JP4257994B2 - 赤外線撮像素子と赤外線センサ - Google Patents

赤外線撮像素子と赤外線センサ Download PDF

Info

Publication number
JP4257994B2
JP4257994B2 JP2004363134A JP2004363134A JP4257994B2 JP 4257994 B2 JP4257994 B2 JP 4257994B2 JP 2004363134 A JP2004363134 A JP 2004363134A JP 2004363134 A JP2004363134 A JP 2004363134A JP 4257994 B2 JP4257994 B2 JP 4257994B2
Authority
JP
Japan
Prior art keywords
energization period
voltage
circuit
diode
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004363134A
Other languages
English (en)
Other versions
JP2006174041A (ja
Inventor
雅史 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004363134A priority Critical patent/JP4257994B2/ja
Publication of JP2006174041A publication Critical patent/JP2006174041A/ja
Application granted granted Critical
Publication of JP4257994B2 publication Critical patent/JP4257994B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

この発明は、入射赤外線パワーによる温度変化を電気信号に変換して検出する赤外線センサと、この赤外線センサを画素として用いる赤外線撮像素子に関するものである。
画素素子の出力電圧の変化分を積分したものを画素の出力とする熱型赤外線撮像素子が有る。このような熱型赤外線撮像素子では、画素内の抵抗値のバラツキや画素アレイ内の配線抵抗値のバラツキなどが画素の出力電圧に影響する。(例えば、非特許文献1、非特許文献2を参照)
抵抗値のバラツキによる影響は、ボロメータ型素子においても同様である。抵抗値のバラツキによる影響を出力から除去するための補正回路を備えるボロメータ型赤外線センサを用いた赤外線撮像素子もある。(例えば、特許文献1を参照)
S/N比を向上させるためには、画素素子の出力回路初段である積分回路の利得を大きくすることが望ましいが、抵抗値のバラツキがあっても積分回路をクリッピングさせないような利得である必要がある。
特登003212874号公報。 T. Ishikawa, M. Ueno, Y. Nakai, H. Hata, T. Sone, M. Kimata and T. Ozeki, "Low-cost 320×240 uncooled IRFPA using conventional silicon IC process," Proc.SPIE vol.3698, 1999年4月, pp556〜564. T. Ishikawa, M. Ueno, Y. Nakai, K. Endo, Y. Ohta, J. Nakanishi, Y. Kosasayama, H. Yagi, T. Sone and M. Kimata, "Performance of 320×240 uncooled IRFPA with SOI Diode Detectors," Proc.SPIE vol.4130, 2000年7月, pp.152〜159.
従来の赤外線撮像素子では、画素内の抵抗値のバラツキや画素アレイ内の配線抵抗値のバラツキなどが画素の出力電圧に影響する。赤外線撮像素子だけでなく、赤外線撮像素子の1個の画素に相当する赤外線センサでも同様な課題がある。
この発明は、抵抗値のバラツキの出力への影響が少ない赤外線撮像素子及び赤外線センサを得ること目的とするものである。
この発明に係る赤外線撮像素子は、直列接続された複数のダイオードまたは1個のダイオードと赤外線吸収部とを形成したセンサ部と、該センサ部を断熱する断熱部とを有する画素を2次元に配置した画素領域と、前記画素の前記ダイオードに予備通電期間と本通電期間にそれぞれ異なる大きさの定電流を流し、予備通電期間での定電流の大きさを本通電期間での定電流の大きさのu倍とする定電流制御回路と、予備通電期間の前記ダイオードの順電圧を1/u倍した電圧を本通電期間の前記ダイオードの順電圧から減算した電圧に比例する値を出力する演算回路とを備えたものである。
この発明に係る赤外線センサは、直列接続された複数のダイオードまたは1個のダイオードと赤外線吸収部とを形成したセンサ部と、該センサ部を断熱する断熱部と、前記画素の前記ダイオードに予備通電期間と本通電期間にそれぞれ異なる大きさの定電流を流し、予備通電期間での定電流の大きさを本通電期間での定電流の大きさのu倍とする定電流制御回路と、予備通電期間の前記ダイオードの順電圧を1/u倍した電圧を本通電期間の前記ダイオードの順電圧から減算した電圧に比例する値を出力する演算回路を備えたものである。
この発明に係る赤外線撮像素子は、直列接続された複数のダイオードまたは1個のダイオードと赤外線吸収部とを形成したセンサ部と、該センサ部を断熱する断熱部とを有する画素を2次元に配置した画素領域と、前記画素の前記ダイオードに予備通電期間と本通電期間にそれぞれ異なる大きさの定電流を流し、予備通電期間での定電流の大きさを本通電期間での定電流の大きさのu倍とする定電流制御回路と、予備通電期間の前記ダイオードの順電圧を1/u倍した電圧を本通電期間の前記ダイオードの順電圧から減算した電圧に比例する値を出力する演算回路とを備えたものなので、抵抗値のバラツキの出力への影響が少ないという効果が有る。
この発明に係る赤外線センサは、直列接続された複数のダイオードまたは1個のダイオードと赤外線吸収部とを形成したセンサ部と、該センサ部を断熱する断熱部と、前記画素の前記ダイオードに予備通電期間と本通電期間にそれぞれ異なる大きさの定電流を流し、予備通電期間での定電流の大きさを本通電期間での定電流の大きさのu倍とする定電流制御回路と、予備通電期間の前記ダイオードの順電圧を1/u倍した電圧を本通電期間の前記ダイオードの順電圧から減算した電圧に比例する値を出力する演算回路を備えたものなので、抵抗値のバラツキの出力への影響が少ないという効果が有る。
実施の形態1.
この実施の形態1での赤外線撮像素子の電気回路としての構成を説明する図を、図1に示す。赤外線撮像素子は、直列接続した3個のダイオード1Aを有する画素1を2次元に配置した画素領域2と、同じ行にあるすべてのダイオード1Aの片端を接続する駆動線3と、同じ列にあるすべてのダイオード1Aの駆動線3が接続しない側の端を接続する信号線4と、駆動線3を1個ずつ電源に接続する駆動走査回路5と、信号線4に何れかが接続する定電流源6A及び定電流源6Bと、ダイオード1Aの順方向電圧降下により画素1が受ける赤外線エネルギーを検出する演算回路である信号線ごとの検出回路7と、何れかの検出回路7の出力を1個ずつ出力する出力走査回路8とを有する。
駆動走査回路5は、電源である電源端子5Aと、電源端子5Aに接続された電源線5Bと、電源線5Bと駆動線3との間にあるスイッチである駆動選択MOSトランジスタ5Cと、MOSトランジスタ5Cを1個ずつ例えば上の行から下の行に順番に導通させるようにMOSトランジスタ5Cのゲートに電圧を印加する制御回路5Dとで構成する。
定電流源6Aの電流の大きさをIfとすると、定電流源6Bの電流の大きさはIfを係数u倍したuIfとする。なお、乗算記号の『*』、『×』、『・』などは、煩雑さを避けるためにできるだけ省略する。定電流源6Aまたは定電流源6Bの何れかを切替えて信号線4に接続するために、スイッチ6Cが有る。スイッチ6Cは、定電流源6Aまたは定電流源6Bのどちらも信号線4に接続しないことも可能であり、両方を同時には接続しない。定電流源6A、定電流源6B及びスイッチ6Cをまとめて、定電流制御回路6と呼ぶ。
検出回路7は、入力の2端子間の電圧を増幅するアンプ7A及びアンプ7Bと、アンプ7Aとアンプ7Bの1個の入力端子に共通に接続するバイアス端子7Cと、定電流源6Aまたは定電流源6B及び信号線4が接続する端子7Dと、アンプ7Aのバイアス端子7Cが接続しない側の入力端子またはアンプ7Bの同様な入力端子の何れかに端子7Dを切替えて接続するスイッチ7Eと、アンプ7Bの端子7Dが接続する側の入力端子に接続されたコンデンサ7Fと、差動信号処理回路9とを有する。差動信号処理回路9は、アンプ7Aの出力からアンプ7Bの出力を引いた値を積分し、サンプルホールド(S/Hと略す)し、インピーダンス変換するものである。また、アンプ7Aの利得は1とし、アンプ7Bの利得は1/uとする。なお、アンプ7Aの利得を1以外の所定値rとし、アンプ7Bの利得をr/uとしてもよい。
