JPH1068013A - Vacuum-decarburizing refining method of stainless steel - Google Patents

Vacuum-decarburizing refining method of stainless steel

Info

Publication number
JPH1068013A
JPH1068013A JP24715796A JP24715796A JPH1068013A JP H1068013 A JPH1068013 A JP H1068013A JP 24715796 A JP24715796 A JP 24715796A JP 24715796 A JP24715796 A JP 24715796A JP H1068013 A JPH1068013 A JP H1068013A
Authority
JP
Japan
Prior art keywords
vacuum
molten steel
carbon concentration
refining
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24715796A
Other languages
Japanese (ja)
Inventor
Kenichiro Miyamoto
健一郎 宮本
Katsuhiko Kato
勝彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24715796A priority Critical patent/JPH1068013A/en
Publication of JPH1068013A publication Critical patent/JPH1068013A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum-decarburizing refining method of a stainless steel excellent in the productivity which restrains the sticking of splash to the inner walls of a vacuum vessel and an immersion tube and an oxygen lance and also, can reduce the solidified sticking of slag between the immersion tube and a ladle while preventing the loss caused by the oxidation of chromium in molten stainless steel. SOLUTION: In the vacuum-decarburizing refining method of the stainless steel stirring the molten steel by inert gas while blowing oxygen gas, in the high carbon concn. range of the molten steel 11, the flow rate of the oxygen gas is kept to 3-25Nm<3> /h/t-steel and the flow rate of the inert gas is kept to 0.3-4.0NL/min/s-steel. In the successive low carbon range of the molten steel 11, the flow rate of the oxygen gas is reduced to 0.5-12.5Nm<3> /h/t-steel and also, the dipping depth (h) of the immersion tube 14 is changed in a prescribed range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は浸漬管と取鍋間のス
ラグ固着を防止すると共に、効率的な脱炭精錬を行うこ
とのできるステンレス鋼の真空脱炭精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for vacuum decarburization and refining of stainless steel, which can prevent slag from sticking between a dip tube and a ladle and can perform efficient decarburization and refining.

【0002】[0002]

【従来の技術】電気炉、又は転炉で脱炭精錬された溶鋼
を、さらに脱炭精錬して炭素濃度が約0.01wt%の
溶鋼を得る方法として、取鍋中の溶鋼面を真空下に保
持して該溶鋼面に酸素ガスを吹き付けるVOD法、及び
溶鋼に浸漬された浸漬管内の溶鋼面に酸素ガスを吹き
付けて真空精錬を行う浸漬管法が知られている。ところ
が、前記VOD法では、溶鋼面上部の空間を充分に確
保できないために、精錬中に飛散する溶鋼の飛沫(スプ
ラッシュ)が、上吹きランス、及び真空容器の蓋に付着
して、操業の支障となるという問題点があった。
2. Description of the Related Art As a method for obtaining molten steel having a carbon concentration of about 0.01% by weight by further decarburizing and refining molten steel in an electric furnace or a converter, the molten steel surface in a ladle is subjected to vacuum. And an immersion pipe method in which oxygen gas is blown onto the molten steel surface in an immersion pipe immersed in the molten steel to perform vacuum refining by blowing oxygen gas onto the molten steel surface while holding the molten steel. However, in the VOD method, since the space above the molten steel surface cannot be sufficiently secured, splashes of the molten steel scattered during refining adhere to the upper blowing lance and the lid of the vacuum vessel, which hinders operation. There was a problem that becomes.

【0003】このような設備的制約の少ない浸漬管法
による方法として、特公平4−20967号公報には、
図12に示すように取鍋50内の溶鋼51を浸漬管52
を介して真空槽53内に吸い上げ、浸漬管52の投影面
下の取鍋50内の下部から不活性ガスを吹き込み、か
つ、真空槽53内の溶鋼表面に上部ランス54を介して
酸化性ガスを吹き付ける溶鋼の真空精錬方法において、
浸漬管52の内径(D1)と取鍋50の内径(D0 )と
の比(D1 /D0 )が0.4〜0.8の値となるよう浸
漬管52の内径を定めると共に、溶鋼表面からの不活性
ガスの吹き込み深さ(H1 )と取鍋50内の溶鋼深さ
(H0 )の比(H1 /H0 )が0.5〜1.0の値とな
るよう不活性ガスの吹き込み深さを定めて、効率的な脱
炭を行うことを目的とした溶鋼の真空精錬法が提案され
ている。また、特開平2−133510号公報には、溶
融金属を収容する取鍋と、前記溶融金属に浸漬される浸
漬管を下端に備えた真空槽と、該真空槽の内部を減圧す
る真空源に接続された排気管と、前記真空槽の内部に配
置された遮蔽体とを備えており、前記浸漬管内にある湯
面から2〜5mの高さに前記遮蔽体を維持した真空処理
装置が提案されている。
[0003] Japanese Patent Publication No. Hei 4-20967 discloses a method using an immersion tube method with less restrictions on equipment.
As shown in FIG. 12, the molten steel 51 in the ladle 50 is
Into the vacuum chamber 53, blow an inert gas from the lower part of the ladle 50 below the projection plane of the immersion pipe 52, and oxidize gas through the upper lance 54 to the molten steel surface in the vacuum chamber 53. In the vacuum refining method of molten steel spraying
The inner diameter of the dip tube 52 is determined so that the ratio (D 1 / D 0 ) of the inner diameter (D 1 ) of the dip tube 52 to the inner diameter (D 0 ) of the ladle 50 becomes 0.4 to 0.8. The ratio (H 1 / H 0 ) of the depth (H 1 ) of blowing the inert gas from the surface of the molten steel to the depth (H 0 ) of the molten steel in the ladle 50 is 0.5 to 1.0. A vacuum refining method for molten steel has been proposed for the purpose of efficiently performing decarburization by determining the injection depth of the inert gas. JP-A-2-133510 discloses a ladle for accommodating a molten metal, a vacuum chamber provided with a dip tube at the lower end immersed in the molten metal, and a vacuum source for depressurizing the inside of the vacuum chamber. A vacuum processing apparatus comprising a connected exhaust pipe and a shield disposed inside the vacuum vessel, and maintaining the shield at a height of 2 to 5 m from a molten metal surface in the immersion pipe is proposed. Have been.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
公平4−20967号公報に記載の方法では、以下の
〜に示すような問題点があった。 溶鋼中に吹き込まれる酸素ガス流量、アルゴンガス流
量、及び真空槽53内の真空度等の脱炭精錬条件が適切
に規定されていないために、溶鋼面の揺動、及びスプラ
ッシュが過剰となり、地金付着に起因した操業トラブル
が発生する。 溶鋼中のクロム分が吹き込まれる酸素によって酸化さ
れ、この酸化されたクロム酸化物が溶鋼中を下降する間
に溶鋼中の炭素により還元されるが、下方から吹き込ま
れる不活性ガスの対流現象により、還元されることなく
浸漬管と取鍋内壁との間の溶鋼面上に浮上して、スラグ
55を形成し溶鋼中から排出され、クロム分の損失量が
多くなる。 このような酸化クロムを含むスラグ55により、前記
浸漬管52と取鍋内壁間の溶鋼面上においては、その溶
鋼面の粘性が高くなると共に、スラグ55もしくは地金
等がその周辺に付着して固着するため、精錬終了時に浸
漬管52を取鍋50の位置から移動させることが困難と
なり、精錬作業の障害となる。 溶鋼の脱炭に寄与した酸素ガス量と溶鋼に吹き込まれ
た全酸素ガス量との比である脱炭酸素効率は、真空槽5
3における真空度、溶鋼の撹拌状態、及び吹き込まれる
酸素ガスの流量等の精錬条件により左右されるが、この
ような精錬条件が適正でなく、脱炭酸素効率を高レベル
に維持することが困難である。また、前記特開平2−1
33510号公報の真空槽の内部に遮蔽体を配置して、
スプラッシュを防止する精錬装置では、遮蔽体に付着し
た地金を除去する作業が必要となる等、生産性を低下さ
せるという問題点があった。
However, the method described in Japanese Patent Publication No. 4-20967 has the following problems. Since decarburization and refining conditions such as the flow rate of oxygen gas and argon gas blown into the molten steel and the degree of vacuum in the vacuum chamber 53 are not properly specified, the rocking and splash of the molten steel surface become excessive, Operation troubles due to the adhesion of gold occur. The chromium component in the molten steel is oxidized by the injected oxygen, and the oxidized chromium oxide is reduced by the carbon in the molten steel while descending in the molten steel, but due to a convection phenomenon of the inert gas blown from below, Without being reduced, it floats on the molten steel surface between the dip tube and the inner wall of the ladle, forms slag 55 and is discharged from the molten steel, and the loss of chromium increases. Due to the slag 55 containing such chromium oxide, on the molten steel surface between the immersion pipe 52 and the inner wall of the ladle, the viscosity of the molten steel surface is increased, and the slag 55 or the metal is adhered to the periphery. Due to the sticking, it is difficult to move the immersion pipe 52 from the position of the ladle 50 at the end of the refining, which hinders the refining operation. The decarbonation efficiency, which is the ratio of the amount of oxygen gas contributing to decarburization of the molten steel to the total amount of oxygen gas blown into the molten steel, is determined by the vacuum chamber 5
3 depends on the refining conditions such as the degree of vacuum, the stirring state of the molten steel, and the flow rate of the oxygen gas to be blown. However, such refining conditions are not appropriate and it is difficult to maintain the decarbonation efficiency at a high level. It is. Further, Japanese Patent Application Laid-Open No.
A shield is arranged inside the vacuum chamber of 33510,
The smelting apparatus for preventing splash has a problem of reducing productivity, for example, an operation of removing bullion adhered to the shield is required.

