameter of the vacuum chamber 3 is used. When the inner diameter of the vacuum tank 3 is estimated and stored for each of a plurality of charges, the inner diameter of the vacuum tank 3 of the charge whose inner diameter of the vacuum tank 3 is not estimated is set to the inner diameter of the vacuum tank 3 estimated before and after that. The above relationship is obtained by performing a proportional calculation based on the difference between and the number of charges in between.

【0062】F.脱ガス処理の際は、現在のチャージ数
と、前記Eで予め求められたチャージ数と真空槽3の内
径との関係とに基づき、現在の真空槽3の内径を推定す
る。
F. At the time of degassing, the current inner diameter of the vacuum chamber 3 is estimated based on the current number of charges and the relationship between the number of charges previously obtained in E and the inner diameter of the vacuum chamber 3.

【0063】脱ガス処理の際は、取鍋2内の湯面レベル
を測定する必要はない。但し、真空槽3に新しい耐
火物が内張されてからの現在のチャージ数を記憶してお
く。そして、前記Eで予め求められたチャージ数と真空
槽3の内径との関係に基づいて、現在のチャージ数に対
応する真空槽3の内径を、現在の真空槽3の内径と推定
する。
During the degassing process, it is not necessary to measure the molten metal level L 2 in the ladle 2. However, the current number of charges after the new refractory is lined in the vacuum chamber 3 is stored. Then, the inner diameter of the vacuum chamber 3 corresponding to the current number of charges is estimated to be the inner diameter of the current vacuum chamber 3 based on the relationship between the number of charges previously obtained in E and the inner diameter of the vacuum chamber 3.

【0064】以上のように、前記A〜CまたはD〜Fに
より、真空槽3の内径を推定することができる。この真
空槽3の内径の推定値と使用限界値とにより、真空槽3
の使用限界、すなわち真空槽3に内張りされた耐火物の
取り替え時期を判断することができる。なお、推定され
た真空槽3の内径は、前記のように摩耗により増加した
真空槽3の平均内径であるため、真空槽3の内径の使用
限界値は、この平均内径に対応する値を設定する。ま
た、前記D〜Fにより推定された真空槽3の内径を用い
れば、次に説明する高さ制御を精度よくおこなうことが
できる。
As described above, the inner diameter of the vacuum chamber 3 can be estimated from the above A to C or D to F. Based on the estimated value of the inner diameter of the vacuum chamber 3 and the limit value of use, the vacuum chamber 3
It is possible to judge the usage limit of the above, that is, the replacement time of the refractory material lined in the vacuum chamber 3. Since the estimated inner diameter of the vacuum tank 3 is the average inner diameter of the vacuum tank 3 increased due to wear as described above, the use limit value of the inner diameter of the vacuum tank 3 is set to a value corresponding to this average inner diameter. To do. Further, if the inner diameter of the vacuum chamber 3 estimated from the above D to F is used, the height control described below can be performed accurately.

【0065】次に、本発明の高さ制御方法について説明
する。
Next, the height control method of the present invention will be described.

【0066】本発明の高さ制御方法は、取鍋2内の湯面
レベルLからの浸漬管4の浸漬長さAが一定範囲に
なるように取鍋2または真空槽3の高さを制御する方法
である。
[0066] The height control method of the present invention, the height of the ladle 2 or the vacuum chamber 3 so as dipping length A 2 of the dip tube 4 is within a predetermined range from the melt surface level L 2 of the ladle 2 Is a method of controlling.

【0067】すなわち、前記の真空槽3の内径推定方法
により推定された真空槽3の内径を用い、脱ガス処理中
に浸漬管4の浸漬長さA(図2〜図4参照)が一定範
囲になるように、次のようにして、例えば真空槽3を昇
降させる。
That is, by using the inner diameter of the vacuum chamber 3 estimated by the inner diameter estimating method of the vacuum chamber 3 described above, the immersion length A 2 (see FIGS. 2 to 4) of the immersion pipe 4 is constant during the degassing process. For example, the vacuum chamber 3 is moved up and down so as to be within the range as follows.