出力走査回路8は、差動信号処理回路9の出力端子にソースが接続されたトランジスタ8Aと、すべてのトランジスタ8Aのドレインが共通に接続される出力信号線8Bと、出力信号線8Bを入力として増幅するバッファアンプ8Cと、バッファアンプ8Cで増幅後の信号を出力する出力端子8Dと、トランジスタ8Aを1個ずつ例えば左から右に順番に導通させるようにトランジスタ8Aのゲートに電圧を印加する制御回路8Eとから構成する。
差動信号処理回路9の内部構成を説明する図を、図2に示す。差動信号処理回路9は、入力電圧の差を電流に変換する差動電圧電流変換アンプ9Aと、差動電圧電流変換アンプ9Aからの出力電流を蓄積する積分コンデンサ9Bと、周期的に積分コンデンサ9Bを放電させる放電スイッチ9Cと、積分コンデンサ9Bの電圧をサンプリングして保持するサンプルホールド回路9Dと、サンプルホールドした値を出力するバッファアンプ9Eとを有する。
差動電圧電流変換アンプ9Aは、例えば図3(a)または図3(b)に示されるような差動アンプである。差動電圧電流変換アンプ9Aの出力インピーダンスと積分コンデンサ9Bの容量の積で表現される時定数が積分時間と比較して十分長くなるように設定しておく。
サンプルホールド回路9Dは、積分コンデンサ9Bと接続してサンプリングするためのスイッチ9Fと、積分コンデンサ9Bの電圧を保持する保持コンデンサ9Gと、保持コンデンサ9Gの値をリセットさせるためのスイッチ9Hとから構成される。
ダイオード1Aで発生する順方向電圧降下(順電圧と略す)は、ダイオード1Aの温度に依存する。この赤外線撮像素子は、画素1が受ける赤外線のエネルギー量にダイオード1Aの温度が比例するような構造とし、ダイオード1Aの順電圧の変化を計測することにより、画素1が受ける赤外線のエネルギー量を計測するものである。端子7Dの電圧が、ダイオード1Aで発生する順電圧に比例する成分を含む計測電圧である。なお、図1ではダイオード1Aを3個としているが、ダイオード1Aは何個でもよく、適切な大きさの順電圧が発生する個数とする。
画素1の構造を説明する図を、図4に示す。図4(a)に1個の画素1の縦断面図を示し、図4(b)に平面図を示す。図4(a)におけるB−B断面が図4(b)であり、図4(b)におけるA−A断面が図4(a)である。図4に示す構造は、非特許文献2で使用されている構造と同じである。SOI基板上に所定個のPN接合ダイオード1Aを直列接続して形成し、ダイオード1Aは空洞1Bの上に細い支持脚1CでSOI基板1Dと接続している。ダイオード1Aの上部には結合柱1Eで接続された赤外線吸収部1Fがある。また、ダイオード1Aの平面的な配置を図示することは省略する。
ダイオード1Aと赤外線吸収部1Fとがセンサ部であり、センサ部を囲む空洞1Bが断熱部である。断熱部は熱伝導が少なく、赤外線吸収部1Fが吸収した赤外線エネルギーは主に支持脚1Cにより基板1Dに熱が伝導する。支持脚1Cを細くし空洞1Bを設けることにより、センサ部の熱時定数を所定の大きさにし、赤外線エネルギーに対するセンサ部の温度変化を所定の範囲にする。
次に動作を説明する。まず、画素1の熱的な動作に関して説明する。画素1の熱的な等価回路を表現する図を、図5に示す。ここで、変数を以下のように定義する。
Ha:赤外線吸収部1Fの熱容量。
Hb:ダイオード1Aの熱容量。
Ht:赤外線吸収部1Fの熱容量とダイオード1Aの熱容量の和。Ht=Ha+Hb
Ga:赤外線吸収部1Fとダイオード1Aの間の熱コンダクタンス。
Gt:ダイオード1Aと基板1Dの間の熱コンダクタンス。Gt<<Gaである。
Ta:赤外線吸収部1Fと基板1Dの間の温度差。
Tb:ダイオード1Aと基板1Dの間の温度差。
Pa:赤外線吸収部1Fが吸収する赤外線のエネルギー量。
Pb:ダイオード1Aの通電時の発熱量。通電していない時は0。
Tba:ダイオード1Aと赤外線吸収部1Fの温度差。Tba=Tb−Ta
τ:Ta=Tbと見なしてよい長い時間領域での時定数。
τba:Gt=0と見なしてよい短い時間領域での時定数。
図5の等価回路においては、これらの変数の間には、以下の関係が成立する。
Ha*dTa/dt=Pa+Ga*(Tb−Ta) (1)
Hb*dTb/dt=Pb+Ga*(Ta−Tb)−Gt*Tb (2)
ここで、(1)式と(2)式を連立して解くことは可能であるが、煩雑になり、動作の本質を理解する上では得策ではない。そこで、以下の2つの場合に分けて、処理する。(A)長い時間領域を対象とする場合で、Ta=Tbと見なしてよい場合。(B)短い時間領域を対象とする場合で、Gt=0と見なしてよい場合。
まず、(A)の場合について解析する。(1)式と(2)式を足して、Ta=Tbを代入すると、以下となる。
Ht*dTb/dt=Pa+Pb−Gt*Tb (3)
(3)式より、dTb/dt=0の定常状態では、以下となる。
Tb=(Pa+Pb)/Gt (4)
ダイオード1Aと基板1Dの間の熱コンダクタンスGtは、その値のバラツキが少ない。よって、(4)式においてPb=0とすると、赤外線吸収部1Fが吸収する赤外線のエネルギー量Paにダイオード1Aの温度Tbが比例することを意味する。
(3)式より、Tbは以下の時定数τによる1次減衰の特性を持つことが分かる。この時定数τは、画素全体の温度変化を決める時定数である。
τ=Ht/Gt (5)
これは、Pa=Pb=0であったのが、t=0でPa≠0になり、t>0では一定だとすると、Tbの変化は以下の式で表現できることを意味する。変化をグラフにすると、図6のようになる。
Tb=(Pa/Gt)*(1−exp(−t/τ)) (6)
ここで、非特許文献2によると、τ=17m秒程度である。このτよりも遅い赤外線の入射エネルギーの時間的変化に対応して、撮像素子は動作する。TVレートで動作する撮像素子では、1/30秒の時間的変化に対応できれば十分であり、τ=17m秒程度はこの条件を満たす。より速い時間的変化に撮像素子が対応する必要がある場合は、時定数τが適切な値になるように調整する。
次に、(B)の場合について解析する。まず、(2)式にGt=0を代入して、以下の式を得る。
Hb*dTb/dt=Pb+Ga*(Ta−Tb) (7)
(1)式にHbをかけたものから(7)式にHaをかけたものを引いて、変数をTbaに変更すると、以下となる。
Ha*Hb*dTba/dt=Hb*Pa−Ha*Pb+Ht*Ga*Tba (8)
(8)式より、Tbaは(A)の場合のTbと同様に1次減衰の特性を持ち、その時定数τbaは、以下となる。この時定数τbaは、画素内の温度不均衡が定常状態に落ち着くまでの時定数である。
τba=(Ha*Hb)/(Ht*Ga) (9)
また、dTba/dt=0とすると、(8)式より、定常状態でのTbaの値は以下となる。
Tba=(Ha*Pb−Hb*Pa)/(Ht*Ga) (10)
また、(1)式と(7)式の両辺をそれぞれ足すと、以下の式を得る。
Ha*dTa/dt+Hb*dTb/dt=Pa+Pb (11)
(8)式より、時間が経過するとTbaは(10)式で表現される値に収束するので、時間が経過するとdTa/dt=dTb/dtが成立する。これを(11)式に代入すると、以下となる。
dTa/dt=dTb/dt=(Pa+Pb)/Ht (12)
これより、Pa=Pb=0であったのが、t=0でPb≠0になり、t>0では一定だとすると、TaとTbの変化は以下の式で表現できることになる。TaとTbの変化をグラフにすると、図7のようになる。なお、t=0では、Ta=Tb=0とする。
Ta=(Pb/Ht)*(t−τba*(1−exp(−t/τba))) (13)
Tb=(Pb/Ht)*(t+τba*(Ha/Hb)*(1−exp(−t/τba))) (14)
なお、τ>>t>>τbaが成立する時間tでは、(13)式と(14)式の減衰項は無視できて、以下となる。
Ta=Tb=(Pb/Ht)*t (15)
さて、画素1の熱的な特性はひとまずおいて、撮像素子としての動作の説明に移る。図8に、この実施の形態1での動作と画素行の通電の関係を説明する図を示す。ダイオード1Aは、駆動走査回路5により行ごとに電源線5Bと駆動線3を通じて電源端子5Aから通電される。通電は、制御回路5Dが行ごとにトランジスタ5CをON/OFFの制御をすることによりなされる。通電は、定電流源6Aまたは定電流源6Bによる定電流駆動になる。積分による等価雑音帯域幅を減少させるために、ダイオード1Aへの通電と通電により発生するダイオード1Aでの順電圧に依存する計測電圧(端子7Dの電圧)の積分は、帰線期間を除いた水平有効走査期間に行われる。積分された画素行の信号はつづく帰線期間内にサンプルホールド回路9Dによりサンプルホールドされ、その後の水平走査期間に出力走査回路8により1列ずつ選択されて出力端子8Dに出力される。テレビレートで動作する2次元撮像素子では、通電時間Tiは水平有効走査期間にとるのが一般的でTi=55μ秒である。なお、通電時間Tiをこれ以外としてもよい。
