JP4255710B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4255710B2
JP4255710B2 JP2003032580A JP2003032580A JP4255710B2 JP 4255710 B2 JP4255710 B2 JP 4255710B2 JP 2003032580 A JP2003032580 A JP 2003032580A JP 2003032580 A JP2003032580 A JP 2003032580A JP 4255710 B2 JP4255710 B2 JP 4255710B2
Authority
JP
Japan
Prior art keywords
electrode
light emitting
layer
current diffusion
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003032580A
Other languages
Japanese (ja)
Other versions
JP2004265923A (en
Inventor
良一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003032580A priority Critical patent/JP4255710B2/en
Priority to TW093102666A priority patent/TWI231053B/en
Priority to CNB2004800062445A priority patent/CN100527452C/en
Priority to PCT/JP2004/001338 priority patent/WO2004070851A1/en
Priority to US10/544,940 priority patent/US7528417B2/en
Priority to KR1020057014770A priority patent/KR100644151B1/en
Priority to DE112004000262T priority patent/DE112004000262T5/en
Publication of JP2004265923A publication Critical patent/JP2004265923A/en
Application granted granted Critical
Publication of JP4255710B2 publication Critical patent/JP4255710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、可視光を発光する半導体発光素子に関する。
【0002】
【従来の技術】
従来、黄緑〜赤橙色系の光を出射する発光ダイオード(LED)やレーザーダイオード(LD)等の発光素子として、(AlXGa1-XYIn1-YP(0≦X≦1、0<Y<1)混晶層からなる発光部構造を含む発光素子が、例えば下記の特許文献1で知られている。
【0003】
【特許文献1】
特開平8−83927号公報
【0004】
この特許文献1に開示された発光素子は、(AlXGa1-XYIn1-YP混晶層からなる発光部表面上に酸化インジウム錫からなる透明導電膜を積層し、その透明導電膜上に上面電極を形成して構成されており、この構成により、上面電極からの電流を、透明導電膜を介して半導体表面上のできるだけ広い範囲に拡散させるようにしている。
【0005】
ところで、上記した従来の発光素子では、透明導電膜と発光部表面との間のオーミック接触を十分に得ることができず、順方向電圧を大きくし、寿命特性を低下させる要因となっており、この点を改善したものとして、例えば下記の特許文献2が知られている。
【0006】
【特許文献2】
特開平11−17220号公報
【0007】
この特許文献2に開示された発光素子は、発光部表面上にウインドウ層を形成し、このウインドウ層の上にコンタクト層を形成し、このコンタクト層の上に、酸化インジウム錫からなる透明導電膜(導電透光酸化層)を積層し、その透明導電膜上に上面電極(上層電極)を形成することで構成されており、この上面電極からの電流を、透明導電膜、コンタクト層およびウインドウ層を介して発光部表面上のできるだけ広い範囲に拡散させるようにしている。
【0008】
【発明が解決しようとする課題】
しかし、上記した特許文献2に記載された発光素子においては、確かに、透明導電膜と半導体層とのオーミック接触の点では、改善されているものの、コンタクト層を設けるがゆえに、このコンタクト層に発光が吸収されてしまい、したがって、高輝度発光を得るに至らず、発光効率が改善されていないのが現状である。
【0009】
このような現状に対して、本発明者等は、半導体層の表面の一部に分配電極を設けることで、透明導電膜と半導体層との間の電気抵抗に比べて、分配電極と半導体層との間の電気抵抗を低減し、台座電極から供給される駆動電流の大部分がより電気抵抗の低い、台座電極→透明導電膜→分配電極→半導体層(発光部)の経路を流れるようにした発光素子を、下記の特許文献3で提案した。
【0010】
【特許文献3】
特開2001−189493号公報
【0011】
この特許文献3に開示された発光素子では、発光部での発光を分配電極の周辺で行わせることができので、台座電極の直下方向での発光は発生せず、したがって、発光の大部分は台座電極に遮られることなく、上方から取り出すことができ、発光効率を改善することができた。また、コンタクト層を設けないので、コンタクト層に発光が吸収されるのを防止でき、この点からも発光効率を改善することができた。
【0012】
しかし、上記の特許文献3の発光素子の場合、分配電極は分散し面積も小さいものではあるものの、分配電極の直下方向での発光が上方に取り出される際には、その分配電極で遮られる事態が生じており、発光効率が低下する一因となっていることが分かった。
【0013】
この発明は上記に鑑み提案されたもので、電極と半導体層との良好なオーミック接触を実現し、かつ発光部での発光を遮ることなく取り出すことで、発光効率を改善できるようにした半導体発光素子を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明は、(1)裏面に第1の電極が形成された半導体基板と、前記半導体基板上に形成され、AlInGaPからなる発光部を含むとともに上層に電流拡散層を有する半導体層と、前記電流拡散層の表面の一部に分配して形成され、その電流拡散層とオーミック接触をなす分配電極と、前記電流拡散層の表面と前記分配電極とを覆って形成され、その分配電極と導通する透明導電膜と、前記透明導電膜の表面の一部に形成され、その透明導電膜と導通する台座電極とを有し、前記半導体基板はn型で、電流拡散層はp型であり、電流拡散層の厚さが3μm以上20μm以下であり、電流拡散層の厚さとキャリア濃度との積(N・d)が、5×10 14 cm -2 以上であり、電流拡散層の表面キャリア濃度が、1×1018cm -3 以上であり、電流拡散層は、ZnまたはMgを不純物としたp型のGaP層からなり、分配電極は、台座電極を囲む略四角形あるいは略円形の線状体でその線幅が20μm以下である、ことを特徴としている。