【0068】前記のように、脱ガス処理の際に真空槽3
の圧力が変動しても、真空槽3の内部に存在する溶鋼1
の量、浸漬管4と浸漬管取付部3aの内部に存在する溶
鋼1の量、および取鍋2内に存在する溶鋼1の量の合計
量は、図2〜図4の全ての状態において等しい。また、
図2〜図4において、浸漬管4および浸漬管取付部3a
内の湯面レベルL、または真空槽3内の湯面レベルL
と、取鍋2内の湯面レベルLとの差X(=L−L
)で表される溶鋼差圧は、大気圧と真空槽3内の圧力
との差に等しい。
As described above, the vacuum chamber 3 is used during the degassing process.
Even if the pressure in the chamber fluctuates, the molten steel 1 existing inside the vacuum chamber 3
, The total amount of the molten steel 1 present inside the dip tube 4 and the dip tube mounting portion 3a, and the amount of the molten steel 1 present inside the ladle 2 are equal in all the states of FIGS. 2 to 4. . Also,
2 to 4, the immersion pipe 4 and the immersion pipe mounting portion 3a
Level L 1 inside or level L inside the vacuum tank 3
1 and the level L 2 of the molten metal in the ladle 2 X (= L 1 −L
The molten steel differential pressure represented by 2 ) is equal to the difference between the atmospheric pressure and the pressure in the vacuum chamber 3.

【0069】以上の関係を利用すると、図2の状態にお
いて、溶鋼量に関する指数Qは次の(8)式で表すこと
ができ、また、図3の状態において、溶鋼量に関する指
数Qは次の(9)式で表すことができる。
Using the above relationships, the index Q relating to the molten steel amount in the state of FIG. 2 can be expressed by the following equation (8), and the index Q relating to the molten steel amount in the state of FIG. It can be expressed by equation (9).

【0070】 Q=(R -2R +2R )・A+R ・H ・・(8) Q=2R ・X+(R -2R +2R )・A+R ・H ・・(9) この(8)式と(9)式において、浸漬管4の浸漬長さ
が等しいとすると、次の(10)式が成立する。
Q = (R 4 2 -2R 3 2 + 2R 2 2 ) ・ A 2 + R 4 2・ H 0・ ・ (8) Q = 2R 2 2・ X + (R 4 2 -2R 3 2 + 2R 2 2 ) · A 2 + R 4 2 · H ··· (9) In the equations (8) and (9), if the immersion length A 2 of the immersion pipe 4 is equal, the following equation (10) is obtained. To establish.

【0071】 R ・H=2R ・X+R ・H ・・(10) したがって、浸漬管4の下端の移動量(H−H)は下
記の(11)式で表される。
R 4 2 · H 0 = 2R 2 2 · X + R 4 2 · H ··· (10) Therefore, the movement amount (H 0 −H) of the lower end of the immersion pipe 4 is expressed by the following equation (11). expressed.

【0072】H-H=(2R /R )・X ・・(11) ここで、前記のように、浸漬管4および浸漬管取付部3
a内の湯面レベルLと取鍋2内の湯面レベルLとの
差Xは、大気圧と真空槽3内の圧力との差に等しいた
め、前記の(11)式は、次の(12)式のように表す
ことができる。
H 0 -H = (2R 2 2 / R 4 2 ) × X (11) Here, as described above, the dip tube 4 and the dip tube mounting portion 3
Since the difference X between the level L 1 of the molten metal in a and the level L 2 of the molten metal in ladle 2 is equal to the difference between the atmospheric pressure and the pressure in vacuum chamber 3, the above equation (11) is (12) can be expressed.

【0073】 H-H=(2R /R )・(101-P)・(760/101)・(13.6/d) ・・(12) 前記(12)式において、H−Hは、浸漬管4の浸漬
長さAを一定とした場合の、浸漬管4の下端の初期位
置からの移動量である。換言すれば、浸漬管4の浸漬長
さAを一定とするために必要とされる浸漬管4の下端
の初期位置からの移動量である。
H 0 -H = (2R 2 2 / R 4 2 ). (101-P 1 ). (760/101). (13.6 / d) .. (12) In the formula (12), H 0 -H is the amount of movement of the lower end of the immersion pipe 4 from the initial position when the immersion length A 2 of the immersion pipe 4 is constant. In other words, it is the amount of movement from the initial position of the lower end of the immersion pipe 4 required to keep the immersion length A 2 of the immersion pipe 4 constant.

【0074】したがって、図3の状態の場合は、真空処
理中に真空槽3内の圧力Pを測定し、この圧力P
用いて、前記(12)式により浸漬管4の下端の移動量
を求め、この移動量だけ真空槽3を昇降させれば、浸漬
管4の浸漬長さをほぼ一定とすることができる。
Therefore, in the case of the state of FIG. 3, the pressure P 1 in the vacuum chamber 3 is measured during the vacuum processing, and the lower end of the dip tube 4 is moved by the equation (12) using this pressure P 1. By determining the amount and moving the vacuum chamber 3 up and down by this amount of movement, the immersion length of the immersion tube 4 can be made substantially constant.