図8から分かるように、予備通電期間とそれに続く本通電期間とで通電電流を変えて通電する。通電時間Tiにおける最初のmTiの期間すなわち予備通電期間ではスイッチ6Cが定電流源6Bに接続され、定電流源6Bによりダイオード1Aには本通電期間の電流のu倍である電流uIfを流す。ここで、係数mは予備通電期間の通電期間Tiに対する割合であり、0<m<1の実数とする。
予備通電期間では、スイッチ7Eにより端子7Dがアンプ7B側に入力され、バイアス端子7Cに印加されるバイアス電圧VBと端子7Dの電圧との差がアンプ7Bにより1/u倍に増幅される。予備通電期間に端子7Dで発生する電圧は、電圧保存回路であるコンデンサ7Fに保持される。アンプ7Bの出力は差動信号処理回路9に入力されるが、アンプ7Aの出力が不定なので、予備通電期間での差動信号処理回路9の出力は利用されない。
次に残りの期間である(1−m)Tiの期間すなわち本通電期間では、スイッチ6Cが定電流源6Aに接続され、定電流源6Aにより通常の電流Ifを流す。その際に、スイッチ7Eにより端子7Dがアンプ7A側に入力され、アンプ7Aの利得は1なので、バイアス電圧VBと端子7Dの電圧との差がそのまま出力される。コンデンサ7Fにより保持される電圧がアンプ7Bに入力されるので、アンプ7Bの出力は予備通電期間の終了時点での値と同じである。これらアンプ7Aとアンプ7Bの出力の差が、差動信号処理回路9に入力され処理される。
予備通電期間と本通電期間の長さの比率を決める係数mは、適切な値に調整するものとする。以下の議論では回路のインダクタンス成分は小さいので無視するが、電流電圧が定常状態に落ち着くように、インダクタンス成分から決まる時定数よりも予備通電期間と本通電期間の両方が十分に長くなるようにする。具体的には、係数mを0または1との差を所定の大きさとする。
さて、このような通電を行う場合に、通電により発生する熱でダイオード1Aの温度がどのように変化するかを考察する。そのために、以下の変数を定義する。なお、(1)式と(2)式は、線形な式であり、重ね合わせの理が成立するので、以下の変数は通電により発生する熱だけによる温度変化を意味するものとする。
(ダイオード1Aに関係する電気的な状態を表現する変数)
Vfe:ダイオード1Aの接合で発生する接合電圧。
If:本通電期間でのダイオード1Aの通電電流。
Rd:画素1内のダイオード1A以外での抵抗。10kΩ程度。
Pb1:予備通電期間でのダイオード1Aで発生する熱エネルギー量。
Pb2:本通電期間でのダイオード1Aで発生する熱エネルギー量。
Tb1:予備通電期間の終了時点でのダイオード1Aの温度。
Tb2:本通電期間の終了時点でのダイオード1Aの温度。
まず、オームの法則などから以下が成立する。
Pb1=(Vfe+uIf*Rd)* uIf (16)
Pb2=(Vfe+If*Rd)* If (17)
ここで、VfeとIf*Rdの大きさに関して考察する。非特許文献2の図10により、Vfe+If*Rdは約7.05Vである。非特許文献2ではIf=10μAであるから、Rd=10kΩとすると、If*Rd=約0.1Vとなり、Vfe=6.95Vとなる。Rdによる電圧効果は、接合電圧Vfeの70分の1程度であり、無視してもあまり影響がないので、無視することとする。すると、(16)式と(17)式は以下となる。
Pb1=Vfe*uIf (18)
Pb2=Vfe*If (19)
ここで、一般的には、τ(=17m秒)>>Ti(=55μ秒)>>τbaが成立するので、(15)式と(18)式または(19)式より、以下となる。ダイオード1Aの温度変化を、図9に示す。
Tb1=((Vfe*uIf)/Ht)*mTi (20)
Tb2=Tb1+((Vfe*If)/Ht)*(1−m)Ti
=((Vfe*If)/Ht)*(u*m+1−m)*Ti (21)
Ti(=55μ秒)>>τbaが成立しない場合についても考察しておく。Ti(=55μ秒)>>τbaが成立しない場合は、(14)式においてt=mTiとすることにより、Tb1が求まる。
α=τba*(Ha/Hb) (22)
β=exp(−mTi/τba) (23)
Tb1=((Vfe*If)/Ht)*u*(mTi+α*(1−β)) (24)
本通電期間に関しては、t=mTiで(1−u)* Vfe*Ifの発熱量がステップ状に増加することになるので重ね合わせの理により、t1=t−mTiとすると、0≦t1≦(1−m)Tiである本通電期間でのダイオード1Aの温度Tbは以下のようになる。
Tb=((Vfe*If)/Ht)
*(u*(mTi+α*(1−β*exp(−t1/τba) )
+t1+(1−u)*α*(1−exp(−t1/τba)) )
=((Vfe*If)/Ht)
*(u*mTi+α+t1
−α*(u*β+1−u)*exp(−t1/τba) ) (25)
(25)式において、t1=(1−m)Tiとすることにより、本通電期間の終了時点でのダイオード1Aの温度であるTb2は、以下となる。
γ=exp(−(1−m)Ti/τba)) ) (26)
Tb2=((Vfe*If)/Ht)
*((u*m+1−m)*Ti+α*(1−γ*(u*β+1−u)) ) (27)
Ti(=55μ秒)>>τbaが成立しない場合のダイオード1Aの温度変化を、図10に示す。予備通電期間及び本通電期間での温度上昇は、Ti(=55μ秒)>>τbaが成立する場合よりも(24)式及び(27)式におけるαに比例する成分の量だけ大きい。Ti(=55μ秒)>>τbaであれば、このαに比例する成分が無視できて、(20)式でTb1が(21)式でTb2が計算できる。
ダイオード1Aの温度変化に関する考察は、以上で終了する。以下では、端子7Dの電圧について考察する。まず、従来の赤外線撮像素子の問題点について説明する。そのために以下の変数を定義する。
Vin:端子7Dでの電圧。
Vdd:電源端子5Aでの電圧。
Vf :電源端子5Aから端子7Dまでの回路における電圧降下。
Rw :画素領域2内での配線抵抗。
ΔT :赤外線吸収部1Fで吸収される赤外線エネルギーによるダイオード1Aの温度上昇。(4)式におけるTbと同じ意味である。
Is :ダイオード接合の逆飽和電流。
n :ダイオード1Aの直列個数。
k :ボルツマン定数。k=1.38×10−23(J/K)。
T :ダイオード1Aの絶対温度。
q :電子の電荷量。q=1.6×10−19(C)。
まず、変数の定義から以下となる。
Vin=Vdd−Vf (28)
また、ダイオード1Aの接合電圧は、以下の式で表現されることが知られている。
Figure 0004257994
Vfは、通電期間Tiを一定の電流Ifを流した場合に、抵抗による電圧降下とダイオード1Aの温度変化により、以下となる。ΔTは定常状態に落ち着いた値とする。通電に伴う発熱による温度上昇は、τ(=17m秒)>>Ti(=55μ秒)>>τbaが成立するものとし、(15)式から計算するものとする。
Figure 0004257994
(30)式の右辺第1項と第2項の和が、通常ダイオードの順電圧として観測される電圧である。Rdの値は配線レイアウトやダイオードのイオン注入量に依存するが、通常10kΩ程度のオーダである。第3項が、接合電圧の温度による変化を表現する項である。通電に伴う発熱による温度上昇は、(30)式では通電期間終了時の値を示している。これは、この項が発明の本質には影響を与えないので煩雑さを避けるためである。この項は通電時間内に直線的に上昇する画素の温度を表しているので、通電時間内で積分動作を行うので実効的には平均で表現した方が適切である。なお、前述のようにIf*Rdの項は無視できるが、ここでは厳密な式を示している。
If*Rdの項が無視できることに関して、具体的なデータを追加で説明する。通電時間Tiは積分時間と同一で55μ秒とし、熱容量Htは非特許文献2の表1の熱時定数と熱コンダクタンスのから逆算した値1.9×10−9J/Kとする。また、ダイオードの順電圧温度変化係数は非特許文献2の図13より−9.7mV/Kである。これらの値と前述のVfe、If、Rdの値を用いると、通電発熱による出力の中でのダイオード接合での電力消費に関する成分は、以下となる。
Figure 0004257994
Rdでの電力消費に関する成分は、以下のように求められる。
Figure 0004257994
すなわち、Rdでの電力消費に関する成分は一般に無視できて、(30)式は以下のように近似することが出来る。
Figure 0004257994
読み出し回路の観点からは画素領域2の左下隅の画素と右上隅の画素では定電流源に到達するまでの配線が異なることにも注意する必要がある。画素領域2内の駆動線3は画素1行分の電流が流れるのに対し、信号線4は画素1個分の電流しか流れない。また、画素領域2の左端にある駆動選択MOSトランジスタ5Cのドレインと電源端子5Aを接続する電源線5Bは画素1行分の電流が流れる。よって、画素配列領域でどの画素1に対しても配線抵抗Rwによる電圧降下を一致させることは困難である。さらにこれら配線の製造バラツキによるRwの抵抗バラツキが、上記ダイオードの抵抗Rdのバラツキと加わって、計測電圧Vinのバラツキの主因となっていた。これらバラツキは積分器でそのまま増幅される。非特許文献2の157ページに記載のとおり、そのバラツキは300mVp−p程度で、回路利得が14(非特許文献2の表1より)であることを考慮すると、抵抗バラツキは300mVを利得の14とIf=10μAで割って、約2kΩp−pと求められる。