【0020】
また、本発明は、()上記した(1)に記載の発明の構成に加えて、前記分配電極は、平面的に見て台座電極と重ならない半導体層表面に形成されている、ことを特徴としている。
【0021】
さらに、本発明は、()上記した(1)または(2)に記載の発明の構成に加えて、前記分配電極の面積は台座電極の面積より小さい、ことを特徴としている。
【0022】
本発明は、()上記した(1)乃至(の何れか1項に記載の発明の構成に加えて、前記分配電極の合計の平面積が、発光有効面積の3%以上で30%以下である、請求項1乃至3の何れか1項に記載の半導体発光素子。
【0023】
また、本発明は、()上記した(1)乃至(の何れか1項に記載の発明の構成に加えて、前記分配電極が金合金である、ことを特徴としている。
【0024】
また、本発明は、()上記した(1)乃至(の何れか1項に記載の発明の構成に加えて、前記透明導電膜が酸化インジウム錫(ITO)である、ことを特徴としている。
【0025】
本発明は、()上記した(1)乃至(の何れか1項に記載の発明の構成に加えて、前記台座電極が平面的に見て素子表面の中心に形成されている、ことを特徴としている。
【0026】
また、本発明は、()上記した(1)乃至(の何れか1項に記載の発明の構成に加えて、前記台座電極の表面が金である、ことを特徴としている。
【0027】
また、本発明は、()上記した(1)乃至(の何れか1項に記載の発明の構成に加えて、前記台座電極が多層膜からなり、透明導電膜と接する層がクロムである、ことを特徴としている。
【0034】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて詳細に説明する。
【0035】
図1および図2はこの発明の半導体発光素子の概略構成を模式的に示す図で、図1はその平面図、図2は図1のI−I線断面を示す図である。なお、本明細書では、半導体層表面を平面的に見るとは、図1のような平面図で見ることを言う。
【0036】
これらの図において、この発明の半導体発光素子10は、裏面に第1の電極5が形成された半導体基板1と、半導体基板1上に形成され、AlInGaPからなる発光部2aを含むとともに上層に電流拡散層2bを有する半導体層3と、電流拡散層2b(半導体層3)の表面の一部に分配して形成され、その電流拡散層2bとオーミック接触をなす分配電極7と、電流拡散層2bの表面と分配電極7とを覆って形成され、その分配電極7と導通する透明導電膜4と、透明導電膜4の表面の一部に形成され、その透明導電膜4と導通する台座電極6と、を有することを特徴としている。なお、発光部2aは、公知のダブルヘテロ構造、マルチカンタムウェル(MQW)構造の発光効率の高い構造を用いることが望ましい。ここで、分配電極7は、図1に示すように、半導体層3表面の平面的に見て台座電極6とは重ならない部分に配置するのが好ましく、さらに、台座電極6と重なる部分には配置しないようにするのがより好ましい。また、分配電極7と電流拡散層2bとの間の接合は良好なオーミック接触を保ってその間の電気抵抗は小さくなり、一方の透明導電膜4と電流拡散層2bとの間の接合では十分なオーミック接触は得られないため、その間の電気抵抗は大きい。
【0037】
上記構成の半導体発光素子10において、電流拡散層2bの表面の一部にオーミック接触をなす分配電極7を設けることで、透明導電膜4と電流拡散層2bとの間の電気抵抗に比べて、分配電極7と電流拡散層2bとの間の電気抵抗が大幅に小さくなり、台座電極6から供給される駆動電流は、図2の矢印で示すように、その大部分がより電気抵抗の低い、台座電極6→透明導電膜4→分配電極7→電流拡散層2b→発光部2aの経路を流れる。そして、分配電極7から電流拡散層2bに入った電流は、電流拡散層2bで適度に拡散されるので、発光部2aでの発光は、分配電極7を中心とした周辺で行われる。このため、発光部2aでの発光は、分配電極7で遮られることが少なく、その大部分を上方に取り出すことができ、したがって、発光効率を改善することができる。
【0038】
上記の電流拡散層2bは、n型、p型の何れでも発光効率の改善に寄与する。p型は、一般的に移動度が低く、分配電極7からの電流が拡散しにくくなるが、この発明では、このp型が特定の条件を満たし、例えば層厚、その層厚とキャリア濃度との積、表面キャリア濃度、材質等を最適化することにより、高輝度化に大きく寄与することを発見した。
【0039】
すなわち、電流拡散層2bがp型の場合、層厚については3μm以上の厚さであれば、充分な電流拡散を起こすことが分かった。ただし、厚すぎる場合は、表面状態の悪化を招くので20μm以下が望ましく、低コストを実現するには、10μm以下がより望ましい。
【0040】
また、電流拡散層2bの厚さとキャリア濃度との積が高輝度化に深く関与しており、高輝度化の効果が大きくなる範囲は、5×1014cm-2以上であることも分かった。
【0041】
さらに電流拡散層2bの表面キャリア濃度については、1×1018cm-3以上であれば、分配電極7との接触抵抗の低下につながり、電流拡散を促進し、高輝度化をもたらす。
【0042】
また、この電流拡散層2bの材質については、発光に対して透明で、電流を充分に拡散する材質が望ましく、例えば、GaPは、有機金属化学気相堆積法(MOCVD法)で成長できるだけでなく、低抵抗化、厚膜化が容易で電流拡散層として最適な材料の1つである。
【0043】
分配電極7は、図1では台座電極6を囲む略円形の線状体であり、その線状体は円形からさらに四方に延出している。線状体の幅は20μm以下が望ましい。このような分配電極7の平面的な配置によって、上記の電流拡散層2bでの電流拡散は、より一層効果的に行うことができ、台座電極6からの駆動電流を電流拡散層2b表面の広い範囲に拡げることができるようになる。
【0044】
また上記のように、分配電極7は、台座電極6とは重ならないように配置するので、台座電極6の直下方向での発光は弱く、発光の大部分は台座電極6に遮られることなく、上方から取り出すことができ、発光効率を大幅に改善し高輝度化ができる。
【0045】
さらに、この発光効率については、分配電極7の面積を台座電極6の面積より小さくすることにより、従来の半導体発光素子に比べて外部に光を効率よく取り出せるため、発光効率をより一層向上させることができる。
【0046】
また、分配電極7と半導体層3との間の電気抵抗は、上記したように、オーミック接触としたことにより小さくなるので、半導体発光素子10の順方向電圧の上昇を抑制することが可能となり、寿命特性を向上することができる。
【0047】
透明導電膜4は、例えば酸化インジウム錫(ITO)からなる良好な透光性を備えるものであり、特にスパッタリング法で形成した膜は、低抵抗で、透過率の高い優れた膜質が得られる。このため、発光部2aからの発光は、この透明導電膜4を通過する間でもほとんど吸収されることがなく、効率よく透明導電膜4から上方へ取り出すことができる。