【0075】また、図4の状態では、次のようにして浸
漬管4の下端の移動量を求める。
Further, in the state of FIG. 4, the movement amount of the lower end of the dipping tube 4 is obtained as follows.

【0076】すなわち、図4の状態において、溶鋼量に
関する指数Qは次の(13)式で表すことができる。
That is, in the state of FIG. 4, the index Q relating to the molten steel amount can be expressed by the following equation (13).

【0077】 Q=R ・(X-B-A+A)+2R ・(A+B)+(R -2R +2R )・A+R ・H ・・ (13) ここで、溶鋼1が真空槽3と浸漬管取付部3aとの境界
に達したとき以降の溶鋼量に関する指数Qは、浸漬管4
と浸漬管取付部3aとの内部に存在する溶鋼量が一定で
あるためこれを除外し、かつ浸漬管4の浸漬長さA
一定とすると、次の(14)式のように簡略化して表す
ことができる。
Q = R 1 2 · (XB-A + A 2 ) + 2R 2 2 · (A + B) + (R 4 2 −2R 3 2 + 2R 2 2 ) · A 2 + R 4 2 · H .. (13) Here, the index Q relating to the amount of molten steel after the molten steel 1 reaches the boundary between the vacuum chamber 3 and the immersion pipe mounting portion 3a is
Since the amount of molten steel existing inside the and the immersion pipe mounting portion 3a is constant, this is excluded, and if the immersion length A 2 of the immersion pipe 4 is constant, the following formula (14) simplifies. Can be expressed as

【0078】Q=R ・X+R ・H ・・(14) 一方、溶鋼1が真空槽3と浸漬管取付部3aとの境界に
達したときの浸漬管4の下端の移動量(H−H)は上
記の(11)式で表されため、このときの浸漬管4の下
端の位置は、次の(15)式のように表すことができ
る。
Q = R 1 2 · X + R 4 2 · H (14) On the other hand, when the molten steel 1 reaches the boundary between the vacuum chamber 3 and the immersion pipe mounting portion 3a, the lower end of the immersion pipe 4 moves. Since the amount (H 0 −H) is expressed by the above formula (11), the position of the lower end of the immersion pipe 4 at this time can be expressed by the following formula (15).

【0079】H=H・(2R /R )・X ・・(15) ただし(15)式中のXは、溶鋼1が真空槽3と浸漬
管取付部3aとの境界に達したときの湯面レベルL
と、取鍋2内の湯面レベルLとの差であるため、
(14)式は次の(16)式のように表すことができ
る。
H = H 0 · (2R 2 2 / R 4 2 ) · X 0 ··· (15) However, X 0 in the equation (15) is that the molten steel 1 is the vacuum tank 3 and the immersion pipe mounting portion 3 a. Level L when reaching the boundary
1 and the level L 2 of the molten metal in the ladle 2,
The equation (14) can be expressed as the following equation (16).

【0080】 Q=R ・X+R ・{H-(2R /R )・X} ・・(16) 上記の(14)式と(16)式は等しいので、次の(1
7)式が成立する。
Q = R 1 2 · X 0 + R 4 2 · {H 0 − (2R 2 2 / R 4 2 ) · X 0 } (16) The above equations (14) and (16) are Since they are equal, the next (1
Equation 7) is established.

【0081】 R ・X+R ・H=R ・X・R ・{H-(2R /R )・X} ・・(17) したがって、浸漬管4の下端の移動量(H−H)は次
の(18)式で表される。
R 1 2 * X + R 4 2 * H = R 1 2 * X 0 * R 4 2 * {H 0- (2R 2 2 / R 4 2 ) * X 0 } ... (17) Therefore, The movement amount (H 0 −H) of the lower end of the immersion pipe 4 is expressed by the following equation (18).

【0082】 H-H={R ・X-(R -2R )・X}/R ・・(18) ここで、前記のように、真空槽3a内の湯面レベルL
と取鍋2内の湯面レベルLとの差Xは、大気圧と真空
槽3内の圧力Pとの差に等しい。また、溶鋼1が真空
槽3と浸漬管取付部3aとの境界に達したときの湯面レ
ベルLと取鍋2内の湯面レベルLとの差Xは、大
気圧と溶鋼1が真空槽3と浸漬管取付部3aとの境界に
達したときの真空槽3内の圧力Pとの差に等しい。そ
のため、前記の(18)式は、次の(19)式のように
表すことができる。
H 0 -H = {R 1 2 · X- (R 1 2 -2R 2 2 ) · X 0 } / R 4 2 · (18) Here, as described above, in the vacuum chamber 3 a Level L 1
And the level L 2 of the molten metal in the ladle 2 are equal to the difference between the atmospheric pressure and the pressure P 2 in the vacuum chamber 3. The difference X 0 between the molten metal surface level L 2 of the molten metal surface level L 1 and the ladle 2 when the molten steel 1 has reached the boundary between the vacuum chamber 3 and the immersion pipe mounting portion 3a is atmospheric pressure and the molten steel 1 Is equal to the difference between the pressure P 3 in the vacuum chamber 3 when the boundary between the vacuum chamber 3 and the dip tube mounting portion 3a is reached. Therefore, the equation (18) can be expressed as the following equation (19).