このように、(33)式で計算されるVfは抵抗RdとRwのバラツキにより変動する。バラツキがないとしても、画素1の位置により配線の経路が違うために抵抗分による電圧降下を画素1によらず一定にすることは困難であった。(28)式においてVddは一定なので、Vfの変動が符合は反転するがそのままVinに発生する。
Vinにおける抵抗による電圧降下が画素1によりばらついて変動するので、以下の問題点が発生していた。
(A)S/N比を向上させる観点からは、回路の初段の積分回路で増幅度を上げるのが好ましいが上記バラツキによる積分器のクリッピングを避けるために増幅度に制限が発生する。
(B)撮像素子出力に接続されるカメラの信号処理回路では、バラツキに対応するための補正回路が必要である。カメラでは、通常、メカニカルシャッタを用いて光遮断した状態の素子出力をメモリに蓄え、撮像時は素子出力からそのメモリに格納された信号を減算してから各種信号処理を行うという補正回路が必要である。
さて、この発明の赤外線素子の説明に戻る。まず、発明の基本原理について説明する。1個の画素1に注目した場合の差動信号処理回路9までの回路構成を説明する図を、図11に示す。ここで、抵抗2Aは駆動線3、信号線4、電源線5Bでの直流抵抗RWとダイオード1Aに含まれる直流抵抗RDをまとめて表現している。
通電時間Tiにおける最初のmTiの期間すなわち予備通電期間では、通常の電流のu倍である電流uIfを流すこのときのダイオード接合にかかる電圧は、以下となる。
Figure 0004257994
通常の電流Ifを流す場合との電圧差は、以下となる。
Figure 0004257994
(35)式によると、通常の電流Ifを流す場合との電圧差は、電流値Ifやダイオード接合の逆飽和電流Isに依存しない固定値となる。uとしては現実的に実現が容易な値の最大値は2程度である。仮にここではu=2とし、温度Tを30℃すなわち約303Kとすると、(35)式による1個のダイオード接合あたりの差電圧は、約0.018Vになる。これはシリコンのダイオード接合における順電圧が約0.7Vなので、約2.5%程度の変動であることが分かる。そのため、以下の近似が成立する。
Figure 0004257994
一方、電圧Vfeの温度係数は次式で表される。
Figure 0004257994
ここで、Egoは絶対零度におけるシリコンのバンドギャップで約1.21eVである。温度変化係数はVfeの一次の関数であるから、温度変化係数についても、以下の近似ができる。
Figure 0004257994
よって、通電時間Tiにおける最初のmTiの期間すなわち予備通電期間に通常の電流のu倍である電流uIfを流したときの計測電圧Vincは、(33)(36)(38)式より、以下となる。
Figure 0004257994
次に残りの(1-m)Tiの期間すなわち本通電期間で、通常の電流Ifに戻す。本通電期間の計測電圧Vindは、以下のようになる。なお、ダイオード1Aの通電による温度上昇は、予備通電期間での通電による温度上昇に本通電期間での温度上昇を加えたものになる。
Figure 0004257994
ここで、Vincを1/u倍に増幅(u<1の場合)もしくは減衰(u>1の場合)させたのち、Vindから減算させた信号電圧Vineを積分器に入力させる。Vineは以下で計算される量となる。
Figure 0004257994
(41)式によるVineは、バラツキの主因であるRdやRwを含まないので、バラツキが少ない値となる。そのため、Vineは積分回路で高利得増幅が可能となり、素子の高S/N化がはかれるとともに、カメラの補正回路削減によるカメラの低コスト化、小型化が図れる。
(41)式から分かるように、入射赤外線のエネルギー量により反応した成分(ΔTに比例する成分)は、従来に比べ係数(1−1/u)を乗じた値となる。この係数とuの関係をグラフにしたのが図12である。係数の極性は重要ではないので、このグラフでは絶対値表示している。なお、u=1では、ΔTに比例する成分がゼロになることが分かる。つまり、u=1以外で本発明の主たる効果である抵抗成分によるバラツキを抑圧してかつ信号出力を得るという効果が得られる。uの値により、以下のように付随する効果が異なる。
(A) 0<u≦0.5の場合
|1−1/u|≧1であり、感度は従来よりも向上する。ただし、補正データ減算前に1/u倍に増幅する必要がある。
(B)0.5<u<1.0の場合
|1−1/u|<1であり、感度は従来よりも減少する。(A)の場合と同様に、補正データ減算前に1/u倍に増幅する必要がある。
(C)1.0<uの場合
|1−1/u|<1であり、感度は従来よりも減少する。補正データは減算前に1/u倍に減衰すればよい。補正データを増幅する必要がないため、回路構成はシンプルになる利点がある。
以上をまとめると、感度を犠牲にしても回路構成を簡単にする目的ではuを1より大きく設定すればよい。それ以外では、増幅する必要があるが感度が従来と同等以上になる0<u≦0.5が好ましい。
実施の形態1の場合は、アンプ7Bに着目してバイアス電圧VBと入力信号との差電圧Vincは、次式で表される。
Figure 0004257994
同様にアンプ7Aに着目すると、バイアス電圧VBと入力信号との差電圧Vindは、次式となる。
Figure 0004257994
差動信号処理回路9に入力される信号量Vineは、以下となる。
Figure 0004257994
(44)式より、VineのDCオフセット電圧をほぼゼロにするためには、バイアス電圧VBを以下のように設定すればよいことが分かる。
Figure 0004257994
VineのDCオフセット電圧をほぼゼロにすると、後段の信号処理も容易となる。すなわち、バイアス電圧VBは、アンプ7Aとアンプ7Bの動作点を決めるもので、発明の本質とは関係ない。(44)式は(41)式と同様に、出力バラツキの源となる抵抗RwとRdが含まれていない。そのため、差動信号処理回路9で十分に増幅できるとともに、カメラでの補正回路を省略することも可能になる。
アンプ7Aとアンプ7Bは可能なかぎり同じ回路構成で、増幅度が異なるものが望ましい。その具体例を図13に示す。この回路は、スイッチドキャパシタアンプと知られているものである。高増幅率の反転アンプ10Aと、容量がCcの結合コンデンサ10Bと、容量がCfの帰還コンデンサ10Cと、入力切替えスイッチ10Dと、クランプスイッチ10Eとで構成される。反転アンプ10Aは、例えば図14に示すインバータアンプなどとする。
アンプ7Aとアンプ7Bの動作は、以下のようになる。増幅に先立ち入力切替えスイッチ10Dをバイアス電圧VB側に倒し、クランプスイッチ10Eを閉じる。反転アンプ10Aの入出力電位が同じになる動作電圧Vcにクランプされるとともに、結合コンデンサ10Bの反転アンプ10A側の電極には上記電圧Vcとバイアス電圧VBの差に比例した電荷Qが発生する。
Q=(Vc−VB)*Cc (46)
次に、クランプスイッチ10Eを開き、その後、入力切替えスイッチ10Dを入力電圧側に倒す。この状態での入力電圧をVinとし、反転アンプ10Aの入力電圧をVc+vcとし、出力電圧をVc+voutとする。ここで、小文字で表現したvcとvoutは、クランプ電圧Vcからの変化量を意味している。クランプスイッチ10Eを開くことにより、結合コンデンサ10Bの反転アンプ10A側の電極に貯まっていた電荷Qは、その一部が帰還コンデンサ10Cに移動する。前に定義した変数によると、容量Ccである結合コンデンサ10Bと容量Cfである帰還コンデンサ10Cの電荷の和は、以下となる。
Q=(Vc+vc−Vin)*Cc+(Vc+vc−Vc−vout)*Cf (47)
反転アンプ10Aの増幅度をAvとすると、その入出力の間には以下の関係が成立する。
vout=−Av*vin (48)
(46)式と(47)式が同じ電荷Qを表現するものであり、(48)式を用いて変形すると、以下の式が得られる。なお、以下では、Av>>1という条件が成立する場合の近似も示す。
Figure 0004257994
通電期間が終了した後で、次の通電期間が開始する前までに、入力切替えスイッチ10DをVB側に戻し、クランプスイッチ10Eを入にしておく。入力切替えスイッチ10Dとクランプスイッチ10Eを操作する順番はどちらが先でも同時でもよい。
(49)式によると、図13に示す回路のアンプの増幅率は、容量Ccと容量Cfの比率で決定できることになる。よって、アンプ7Aとアンプ7Bとが、容量の比率を変えるだけで同じ回路構成で実現できる。例えば、アンプ7Aの増幅率を1とし、アンプ7Bの増幅率を2とする場合には、アンプ7AではCf=Ccとし、アンプ7BではCc=2*Cfとすればよい。