【0005】本発明はこのような事情に鑑みてなされた
もので、真空槽や浸漬管の内壁、酸素ランスへのスプラ
ッシュ付着を抑制すると共に、ステンレス溶鋼中のクロ
ムの酸化によるロスを防止しながら、浸漬管及び取鍋間
のスラグ固着を減少させることのできる生産性に優れた
ステンレス鋼の真空脱炭精錬方法を提供することを目的
とする。
[0005] The present invention has been made in view of the above circumstances, while suppressing the adhesion of splash to the inner wall of the vacuum chamber or immersion tube, the oxygen lance, and while preventing the loss due to oxidation of chromium in the molten stainless steel. It is another object of the present invention to provide a method for vacuum decarburization and refining of stainless steel, which is excellent in productivity and can reduce slag adhesion between a dip tube and a ladle.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載のステンレス鋼の真空脱炭精錬方法は、取鍋に保持
されたクロムを含む溶鋼に浸漬管を浸漬し、該浸漬管に
連通する真空槽内を減圧すると共に、該真空槽上部の上
吹きランスを介して酸素ガスを吹き込みながら、前記取
鍋底部の底吹きノズルから供給される不活性ガスにより
前記溶鋼を撹拌するステンレス鋼の真空脱炭精錬方法に
おいて、前記溶鋼の高炭素濃度領域では、前記酸素ガス
の酸素ガス流量を3〜25Nm3 /h/t−steel
に、前記不活性ガスの不活性ガス流量を0.3〜4.0
Nリットル/分/t−steelにそれぞれ維持し、続
く前記溶鋼の低炭素濃度領域では、前記酸素ガス流量を
毎分0.5〜12.5Nm3 /h/t−steelの減
少速度で低減すると共に、前記浸漬管の浸漬深さを所定
範囲内で増減する。請求項2記載のステンレス鋼の真空
脱炭精錬方法は、請求項1記載のステンレス鋼の真空脱
炭精錬方法において、前記高炭素濃度領域における溶鋼
の炭素濃度が0.3〜1wt%であり、前記低炭素濃度
領域における溶鋼の炭素濃度が0.01〜0.3wt%
である。請求項3記載のステンレス鋼の真空脱炭精錬方
法は、請求項1又は2記載のステンレス鋼の真空脱炭精
錬方法において、前記溶鋼のクロム含有量が5〜30w
t%である。請求項4記載のステンレス鋼の真空脱炭精
錬方法は、請求項1〜3のいずれか1項に記載のステン
レス鋼の真空脱炭精錬方法において、前記高炭素濃度領
域における前記浸漬管の浸漬深さと前記取鍋内の溶鋼深
さとの浸漬比を0.1〜0.6とする。請求項5記載の
ステンレス鋼の真空脱炭精錬方法は、請求項1〜4のい
ずれか1項に記載のステンレス鋼の真空脱炭精錬方法に
おいて、前記高炭素濃度領域における前記真空槽の真空
度を200torr以上に維持する。請求項6記載のス
テンレス鋼の真空脱炭精錬方法は、請求項1〜5のいず
れか1項に記載のステンレス鋼の真空脱炭精錬方法にお
いて、前記浸漬管が直胴型浸漬管である。
According to the present invention, there is provided a semiconductor device comprising:
The vacuum decarburization and refining method for stainless steel described in the above is a method in which an immersion pipe is immersed in molten steel containing chromium held in a ladle, and the inside of a vacuum chamber communicating with the immersion pipe is depressurized, and the upper part of the vacuum chamber is blown upward. In a vacuum decarburization refining method for stainless steel in which the molten steel is stirred by an inert gas supplied from a bottom blowing nozzle at the bottom of the ladle while blowing oxygen gas through a lance, in the high carbon concentration region of the molten steel, The oxygen gas flow rate of the oxygen gas is 3 to 25 Nm 3 / h / t-steel.
In addition, the inert gas flow rate of the inert gas is set to 0.3 to 4.0.
N liter / min / t-steel, and in the subsequent low carbon concentration region of the molten steel, the oxygen gas flow rate is reduced at a rate of 0.5 to 12.5 Nm 3 / h / t-steel per minute. At the same time, the immersion depth of the immersion tube is increased or decreased within a predetermined range. The method for vacuum decarburization and refining of stainless steel according to claim 2 is the method for vacuum decarburization and refining for stainless steel according to claim 1, wherein the carbon concentration of the molten steel in the high carbon concentration region is 0.3 to 1 wt%. The carbon concentration of the molten steel in the low carbon concentration region is 0.01 to 0.3 wt%
It is. The method for vacuum decarburization and refining of stainless steel according to claim 3 is the method for vacuum decarburization and refining for stainless steel according to claim 1 or 2, wherein the chromium content of the molten steel is 5 to 30 watts.
t%. The vacuum decarburization refining method for stainless steel according to claim 4 is the vacuum decarburization refining method for stainless steel according to any one of claims 1 to 3, wherein the immersion depth of the immersion pipe in the high carbon concentration region is set. And the immersion ratio between the molten steel depth in the ladle and 0.1 to 0.6. The vacuum decarburizing and refining method for stainless steel according to claim 5 is the vacuum decarburizing and refining method for stainless steel according to claim 1, wherein the vacuum degree of the vacuum tank in the high carbon concentration region is set. Is maintained at 200 torr or more. The vacuum decarburization refining method for stainless steel according to claim 6 is the vacuum decarburization refining method for stainless steel according to any one of claims 1 to 5, wherein the immersion pipe is a straight body type immersion pipe.