【0048】
台座電極6は、半導体発光素子10と外部電気回路との接続のためのワイヤボンディングを行うための電極である。そのため、ある程度の面積が必要であるが、従来この台座電極6から直下方向に流れる駆動電流に基づく発光は、台座電極6で遮られて外部に取り出すことができなかった。このため、従来は台座電極6と発光部2aとの間に絶縁層を設ける等で対策を施し、台座電極6から直下方向へ駆動電流が流れるのを強制的に防ぐようにしていたが、本発明では、駆動電流を分配電極7に分配して誘導することができ、したがって、絶縁層を設けなくとも、より簡単な構成の下で、台座電極6の直下方向に流れる駆動電流をなくすことができる。
【0049】
ここで、透明導電膜4の表面(あるいは半導体層3の表面)のうち、発光させると有効となる面(発光有効面)の面積は、透明導電膜4の面積から、台座電極6の面積(図1の平面視での面積)を差し引いた面積であり、この面積を発光有効面積Sと称するとする。ところで、台座電極6がその直下方向での発光の取り出しを妨害する現象は、分配電極7についても若干発生する。そこで、本発明では、分配電極7の合計の平面積(平面視での面積)が、発光有効面積Sの3%以上で30%以下となるようにし、分配電極7の面積が広すぎて発光の取り出し妨害が過剰に発生したり、逆にその面積が小さすぎて、順方向電圧(Vf)が増大することによる不都合が発生したりするのを防止するのが好ましい。
【0050】
また、分配電極7がその直下方向での発光の取り出しを妨害する現象は、電流拡散層2bの拡散が良好で適切であればある程、光の取り出しが妨げられる確率が低下する。
【0051】
次にこの発明の半導体発光素子のより具体的な構成例を図3〜図7を用いて順に説明する。
【0052】
図3および図4はこの発明の半導体発光素子の第1の構成例を示す図で、図3はその平面図、図4は図3のII−II線断面を示す図である。これらの図において、この発明の半導体発光素子20は、黄緑色系の光を出射する発光ダイオード(LED)である。
【0053】
面方位が(001)15度オフのSiドープn型GaAs単結晶基板21上に、半導体層23が形成されている。この半導体層23は、基板21上に順次積層された、Siドープn型GaAsからなる緩衝層231、Siドープn型Al0.5Ga0.5As/Al0.9Ga0.1As多層膜からなるDBR反射層232、Siドープn型とアンドープのAl0.5In0.5Pからなる下部クラッド層233、発光波長570nmとなるように組成が調整されたアンドープのAlGaInP混晶からなる発光層22、アンドープAl0.5In0.5PとZnドープp型Al0.5Ga0.5Pとからなる上部クラッド層234、およびZnドープp型GaP電流拡散層235から構成される。
【0054】
半導体層23を構成する各層231,232,233、22、234および235は、トリメチルアルミニウム((CH33Al)、トリメチルガリウム((CH33Ga)およびトリメチルインジウム((CH33In)をIII族構成元素の原料とし、減圧のMOCVD法により基板21上に成膜した。亜鉛(Zn)のドーピング原料にはジエチル亜鉛((C252Zn)を利用した。n型のドーピング原料にはジシラン(Si26)を使用した。また、V族元素の原料としては、ホスフィン(PH3)またはアルシン(AsH3)を用いた。各層231,232,233、22、234および235の成膜温度は735℃に統一した。
【0055】
緩衝層231のキャリア濃度は約2×1018cm-3に、また、層厚は約0.5μmとした。反射層232のキャリア濃度は約2×1018cm-3に、また、層厚は約1.2μmとした。下部クラッド層233のキャリア濃度は約1×1018cm-3に、層厚はSiドープn型層を約1.3μmに、その上のアンドープ層は0.2μmとした。発光層22の層厚は約1μmとした。上部クラッド層234は、アンドープ層を0.5μmとし、その上のZnドープp型層を約0.5μmとした。このZnドープp型層のキャリア濃度は約6×1017cm-3とした。
【0056】
p型電流拡散層235は、キャリア濃度が約3×1018cm-3、層厚は約6μmとした。このときの電流拡散層235の厚さdとキャリア濃度Nとの積N・dは、約1.8×1015cm-2であった。
【0057】
ここで、下部クラッド層233,発光層22および上部クラッド層234が、この半導体発光素子20の発光部を構成する。したがって、発光部はAlGaInPからなるダブルヘテロ構造である。
【0058】
この半導体発光素子20では、分配電極27を形成するために、電流拡散層235の表面の全面に、一般的な真空蒸着法により、先ず膜厚を約50nmとする、金・ベリリウム合金(Au99重量%−Be1重量%合金)膜を一旦被着させ、続けて、その金・ベリリウム合金膜の表面上に膜厚を約100nmとする金(Au)膜を被着させた。
【0059】
次に、一般的なフォトリソグラフィー手段を利用して金・ベリリウム合金からなる第1膜と、金からなる第2膜とからなる2層構造の重層膜が、分配電極27の形になるようにパターニングを施し、幅が約6μmの線状体からなる一辺150μm略正方形の額縁形状の分配電極27を形成した。分配電極27の面積は、約0.36×10-4cm-2であった。この第1膜と第2膜とからなる分配電極27は、図3に示すように、台座電極26の直下領域を除く電流拡散層235の表面上にその台座電極26を囲むように形成し、平面視で左右対称、略四角形状である。
【0060】
一方、単結晶基板21の裏面に、金・ゲルマニウム合金を約0.3μm、その下面に金を約0.3μm積層し、n型オーミック電極25を形成した。その後、窒素気流中において450℃で10分間の合金化熱処理を施し、分配電極27と電流拡散層235とのオーミック接触、およびn型オーミック電極25と単結晶基板21とのオーミック接触を形成した。
【0061】
次に、公知のマグネトロンスパッタリング法により、電流拡散層235とその表面の分配電極27の上に、酸化インジウム錫(ITO)透明導電膜24を被着させた。透明導電膜24の比抵抗は約4×10-4Ω・cmであり、層厚は約500nmとした。発光波長に対する透過率は、約95%の良好な膜質である。
【0062】
透明導電膜24の上に公知のマグネトロンスパッタリング法により、Crを30nm、金を1μmの重層膜を形成した。一般的な有機フォトレジスト材料を塗布した後、台座電極26を設けるべき領域を、公知のフォトリソグラフィー技術を利用してパターニングし、直径を約110μmとする円形の台座電極26を形成した。台座電極26の平面積は約1×10-4cm2となった。
【0063】
台座電極26を設けるべき領域は、図3に示すように、平面的に見て半導体発光素子表面の中心、すなわち四角形の半導体発光素子表面の対角線の交点を含む領域とした。これは、台座電極26が半導体発光素子表面の中心にある方が、電流が半導体発光素子全体に均一に流れやすく、また台座電極26にワイヤボンディングを行うときにチップが傾きにくい利点がある。
【0064】