図13に示す回路の特徴は、簡便なアンプ構成で利得を変化させることが容易な点にある。欠点としては、時間mTi及び(1−m)Ti内に入力切替えスイッチ10Dとクランプスイッチ10Eの制御を行うクロックが新たに必要なことである。
クランプスイッチ10Eを切にするのと、入力切替えスイッチ10DをVin側にするのは同時でもよい。ただし、クランプスイッチ10Eを切にする前に、入力切替えスイッチ10DをVin側にしてはならない。
別のアンプ構成例として演算増幅器を用いた回路図を、図15に示す。この回路は周知のもので、初段の演算増幅器がバッファアンプ11A、次段が反転アンプ11Bで抵抗11Cと抵抗11Dの比率で増幅度を変化させることが出来る。反転アンプ11Bの入力インピーダンスは一般に低くなるので、バッファアンプ11Aが設けられている。
抵抗11Cの大きさをR1とし抵抗11Dの大きさをR2とすると、図15に示す構成のアンプの増幅利得は以下となる。
増幅利得=−(R2/R1)*(Vin−VB)+VB (50)
図15に示す構成では図14の場合に比べ、クロック制御が不要であるという長所があるが、回路規模が大きくなるという欠点もある。回路規模が大きくなる理由は、演算増幅器の初段にある差動アンプをMOSトランジスタで構成すると図3に示すように少なくとも5個のトランジスタが必要となるからである。
この実施の形態1では、赤外線センサに相当する画素1を2次元に配置した赤外線撮像素子に適用した場合に説明したが、1個または複数の赤外線センサに適用しても回路の抵抗分のバラツキによる影響を受けにくい赤外線センサを得ることができるという効果がある。
当然のことながら、アンプ7A及びアンプ7Bの回路構成は、ここで示した以外のものであってもよい。差動信号処理回路9についても2つの入力信号を減算した後で必要な演算を行うものであれば、この実施例で示した以外でもどのようなものでもよい。定電流源回路6も予備通電期間に本通電期間のu倍の電流を流すことができるものであれば、どのような回路構成でもよい。さらには、本通電期間での直接または間接的に計測したダイオードの順電圧から予備通電期間でのダイオードの順電圧を1/u倍した電圧を減算した電圧に比例する値を出力する演算を行うものであれば、演算回路はどのようなものでもよい。なお、計測電圧はダイオードの順電圧を間接的に計測するものである。
実施の形態1では、すべてをアナログ回路として実現したが、その一部をデジタル回路で実現してもよい。
駆動走査回路5と出力走査回路8と1個の出力端子8Dとを有する撮像素子に適用したが、出力端子8Dを複数にしたり、駆動走査回路5または出力走査回路8の何れかまたは両方がなかったりしてもよい。同じ行にある画素1を駆動線3が共通接続し、同じ列にある画素1を信号線4が共通接続するとしたが、行と列を入れ替えてもよい。
定電流制御回路、電圧保存回路及び演算回路を信号線ごとに設けたが、画素ごとに設けてもよい。なお、信号線ごとに設けた方がスペース上では有利である。同じ列にある画素に1本の信号線としたが、同じ列でも上半分と下半分にそれぞれ1本の信号線を設けるなど、列あたりの信号線の数を複数にしてもよい。同様に、行あたりの駆動線の数を複数にしてもよい。
ダイオードの順電圧に比例する成分を含む計測電圧の予備通電期間での値を保存する電圧保存回路は、コンデンサでなくてもよい。例えば、計測電圧をデジタル化してメモリなどに保存してもよい。コンデンサを使用する場合でも、その設置位置は計測電圧またはそれを所定倍した電圧を保存できる位置であればどこでもよい。計測電圧を計測する位置も、ダイオードの順電圧に比例する成分を含む電圧が発生する位置すなわちダイオードの順電圧を直接または間接的に計測できる位置であればどこでもよい。
センサ部である画素1の構造は、赤外線の入射エネルギーにセンサ部の温度が比例するように、センサ部と基板との間の熱伝導が適切に調整され、画素全体の温度変化の挙動を決める時定数が撮像素子において必要となる時定数よりも小さいものであれば、どのようなものでもよい。画素内での温度不均衡が定常状態に落ち着く上での時定数は、通電期間よりも十分小さい方が解析をする上では望ましいが、必ずしもそうでなくてもよい。
以上のことは、他の実施の形態でもあてはまる。
実施の形態2.
本発明の実施の形態2に係る赤外線撮像素子を、図16に示す。この例ではアンプ7Bの入力側に設けられていたコンデンサ7Fを出力側に設けて、アンプ7Bの出力端子とコンデンサ7Fの間にスイッチ7Gを設け、コンデンサ7Fの出力電圧が差動信号処理回路9の入力となるようにしている。その他の構成は、実施の形態1と同じである。
予備通電期間ではコンデンサ7Fの電圧をアンプ7Bの出力電圧と同じにし、予備通電期間の終了時点でのコンデンサ7Fの電圧を本通電期間に保持するために、スイッチ7Gは、予備通電期間で入状態であり、本通電期間で切状態となる。これ以外は、実施の形態1と同様に動作する。
この実施の形態でも、実施の形態1と同様な効果が有る。
実施の形態3.
本発明の実施の形態3に係る赤外線撮像素子を、図17に示す。この実施の形態3の特徴は、1画素あたり2個あった定電流源を1個とし、その電流を時間的に変化させることである。実施の形態1での場合の図1と異なる点だけを説明する。定電流源6Aと定電流源6Bの替わりに、飽和領域で動作するMOSトランジスタ6Dが有る。MOSトランジスタ6Dのゲート電圧は、制御回路12により制御される。ゲート電圧の値により、MOSトランジスタ6DはuIfまたはIfの定電流を流す。
制御回路12の具体例を、図18(a)〜(c)に示す。何れもカレントミラー回路の応用である。まず、図18(a)について説明する。ダイオード接続されたトランジスタ12Aと、電源線12Bと、そのゲートにかかる電圧と電源線12Bの電圧の差でトランジスタ12Aに流れる電流を決定するPチャネルMOS型のトランジスタ12Cと、トランジスタ12Cのゲート電圧を切替えるスイッチ6Cと、スイッチ6Cにより切替えてトランジスタ12Cのゲートに接続される電圧源12E及び電圧源12Fとから構成される。なお、スイッチ6Cは、予備通電期間では電圧源12Fに接続され、本通電期間では電圧源12Eに接続される。
トランジスタ12Aに流れる電流に対応してトランジスタ12Aのゲート電圧が自動的にきまり、その電圧が出力線12Dを介してトランジスタ6Dのゲートに加えられる。よって、トランジスタ6Dにはトランジスタ12Aと同じ電流が流れる。トランジスタ12Aに流れる電流はトランジスタ12Cのゲート電圧により決まるので、本通電期間にトランジスタ12Cのゲートに接続される電圧源12Eは電流Ifが発生する電圧とし、予備通電期間で使用される電圧源12Fは電流uIfが発生する電圧とする。
図18(b)の構成は、電圧源12Fが出力電圧を可変な可変電圧源12Gに置き換わっている点以外は、図18(a)の構成と同じである。一方の電圧を可変とすることで、電流値変化と増幅率変化のバランスを調整することが可能となる。電流値や増幅率は設計値からずれが発生することもあり、その場合このような電圧調整で(44)式が成立する最適点に設定することが可能となる。
図18(c)の構成では、PチャネルMOS型のトランジスタが2個並列に接続されており、2個のトランジスタの電流を流す場合と1個のトランジスタの電流を流す場合とで、電流の大きさを変えるものである。トランジスタ12Cが常に電流を流す方で、トランジスタ12Jが場合により電流を流す方である。トランジスタ12Cが流す電流がuIfになるようにし、トランジスタ12Jが流す電流が(1−u)*Ifになるようにしておく。
トランジスタ12Cのゲートには常に同じ電圧源12Hを接続し、トランジスタ12Jのゲートにはスイッチ6Cにより電圧源12Hまたは電源線12Bを接続する。トランジスタ12Jのゲートに電圧源12Hを接続した場合は、トランジスタ12Jにも電流が流れる。トランジスタ12Jのゲートに電源線12Bを接続した場合は、トランジスタ12Jには電流が流れなくなる。
制御回路12の内部でスイッチ6Cが動作し、トランジスタ6Dが定電流の大きさを変えて流すことを除いて、実施の形態1と同様に動作する。
この実施の形態でも、実施の形態1と同様の効果が有る。
さらに、この実施の形態では、定電流制御回路6の回路規模を小さくし、チップサイズを小さくできるという効果が有る。図1及び図17から分かるように、定電流制御回路6と検出回路7は、画素列ごとに画素列のピッチサイズ内に配置する必要がある。そのため、定電流制御回路6の回路規模が大きいと、画素列の方向に回路領域が拡大し、チップサイズも大きくなる。実施の形態1の場合は2個の定電流源を構成する必要があるのに対して、この実施の形態では1個のMOSトランジスタ6Dだけを画素列ごとに配置すればよいので、この実施の形態では定電流制御回路6の回路規模が小さくなり、チップサイズも小さくなる。
なお、実施の形態1ではなく実施の形態2に適用しても、同様の効果が有る。
実施の形態4.