【0007】溶鋼の高炭素濃度領域とは、脱炭反応が上
吹きランスから溶鋼に吹き込まれる酸素ガスの供給律速
となるような反応領域をいう。溶鋼の低炭素濃度領域と
は、脱炭反応が溶鋼中の炭素の移動律速となるような反
応領域をいう。高炭素濃度領域における酸素ガス流量が
3Nm3 /h/t−steel(以下Nm3 /h/tと
表記する)より少ないと、溶鋼の脱炭速度が低下して精
錬時間が長くなり、生産性の低下する傾向が現れる。な
お、以下の記載において、酸素ガス流量及び不活性ガス
流量は精錬処理する溶鋼1トン当りに換算した流量をい
うものとする。一方、酸素ガス流量が25Nm3 /h/
tを越えると、溶鋼が過剰に撹拌されてスプラッシュが
生じ易くなり、この結果、地金付着によるロスや、地金
付着により浸漬管の引上げが困難になると共に、クロム
分の酸化量が多くなる等の悪影響が現れるため好ましく
ない。
[0007] The high carbon concentration region of the molten steel means a reaction region in which the decarburization reaction is controlled by the supply of oxygen gas blown into the molten steel from the upper blowing lance. The low carbon concentration region of the molten steel refers to a reaction region in which the decarburization reaction becomes a rate-determining movement of carbon in the molten steel. If the oxygen gas flow rate in the high carbon concentration region is less than 3 Nm 3 / h / t-steel (hereinafter referred to as Nm 3 / h / t), the decarburization rate of the molten steel decreases, the refining time becomes longer, and the productivity increases. Tend to decrease. In the following description, the oxygen gas flow rate and the inert gas flow rate refer to flow rates converted per ton of molten steel to be refined. On the other hand, the oxygen gas flow rate is 25 Nm 3 / h /
If t is exceeded, the molten steel is excessively stirred and splash is likely to occur. As a result, loss due to metal adhesion and difficulty in pulling up the dip tube due to metal adhesion make the chromium oxidation amount large. It is not preferable because adverse effects such as appear.

【0008】また、高酸素濃度領域における不活性ガス
流量が0.3Nリットル/分/t−steel(以下N
リットル/分/tと表記する)より少ないと、浸漬管内
の湯面に浮遊する溶融スラグを掻き分けて溶鋼中の炭素
と酸素とを効率的に反応させることが困難になり、脱炭
酸素効率が低下する。逆に、不活性ガス流量が4.0N
リットル/分/tを越えると、浸漬管内の湯面に浮遊す
る酸化クロムを含有する溶融スラグが浸漬管内から取鍋
内に逸流し易くなると共に、スプラッシュを効果的に抑
制することができなくなるので好ましくない。低炭素濃
度領域における酸素ガス流量の減少速度が毎分0.5N
3 /h/tより少ないと、COガス発生量の減少代が
少ないために、スプラッシュの抑制が不可能となる。ま
た、酸素ガスが供給過剰となるためクロムの酸化量が増
大する。一方、前記減少速度が毎分12.5Nm3 /h
/tを越えると、低炭素濃度領域における脱炭効率が低
下すると共に、吹酸速度の低下が速すぎるために、低流
量での吹酸する時間が長くなり、以降の処理時間が結果
的に長くなり生産性の低下傾向が現れるので、好ましく
ない。
Further, the flow rate of the inert gas in the high oxygen concentration region is 0.3 Nl / min / t-steel (hereinafter referred to as N
Liter / minute / t), it becomes difficult to efficiently separate the molten slag floating on the surface of the molten metal in the immersion tube to cause the carbon and oxygen in the molten steel to react efficiently. descend. Conversely, the inert gas flow rate is 4.0N
When it exceeds liter / min / t, the molten slag containing chromium oxide floating on the surface of the molten metal in the dip tube easily escapes from the dip tube into the ladle, and the splash cannot be effectively suppressed. Not preferred. The rate of decrease of oxygen gas flow rate in low carbon concentration region is 0.5N / min
When the amount is less than m 3 / h / t, the amount of reduction in the amount of generated CO gas is small, so that it is impossible to suppress the splash. Further, since the supply of oxygen gas becomes excessive, the oxidation amount of chromium increases. On the other hand, the decreasing speed is 12.5 Nm 3 / h
If the ratio exceeds / t, the decarburization efficiency in the low carbon concentration region decreases, and the blowing acid speed decreases too fast, so that the time for blowing acid at a low flow rate becomes longer, resulting in a subsequent processing time. It is not preferable because it becomes longer and the productivity tends to decrease.

【0009】高炭素濃度領域における溶鋼の炭素濃度は
0.3〜1wt%の範囲とする。これは、転炉や電炉で
ステンレス溶鋼のC濃度を0.3wt%未満に粗脱炭精
錬しようとすると、溶鋼中のクロムが酸化されてクロム
の酸化ロスを生じ易くなり、一方、溶鋼の炭素濃度が1
wt%を越えると、ステンレス溶鋼を仕上脱炭精錬する
時間が長くなって生産性が低下する傾向が現れるからで
ある。また、前記高炭素濃度領域に続く低炭素濃度領域
の炭素濃度の下限値を0.01wt%としたのは、炭素
濃度が0.01wt%より少なくなるように脱炭精錬を
行っても、機械的強度等の必要特性をより以上に向上さ
せることが困難であり、精錬にかかるコストが増大する
からである。溶鋼のクロム含有量が5wt%より少ない
と、ステンレス鋼として必要な耐食性等の特性を維持す
ることが困難となる。また、クロム含有量が30wt%
を越えるようにしても、必要特性をそれ程向上させるこ
とができない上に、コスト高となるので好ましくない。
[0009] The carbon concentration of the molten steel in the high carbon concentration region is in the range of 0.3 to 1 wt%. This is because, in a converter or an electric furnace, if the C concentration of molten stainless steel is to be reduced to less than 0.3 wt% by coarse decarburization refining, chromium in the molten steel is oxidized and oxidization loss of chromium is easily caused. Concentration 1
If the amount exceeds wt%, the time required for finish decarburization and refining of molten stainless steel is prolonged, and the productivity tends to decrease. Also, the lower limit of the carbon concentration in the low carbon concentration region following the high carbon concentration region is set to 0.01 wt% because the decarburization refining is performed even if the carbon concentration is reduced to less than 0.01 wt%. This is because it is difficult to further improve the required properties such as the target strength, and the cost for refining increases. If the chromium content of the molten steel is less than 5 wt%, it becomes difficult to maintain the properties such as corrosion resistance required for stainless steel. The chromium content is 30 wt%
Is not preferable because the required characteristics cannot be improved so much and the cost increases.

【0010】高炭素濃度領域における浸漬管の浸漬深さ
(h)と取鍋内の溶鋼深さ(H)との浸漬比(h/H)
が0.1より少ないと、生成した酸化クロムが鋼中炭素
によって酸化クロムが還元されることなく早期に浸漬管
外に流出してしまい、脱炭酸素効率が低下する。また、
前記浸漬比が0.6を越えると酸化クロムの浸漬管内で
の滞留は促進されるものの、取鍋内溶鋼の循環の悪化に
起因して、還元反応槽内に使用されるべき鋼中炭素の真
空槽内への供給が阻害されるために、結果として、還元
反応の促進が阻害され、脱炭酸素効率の低下を招く。高
炭素濃度領域における前記真空槽の真空度が200to
rrより小さくなると、スプラッシュの発生が激しくな
るので好ましくない。なお、真空度を200torr以
上に維持するとは、200torr以上から大気圧であ
る760torr未満の範囲に真空度を保持することと
同義である。
The immersion ratio (h / H) between the immersion depth (h) of the immersion tube and the molten steel depth (H) in the ladle in the high carbon concentration region.
Is less than 0.1, the generated chromium oxide flows out of the immersion tube early without the chromium oxide being reduced by the carbon in the steel, and the decarbonation efficiency decreases. Also,
When the immersion ratio exceeds 0.6, the retention of chromium oxide in the immersion tube is promoted, but due to the deterioration of the circulation of the molten steel in the ladle, the carbon in the steel to be used in the reduction reaction tank is reduced. Since the supply into the vacuum chamber is hindered, as a result, the promotion of the reduction reaction is hindered and the decarboxylation efficiency is reduced. The degree of vacuum of the vacuum chamber in the high carbon concentration region is 200 to
If the value is smaller than rr, splash is undesirably increased. It is to be noted that maintaining the degree of vacuum at 200 torr or more has the same meaning as maintaining the degree of vacuum within a range from 200 torr or more to less than 760 torr, which is the atmospheric pressure.