その後、通常のダイシング法により一辺を230μm間隔で裁断して正方形の素子形状に分離し、半導体発光素子20となした。透明導電膜24の平面積は約4×10-4cm2となり、この透明導電膜24の平面積から台座電極26の平面積を差し引いた発光有効面積Sは約3×10-4cm2となった。また、分配電極27の合計の平面積は約0.36×10-4cm2であり、この面積が発光有効面積Sに対して占める割合は約12%となった。
【0065】
上記のようにして作製した半導体発光素子20のオーミック電極25および台座電極26間に順方向に電流を通流したところ、透明導電膜24の表面から波長を約570nmとする黄緑色の光が出射された。20mAの電流を通流した際の順方向電圧(Vf:20mA当り)は、各分配電極27の良好なオーミック特性、および電流拡散層2bでの電流の拡散効果を反映し、約2Vとなった。
【0066】
また、オーミック性の分配電極27を半導体発光素子20の周縁部に配置した効果、および電流拡散層2bの効果により、半導体発光素子20の周縁の領域においても発光が認められ、チップ状態で、簡易的に測定される発光の強度は約40ミリカンデラ(mcd)であった。さらに、駆動電流が分配電極27および電流拡散層2bによってより均等に分配されることにより、透明導電膜24の表面に見られる発光強度は、ほぼ均等な分布となっていた。
【0067】
上記の第1の構成例では、ドーパントにZn、Siを用いたが、公知のMg、Te、Se等のドーパントを用いても同様な効果が得られる。また、発光層22は、ダブルヘテロ構造としたが、MQW構造でも同様の効果が得られる。
【0068】
この第1の構成例で得られた半導体発光素子20は、上記のように、電流拡散層235の層厚が約6μm、キャリア濃度が約3×1018cm-3、層厚dとキャリア濃度Nとの積N・dが約1.8×1015cm-2であり、この半導体発光素子20を実施例1とした。この電流拡散層の層厚およびキャリア濃度を、表1に示すように種々変更し、その他は実施例1と同じ条件でさらに5種類の半導体発光素子を作製し、その半導体発光素子を実施例2,3,4,5,6とした。この実施例1〜6の各半導体発光素子のVf値および発光強度を測定し、表1に示す結果が得られた。
【0069】
【表1】

Figure 0004255710
【0070】
(比較例) 上記した実施例1〜6の半導体発光素子の持つVf値および発光強度と比較するために、電流拡散層を設けず、その他は全て実施例1と同一の構成からなる半導体発光素子(LED)を比較用素子として作製した。その比較結果を表1に示す。
【0071】
表1の比較例は、Vf値(20mA当り)が約2.2Vであり、実施例1〜6の半導体発光素子20のVf値、1.99V〜2.02Vより高い結果であった。一方、比較例の発光は、オーミック性電極の直下とその周辺のみで生じることとなり、発光のかなりの割合が電極に遮られ、外部に取り出せない事態を招いた。その結果、輝度は、15mcd未満の低きに低迷した。これに対し実施例1〜6の輝度は30mcd〜42mcdであった。
【0072】
この比較例と、本発明の実施例とを対比すれば、本発明の半導体発光素子は、Vfの増加もなく、高輝度化が顕現されることが明らかである。
【0073】
図5〜図8は平面的に見た分配電極の他の配置例を示す図である。上記の説明では、台座電極周辺に分配電極を線状体で連続的に分布させたが、図5のように、台座電極6の周囲に、個別に独立に分散させて配置することで分配電極7を構成してもよい。また、図6のように、線状体を図形的に組み合わせた分配電極7でもよい。また、図7のように、線状体を格子状に配置して分配電極7を構成してもよい。また、図8のように、線状体と、独立した個別の電極の組合せで分配電極7を構成してもよい。
【0074】
このように、分配電極7に関しては、個別に分散させて配置するだけでなく、帯状、線状のものを連続的に配置してもよいし、面状のものを配置するようにしてよい。
【0075】
また、分配電極7を個別に分散させて配置する場合や帯状、線状のものを連続させる場合は、それらの形状は、正方形、長方形、円形、楕円、多角形など、任意の形状のものでよく、分散させる際のパターンも放射状や円周状、螺旋状、その他任意のパターンでよい。
【0076】
【発明の効果】
以上説明したように、この発明の半導体発光素子では、電流拡散層の表面の一部にオーミック接触をなす分配電極を設けることで、透明導電膜と電流拡散層との間の電気抵抗に比べて、分配電極と電流拡散層との間の電気抵抗が大幅に小さくなり、台座電極から供給される駆動電流は、その大部分がより電気抵抗の低い、台座電極→透明導電膜→分配電極→電流拡散層→発光部の経路を流れる。そして、分配電極から電流拡散層に入った電流は、電流拡散層で適度に拡散されるので、発光部での発光は、分配電極を中心とした周辺で行われる。このため、発光部での発光は、分配電極で遮られることが少なく、その大部分を上方に取り出すことができ、したがって、発光効率を改善することができる。
【0077】
また、電流拡散層がp型の場合、層厚については3μm以上の厚さとしたので、充分な電流拡散を起こすことできる。
【0078】
また、電流拡散層がp型の場合、層厚とキャリア濃度との積を5×1014cm-2以上としたので、電流拡散層を高輝度化に効果的に貢献させることができる。
【0079】
さらに電流拡散層がp型の場合、その表面キャリア濃度については、1×1018cm-3以上としたので、分配電極との接触抵抗の低下につながり、電流拡散を促進し、高輝度化をもたらすことができる。
【0080】
また、この電流拡散層をZnまたはMgを不純物としたp型のGaPで形成したので、発光に対して透明となり、電流を充分に拡散することができ、さらに低抵抗化、厚膜化を容易に行うことができ、電流拡散層の最適化も容易に行うことができる。
【図面の簡単な説明】
【図1】この発明の半導体発光素子の概略構成を模式的に示す平面図である。
【図2】この発明の半導体発光素子の概略構成を模式的に示す図で、図1のI−I線断面を示す図である。
【図3】この発明の半導体発光素子の実施例を示す平面図である。
【図4】この発明の半導体発光素子の実施例を示す図で、図3のII−II線断面を示す図である。
【図5】この発明に係る分配電極の他の配置例を示す図である。
【図6】この発明に係る分配電極の他の配置例を示す図である。
【図7】この発明に係る分配電極の他の配置例を示す図である。
【図8】この発明に係る分配電極の他の配置例を示す図である。
【符号の説明】
1 半導体基板
2a 発光部
2b 電流拡散層
3 半導体層
4 透明導電膜
5 第1の電極
6 台座電極
7 分配電極
10 半導体発光素子
20 半導体発光素子
21 単結晶基板
22 発光層
23 半導体層
231 緩衝層
232 反射層
233 下部クラッド層
234 上部クラッド層
235 電流拡散層
24 透明導電膜
25 n型オーミック電極
26 台座電極
27 分配電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting element that emits visible light.