【0083】 H-H={R ・(101-P)-(R -2R )・(101-P)}・(13.6/d・R )・(760/1 01) ・・(19) 前記(19)式において、H−Hは、浸漬管4の浸漬
長さAを一定とした場合の、浸漬管4の下端の初期位
置からの移動量である。換言すれば、浸漬管4の浸漬長
さAを一定とするために必要とされる浸漬管4の下端
の初期位置からの移動量である。
H 0 -H = {R 1 2 · (101-P 1 )-(R 1 2 -2R 2 2 ) · (101-P 3 )} · (13.6 / d · R 4 2 ) · (760 / 101) ··· (19) In the formula (19), H 0 −H is the amount of movement of the lower end of the immersion pipe 4 from the initial position when the immersion length A 2 of the immersion pipe 4 is constant. Is. In other words, it is the amount of movement from the initial position of the lower end of the immersion pipe 4 required to keep the immersion length A 2 of the immersion pipe 4 constant.

【0084】したがって、図4の状態の場合は、真空処
理中に真空槽3内の圧力Pを測定し、この圧力P
予め求めたPを用い、また、真空槽3の内径Rとし
て前記D〜Fにより推定された内径を用いて前記(1
9)式により浸漬管4の下端の移動量を求める。なお、
溶鋼1が真空槽3と浸漬管取付部3aとの境界に達した
ときの真空槽3内の圧力Pは、図5の直線Sと直線V
(V、V)との交点における圧力であり、(4)
式または(7)式により予め求めることができる。
Therefore, in the case of the state of FIG. 4, the pressure P 2 in the vacuum chamber 3 is measured during the vacuum processing, and this pressure P 2 and P 3 obtained in advance are used. Using the inner diameter estimated by the above D to F as 1 , the above (1
The amount of movement of the lower end of the dip tube 4 is calculated by the equation 9). In addition,
The pressure P 3 in the vacuum tank 3 when the molten steel 1 reaches the boundary between the vacuum tank 3 and the immersion pipe mounting portion 3a is the straight line S and the straight line V in FIG.
1 (V i , V n ) is the pressure at the intersection, (4)
It can be obtained in advance by the formula or the formula (7).

【0085】このようにして求めた移動量だけ真空槽3
を昇降させれば、真空槽3が摩耗した場合であっても、
浸漬管4の浸漬長さをほぼ一定範囲とすることができ
る。
The vacuum chamber 3 is moved by the amount of movement thus obtained.
By moving up and down, even if the vacuum chamber 3 is worn,
The immersion length of the immersion tube 4 can be set within a substantially constant range.

【0086】上記の説明では真空槽3を昇降させたが、
真空槽3の昇降に替えて取鍋2の昇降も上記と同様にお
こなうことができる。
Although the vacuum chamber 3 is moved up and down in the above description,
Instead of raising and lowering the vacuum chamber 3, raising and lowering of the ladle 2 can be performed in the same manner as above.

【0087】また、真空槽3の内径推定は、図5を用い
て説明したが、同図に替えて同図に相当するデータを用
いてもよい。
The estimation of the inner diameter of the vacuum chamber 3 has been described with reference to FIG. 5, but data corresponding to the figure may be used instead of the figure.

【0088】[0088]