【0011】浸漬管は、取鍋内に貯留された溶鋼中に一
端部を浸漬させた状態で、該浸漬管の上端に連通される
真空槽内を減圧してステンレス溶鋼を吸い上げることが
でき、その形状や大きさ等は、特に規定されず、適宜選
択される。例えば、浸漬管の断面形状が円形の場合に
は、浸漬管の内径は真空槽の内径とほぼ同径とすること
が望ましい。これは、浸漬管内に引き込んだ溶鋼を効率
よく仕上脱炭精錬することができるからである(真空槽
の内径とほぼ同じ内径を有する浸漬管を直胴型浸漬管と
もいう)。
The immersion pipe is capable of sucking up the stainless steel by reducing the pressure in a vacuum chamber communicated with the upper end of the immersion pipe in a state where one end is immersed in the molten steel stored in the ladle. The shape, size, and the like are not particularly limited, and are appropriately selected. For example, when the cross-sectional shape of the immersion tube is circular, it is desirable that the inner diameter of the immersion tube be substantially the same as the inner diameter of the vacuum chamber. This is because the molten steel drawn into the immersion tube can be efficiently subjected to finish decarburization and refining (the immersion tube having substantially the same inner diameter as the inner diameter of the vacuum vessel is also referred to as a straight-body immersion tube).

【0012】[0012]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。まず、本発明の一実施の形態に係る
ステンレス鋼の真空脱炭精錬方法に用いる真空脱炭精錬
設備10について説明する。図1に示すように、真空脱
炭精錬設備10は、溶鋼11を保持する取鍋13と、該
溶鋼11にその下端部が浸漬される浸漬管14と、浸漬
管14の上端部を延長して接続される真空槽15と、真
空槽15内を排気する排気装置16と、真空槽15を上
下に移動させるための昇降駆動装置17と、真空槽15
の上端に設けられた酸素ガスを吹き込むための上吹きラ
ンス18、及び取鍋13の底部に配置された不活性ガス
を吹き込むための底吹きノズルの一例であるポーラスプ
ラグ19とを有する。そして、上吹きランス18を介し
て吹き込む酸素ガスの流量を制御するための酸素ガス流
量制御弁20が上吹きランス18の送入側に配置され、
底吹きノズルの送入側には不活性ガスの流量を制御する
ための不活性ガス流量制御弁21が設けられていて、制
御装置23等を介してそれぞれの流量を調整できる。さ
らに、真空槽15もしくは排気系の所定箇所には真空槽
15内の真空度を測定するための真空度計22が取付け
られている。この真空度計15で測定された真空度に対
応した信号、浸漬管14と取鍋13間の相対位置の信
号、及び溶鋼11中の炭素濃度の信号等が制御装置23
に取り込まれ、制御装置23ではこれらの入力信号、及
び後述する作動手順等に従って、排気装置16及び昇降
駆動装置17を制御して必要な動作を行わせることがで
きるようになっている。なお、前記溶鋼11中の炭素濃
度を求めるに際しては、直接的に溶鋼11の炭素濃度を
測定してもよいし、精錬前の炭素濃度、及び排気ガス中
のCOガス濃度の変化履歴に基づいて計算することもで
きる。また、予め処理工程毎の炭素濃度の時間変化を求
めておき、これに従って特定時刻における炭素濃度を推
定することも可能である。取鍋13はアルミナシリカ質
等の耐火物で内張りされた略円筒形状の溶鋼容器であ
る。浸漬管14及び真空槽15は両者が同径となる円筒
形状の耐火物からなる装置(直胴型浸漬管14)であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. First, a vacuum decarburization refining facility 10 used in a vacuum decarburization refining method for stainless steel according to an embodiment of the present invention will be described. As shown in FIG. 1, the vacuum decarburizing and refining equipment 10 includes a ladle 13 for holding molten steel 11, a dip tube 14 whose lower end is immersed in the molten steel 11, and an upper end of the dip tube 14 extended. A vacuum chamber 15 connected to the vacuum chamber 15, an evacuation device 16 for evacuating the vacuum chamber 15, an elevating drive device 17 for moving the vacuum chamber 15 up and down, and a vacuum chamber 15
An upper blowing lance 18 provided at the upper end of the ladle for blowing oxygen gas, and a porous plug 19 which is an example of a bottom blowing nozzle for blowing an inert gas disposed at the bottom of the ladle 13 are provided. An oxygen gas flow control valve 20 for controlling the flow rate of the oxygen gas blown through the upper blowing lance 18 is disposed on the inlet side of the upper blowing lance 18,
An inert gas flow control valve 21 for controlling the flow rate of the inert gas is provided on the inlet side of the bottom blowing nozzle, and the respective flow rates can be adjusted via the control device 23 and the like. Further, a vacuum gauge 22 for measuring the degree of vacuum in the vacuum chamber 15 is attached to the vacuum chamber 15 or a predetermined portion of the exhaust system. The signal corresponding to the degree of vacuum measured by the vacuum gauge 15, the signal of the relative position between the immersion pipe 14 and the ladle 13, the signal of the carbon concentration in the molten steel 11, and the like are transmitted to the control device 23.
The control device 23 can control the exhaust device 16 and the lifting / lowering drive device 17 to perform necessary operations according to these input signals and the operation procedure described later. When obtaining the carbon concentration in the molten steel 11, the carbon concentration in the molten steel 11 may be measured directly, or based on the carbon concentration before refining and the change history of the CO gas concentration in the exhaust gas. You can also calculate. Further, it is also possible to previously determine a time change of the carbon concentration for each processing step, and to estimate the carbon concentration at a specific time according to the change. The ladle 13 is a substantially cylindrical molten steel container lined with a refractory such as alumina silica. The immersion tube 14 and the vacuum tank 15 are devices (a straight-body immersion tube 14) made of a cylindrical refractory having the same diameter.

【0013】続いて、本発明の一実施の形態に係るステ
ンレス鋼の真空脱炭精錬方法について説明する。まず、
転炉にて粗脱炭精錬されたクロム濃度8wt%、炭素濃
度1.2wt%であるステンレス鋼用の溶鋼11を取鍋
13に注入して、浸漬管14の下方に位置付ける。次
に、昇降駆動装置17を作動させて、浸漬管14の下端
部を取鍋13内の溶鋼11中に浸漬させ、排気装置16
により真空槽15内を排気して、真空槽15内の真空度
(P)を所定のレベルに維持する。これにより浸漬管1
4内の溶鋼11が大気圧により押し上げられて、溶鋼面
が上昇して、図1に示すように浸漬管14の浸漬深さ
(h)、及び取鍋13内の溶鋼深さ(H)が変化する。
そして、この状態を維持したまま上吹きランス18から
酸素ガスを所定の酸素ガス流量(Q)で供給すると共
に、ポーラスプラグ19からアルゴンガスを所定の不活
性ガス流量(N)で吹き込むことにより溶鋼11を撹拌
して溶鋼11の脱炭精錬を行う。
Next, a method for vacuum decarburization and refining of stainless steel according to one embodiment of the present invention will be described. First,
A molten steel 11 for stainless steel having a chromium concentration of 8 wt% and a carbon concentration of 1.2 wt%, which has been roughly decarburized and refined in a converter, is poured into a ladle 13 and positioned below a dip tube 14. Next, the lifting drive device 17 is operated to immerse the lower end of the immersion pipe 14 into the molten steel 11 in the ladle 13,
Evacuates the vacuum chamber 15 to maintain the degree of vacuum (P) in the vacuum chamber 15 at a predetermined level. Thereby, the immersion tube 1
The molten steel 11 in 4 is pushed up by the atmospheric pressure, the molten steel surface rises, and the immersion depth (h) of the immersion pipe 14 and the molten steel depth (H) in the ladle 13 as shown in FIG. Change.
While maintaining this state, oxygen gas is supplied from the upper blowing lance 18 at a predetermined oxygen gas flow rate (Q), and argon gas is blown from the porous plug 19 at a predetermined inert gas flow rate (N) to melt the molten steel. 11 is stirred to perform decarburization refining of the molten steel 11.