[0002]
[Prior art]
Conventionally, as a light emitting element such as a light emitting diode (LED) or a laser diode (LD) that emits yellowish green to red orange light, (AlXGa1-X)YIn1-YA light-emitting element including a light-emitting portion structure composed of a P (0 ≦ X ≦ 1, 0 <Y <1) mixed crystal layer is known, for example, from Patent Document 1 below.
[0003]
[Patent Document 1]
JP-A-8-83927
[0004]
The light emitting device disclosed in Patent Document 1 is (AlXGa1-X)YIn1-YA transparent conductive film made of indium tin oxide is laminated on the surface of the light emitting part made of a P mixed crystal layer, and an upper surface electrode is formed on the transparent conductive film. The light is diffused as wide as possible on the semiconductor surface through the transparent conductive film.
[0005]
By the way, in the above-mentioned conventional light emitting device, ohmic contact between the transparent conductive film and the light emitting part surface cannot be sufficiently obtained, which is a factor of increasing the forward voltage and lowering the life characteristics. As an improvement of this point, for example, Patent Document 2 below is known.
[0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 11-17220
[0007]
In the light emitting device disclosed in Patent Document 2, a window layer is formed on the surface of the light emitting portion, a contact layer is formed on the window layer, and a transparent conductive film made of indium tin oxide is formed on the contact layer. (Conductive translucent oxide layer) is laminated, and an upper surface electrode (upper layer electrode) is formed on the transparent conductive film. The current from the upper surface electrode is converted into a transparent conductive film, a contact layer, and a window layer. The light is diffused as wide as possible on the surface of the light emitting part.
[0008]
[Problems to be solved by the invention]
However, in the light emitting element described in Patent Document 2 described above, although the point of ohmic contact between the transparent conductive film and the semiconductor layer is certainly improved, the contact layer is provided. The current situation is that the light emission is absorbed, and therefore high luminance light emission is not obtained and the light emission efficiency is not improved.
[0009]
In contrast to the current situation, the present inventors provide a distribution electrode on a part of the surface of the semiconductor layer, so that the distribution electrode and the semiconductor layer can be compared with the electric resistance between the transparent conductive film and the semiconductor layer. So that most of the drive current supplied from the pedestal electrode flows through the path of the pedestal electrode → transparent conductive film → distribution electrode → semiconductor layer (light emitting part) with a lower electrical resistance. The light emitting device thus proposed was proposed in Patent Document 3 below.
[0010]
[Patent Document 3]
JP 2001-189493 A
[0011]
In the light emitting element disclosed in Patent Document 3, light emission in the light emitting portion can be performed around the distribution electrode, so light emission in the direction directly below the pedestal electrode does not occur, and therefore most of the light emission occurs. It could be taken out from above without being blocked by the pedestal electrode, and the luminous efficiency could be improved. Further, since no contact layer is provided, it is possible to prevent light emission from being absorbed by the contact layer, and from this point, the light emission efficiency can be improved.
[0012]
However, in the case of the light emitting element of Patent Document 3 described above, the distribution electrode is dispersed and has a small area. However, when light emitted directly below the distribution electrode is extracted upward, the distribution electrode is blocked. It has been found that this is one of the causes of the decrease in luminous efficiency.
[0013]
  The present invention has been proposed in view of the above. Semiconductor light emission that realizes good ohmic contact between the electrode and the semiconductor layer, and that can improve the light emission efficiency by taking out the light emission in the light emitting portion without blocking. ElementaryChildThe purpose is to provide.
[0014]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention includes (1) a semiconductor substrate having a first electrode formed on the back surface, a light emitting portion formed on the semiconductor substrate and made of AlInGaP, and a current diffusion layer as an upper layer. And a distribution electrode formed in a part of the surface of the current diffusion layer and in ohmic contact with the current diffusion layer, and formed to cover the surface of the current diffusion layer and the distribution electrode A transparent conductive film electrically connected to the distribution electrode, and a pedestal electrode formed on a part of the surface of the transparent conductive film and electrically connected to the transparent conductive film,The semiconductor substrate is n-type, the current diffusion layer is p-type, the thickness of the current diffusion layer is 3 μm or more and 20 μm or less, and the product (N · d) of the thickness of the current diffusion layer and the carrier concentration is 5 × 10 14 cm -2 The surface carrier concentration of the current spreading layer is 1 × 10 18 cm -3 The current diffusion layer is a p-type GaP layer containing Zn or Mg as impurities, and the distribution electrode is a substantially rectangular or substantially circular linear body surrounding the base electrode, and the line width is 20 μm or less. ,It is characterized by that.
[0020]
  The present invention also provides (2) Above (1)In addition to the structure of the described invention, the distribution electrode is formed on the surface of the semiconductor layer that does not overlap with the pedestal electrode in plan view.
[0021]
  Furthermore, the present invention provides (3) Above (1)Or (2)In addition to the configuration of the invention described in (1), the area of the distribution electrode is smaller than the area of the base electrode.
[0022]
  The present invention provides (4) (1) to (3)Any one of4. The semiconductor light emitting element according to claim 1, wherein a total plane area of the distribution electrodes is 3% or more and 30% or less of a light emitting effective area. .