本発明の実施の形態4に係る赤外線撮像素子を図19に示す。この実施の形態4は、実施の形態3に対して、アンプ7Aとアンプ7Bを外部制御により増幅率が可変な1個のアンプ7Hに置き換える変更を実施したものである。アンプ7Bの片側の入力端子に接続していたコンデンサ7Fは、差動信号処理回路9の片側の入力端子に接続している。また、アンプ7Aとアンプ7Bの何れかの入力端子に端子7Dを接続していたスイッチ7Eは、アンプ7Hの出力を差動信号処理回路9のどちらかの入力端子に切替えて入力する位置にある。
アンプ7Hの構成例を図20に示す。図20は図13に示したアンプの応用で、利得が容量比により決まることを利用したものである。図13と比較して、異なる点だけを説明する。2個目の帰還コンデンサ10Fを帰還コンデンサ10Cと直列に接続しており、帰還コンデンサ10Fの両端をつなぐ短絡スイッチ10Gも追加している。帰還コンデンサ10Fの容量をCf2とする。
次に動作を説明する。スイッチ7E、コンデンサ7F及びアンプ7Hの以外は、実施の形態2の場合と同じである。
スイッチ7Eは、予備通電期間では差動信号処理回路9のコンデンサ7Fが接続された側の入力端子に接続される。本通電期間では、差動信号処理回路9のもう一方の入力端子に接続される。本通電期間のコンデンサ7Fには、予備通電期間の終了時点でのアンプ7Hの出力電圧が保持される。
アンプ7Hの動作タイミング図を、図21に示す。前の行の水平帰線期間では、入力切替えスイッチ10Dをバイアス電圧VB側に倒し、クランプスイッチ10Eと短絡スイッチ10Gを閉じる。予備通電期間の開始時点で、クランプスイッチ10Eと短絡スイッチ10Gを開き、入力切替えスイッチ10Dを入力電圧側に倒す。予備通電期間の終了時点で、短絡スイッチ10Gを閉じる。このようにスイッチを制御することにより、反転アンプ10Aに並列になる静電容量の値をCfxとすると、予備電期間ではCfx=(Cf*Cf2)/(Cf+Cf2)であり、本通電期間ではCfx=Cfと変化させることができる。図13に示す回路のアンプの増幅率は(49)式で計算できるので、Cfxを変化させる図20の回路では、異なる増幅率を出力することができる。例えば、予備通電期間での増幅率を1とし、本通電期間での増幅率を2とする場合には、Cc=Cf=Cf2とすればよい。
この実施の形態でも、実施の形態1と同じ効果が有る。さらに、検出回路7に必要なアンプの数が2個から1個になるので、検出回路7の回路規模を小さくでき、チップサイズも小さくできる。
なお、実施の形態3ではなく実施の形態1または実施の形態2に適用しても、同様の効果が有る。
この実施の形態では、アンプの増幅率を変化させるために、帰還コンデンサを複数にして直列に接続するようにしたが、並列に接続するようにしてもよい。直列に接続する場合は帰還コンデンサに並列にスイッチを配置したが、並列に接続する場合は帰還コンデンサに直列にスイッチを配置する。3個以上の帰還コンデンサを使用する場合は、直列にしたものを並列にするなど直列と並列を組合した接続方法でもよい。帰還コンデンサではなく結合コンデンサを複数にして、直列または並列に接続するようにしてもよい。さらには、帰還コンデンサと結合コンデンサを複数にして、直列または並列さらには直列と並列の組合せによる接続方法としてもよい。なお、帰還コンデンサと結合コンデンサの容量を自由に設定できる場合は、帰還コンデンサと結合コンデンサの合計数は最小3個でよく、4個以上使用するのはムダである。
図15に示すような抵抗を使用するアンプにおいて、抵抗比率を変化させるようにしてもよい。抵抗比率を変化させるために抵抗を3個以上使用する方法は、コンデンサの場合と同様にすればよい。
以上のことは、他の実施の形態でもあてはまる。
実施の形態5.
本発明の実施の形態5は、実施の形態1において予備通電期間と本通電期間での定電流の比である係数uと、予備通電期間と本通電期間の長さの比を表す係数mの間の関係を調整して、画素ごとの熱容量Htのバラツキが赤外線撮像素子の出力に影響しないようにした場合である。
実施の形態1では煩雑さを避けるために、ダイオード1Aの通電に伴うダイオード1Aの温度変化を予備通電期間及び本通電期間の終了時点での値とした。しかし、本通電期間で積分動作を行うので本通電期間でのダイオード1Aの温度変化は平均値を使用する方が適切である。
図22に、Ti(=55μ秒)>>τbaが成立する場合に、ダイオード1Aの通電に伴うダイオード1Aの温度変化及び熱容量のバラツキが赤外線撮像素子の出力に影響を与えない条件を説明する図を示す。なお、図22及び以下の説明では、本質が明確になるように、電流Ifを流した時の温度上昇の傾きが1になるように温度を((Vfe*If)/Ht)で割った値で表現する。ダイオード1Aの温度は、予備通電期間では傾きuで上昇し、t=mTiではu*mTiとなる。本通電期間では傾き1で温度が上昇し、t=Tiでは(u*m+1−m)*Tiとなる。本通電期間での平均温度は、図22において破線で示す(u*m+(1−m)/2)*Tiとなる。予備通電期間の終了時点でのダイオード1Aの温度の1/u倍して符号を反転させた−mTiを、図22では破線で示す。なお、図22では、本通電期間での温度には縦線(範囲Aと呼ぶ)を施し、減算する予備通電期間の温度を1/u倍したものには斜線(範囲Bと呼ぶ)を施す。
赤外線撮像素子の出力Vineにおけるダイオード1Aの通電に伴うダイオード1Aの温度変化による成分Vitは、以下となる。Vitは、図22では1点鎖線で示す。
Vit=((Vfe*If)/Ht)*((u*m+(1−m)/2)*TiーmTi)
=((Vfe*If)/Ht)*(u*m+(1−3*m)/2)*Ti (51)
(51)式からも分かるように、Vit=0が成立してダイオード1Aの通電に伴うダイオード1Aの温度変化が出力に影響しなくなると、Htのバラツキが出力に影響しなくなる。なお、Vit=0となる条件は、図22において範囲Aと範囲Bの面積が同じになることである。
Htのバラツキが赤外線撮像素子の出力に影響しないようになる電流の係数uと期間の係数mとの間の条件は、(51)式から以下となる。
u=(3/2−1/2m) (52)
u>0、1>m>0である必要があるので、(52)式より、以下も成立する必要がある。
1>m>1/3 (53)
1>u>0 (54)
この実施の形態5では、係数uと係数mが(52)式〜(54)式が成立するようにしておく。
動作も、実施の形態1と同様である。
この実施の形態5でも、実施の形態1と同様な効果が有る。さらに、赤外線撮像素子の出力が画素の熱容量Htのバラツキによる影響を受けないという効果もある。画素1が微細になってくると、熱容量Htが小さくなり相対的にバラツキが大きくなる。熱量量Htのバラツキを受けないことにより、画素の微細化すなわちチップの小型化が弊害なしに実現できることになる。
なお、実施の形態2〜実施の形態4の何れに適用しても同様の効果が有る。
一般的な画素では、Ti(=55μ秒)>>τbaが成立するので、この場合について説明した。Ti(=55μ秒)>>τbaが成立しない画素を使用する可能性もあるので、その場合での熱容量Htが赤外線撮像素子の出力に影響しない条件も考察しておく。
Ti(=55μ秒)>>τbaが成立しない場合の図22と同様な図を、図23に示す。ダイオード1Aの温度変化の傾きは、予備通電期間の開始時点であるt=0では(Ht/Hb)*uであり、uを越える部分はしだいに減衰して、t=mTiではuより大きい所定の大きさである。傾きがuより大きい部分が積分されて、予備通電期間の終了時点であるt=mTiでのダイオード1Aの温度は、umTiよりも大きい(23)式で表現されるTb1となる。本通電期間に入ると傾きが(Ht/Ha−1)*(1−u)だけ増加して1より大きくなる。傾きが1を越える分はしだいに減衰して、t=Tiの本通電期間の終了時点では1より大きい所定の値になり、ダイオード1Aの温度は、(27)式で表現されるTb2となる。本通電期間での温度上昇分は、傾きが1を越える分が積分されて(1−m)Tiよりも大きい。
本通電期間での平均温度は、Tb3は以下となる。
Tb3=((Vfe*If)/Ht)
*(u*mTi+α+(1−m)Ti/2
−α*(u*β+1−u)*τba*(1−γ)) (55)
赤外線撮像素子の出力Vincにおけるダイオード1Aの通電に伴うダイオード1Aの温度変化による成分Vitは、以下となる。
Vit=Tb3−Tb1/u
=((Vfe*If)/Ht)
*(u*mTi+α+(1−m)Ti/2−α*(u*β+1−u)*τba*(1−γ)
−(mTi+α*(1−β)))
=((Vfe*If)/Ht)
*((u*m+(1−3*m)/2)*Ti
+α*β−α*(u*β+1−u)*τba*(1−γ))
=((Vfe*If)/Ht)
*((u*(mTi−τba*α* (1−β)*(1−γ))
+((1−3*m)/2)*Ti+α*(β−τba*(1−γ))) ) (56)
この(56)式のVitが0となることが、Htのバラツキが赤外線撮像素子の出力に影響しないようになる条件であるから、以下の式を得る。
u=((3*m−1)/2)*Ti+α*(τba*(1−γ)−β) )
/(mTi−τba*α* (1−β)*(1−γ)) (57)
u>0であることから、mの範囲は以下となる。
(Ti−α*(τba*(1−γ)−β) )/(3*Ti)<m<1 (58)
m=1では(26)式によりγ=1となるので、uの上限は以下となる。
0<u<1−α*β/Ti (59)
係数uと係数mが、(57)〜(59)式が成立するようにしておくと、Ti(=55μ秒)>>τbaが成立しない場合でも、Htのバラツキが撮像素子の出力に影響しなくなる。なお厳密に言うと、Ht=Ha+Hbであり、(57)〜(59)式はHaとHbの比率が変化しないでHtがばらつく場合の式である。HaとHbの比率が変化しなければ、(9)式で計算するτbaと(22)式で計算するαが変化しないで、(23)式で計算するβと(26)式で計算するγも変化しない。HaとHbの比率が変化してばらつく場合でも、(57)〜(59)式が成立するようにしておくと、HaとHbのバラツキが撮像素子の出力に影響する度合いが小さくなる。
以上のことは、他の実施の形態でもあてはまる。
実施の形態6.