【0014】図2はこのような脱炭精錬中における溶鋼
11中の炭素濃度の時間変化を示す模式図であり、ここ
では高炭素濃度領域を規定する炭素濃度(C)を0.3
〜1.0wt%の範囲として、低炭素濃度領域を0.0
1〜0.3wt%の範囲に設定した場合について示して
いる。後述する図3〜図8においては、横軸の時間(時
刻)目盛りを揃えて配置し、このような高炭素濃度領域
及び低炭素濃度領域に対応する領域をそれぞれ図示して
いる。図3〜図8はそれぞれ真空脱炭精錬時における、
浸漬比(h/H)、酸素ガス流量(Q)、酸素ガス流量
の減少速度(R)、真空槽15の真空度(P)、不活性
ガス流量(N)、及び浸漬管14の浸漬深さ(h)の時
間変化の模式図である。
FIG. 2 is a schematic diagram showing a time change of the carbon concentration in the molten steel 11 during such decarburization refining. In this case, the carbon concentration (C) defining the high carbon concentration region is set to 0.3.
To 1.0 wt%, the low carbon concentration region is set to 0.0%.
The case where it is set in the range of 1 to 0.3 wt% is shown. In FIGS. 3 to 8 described later, time (time) scales on the horizontal axis are arranged so as to be aligned, and regions corresponding to such a high carbon concentration region and a low carbon concentration region are illustrated. 3 to 8 respectively show the results during vacuum decarburization refining.
Immersion ratio (h / H), oxygen gas flow rate (Q), reduction rate of oxygen gas flow rate (R), degree of vacuum in vacuum chamber 15 (P), inert gas flow rate (N), and immersion depth of immersion tube 14 It is a schematic diagram of time change of (h).

【0015】まず、高炭素濃度領域における真空脱炭精
錬について図2〜図8を参照しながら説明する。高炭素
濃度領域においては、溶鋼11中の炭素濃度の変化を監
視あるいは推定しながら、制御装置23の作動あるいは
オペレータの操作により、酸素ガス流量制御弁20、不
活性ガス流量制御弁21、昇降駆動装置17、及び排気
装置16を制御して、酸素ガス流量(Q)を3〜25N
3 /h/tに、不活性ガス流量(N)を0.3〜4.
0Nリットル/分/tに、浸漬比(h/H)を0.1〜
0.6に、真空度(P)を200torr以上にの範囲
にそれぞれ図4、図7、図3及び図6に示すように維持
して、脱炭精錬を行うものである。そして、続く低炭素
濃度領域においては、図3〜8に示すように酸素ガス流
量制御弁20を調整することにより酸素ガス流量(Q)
を毎分0.5〜12.5Nm3 /h/tの減少速度
(R)で低減すると共に、昇降駆動装置17を作動させ
て溶鋼11の浸漬深さ(h)を図8に示すように所定範
囲内で増減させて脱炭精錬を継続する。なお、酸素ガス
流量(Q)の減少速度は、酸素ガス流量(Q)の時間変
化における傾きの大きさ即ち、酸素ガス流量(Q)の時
間微分量であり、単位は(Nm3 /h/t)/分とな
る。
First, the vacuum decarburization refining in the high carbon concentration region will be described with reference to FIGS. In the high carbon concentration region, while monitoring or estimating the change in the carbon concentration in the molten steel 11, the operation of the control device 23 or the operation of the operator causes the oxygen gas flow control valve 20, the inert gas flow control valve 21, the elevation drive The oxygen gas flow rate (Q) is controlled to 3 to 25 N by controlling the device 17 and the exhaust device 16.
The inert gas flow rate (N) is set to 0.3 to 4.m 3 / h / t.
0N l / min / t, immersion ratio (h / H) 0.1 ~
The decarburization refining is performed by maintaining the degree of vacuum (P) at 0.6 and a range of 200 torr or more as shown in FIGS. 4, 7, 3, and 6, respectively. In the subsequent low carbon concentration region, the oxygen gas flow rate (Q) is adjusted by adjusting the oxygen gas flow control valve 20 as shown in FIGS.
Is reduced at a decreasing rate (R) of 0.5 to 12.5 Nm 3 / h / t per minute, and the immersion depth (h) of the molten steel 11 is set as shown in FIG. The decarburization refining is continued by increasing or decreasing within a predetermined range. The decreasing rate of the oxygen gas flow rate (Q) is the magnitude of the gradient in the time change of the oxygen gas flow rate (Q), that is, the time differential amount of the oxygen gas flow rate (Q), and the unit is (Nm 3 / h / t) / min.

【0016】このように本実施の形態においては、クロ
ムを含む溶鋼11の脱炭精錬操業において、酸素ガス流
量(Q)、不活性ガス流量(N)、真空度(P)、浸漬
比(h/H)、及び溶鋼11の浸漬深さ(h)を所定の
条件となるように制御することにより、以下の〜の
目的を同時に満たすようにしたものである。 脱炭酸素効率を高レベルに維持すると共に、スプラッ
シュを抑制する。酸素ガス流量と、不活性ガス流量、及
び真空度を適正範囲に維持することにより目的を達成す
ることができる。 クロムロスを防止する。クロムロスは浸漬管14内の
溶鋼面で酸化された溶鋼11中のクロム成分が浸漬管1
4下端を経由して浸漬管14壁と取鍋13内壁の間にス
ラグ12となって固着されることにより生じる。このた
め、浸漬比、及び不活性ガス流量、酸素ガス流量等を所
定範囲にバランスさせて維持することにより、前記クロ
ム成分(酸化クロム)の浸漬管14内の溶鋼11の対流
状態が適正に保たれて、酸化クロムが浸漬管14内で効
率的に鋼中の炭素により還元されクロム成分のスラグ1
2中への移行が抑制される。 浸漬管14の外壁と取鍋13の内壁間のスラグ12に
よる固着現象を回避できる。低炭素濃度領域の所定範囲
で浸漬管14と取鍋13との相対位置を変動させるの
で、このようなスラグ12による固着現象を防止するこ
とができる。
As described above, in the present embodiment, in the decarburization refining operation of the molten steel 11 containing chromium, the flow rate of oxygen gas (Q), the flow rate of inert gas (N), the degree of vacuum (P), and the immersion ratio (h) / H) and the immersion depth (h) of the molten steel 11 are controlled so as to satisfy predetermined conditions, thereby simultaneously satisfying the following objects (1) to (3). Maintain high levels of decarbonation efficiency and reduce splash. The object can be achieved by maintaining the oxygen gas flow rate, the inert gas flow rate, and the degree of vacuum in appropriate ranges. Prevent chrome loss. The chromium component in the molten steel 11 oxidized on the molten steel surface in the immersion pipe 14
The slag 12 is fixed between the wall of the immersion pipe 14 and the inner wall of the ladle 13 via the lower end of the slag 12. For this reason, the convection state of the molten steel 11 in the immersion pipe 14 of the chromium component (chromium oxide) is properly maintained by maintaining the immersion ratio, the flow rate of the inert gas, the flow rate of the oxygen gas and the like in a predetermined range. The chromium oxide is efficiently reduced by the carbon in the steel in the immersion tube 14 and the chromium component slag 1
2 is suppressed. The sticking phenomenon by the slag 12 between the outer wall of the immersion tube 14 and the inner wall of the ladle 13 can be avoided. Since the relative position between the immersion tube 14 and the ladle 13 is changed within a predetermined range of the low carbon concentration region, such a sticking phenomenon by the slag 12 can be prevented.