[0023]
  The present invention also provides (5) (1) to (4)Any one ofIn addition to the configuration of the invention described in (1), the distribution electrode is a gold alloy.
[0024]
  The present invention also provides (6) (1) to (5)Any one ofThe transparent conductive film is indium tin oxide (ITO).
[0025]
  The present invention provides (7) (1) to (6)Any one ofIn addition to the configuration of the invention described in (1), the pedestal electrode is formed at the center of the element surface when seen in a plan view.
[0026]
  The present invention also provides (8) (1) to (7)Any one ofIn addition to the configuration of the invention described in (2), the surface of the pedestal electrode is gold.
[0027]
  The present invention also provides (9) (1) to (8)Any one ofIn addition to the configuration of the invention described in (2), the pedestal electrode is formed of a multilayer film, and the layer in contact with the transparent conductive film is chromium.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0035]
1 and 2 are diagrams schematically showing a schematic configuration of a semiconductor light emitting device according to the present invention, FIG. 1 is a plan view thereof, and FIG. 2 is a cross-sectional view taken along line II of FIG. Note that in this specification, viewing the surface of the semiconductor layer in a planar manner means viewing in a plan view as shown in FIG.
[0036]
In these drawings, a semiconductor light emitting device 10 according to the present invention includes a semiconductor substrate 1 having a first electrode 5 formed on the back surface, a light emitting portion 2a formed on the semiconductor substrate 1 and made of AlInGaP, and has a current in an upper layer. A semiconductor layer 3 having a diffusion layer 2b, a distribution electrode 7 formed in a part of the surface of the current diffusion layer 2b (semiconductor layer 3) and in ohmic contact with the current diffusion layer 2b; and a current diffusion layer 2b The transparent conductive film 4 is formed so as to cover the surface of the electrode and the distribution electrode 7, and is electrically connected to the distribution electrode 7. The base electrode 6 is formed on a part of the surface of the transparent conductive film 4 and is electrically connected to the transparent conductive film 4. It is characterized by having. In addition, it is desirable that the light emitting unit 2a has a structure having a high light emission efficiency such as a known double hetero structure and a multiquantum well (MQW) structure. Here, as shown in FIG. 1, the distribution electrode 7 is preferably arranged on a portion of the surface of the semiconductor layer 3 that does not overlap the pedestal electrode 6 in plan view, and further, on the portion that overlaps the pedestal electrode 6. It is more preferable not to arrange them. Further, the junction between the distribution electrode 7 and the current diffusion layer 2b maintains a good ohmic contact, and the electrical resistance therebetween becomes small, and the junction between one transparent conductive film 4 and the current diffusion layer 2b is sufficient. Since ohmic contact cannot be obtained, the electrical resistance between them is large.
[0037]
In the semiconductor light emitting device 10 having the above configuration, by providing the distribution electrode 7 that makes ohmic contact with a part of the surface of the current diffusion layer 2b, compared to the electrical resistance between the transparent conductive film 4 and the current diffusion layer 2b, The electrical resistance between the distribution electrode 7 and the current diffusion layer 2b is significantly reduced, and the drive current supplied from the pedestal electrode 6 is mostly lower in electrical resistance, as shown by the arrows in FIG. It flows through the path of the base electrode 6 → the transparent conductive film 4 → the distribution electrode 7 → the current diffusion layer 2b → the light emitting portion 2a. Since the current that has entered the current diffusion layer 2b from the distribution electrode 7 is appropriately diffused in the current diffusion layer 2b, the light emission by the light emitting portion 2a is performed around the distribution electrode 7. For this reason, the light emitted from the light emitting portion 2a is hardly blocked by the distribution electrode 7, and most of the light can be taken out upward, so that the light emission efficiency can be improved.
[0038]
The current spreading layer 2b contributes to the improvement of the light emission efficiency in both n-type and p-type. The p-type generally has low mobility and the current from the distribution electrode 7 is difficult to diffuse. However, in the present invention, the p-type satisfies specific conditions, for example, the layer thickness, the layer thickness and the carrier concentration, It has been found that by optimizing the product, surface carrier concentration, material, etc., it greatly contributes to high brightness.
[0039]
That is, it was found that when the current spreading layer 2b is p-type, if the layer thickness is 3 μm or more, sufficient current spreading occurs. However, when the thickness is too large, the surface condition is deteriorated, so that the thickness is preferably 20 μm or less. To realize low cost, 10 μm or less is more desirable.
[0040]
Further, the product of the thickness of the current diffusion layer 2b and the carrier concentration is deeply involved in increasing the brightness, and the range in which the effect of increasing the brightness is large is 5 × 10.14cm-2I found out that this is the case.
[0041]
Furthermore, the surface carrier concentration of the current diffusion layer 2b is 1 × 1018cm-3If it is above, it will lead to the fall of contact resistance with the distribution electrode 7, current diffusion will be accelerated | stimulated, and high brightness will be brought about.
[0042]
The material of the current diffusion layer 2b is preferably a material that is transparent to light emission and sufficiently diffuses current. For example, GaP can be grown not only by metal organic chemical vapor deposition (MOCVD). It is one of the most suitable materials for the current diffusion layer because of its low resistance and thick film.
[0043]
The distribution electrode 7 is a substantially circular linear body that surrounds the base electrode 6 in FIG. 1, and the linear body extends further in four directions from the circular shape. The width of the linear body is preferably 20 μm or less. By such a planar arrangement of the distribution electrode 7, the current diffusion in the current diffusion layer 2b can be performed more effectively, and the drive current from the pedestal electrode 6 is widened on the surface of the current diffusion layer 2b. It can be expanded to a range.
[0044]
Further, as described above, the distribution electrode 7 is arranged so as not to overlap the pedestal electrode 6, so that light emission in the direction directly below the pedestal electrode 6 is weak, and most of the light emission is not blocked by the pedestal electrode 6, It can be taken out from above, and the luminous efficiency can be greatly improved and the luminance can be increased.
[0045]
Further, regarding the luminous efficiency, by making the area of the distribution electrode 7 smaller than the area of the pedestal electrode 6, light can be efficiently extracted to the outside as compared with the conventional semiconductor light emitting element, so that the luminous efficiency is further improved. Can do.