【実施例】転炉で吹錬した溶鋼1を75トン取鍋2に出
鋼した後、昇降駆動部が真空槽3に設けられた図1に示
す構成のRH脱ガス装置の浸漬管4を、取鍋2内に収容
された溶鋼1中に浸漬し、真空槽3の高さ制御をおこな
わずに脱ガス処理をおこなった。脱ガス処理は、真空槽
3内を減圧し、真空槽3内の圧力が1kPaに到達した
後20分間おこなった。このとき、一方の浸漬管4の内
壁に設けた羽口(内径20mm×12本)から100m
(normal)/hのアルゴンガスを吹き込み、また、脱
ガス処理の途中で取鍋2内の溶鋼1の温度を測定し、溶
鋼温度がほぼ1600℃を保つように、ランス7から酸
素ガスを吹き込んだ。用いたRH脱ガス装置の主要寸法
は下記の通りである。
EXAMPLE After the molten steel 1 blown in a converter is tapped in a 75-ton ladle 2, the dipping pipe 4 of the RH degassing apparatus having the structure shown in FIG. It was immersed in the molten steel 1 contained in the ladle 2 and degassed without controlling the height of the vacuum chamber 3. The degassing treatment was performed for 20 minutes after the pressure inside the vacuum tank 3 was reduced and the pressure inside the vacuum tank 3 reached 1 kPa. At this time, 100 m from the tuyere (inner diameter 20 mm x 12) provided on the inner wall of one dipping tube 4
3 (normal) / h of argon gas was blown, and the temperature of the molten steel 1 in the ladle 2 was measured during the degassing process, and oxygen gas was supplied from the lance 7 so that the molten steel temperature could be maintained at approximately 1600 ° C. Blown in. The main dimensions of the RH degasser used are as follows.

【0089】真空槽3の内半径R:700mm、 浸漬管取付部3aおよび浸漬管4の内半径R:160
mm、 浸漬管取付部3aおよび浸漬管4の外半径R:460
mm、 浸漬管取付部3aの長さB:670mm、 浸漬管4の長さA:900mm、 取鍋2の内半径R、:1160mm。
The inner radius R 1 of the vacuum chamber 3 is 700 mm, and the inner radius R 2 of the immersion pipe mounting portion 3 a and the immersion pipe 4 is 160.
mm, the outer radius R 3 of the immersion pipe attachment portion 3 a and the immersion pipe 4: 460
mm, the length of the dip tube attaching portion 3a B: 670 mm, length of the dip tube 4 A: 900 mm, ladle 2 of the radius R 4,: 1160mm.

【0090】脱ガス処理に先立ち、前記(4)式および
(7)式により、取鍋2内に収容された溶鋼1の湯面の
初期レベルLからの下降量Xを計算により求めた。
Prior to the degassing treatment, the amount X 2 of drop of the molten metal 1 contained in the ladle 2 from the initial level L 0 was calculated by the above equations (4) and (7). .

【0091】なお、このときの取鍋2内に収容される溶
鋼1の量は75トン(密度d=7(g/cm)とし、
浸漬管4の初期の浸漬長さAを300mmと設定し、
真空槽3の内半径Rが700mm(設計値)の場合と
1000mm(使用限界)の場合について求めた。この
ときの真空槽3内の圧力と取鍋2内の湯面レベルL
よび湯面の下降量Xとの関係は、前記の図5に示すと
おりである。
The amount of molten steel 1 contained in the ladle 2 at this time was 75 tons (density d = 7 (g / cm 3 ),
The initial immersion length A 2 of the immersion tube 4 is set to 300 mm,
The measurement was performed for the inner radius R 1 of the vacuum chamber 3 of 700 mm (design value) and 1000 mm (usage limit). Relationship between the pressure in the vacuum chamber 3 and the molten metal surface level L 2 and descent amount X 2 of molten metal surface in the ladle 2 at this time is as shown in Figure 5 of the.

【0092】脱ガス処理の際は、各チャージの途中の真
空槽3内の圧力が15kPaの時点で、長さが1500
mmの棒鋼を溶鋼1中に挿入して湯面レベルLを測定
し、真空槽3内の圧力が15kPa、湯面レベルL
点を図5にプロットして、そのときの真空槽3の内径を
各チャージ毎に推定した。
In the degassing process, the length is 1500 when the pressure in the vacuum chamber 3 during each charging is 15 kPa.
Insert the mm of steel bar in the molten steel 1 measured melt surface level L 2, the pressure in the vacuum chamber 3 is 15 kPa, and plotted in Figure 5 points molten metal surface level L 2, the vacuum chamber 3 at that time The inner diameter of was estimated for each charge.

【0093】このようにして、脱ガス処理をおこない、
300チャージの脱ガス処理で真空槽3の内径が使用限
界である1000mmと推定されたので、真空槽3の耐
火物を新しい耐火物に張り替えると共に、長さAが70
0mmの浸漬管4を前記の装置に取り付けた。また、前
記の推定された真空槽3の内径に基づき、チャージ数と
真空槽3の内径との関係を求めた。
In this way, degassing treatment is performed,
Since the inner diameter of the vacuum tank 3 was estimated to be 1000 mm, which is the limit of use, in the degassing process of 300 charges, the refractory material in the vacuum tank 3 was replaced with a new refractory material, and the length A was 70 mm.
A 0 mm dip tube 4 was attached to the above device. Further, the relationship between the number of charges and the inner diameter of the vacuum chamber 3 was obtained based on the estimated inner diameter of the vacuum chamber 3.