【0017】[0017]

【実施例】次に、表1、表2を参照しながらより詳細な
実験例について説明する。表1、及び表2に示す実施例
1〜9は図1に示す真空脱炭精錬設備を用いてそれぞれ
脱炭精錬を行った結果を示したものである。ここで、図
9〜図11は、脱炭酸素効率に対して、それぞれ浸漬比
(h/H)、不活性ガス流量(N)及び酸素ガス流量の
減少速度(R)との関係を求めたグラフである。図9及
び図10に示すように、浸漬比(h/H)を0.1〜
0.6として、不活性ガス流量(N)を0.3〜4.0
の範囲にそれぞれ維持することにより脱炭酸素効率を6
5%以上とすることができる。また図11から明らかな
ように、酸素ガス流量の減少速度(R)を0.6〜1
2.5Nm3 /h/t/分の範囲とすることにより、生
産性の悪化を招くことなく、脱炭酸素効率を65%以上
に維持できることが分かる。なお、図11の斜線部は全
体の精錬処理における処理時間等が長くなって、生産性
悪化を招くような領域を示している。例えば、実施例1
は高炭素濃度領域において、酸素ガス流量を規定の3〜
25Nm3 /h/tに維持すると共に、表1に示すよう
に、浸漬比(h/H)、不活性ガス流量(N)、真空度
(P)をそれぞれ0.3、1.7Nリットル/分/t、
225torrに維持して、続く低炭素濃度領域では、
酸素ガス流量(Q)を毎分6.7Nm3 /h/tの減少
速度で低減して、浸漬管14の浸漬深さ(h)の増減操
作を行った例を示している。
Next, a more detailed experimental example will be described with reference to Tables 1 and 2. Examples 1 to 9 shown in Table 1 and Table 2 show the results of decarburization and refining, respectively, using the vacuum decarburization and refining equipment shown in FIG. 9 to 11 show the relationship between the immersion ratio (h / H), the inert gas flow rate (N), and the oxygen gas flow rate decreasing rate (R) with respect to the decarbonation efficiency. It is a graph. As shown in FIGS. 9 and 10, the immersion ratio (h / H) is 0.1 to
0.6, the inert gas flow rate (N) is set to 0.3 to 4.0.
Decarbonation efficiency by maintaining each in the range of 6
It can be 5% or more. Further, as is apparent from FIG. 11, the rate of decrease (R) of the oxygen gas flow rate is 0.6 to 1
It can be seen that by setting the range to 2.5 Nm 3 / h / t / min, the decarbonation efficiency can be maintained at 65% or more without deteriorating the productivity. Note that the hatched portion in FIG. 11 indicates a region where the processing time and the like in the entire refining process become longer, which leads to a decrease in productivity. For example, Embodiment 1
Indicates that the oxygen gas flow rate should be 3 to
At 25 Nm 3 / h / t, as shown in Table 1, the immersion ratio (h / H), the flow rate of the inert gas (N), and the degree of vacuum (P) were 0.3 and 1.7 N l / h, respectively. Min / t,
225 torr, and in the subsequent low carbon concentration region,
An example is shown in which the oxygen gas flow rate (Q) is reduced at a rate of 6.7 Nm 3 / h / t per minute to increase or decrease the immersion depth (h) of the immersion tube 14.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】そして、表1の結果の欄〜に示すよう
に、実施例1においてはスプラッシュの発生状況は少
なく良好(○)であり、脱炭酸素効率は高炭素濃度領
域、及び低炭素濃度領域においてそれぞれ74%、72
%となり、生産管理上必要とされる所定レベル(65
%)よりも高率であった。また、真空槽15と取鍋1
3間の固着はなく、クロムロスも所定のレベルより少
なく良好な結果(○)が得られた。従って実施例1にお
いては、前記〜のいずれの条件も満たしていて、総
合評価は良好(○)と判定された。このように実施例1
〜9においては、脱炭精錬の諸条件を適正に調整、維持
することにより、いずれも良好な総合評価(○)を得ら
れることが分かる。
As shown in the column of results in Table 1, the occurrence state of the splash in Example 1 was small and good (○), and the decarbonation efficiency was high in the high carbon concentration region and low carbon concentration region. 74% and 72% respectively
%, Which is a predetermined level (65
%). In addition, vacuum tank 15 and ladle 1
There was no sticking between the three samples, and the chromium loss was less than the predetermined level, and a good result (○) was obtained. Therefore, in Example 1, all of the above conditions were satisfied, and the overall evaluation was determined to be good (良好). Thus, Embodiment 1
In Examples 9 to 9, it is understood that a good overall evaluation (維持) can be obtained by properly adjusting and maintaining various conditions of the decarburization refining.

【0021】一方、表3及び表4は本発明の範囲を逸脱
する条件における比較例1〜8を示すものであり、いず
れもその総合評価は不良(×)となっている。
On the other hand, Tables 3 and 4 show Comparative Examples 1 to 8 under conditions deviating from the scope of the present invention, and all of them have a poor evaluation (×).

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】ここで、比較例1は、浸漬比(h/H)を
本発明の範囲(0.1〜0.6)から外れる値である
0.06に設定した例であって、この場合には高炭素濃
度領域における脱炭酸素高率が43%と良否の基準値で
ある65%より低い値になっている。また、比較例2
は、酸素ガス流量(Q)を本発明の範囲である3〜25
Nm3/h/tよりも高く外れる値に設定した例であっ
て、高炭素濃度領域における脱炭酸素高率は45%と低
率となる。比較例3は、不活性ガス流量(N)を本発明
の範囲(0.3〜4.0Nリットル/分/t)外である
0.15Nリットル/分/tに設定した例である。この
場合には高炭素濃度領域における脱炭酸素高率が38%
とさらに低率となっている。比較例4は、高炭素濃度領
域における酸素ガス流量を本発明の範囲である3〜25
Nm3 /h/tよりも低く外れる値に設定した例であっ
て、高炭素濃度領域における脱炭酸素高率は42%とな
り、不良と判定される。比較例5は、低炭素濃度領域に
おける酸素ガス流量の減少速度(R)を本発明の範囲
(0.5〜12.5Nm3 /h/t/分)から外れる値
である0.2Nm3 /h/t/分に設定した例を示す。
この場合には低炭素濃度領域における脱炭酸素高率が3
1%と低率になる。比較例6は、低炭素濃度領域におけ
る酸素ガス流量の減少速度(R)を本発明の範囲(0.
5〜12.5Nm3 /h/t/分)を越える値である1
6.2Nm3 /h/t/分に設定した例であり、クロム
ロス等が無視できない量となり生産性が著しく損なわれ
る。比較例7は、高炭素濃度領域における真空度(P)
を本発明の範囲(200torr〜760torr)を
外れる値である165torrに設定した例であり、浸
漬管14内のスプラッシュが激しくなることを示してい
る。最後に示す比較例8は、低炭素濃度領域において浸
漬管14浸漬深さ(h)を固定して脱炭精錬を行った例
を示し、取鍋13内壁と浸漬管14外壁の溶鋼面にスラ
グ12が付着して両者間に固着が生じ、生産障害となっ
た例を示している。
Here, Comparative Example 1 is an example in which the immersion ratio (h / H) is set to 0.06 which is a value out of the range (0.1 to 0.6) of the present invention. Has a high decarbonation rate in the high carbon concentration region of 43%, which is lower than the reference value of 65%, which is a quality standard. Comparative Example 2
Indicates that the oxygen gas flow rate (Q) falls within the range of the present invention in the range of 3 to 25.
This is an example in which the value is set higher than Nm 3 / h / t, and the high rate of decarbonation in the high carbon concentration region is as low as 45%. Comparative Example 3 is an example in which the inert gas flow rate (N) is set to 0.15 N liter / min / t, which is outside the range of the present invention (0.3 to 4.0 N liter / min / t). In this case, the high rate of decarbonation in the high carbon concentration region is 38%.
And even lower rates. In Comparative Example 4, the oxygen gas flow rate in the high carbon concentration region was 3 to 25 within the range of the present invention.
This is an example in which the value is set lower than Nm 3 / h / t, and the high rate of decarbonation in the high carbon concentration region is 42%, which is determined to be defective. In Comparative Example 5, the rate of decrease (R) of the oxygen gas flow rate in the low carbon concentration region was 0.2 Nm 3 /, which is a value outside the range of the present invention (0.5 to 12.5 Nm 3 / h / t / min). An example in which h / t / min is set is shown.
In this case, the high rate of decarbonation in the low carbon concentration region is 3
The rate is as low as 1%. In Comparative Example 6, the rate of decrease (R) of the oxygen gas flow rate in the low carbon concentration region was within the range of the present invention (0.
5 which exceeds 5 to 12.5 Nm 3 / h / t / min).
This is an example in which 6.2 Nm 3 / h / t / min is set, and chromium loss or the like becomes a nonnegligible amount, and productivity is significantly impaired. Comparative Example 7 shows the degree of vacuum (P) in the high carbon concentration region.
Is set to 165 torr, which is a value outside the range (200 torr to 760 torr) of the present invention, and shows that the splash in the immersion tube 14 becomes severe. Lastly, Comparative Example 8 shows an example in which decarburization refining was performed by fixing the immersion depth (h) of the immersion pipe 14 in the low carbon concentration region. 12 shows an example in which 12 adheres to each other and sticks to each other, resulting in production failure.