[0046]
In addition, since the electrical resistance between the distribution electrode 7 and the semiconductor layer 3 is reduced by the ohmic contact as described above, an increase in the forward voltage of the semiconductor light emitting element 10 can be suppressed. Life characteristics can be improved.
[0047]
The transparent conductive film 4 is provided with good translucency made of, for example, indium tin oxide (ITO). Particularly, a film formed by a sputtering method has a low resistance and an excellent film quality with a high transmittance. For this reason, light emitted from the light emitting portion 2a is hardly absorbed even while passing through the transparent conductive film 4, and can be efficiently extracted upward from the transparent conductive film 4.
[0048]
The base electrode 6 is an electrode for performing wire bonding for connecting the semiconductor light emitting element 10 and an external electric circuit. Therefore, although a certain area is required, conventionally, light emission based on the drive current flowing from the pedestal electrode 6 in the direction immediately below has been blocked by the pedestal electrode 6 and cannot be taken out to the outside. For this reason, conventionally, measures have been taken by providing an insulating layer between the pedestal electrode 6 and the light-emitting portion 2a to forcibly prevent the drive current from flowing downward from the pedestal electrode 6. In the invention, the drive current can be distributed and induced to the distribution electrode 7, and therefore, the drive current flowing in the direction directly below the pedestal electrode 6 can be eliminated under a simpler configuration without providing an insulating layer. it can.
[0049]
Here, of the surface of the transparent conductive film 4 (or the surface of the semiconductor layer 3), the area of the surface (light emission effective surface) that is effective when emitting light is calculated from the area of the transparent conductive film 4 to the area of the base electrode 6 ( The area obtained by subtracting the area in plan view of FIG. 1 is referred to as an effective light emission area S. By the way, the phenomenon that the base electrode 6 obstructs the extraction of the emitted light in the direction directly below it also occurs slightly in the distribution electrode 7. Therefore, in the present invention, the total plane area (area in plan view) of the distribution electrode 7 is set to be 3% or more and 30% or less of the light emission effective area S, and the area of the distribution electrode 7 is too large to emit light. It is preferable to prevent the occurrence of an excessive disturbance of the extraction of the light source and the occurrence of inconvenience due to the increase of the forward voltage (Vf) due to the excessively small area.
[0050]
In addition, the phenomenon that the distribution electrode 7 obstructs the extraction of light emission in the direction immediately below the lower the probability that the extraction of the light is hindered as the diffusion of the current diffusion layer 2b is better and appropriate.
[0051]
Next, more specific structural examples of the semiconductor light emitting device of the present invention will be described in order with reference to FIGS.
[0052]
3 and 4 are views showing a first structural example of the semiconductor light emitting device of the present invention, FIG. 3 is a plan view thereof, and FIG. 4 is a cross-sectional view taken along the line II-II of FIG. In these drawings, the semiconductor light emitting device 20 of the present invention is a light emitting diode (LED) that emits yellowish green light.
[0053]
A semiconductor layer 23 is formed on a Si-doped n-type GaAs single crystal substrate 21 whose plane orientation is (001) 15 degrees off. The semiconductor layer 23 includes a buffer layer 231 made of Si-doped n-type GaAs and a Si-doped n-type Al layer, which are sequentially stacked on the substrate 21.0.5Ga0.5As / Al0.9Ga0.1DBR reflection layer 232 made of an As multilayer film, Si-doped n-type and undoped Al0.5In0.5A lower cladding layer 233 made of P, a light emitting layer 22 made of an undoped AlGaInP mixed crystal whose composition is adjusted so as to have an emission wavelength of 570 nm, an undoped Al0.5In0.5P and Zn doped p-type Al0.5Ga0.5An upper clad layer 234 made of P and a Zn-doped p-type GaP current diffusion layer 235 are formed.
[0054]
Each of the layers 231, 232, 233, 22, 234 and 235 constituting the semiconductor layer 23 is formed of trimethylaluminum ((CHThree)ThreeAl), trimethylgallium ((CHThree)ThreeGa) and trimethylindium ((CHThree)ThreeIn) was used as a group III constituent element material, and a film was formed on the substrate 21 by MOCVD under reduced pressure. Diethyl zinc ((C2HFive)2Zn) was used. Disilane (Si2H6)It was used. Further, as a raw material for the group V element, phosphine (PHThree) Or arsine (AsH)Three) Was used. The deposition temperature of each layer 231, 232, 233, 22, 234 and 235 was unified to 735 ° C.
[0055]
The carrier concentration of the buffer layer 231 is about 2 × 10.18cm-3The layer thickness was about 0.5 μm. The carrier concentration of the reflective layer 232 is about 2 × 10.18cm-3The layer thickness was about 1.2 μm. The carrier concentration of the lower cladding layer 233 is about 1 × 1018cm-3Further, the thickness of the Si-doped n-type layer was set to about 1.3 μm, and the undoped layer thereon was set to 0.2 μm. The layer thickness of the light emitting layer 22 was about 1 μm. The upper cladding layer 234 has an undoped layer of 0.5 μm and a Zn-doped p-type layer thereon having a thickness of about 0.5 μm. The carrier concentration of this Zn-doped p-type layer is about 6 × 1017cm-3It was.
[0056]
The p-type current spreading layer 235 has a carrier concentration of about 3 × 1018cm-3The layer thickness was about 6 μm. At this time, the product N · d of the thickness d of the current spreading layer 235 and the carrier concentration N is about 1.8 × 1015cm-2Met.
[0057]
Here, the lower cladding layer 233, the light emitting layer 22 and the upper cladding layer 234 constitute a light emitting portion of the semiconductor light emitting element 20. Therefore, the light emitting part has a double heterostructure made of AlGaInP.
[0058]
In this semiconductor light emitting device 20, in order to form the distribution electrode 27, a gold / beryllium alloy (Au 99 weight) is first formed on the entire surface of the current diffusion layer 235 by a general vacuum deposition method to a film thickness of about 50 nm. % -Be 1 wt% alloy) film was once deposited, and then a gold (Au) film having a thickness of about 100 nm was deposited on the surface of the gold / beryllium alloy film.