【0094】その後、前記(12)式および(19)に
基づき、真空槽3の高さ制御をおこないながら、前記と
同じように脱ガス処理をおこなった。但し、各チャージ
における湯面レベルLの測定は行わず、各チャージに
おける真空槽3の内径は、予め求めておいたチャージ数
と真空槽3との関係から推定し、この推定され内径を前
記(19)式で用いた。そして、各チャージの真空処理
が終了した後に溶鋼1から引き抜かれた浸漬管4を観察
し、その変色程度により浸漬管3が溶鋼1から引き抜か
れる直前の浸漬長さを推定した。その結果、推定した浸
漬長さは450〜550mmであった。
Thereafter, the degassing process was performed in the same manner as described above while controlling the height of the vacuum chamber 3 based on the equations (12) and (19). However, the level L 2 of the molten metal in each charge was not measured, and the inner diameter of the vacuum tank 3 in each charge was estimated from the relationship between the number of charges and the vacuum tank 3 which was obtained in advance, and the estimated inner diameter was calculated as described above. Used in equation (19). Then, the immersion pipe 4 withdrawn from the molten steel 1 was observed after the vacuum treatment of each charge was completed, and the immersion length immediately before the immersion pipe 3 was withdrawn from the molten steel 1 was estimated based on the degree of discoloration. As a result, the estimated immersion length was 450 to 550 mm.

【0095】また、比較のために、浸漬長さの目標値を
200mmとし、全てのチャージにおいて真空槽3の内
径を一定として前記(12)式および(19)式によ
り、真空槽3の高さ制御をおこなった。この場合は、真
空槽3の耐火物を新しい耐火物に張り替えた後の早い時
期に、取鍋2内の溶鋼1の上部に存在するスラグが浸漬
管4から吸い上げられ始めたので、作業を中止した。
For comparison, the height of the vacuum chamber 3 is set by the above equations (12) and (19) while setting the target value of the immersion length to 200 mm and keeping the inner diameter of the vacuum chamber 3 constant for all charges. Controlled. In this case, since the slag existing above the molten steel 1 in the ladle 2 began to be sucked up from the dipping pipe 4 at an early stage after the refractory material in the vacuum tank 3 was replaced with a new refractory material, the operation was stopped. did.

【0096】[0096]

【発明の効果】この発明の真空槽の内径推定方法によれ
ば、真空槽が摩耗した際の内径を精度よく推定すること
ができので、真空槽内に内張された耐火物の使用限界を
精度良く判定することができる。また、この発明の高さ
制御方法によれば、真空槽が小型の場合、または繰り返
し使用数が多い場合であっても、浸漬管の浸漬長さを一
定範囲に精度良く保持することができる。
According to the method for estimating the inner diameter of a vacuum chamber of the present invention, the inner diameter when the vacuum chamber is worn can be accurately estimated, so that the limit of use of the refractory lined in the vacuum chamber is limited. It can be accurately determined. Further, according to the height control method of the present invention, the immersion length of the immersion tube can be accurately maintained within a certain range even when the vacuum chamber is small or the number of repeated uses is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】RH脱ガス装置の構成一例を示す部分縦断面図
である。
FIG. 1 is a partial vertical cross-sectional view showing an example of the configuration of an RH degassing device.

【図2】真空槽内の圧力が大気圧の場合の溶鋼の状態を
示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a state of molten steel when the pressure in the vacuum chamber is atmospheric pressure.

【図3】溶鋼の一部が浸漬管および浸漬管取付部の内部
に吸い上げられた状態を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a state where a part of molten steel is sucked up inside the dip tube and the dip tube mounting portion.

【図4】溶鋼の一部が真空槽内に吸い上げられた状態を
示す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing a state where a part of molten steel is sucked up in a vacuum chamber.

【図5】計算により求めた真空槽内の圧力と取鍋内の湯
面レベルLおよび湯面の下降量Xとの関係の一例を
示す図である。
FIG. 5 is a diagram showing an example of the relationship between the pressure in the vacuum chamber, the level L 2 of the molten metal in the ladle, and the amount X 2 of lowering of the molten metal in the ladle, which are calculated.