【0025】以上、本発明の実施の形態を説明したが、
本発明はこれらの実施の形態に限定されるものではな
く、要旨を逸脱しない条件の変更等は全て本発明の適用
範囲である。例えば、本実施の形態においては、低炭素
濃度領域における浸漬管の浸漬深さ(h)を増減させる
操作を単調に減少させる場合について述べたが、本発明
は浸漬管外壁及び取鍋外壁間のスラグによる固着を防止
するものでるから、このような単調減少のみではなく浸
漬深さ(h)を不規則又は規則的に振動させたり、逆に
増加させるような方法を採用することも可能である。
The embodiment of the present invention has been described above.
The present invention is not limited to these embodiments, and all changes in conditions without departing from the gist are within the scope of the present invention. For example, in the present embodiment, the case where the operation of increasing or decreasing the immersion depth (h) of the immersion tube in the low carbon concentration region is monotonously reduced has been described. Since the sticking by the slag is prevented, not only such a monotonous decrease but also a method of vibrating the immersion depth (h) irregularly or regularly or increasing the immersion depth (h) can be adopted. .

【0026】[0026]

【発明の効果】請求項1〜6記載のステンレス鋼の真空
脱炭精錬方法においては、高炭素濃度領域における酸素
ガス流量及び不活性ガス流量をそれぞれ所定範囲に維持
し、続く低炭素濃度領域では、前記酸素ガス流量を特定
範囲内となる減少速度で低減すると共に、浸漬管の浸漬
深さを所定範囲内で増減させるので、脱炭酸素効率を高
レベルに維持することができ、浸漬管内のスプラッシュ
の発生や浸漬管の固着を防止して、クロムロスの少ない
効率的な脱炭精錬を行うことができる。特に、請求項2
記載のステンレス鋼の真空脱炭精錬方法においては、高
炭素濃度領域における溶鋼の炭素濃度を特定範囲に規定
しているので、脱炭反応の律速段階に応じて適正な操業
を行うことが可能となり、さらに効率的な脱炭精錬を行
うことができる。また、請求項3記載のステンレス鋼の
真空脱炭精錬方法においては、溶鋼のクロム含有量を規
定しているので、溶鋼中に吹き込まれる酸素ガスによる
クロムの酸化反応を適正に制御することが容易である。
請求項4記載のステンレス鋼の真空脱炭精錬方法におい
ては、高炭素濃度領域における浸漬管の浸漬深さと取鍋
内の溶鋼の深さとの浸漬比を特定範囲に規定しているの
で、浸漬管内に生成する溶鋼の対流現象によって浸漬管
外に移動する酸化クロムの量を抑制することができ、ク
ロムロス及び固着現象をさらに抑制できる。請求項5記
載のステンレス鋼の真空脱炭精錬方法においては、高炭
素濃度領域における真空槽の真空度を200torr以
上に維持するので、脱炭酸素効率を所定レベルに維持す
ることができ、さらに効率的な脱炭精錬が可能である。
請求項6記載のステンレス鋼の真空脱炭精錬方法におい
ては、浸漬管が直胴型浸漬管であるので、浸漬管内に引
き込まれた溶鋼をより効率的に脱炭精錬することができ
る。
According to the vacuum decarburization refining method for stainless steel according to the first to sixth aspects, the oxygen gas flow rate and the inert gas flow rate in the high carbon concentration region are respectively maintained within predetermined ranges. Since the oxygen gas flow rate is reduced at a decreasing rate within a specific range, and the immersion depth of the immersion tube is increased or decreased within a predetermined range, the decarbonation efficiency can be maintained at a high level, and the Splash generation and sticking of the immersion tube can be prevented, and efficient decarburization refining with less chromium loss can be performed. In particular, claim 2
In the vacuum decarburization refining method for stainless steel described, the carbon concentration of the molten steel in the high carbon concentration region is specified in a specific range, so that it is possible to perform an appropriate operation according to the rate-determining stage of the decarburization reaction. In addition, more efficient decarburization refining can be performed. Further, in the method for vacuum decarburization and refining of stainless steel according to the third aspect, since the chromium content of the molten steel is specified, it is easy to appropriately control the chromium oxidation reaction by oxygen gas blown into the molten steel. It is.
In the vacuum decarburization refining method for stainless steel according to the fourth aspect, the immersion ratio between the immersion depth of the immersion pipe in the high carbon concentration region and the depth of the molten steel in the ladle is specified in a specific range. The amount of chromium oxide which moves outside the immersion tube due to the convection of molten steel generated in the immersion tube can be suppressed, and the chromium loss and the sticking phenomenon can be further suppressed. In the method for refining stainless steel according to claim 5, since the degree of vacuum in the vacuum chamber in the high carbon concentration region is maintained at 200 torr or more, the decarbonation efficiency can be maintained at a predetermined level, and the efficiency can be further improved. Decarburization refining is possible.
In the method for vacuum decarburization and refining of stainless steel according to the sixth aspect, since the immersion pipe is a straight-body immersion pipe, the molten steel drawn into the immersion pipe can be more efficiently decarburized and refined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係るステンレス鋼の真
空脱炭精錬方法を適用する真空脱炭精錬設備の説明図で
ある。
FIG. 1 is an explanatory diagram of a vacuum decarburization refining facility to which a vacuum decarburization refining method for stainless steel according to an embodiment of the present invention is applied.

【図2】脱炭精錬中における溶鋼中の炭素濃度の時間変
化を示す模式図である。
FIG. 2 is a schematic diagram showing a time change of a carbon concentration in molten steel during decarburization refining.

【図3】脱炭精錬中における浸漬比(h/H)の時間変
化を示す模式図である。
FIG. 3 is a schematic diagram showing a temporal change of an immersion ratio (h / H) during decarburization refining.

【図4】脱炭精錬中における酸素ガス流量の時間変化を
示す模式図である。
FIG. 4 is a schematic diagram showing a time change of an oxygen gas flow rate during decarburization refining.

【図5】脱炭精錬中における酸素ガス流量の減少速度の
時間変化を示す模式図である。
FIG. 5 is a schematic diagram showing a time change of a decreasing speed of an oxygen gas flow rate during decarburization refining.

【図6】脱炭精錬中における真空槽の真空度の時間変化
を示す模式図である。
FIG. 6 is a schematic diagram showing a temporal change in the degree of vacuum in a vacuum chamber during decarburization refining.

【図7】脱炭精錬中における不活性ガス流量の時間変化
を示す模式図である。
FIG. 7 is a schematic diagram showing a temporal change of an inert gas flow rate during decarburization refining.

【図8】脱炭精錬中における浸漬管の浸漬深さ(h)の
時間変化を示す模式図である。
FIG. 8 is a schematic diagram showing a temporal change in immersion depth (h) of an immersion tube during decarburization refining.

【図9】脱炭酸素効率と浸漬比(h/H)との関係を求
めたグラフである。
FIG. 9 is a graph showing a relationship between decarbonation efficiency and immersion ratio (h / H).

【図10】脱炭酸素効率と不活性ガス流量との関係を求
めたグラフである。
FIG. 10 is a graph showing a relationship between decarbonation efficiency and an inert gas flow rate.