本発明の実施の形態6に係る赤外線撮像素子を、図24に示す。本発明の実施の形態6は、予備通電期間及び本通電期間での2個の計測電圧から撮像素子の出力を演算する処理をデジタル回路で実施するように、実施の形態1を変更した場合である。実施の形態1の場合での図1と異なる点だけを説明する。
アンプ7A、アンプ7B、バイアス端子7C及び差動信号処理回路9がなく、その替わりに、本通電期間での端子7Dの電圧を保存するコンデンサ7Jと、次の行の走査期間に利用できるようにコンデンサ7Jの電圧を保持するサンプルホールド回路13Aと、コンデンサ7Fの電圧を保持するサンプルホールド回路13Bと、出力端子8Dに接続されたA/D変換器15と、A/D変換器15の出力を入力として撮像素子の出力を演算するデジタル回路である演算回路15と、演算回路15の出力端子16とを追加している。サンプルホールド回路13Aとサンプルホールド回路13Bには、それぞれ1個のMOSトランジスタ8Aが接続され、MOSトランジスタ8Aの数は実施の形態1の場合での2倍になる。サンプルホールド回路13Aとサンプルホールド回路13Bの構成は、図11に示す差動信号処理回路9から差動電圧電流変換アンプ9Aを除いたものと同様とする。
次に動作を説明する。通電及びスイッチ6Cとスイッチ7Eの動作は、実施の形態1の場合と同様とする。コンデンサ7Fには予備通電期間の終了時点での端子7Dの電圧すなわち計測電圧が保存され、コンデンサ7Jには本通電期間の終了時点での計測電圧が保存される。帰線期間中に、サンプルホールド回路13Aはコンデンサ7Jの電圧を保持し、サンプルホールド回路13Bはコンデンサ7Fの電圧を保持する。出力走査回路8では、同じ画素列にあるサンプルホールド回路13Aとサンプルホールド回路13Bに接続されたMOSトランジスタ8Aを続けて導通させ、本通電期間での電圧Vindと予備通電期間での電圧Vincを読み出す。1個の画素列の処理が終わると、次の画素列を処理する。
A/D変換器14は信号をデジタル化して、演算回路15に入力する。演算回路15では、デジタル化されたVincとVindから、以下の式によるVineを演算して、出力端子16に出力する。
Vine=Vind−Vinc/u (60)
出力信号Vineは、以下の式で計算される値となる。
Figure 0004257994
実施の形態1の場合での(44)式と同様であり、バイアス電圧VBが存在しない点と、デジタル化されている点とが異なる。また、通電によるダイオード1Aの温度上昇は、(44)式では煩雑さを避けるために期間の終了時点としたが、この実施の形態6では、通電期間の終了時点での値を使用するのが理論的にも正しい。
この実施の形態6でも、出力信号Vineを計算する(61)式にバラツキの主因であるRdやRwを含まないので、バラツキが少ない値となる。そのため、Vineは高利得増幅が可能となり、素子の高S/N化がはかれるとともに、カメラの補正回路削減によるカメラの低コスト化、小型化が図れる。
熱容量Htのバラツキに出力が影響されないようにするには、以下のように係数uと係数mを決めればよい。
u=2−1/m (62)
出力が熱量量Htのバラツキを受けないことにより、画素の微細化すなわちチップの小型化が弊害なしに実現できることになる。
本通電期間と予備通電期間の終了時点での計測電圧を保存するとしたが、本通電期間と予備通電期間のそれぞれの期間内における任意の所定時点での計測電圧や平均をデジタル化して保存するようにしてもよい。本通電期間と予備通電期間の両方の計測電圧を保存するので、予備通電期間が本通電期間の後になるようにしてもよい。そのような場合には、熱容量Htのバラツキに出力が影響されないようにする条件は(62)式とは異なるが、通電の仕方に応じて通電によるダイオードの温度上昇を計算して、その計算に合わせた条件とすればよい。
演算回路をデジタル回路で実現するのは、実施の形態2〜実施の形態4の何れに対しても適用できる。出力端子8Dを2個にして、サンプルホールド回路13Aとサンプルホールド回路13Bの読み出しを並行して行うようにしてもよい。
回路のどの範囲をデジタル回路とするか、アナログ回路として残す部分をどのような回路として構成するかは、所定の性能が実現できる範囲でコストや性能などの諸条件を総合的に判断して決めればよい。
ここでは、出力が熱容量Htのバラツキの影響を受けないように調整することを合わせて実施したが、デジタル回路を使用することだけを実施してもよい。
以上のことは、他の実施の形態でもあてはまる。
この発明の実施の形態1での赤外線撮像素子の電気回路としての構成を説明する図である。 この発明の実施の形態1での赤外線撮像素子の差動信号処理回路の内部構成を説明する図である。 この発明の実施の形態1での赤外線撮像素子の差動電圧電流変換回路の構成を説明する図である。 この発明の実施の形態1での赤外線撮像素子の画素の構造を説明する図である。 この発明の実施の形態1での赤外線撮像素子の画素の熱的な等価回路を表現する図である。 この発明の実施の形態1での赤外線撮像素子の赤外線入射エネルギーによる画素の温度変化を説明する図である。 この発明の実施の形態1での赤外線撮像素子におけるダイオードの通電による発熱による温度変化を説明する図である。 この発明の実施の形態1での赤外線撮像素子の動作と画素行の通電の関係を説明する図である。 この発明の実施の形態1での赤外線撮像素子の赤外線吸収部とダイオードの間の熱コンダクタンスが大きい場合のダイオードの通電による発熱によるダイオードの温度変化を説明する図である。 この発明の実施の形態1での赤外線撮像素子の赤外線吸収部とダイオードの間の熱コンダクタンスが小さい場合のダイオードの通電による発熱によるダイオードの温度変化を説明する図である。 この発明の実施の形態1での赤外線撮像素子の1個の画素に注目した場合の差動信号処理回路までの回路構成を説明する図である。 この発明の実施の形態1での赤外線撮像素子の入射赤外線により反応した成分の比例係数と電流の変化度uの関係を説明する図である。 この発明の実施の形態1での赤外線撮像素子のアンプの構成を説明する図である。 この発明の実施の形態1での赤外線撮像素子の反転アンプの構成を説明する図である。 この発明の実施の形態1での赤外線撮像素子の演算増幅器を用いたアンプの別の構成を説明する図である。 この発明の実施の形態2での赤外線撮像素子の電気回路としての構成を説明する図である。 この発明の実施の形態3での赤外線撮像素子の電気回路としての構成を説明する図である。 この発明の実施の形態3での赤外線撮像素子の定電流源となるトランジスタの電流を変化させる制御回路の構成を説明する図である。 この発明の実施の形態4での赤外線撮像素子の電気回路としての構成を説明する図である。 この発明の実施の形態4での赤外線撮像素子の増幅率を変更可能なアンプの構成を説明する図である。 この発明の実施の形態4での赤外線撮像素子の増幅率を変更可能なアンプの動作タイミング図である。 この発明の実施の形態5での赤外線撮像素子の赤外線吸収部とダイオードの間の熱時定数が通電期間に対して無視できるほど小さい場合に、ダイオードの通電に伴うダイオードの温度変化及び熱容量のバラツキが赤外線撮像素子の出力に影響を与えない条件を説明する図である。 この発明の実施の形態5での赤外線撮像素子の赤外線吸収部とダイオードの間の熱時定数が通電期間に対して無視できるほどは小さくない場合に、ダイオードの通電に伴うダイオードの温度変化及び熱容量のバラツキが赤外線撮像素子の出力に影響を与えない条件を説明する図である。 この発明の実施の形態6での赤外線撮像素子の電気回路としての構成を説明する図である。
符号の説明
1 :画素
1A:ダイオード
1B:空洞(断熱部)
1C:支持脚
1D:基板
1E:結合柱
1F:赤外線吸収部
2 :画素領域
2A:抵抗
3 :駆動線
4 :信号線
5 :駆動走査回路
5A:電源端子(電源)
5B:電源線
5C:MOSトランジスタ
5D:制御回路
6 :定電流制御回路
6A:定電流源
6B:定電流源
6C:スイッチ
6D:MOSトランジスタ
7 :検出回路(演算回路)
7A:アンプ
7B:アンプ
7C:バイアス端子
7D:端子
7E:スイッチ
7F:コンデンサ(電圧保存回路)
7G:スイッチ
7H:アンプ
7J:コンデンサ
8 :出力走査回路
8A:トランジスタ
8B:出力信号線
8C:バッファアンプ
8D:出力端子
8E:制御回路
9 :差動信号処理回路
9A:差動電圧電流変換アンプ
9B:積分コンデンサ
9C:放電スイッチ
9D:サンプルホールド回路(保持回路)
9E:バッファアンプ
9F:スイッチ
9G:保持コンデンサ
9H:スイッチ
10A:反転アンプ
10B:結合コンデンサ
10C:帰還コンデンサ
10D:入力切替えスイッチ
10E:クランプスイッチ
10F:帰還コンデンサ
10G:短絡スイッチ
11A:バッファアンプ
11B:反転アンプ
11C:抵抗
11D:抵抗
12 :制御回路
12A:トランジスタ
12B:電源線
12C:トランジスタ
12D:出力線
12E:電圧源
12F:電圧源
12G:可変電圧源
12J:トランジスタ
12H:電圧源