【符号の説明】[Explanation of symbols]

1:溶鋼、 2:取鍋、 3:真空槽、 4:浸漬管、 5:真空排気管、 6:合金添加管、 7:ランス。 1: molten steel, 2: Ladle, 3: vacuum chamber, 4: immersion tube, 5: vacuum exhaust pipe, 6: Alloy addition tube, 7: Lance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】溶融金属を収容する取鍋と、下部に浸漬管
が設けられるとともに真空排気部に接続された真空槽
と、前記取鍋と真空槽のいずれか一方を昇降させる昇降
駆動部とを備え、取鍋に収容された溶融金属中に浸漬管
を浸漬して取鍋と減圧された真空槽との間で溶融金属を
循環させて脱ガス処理をおこなう真空脱ガス装置の前記
真空槽の内径を推定する方法であって、取鍋に収容され
た溶融金属中に浸漬管を浸漬するとともに取鍋と真空槽
との高さ位置の関係を一定とした状態における真空槽内
の圧力と取鍋内の溶融金属の湯面レベルとの関係を、真
空槽の複数の内径の場合について予め求めておき、脱ガ
ス処理の際は、取鍋に収容された溶融金属の一部が真空
槽内に達した時点より後で、取鍋内の溶融金属の湯面レ
ベルおよびそのときの真空槽内の圧力を測定し、前記測
定された取鍋内の湯面レベルおよび真空槽内の圧力と、
前記予め求められた真空槽内の圧力と取鍋内の溶融金属
の湯面レベルとの関係とに基づき、湯面レベルが測定さ
れた時点における真空槽の内径を推定することを特徴と
する真空脱ガス装置における真空槽の内径推定方法。
1. A ladle for accommodating molten metal, a vacuum tank provided with a dip pipe at the bottom and connected to a vacuum exhaust unit, and an elevating / lowering drive unit for elevating or lowering one of the ladle and the vacuum tank. The vacuum tank of the vacuum degassing apparatus, which comprises a dipping tube immersed in the molten metal contained in the ladle and circulates the molten metal between the ladle and the depressurized vacuum tank to perform degassing treatment. The method of estimating the inner diameter of the, the pressure in the vacuum tank in a state in which the immersion pipe is immersed in the molten metal contained in the ladle and the height position relationship between the ladle and the vacuum tank is constant. The relationship between the molten metal level in the ladle and the molten metal level is obtained in advance for multiple inner diameters of the vacuum tank, and during degassing, part of the molten metal contained in the ladle is in the vacuum tank. Level of molten metal in the ladle after Measuring the pressure in the vacuum chamber, and the pressure of the molten metal surface level and the vacuum chamber of the measured ladle,
A vacuum characterized by estimating the inner diameter of the vacuum tank at the time when the level of the molten metal is measured based on the relationship between the pressure in the vacuum chamber and the level of the molten metal in the ladle that is obtained in advance. Method for estimating inner diameter of vacuum chamber in degassing device.
【請求項2】請求項1に記載した内径推定方法により複
数のチャージについて真空槽の内径を推定して保管し、
前記保管された複数のチャージにおける真空槽の内径に
基づき、チャージ数と真空槽の内径との関係を予め求め
ておき、脱ガス処理の際は、現在のチャージ数と、前記
予め求められたチャージ数と真空槽の内径との関係とに
基づき、現在の真空槽の内径を推定することを特徴とす
る真空脱ガス装置における真空槽の内径推定方法。
2. The inner diameter of the vacuum chamber is estimated and stored for a plurality of charges by the inner diameter estimating method according to claim 1.
The relationship between the number of charges and the inner diameter of the vacuum chamber is obtained in advance based on the inner diameters of the vacuum chambers in the plurality of stored charges, and the current number of charges and the previously determined charge are used during degassing. A method for estimating the inner diameter of a vacuum chamber in a vacuum degassing apparatus, comprising estimating the inner diameter of the current vacuum chamber based on the relationship between the number and the inner diameter of the vacuum chamber.
【請求項3】溶融金属を収容する取鍋と、下部に浸漬管
が設けられるとともに真空排気部に接続された真空槽
と、前記取鍋と真空槽のいずれか一方を昇降させる昇降
駆動部とを備え、取鍋に収容された溶融金属中に浸漬管
を浸漬して取鍋と減圧された真空槽との間で溶融金属を
循環させて脱ガス処理をおこなう真空脱ガス装置の前記
取鍋または真空槽の高さを制御する方法であって、真空
槽内の圧力を測定し、浸漬管の浸漬長さを一定としたと
きの浸漬管の下端位置と浸漬管の初期の下端位置との差
を請求項2で推定された真空槽の内径と前記測定された
真空槽内の圧力とに基づいて求め、前記求めた浸漬管の
下端位置の差を補正すべく取鍋または真空槽を昇降させ
ることを特徴とする真空脱ガス装置における高さ制御方
法。
3. A ladle for containing molten metal, a vacuum tank provided with a dip pipe at the bottom and connected to a vacuum exhaust unit, and an elevating / lowering drive unit for elevating or lowering one of the ladle and the vacuum tank. And a ladle of a vacuum degassing device for degassing by immersing a dipping tube in molten metal contained in a ladle and circulating the molten metal between the ladle and a vacuum chamber under reduced pressure. Or a method of controlling the height of the vacuum chamber, measuring the pressure in the vacuum chamber, the lower end position of the immersion pipe and the initial lower end position of the immersion pipe when the immersion length of the immersion pipe is constant The difference is obtained based on the inner diameter of the vacuum chamber estimated in claim 2 and the measured pressure in the vacuum chamber, and the ladle or the vacuum chamber is moved up and down to correct the difference between the obtained lower end positions of the immersion tubes. A method for controlling height in a vacuum degassing device, comprising:
JP2001319831A 2001-10-17 2001-10-17 Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height Pending JP2003129123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319831A JP2003129123A (en) 2001-10-17 2001-10-17 Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319831A JP2003129123A (en) 2001-10-17 2001-10-17 Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height