【図11】脱炭酸素効率と酸素ガス流量の減少速度との
関係を求めたグラフである。
FIG. 11 is a graph showing the relationship between the decarbonation efficiency and the rate of decrease in the flow rate of oxygen gas.

【図12】従来例における真空脱炭精錬方法の説明図で
ある。
FIG. 12 is an explanatory view of a vacuum decarburization refining method in a conventional example.

【符号の説明】[Explanation of symbols]

10 真空脱炭精錬設備 11 溶鋼 12 スラグ 13 取鍋 14 浸漬管 15 真空槽 16 排気装置 17 昇降駆動
装置 18 上吹きランス 19 ポーラスプラグ(底吹きノズル) 20 酸素ガス流量制御弁 21 不活性ガ
ス流量制御弁 22 真空度計 23 制御装置
DESCRIPTION OF SYMBOLS 10 Vacuum decarburization refining equipment 11 Molten steel 12 Slag 13 Ladle 14 Immersion pipe 15 Vacuum tank 16 Exhaust device 17 Elevation drive device 18 Top blowing lance 19 Porous plug (bottom blowing nozzle) 20 Oxygen gas flow control valve 21 Inert gas flow control Valve 22 Vacuum gauge 23 Controller

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 取鍋に保持されたクロムを含む溶鋼に浸
漬管を浸漬し、該浸漬管に連通する真空槽内を減圧する
と共に、該真空槽上部の上吹きランスを介して酸素ガス
を吹き込みながら、前記取鍋底部の底吹きノズルから供
給される不活性ガスにより前記溶鋼を撹拌するステンレ
ス鋼の真空脱炭精錬方法において、前記溶鋼の高炭素濃
度領域では、前記酸素ガスの酸素ガス流量を3〜25N
3 /h/t−steelに、前記不活性ガスの不活性
ガス流量を0.3〜4.0Nリットル/分/t−ste
elにそれぞれ維持し、 続く前記溶鋼の低炭素濃度領域では、前記酸素ガス流量
を毎分0.5〜12.5Nm3 /h/t−steelの
減少速度で低減すると共に、前記浸漬管の浸漬深さを所
定範囲内で増減することを特徴とするステンレス鋼の真
空脱炭精錬方法。
1. An immersion tube is immersed in molten steel containing chromium held in a ladle, and the inside of a vacuum tank communicating with the immersion tube is depressurized, and oxygen gas is supplied through an upper blowing lance on the upper portion of the vacuum tank. In the vacuum decarburization refining method for stainless steel, in which the molten steel is stirred by an inert gas supplied from a bottom blowing nozzle at the bottom of the ladle while blowing, the oxygen gas flow rate of the oxygen gas in the high carbon concentration region of the molten steel is increased. 3 to 25N
m 3 / h / t-steel, the flow rate of the inert gas is 0.3 to 4.0 Nl / min / t-steel.
In the subsequent low carbon concentration region of the molten steel, the oxygen gas flow rate is reduced at a rate of 0.5 to 12.5 Nm 3 / h / t-steel per minute, and the immersion pipe is immersed. A method for vacuum decarburization and refining of stainless steel, wherein the depth is increased or decreased within a predetermined range.
【請求項2】 前記高炭素濃度領域における溶鋼の炭素
濃度が0.3〜1wt%であり、前記低炭素濃度領域に
おける溶鋼の炭素濃度が0.01〜0.3wt%である
ことを特徴とする請求項1記載のステンレス鋼の真空脱
炭精錬方法。
2. The carbon concentration of molten steel in the high carbon concentration region is 0.3-1 wt%, and the carbon concentration of molten steel in the low carbon concentration region is 0.01-0.3 wt%. The method for vacuum decarburization and refining of stainless steel according to claim 1.
【請求項3】 前記溶鋼のクロム含有量が5〜30wt
%であることを特徴とする請求項1又は2記載のステン
レス鋼の真空脱炭精錬方法。
3. The chromium content of the molten steel is 5 to 30 wt.
%. The method for vacuum decarburization and refining of stainless steel according to claim 1, wherein
【請求項4】 前記高炭素濃度領域における前記浸漬管
の浸漬深さと前記取鍋内の溶鋼深さとの浸漬比を0.1
〜0.6とすることを特徴とする請求項1〜3のいずれ
か1項に記載のステンレス鋼の真空脱炭精錬方法。
4. An immersion ratio between the immersion depth of the immersion tube and the depth of molten steel in the ladle in the high carbon concentration region is set to 0.1.
The method for vacuum decarburization and refining of stainless steel according to any one of claims 1 to 3, wherein the method is set to 0.6.
【請求項5】 前記高炭素濃度領域における前記真空槽
の真空度を200torr以上に維持することを特徴と
する請求項1〜4のいずれか1項に記載のステンレス鋼
の真空脱炭精錬方法。
5. The method for vacuum decarburization and refining of stainless steel according to claim 1, wherein the degree of vacuum of the vacuum chamber in the high carbon concentration region is maintained at 200 torr or more.
【請求項6】 前記浸漬管が直胴型浸漬管であることを
特徴とする請求項1〜5のいずれか1項に記載のステン
レス鋼の真空脱炭精錬方法。
6. The method for vacuum decarburization and refining of stainless steel according to claim 1, wherein the immersion pipe is a straight-body immersion pipe.
JP24715796A 1996-08-28 1996-08-28 Vacuum-decarburizing refining method of stainless steel Withdrawn JPH1068013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24715796A JPH1068013A (en) 1996-08-28 1996-08-28 Vacuum-decarburizing refining method of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24715796A JPH1068013A (en) 1996-08-28 1996-08-28 Vacuum-decarburizing refining method of stainless steel

Publications (1)

Publication Number Publication Date
JPH1068013A true JPH1068013A (en) 1998-03-10

Family

ID=17159292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24715796A Withdrawn JPH1068013A (en) 1996-08-28 1996-08-28 Vacuum-decarburizing refining method of stainless steel

Country Status (1)

Country Link
JP (1) JPH1068013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004707A1 (en) * 2001-07-02 2003-01-16 Nippon Steel Corporation Method for decarbonization refining of chromium-containing molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004707A1 (en) * 2001-07-02 2003-01-16 Nippon Steel Corporation Method for decarbonization refining of chromium-containing molten steel
US6830606B2 (en) 2001-07-02 2004-12-14 Nippon Steel Corporation Method for decarbonization refining of chromium-containing molten steel

Similar Documents

Publication Publication Date Title
JP4207820B2 (en) How to use vacuum degassing equipment
JPH1068013A (en) Vacuum-decarburizing refining method of stainless steel
JP6911590B2 (en) Steel melting method
CN113490755A (en) Method for producing ultra-low carbon steel containing Ti
EP1111073A1 (en) Refining method and refining apparatus of molten steel
WO2022009630A1 (en) Method for refining molten steel
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP2000087131A (en) Method for melting extra-low carbon steel
JP6897363B2 (en) Steel melting method
JP2005517812A (en) Method for deep decarburization of molten steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP3706451B2 (en) Vacuum decarburization method for high chromium steel
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
JP2723915B2 (en) Pretreatment method of hot metal in blast furnace cast floor
JP3747653B2 (en) Method for producing clean steel in RH vacuum degassing apparatus
JP3777065B2 (en) Powder dephosphorization method for low carbon molten steel under reduced pressure and reaction vessel for powder dephosphorization under reduced pressure
JPH02209417A (en) Degassing refining method
JP2001064719A (en) Method for vacuum-refining molten steel
JPH1161238A (en) Method for blowing molten stainless steel
JPH0741834A (en) Method for vacuum-refining molten steel having high circulating flow characteristic
JPH05311228A (en) Method for melting ultralow carbon steel
JPH09316528A (en) Finish decarburized-refining method of molten stainless steel under reduced pressure
JP2000303116A (en) Refining apparatus under reduced pressure and method for melting low carbon steel using this apparatus
JP2000178636A (en) Production of clean steel in rh vacuum-degassing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104