13A:サンプルホールド回路
13B:サンプルホールド回路
14 :A/D変換器
15 :演算回路
16 :出力端子

Claims (8)

  1. 直列接続された複数のダイオードまたは1個のダイオードと赤外線吸収部とを形成したセンサ部と、該センサ部を断熱する断熱部とを有する画素を2次元に配置した画素領域と、前記画素の前記ダイオードに予備通電期間と本通電期間にそれぞれ異なる大きさの定電流を流し、予備通電期間での定電流の大きさを本通電期間での定電流の大きさのu倍とする定電流制御回路と、予備通電期間の前記ダイオードの順電圧を1/u倍した電圧を本通電期間の前記ダイオードの順電圧から減算した電圧に比例する値を出力する演算回路とを備えた赤外線撮像素子。
  2. 予備通電期間の前記ダイオードの順電圧を保存する電圧保存回路を備え、予備通電期間を本通電期間の前とし、前記演算回路が本通電期間に動作するものであり、予備通電期間の前記ダイオードの順電圧として前記電圧保存回路に保存された電圧を前記演算回路が用いることを特徴とする請求項1に記載の赤外線撮像素子。
  3. 前記画素領域の同じ行にある前記画素の前記ダイオードの一端を共通接続する駆動線と、該駆動線を1個ずつ選択し電源に接続する駆動走査回路と、前記画素領域の同じ列にある前記画素の前記ダイオードの前記駆動線が接続されていない側の端を共通接続する信号線とを備え、該信号線ごとに前記定電流制御回路、前記電圧保存回路及び前記演算回路を備えることを特徴とする請求項2に記載の赤外線撮像素子。
  4. 前記演算回路の出力またはこの出力に所定の処理を加えた値を保持する保持回路と、何れかの前記保持回路が保持する値が出力される出力端子と、前記保持回路が保持する値が更新されるまでの期間に前記保持回路を1個ずつ選択して前記出力端子に接続する出力走査回路とを備えることを特徴とする請求項3に赤外線撮像素子。
  5. 前記定電流制御回路をカレントミラー回路とすることを特徴とする請求項1に記載の赤外線撮像素子。
  6. 前記係数uが0<u≦0.5の範囲にあることを特徴とする請求項1に記載の赤外線撮像素子。
  7. 前記ダイオードへの通電による発熱の前記演算回路の出力への影響を軽減するように、予備通電期間の長さの本通電期間の長さに対する比の値と定電流の大きさに関する前記係数uとを調整することを特徴とする請求項1に記載の赤外線撮像素子。
  8. 直列接続された複数のダイオードまたは1個のダイオードと赤外線吸収部とを形成したセンサ部と、該センサ部を断熱する断熱部と、前記画素の前記ダイオードに予備通電期間と本通電期間にそれぞれ異なる大きさの定電流を流し、予備通電期間での定電流の大きさを本通電期間での定電流の大きさのu倍とする定電流制御回路と、予備通電期間の前記ダイオードの順電圧を1/u倍した電圧を本通電期間の前記ダイオードの順電圧から減算した電圧に比例する値を出力する演算回路を備えた赤外線センサ。
JP2004363134A 2004-12-15 2004-12-15 赤外線撮像素子と赤外線センサ Active JP4257994B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363134A JP4257994B2 (ja) 2004-12-15 2004-12-15 赤外線撮像素子と赤外線センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363134A JP4257994B2 (ja) 2004-12-15 2004-12-15 赤外線撮像素子と赤外線センサ

Publications (2)

Publication Number Publication Date
JP2006174041A JP2006174041A (ja) 2006-06-29
JP4257994B2 true JP4257994B2 (ja) 2009-04-30

Family

ID=36674323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363134A Active JP4257994B2 (ja) 2004-12-15 2004-12-15 赤外線撮像素子と赤外線センサ

Country Status (1)

Country Link
JP (1) JP4257994B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5139767B2 (ja) * 2007-02-23 2013-02-06 パナソニック株式会社 センサ装置
JP5093768B2 (ja) * 2007-07-31 2012-12-12 パナソニック株式会社 信号読み出し回路
JP2009074898A (ja) * 2007-09-20 2009-04-09 Toshiba Corp ボロメータ型非冷却赤外線センサおよびその駆動方法
WO2009136630A1 (ja) * 2008-05-09 2009-11-12 パナソニック電工株式会社 センサ装置
JP5237686B2 (ja) * 2008-05-09 2013-07-17 パナソニック株式会社 センサ装置
JP5237685B2 (ja) * 2008-05-09 2013-07-17 パナソニック株式会社 センサ装置
JP4685949B2 (ja) 2009-03-17 2011-05-18 三菱電機株式会社 赤外線固体撮像素子
CN104471362B (zh) * 2013-05-17 2018-09-07 松下电器(美国)知识产权公司 热图像传感器、以及用户界面
WO2019087522A1 (ja) * 2017-10-31 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
JP2006174041A (ja) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5127278B2 (ja) 熱型赤外線固体撮像素子及び赤外線カメラ
US8563916B2 (en) Compact low noise signal readout circuit having at least one open-loop amplifier and method for operating thereof
JP4372097B2 (ja) 赤外線センサ、赤外線カメラ、赤外線センサの駆動方法および赤外線カメラの駆動方法
JP3866069B2 (ja) 赤外線固体撮像装置
JP5335006B2 (ja) 赤外線固体撮像素子
US7746170B2 (en) Class AB amplifier and imagers and systems using same
KR20200142575A (ko) 판독 회로들 및 방법들
US8183513B2 (en) In-cell current subtraction for infrared detectors
JP6562243B2 (ja) 撮像装置
US7277129B1 (en) Pixel design including in-pixel correlated double sampling circuit
US9497398B2 (en) Solid-state imaging device and camera for reducing random row noise
JP4257994B2 (ja) 赤外線撮像素子と赤外線センサ
JP4009598B2 (ja) 赤外線固体撮像素子
EP3226548A1 (en) Radiation detector
Pain et al. Low-power low-noise analog circuits for on-focal-plane signal processing of infrared sensors
JP5264418B2 (ja) 熱型赤外線検出素子
JP7122634B2 (ja) 電圧供給回路
US20100123504A1 (en) Adaptive low noise offset subtraction for imagers with long integration times
JP4290034B2 (ja) 赤外線固体撮像装置
JP3974902B2 (ja) 熱型赤外線検出素子
JP4959735B2 (ja) 熱型赤外線検出素子
JP2009168611A (ja) 赤外線固体撮像素子
Joshi et al. Ultra-low-noise high-frame-rate ROIC for visible and infrared focal plane arrays
JP3787067B2 (ja) 赤外線検出装置
JP4322721B2 (ja) 電荷検出回路およびそれを備えた画像センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4257994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250