Publications (1)

Publication Number Publication Date
JP2003129123A true JP2003129123A (en) 2003-05-08

Family

ID=19137327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319831A Pending JP2003129123A (en) 2001-10-17 2001-10-17 Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height

Country Status (1)

Country Link
JP (1) JP2003129123A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154278A (en) * 2005-12-07 2007-06-21 Kobe Steel Ltd Rh degasification-refining method
JP2007154279A (en) * 2005-12-07 2007-06-21 Kobe Steel Ltd Rh degasification-refining device
JP2009221509A (en) * 2008-03-14 2009-10-01 Nippon Steel Corp Method for starting gas-exhaustion in vacuum-degassing apparatus
KR101400222B1 (en) * 2012-12-21 2014-05-30 주식회사 포스코 Control system for lifting ladle
JP2017145984A (en) * 2016-02-16 2017-08-24 新日鐵住金株式会社 Estimation method for thickness of rh tank bottom refractory
JP7015637B2 (en) 2017-02-09 2022-02-03 日本製鉄株式会社 Method for removing non-metal inclusions in molten steel
CN114645112A (en) * 2022-03-29 2022-06-21 广东韶钢松山股份有限公司 Molten steel vacuum treatment method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154278A (en) * 2005-12-07 2007-06-21 Kobe Steel Ltd Rh degasification-refining method
JP2007154279A (en) * 2005-12-07 2007-06-21 Kobe Steel Ltd Rh degasification-refining device
JP2009221509A (en) * 2008-03-14 2009-10-01 Nippon Steel Corp Method for starting gas-exhaustion in vacuum-degassing apparatus
KR101400222B1 (en) * 2012-12-21 2014-05-30 주식회사 포스코 Control system for lifting ladle
JP2017145984A (en) * 2016-02-16 2017-08-24 新日鐵住金株式会社 Estimation method for thickness of rh tank bottom refractory
JP7015637B2 (en) 2017-02-09 2022-02-03 日本製鉄株式会社 Method for removing non-metal inclusions in molten steel
CN114645112A (en) * 2022-03-29 2022-06-21 广东韶钢松山股份有限公司 Molten steel vacuum treatment method
CN114645112B (en) * 2022-03-29 2023-03-24 广东韶钢松山股份有限公司 Molten steel vacuum treatment method

Similar Documents

Publication Publication Date Title
JP2003129123A (en) Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height
JP2020002425A (en) Vacuum degassing apparatus and method for refining molten steel
CN111944942A (en) Dynamic tapping control method and device for eccentric furnace bottom of converter
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP6601631B2 (en) Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
KR101104799B1 (en) Refining method of enamel molten steel containing high concentration titanium and nitrogen
JP2022001867A (en) Device and method for measuring temperature of molten metal
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
CN113490755A (en) Method for producing ultra-low carbon steel containing Ti
JP6822148B2 (en) Dehydrogenation refining method for molten steel
JP6642085B2 (en) RH tank bottom refractory thickness estimation method
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
JPH0987730A (en) Method for heat-raising and refining molten steel
KR101622281B1 (en) Method of molten steel height measurement for converter
JP3327210B2 (en) Vacuum refining method and apparatus
JP6966029B1 (en) Decarburization refining method of molten steel under reduced pressure
TWI805460B (en) Method for deoxidizing and refining molten steel, method for manufacturing steel and the steel
JP5328306B2 (en) Ladle refining method
JP5073269B2 (en) Method of cooling the iron shell of RH equipment
JPH0741826A (en) Method for vacuum-refining molten steel
JP2009068099A (en) Structure for gas-blowing tuyere in refining vessel
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
JP4258414B2 (en) Detecting the amount of metal