[0059]
Next, using a general photolithography means, a multilayer film having a two-layer structure composed of a first film made of gold and a beryllium alloy and a second film made of gold is formed into a distribution electrode 27. Patterning was performed to form a frame-shaped distribution electrode 27 having a substantially square shape with a side of 150 μm and made of a linear body having a width of about 6 μm. The area of the distribution electrode 27 is about 0.36 × 10.-Fourcm-2Met. As shown in FIG. 3, the distribution electrode 27 composed of the first film and the second film is formed on the surface of the current diffusion layer 235 excluding the region directly below the pedestal electrode 26 so as to surround the pedestal electrode 26, It is bilaterally symmetric and substantially quadrangular in plan view.
[0060]
On the other hand, an n-type ohmic electrode 25 was formed by laminating about 0.3 μm of a gold / germanium alloy on the back surface of the single crystal substrate 21 and about 0.3 μm of gold on the bottom surface. Thereafter, an alloying heat treatment was performed in a nitrogen stream at 450 ° C. for 10 minutes to form ohmic contact between the distribution electrode 27 and the current diffusion layer 235 and ohmic contact between the n-type ohmic electrode 25 and the single crystal substrate 21.
[0061]
Next, an indium tin oxide (ITO) transparent conductive film 24 was deposited on the current diffusion layer 235 and the distribution electrode 27 on the surface thereof by a known magnetron sputtering method. The specific resistance of the transparent conductive film 24 is about 4 × 10.-FourΩ · cm, and the layer thickness was about 500 nm. The transmittance with respect to the emission wavelength is a good film quality of about 95%.
[0062]
A multilayer film of Cr of 30 nm and gold of 1 μm was formed on the transparent conductive film 24 by a known magnetron sputtering method. After applying a general organic photoresist material, a region where the pedestal electrode 26 is to be provided was patterned using a known photolithography technique to form a circular pedestal electrode 26 having a diameter of about 110 μm. The flat area of the base electrode 26 is about 1 × 10-Fourcm2It became.
[0063]
As shown in FIG. 3, the region where the pedestal electrode 26 is to be provided is a region including the center of the surface of the semiconductor light emitting element, that is, the intersection of diagonal lines of the surface of the rectangular semiconductor light emitting element as viewed in plan. This is because when the pedestal electrode 26 is at the center of the surface of the semiconductor light emitting device, the current easily flows uniformly over the entire semiconductor light emitting device, and the chip is less inclined when wire bonding is performed on the pedestal electrode 26.
[0064]
Thereafter, one side was cut at an interval of 230 μm by a normal dicing method and separated into a square element shape, whereby the semiconductor light emitting element 20 was obtained. The plane area of the transparent conductive film 24 is about 4 × 10.-Fourcm2The effective light emission area S obtained by subtracting the plane area of the base electrode 26 from the plane area of the transparent conductive film 24 is about 3 × 10.-Fourcm2It became. The total plane area of the distribution electrodes 27 is about 0.36 × 10 6.-Fourcm2The ratio of this area to the effective light emission area S was about 12%.
[0065]
When a current is passed in the forward direction between the ohmic electrode 25 and the base electrode 26 of the semiconductor light emitting device 20 manufactured as described above, yellow-green light having a wavelength of about 570 nm is emitted from the surface of the transparent conductive film 24. It was done. The forward voltage (Vf: per 20 mA) when a current of 20 mA was passed was about 2 V reflecting the good ohmic characteristics of each distribution electrode 27 and the current diffusion effect in the current diffusion layer 2 b. .
[0066]
Further, due to the effect of disposing the ohmic distribution electrode 27 at the peripheral portion of the semiconductor light emitting element 20 and the effect of the current diffusion layer 2b, light emission is also observed in the peripheral region of the semiconductor light emitting element 20, and the chip state is simple. The measured emission intensity was about 40 millicandela (mcd). Furthermore, since the drive current is more evenly distributed by the distribution electrode 27 and the current diffusion layer 2b, the light emission intensity seen on the surface of the transparent conductive film 24 has a substantially uniform distribution.
[0067]
In the first configuration example, Zn and Si are used as the dopant. However, similar effects can be obtained even when a known dopant such as Mg, Te, or Se is used. In addition, although the light emitting layer 22 has a double hetero structure, the same effect can be obtained with an MQW structure.
[0068]
In the semiconductor light emitting device 20 obtained in the first configuration example, the layer thickness of the current diffusion layer 235 is about 6 μm and the carrier concentration is about 3 × 10 10 as described above.18cm-3The product N · d of the layer thickness d and the carrier concentration N is about 1.8 × 1015cm-2The semiconductor light emitting device 20 was taken as Example 1. The thickness and carrier concentration of the current spreading layer were variously changed as shown in Table 1, and other five types of semiconductor light emitting devices were produced under the same conditions as in Example 1, and the semiconductor light emitting device was designated as Example 2. 3, 4, 5, and 6. The Vf value and emission intensity of each semiconductor light emitting device of Examples 1 to 6 were measured, and the results shown in Table 1 were obtained.
[0069]
[Table 1]
Figure 0004255710
[0070]
(Comparative example) In order to compare with the Vf value and light emission intensity which the semiconductor light-emitting device of Examples 1-6 mentioned above has, a current diffusion layer is not provided, and all others are the same structures as Example 1. (LED) was produced as a comparative element. The comparison results are shown in Table 1.
[0071]
The comparative example of Table 1 had a Vf value (per 20 mA) of about 2.2 V, which was higher than the Vf value of the semiconductor light emitting device 20 of Examples 1 to 6 and 1.99 V to 2.02 V. On the other hand, the light emission in the comparative example occurs only directly under and around the ohmic electrode, and a considerable proportion of the light emission is blocked by the electrode, which causes a situation in which it cannot be extracted outside. As a result, the luminance was low, less than 15 mcd. On the other hand, the brightness | luminance of Examples 1-6 was 30 mcd-42 mcd.
[0072]
If this comparative example is compared with the examples of the present invention, it is clear that the semiconductor light emitting device of the present invention exhibits high brightness without increasing Vf.
[0073]
5 to 8 are views showing other arrangement examples of the distribution electrodes in plan view. In the above description, the distribution electrodes are continuously distributed around the pedestal electrode in the form of a linear body. However, as shown in FIG. 5, the distribution electrodes can be distributed separately and separately around the pedestal electrode 6. 7 may be configured. Further, as shown in FIG. 6, a distribution electrode 7 in which linear bodies are graphically combined may be used. Further, as shown in FIG. 7, the distribution electrode 7 may be configured by arranging linear bodies in a lattice shape. Further, as shown in FIG. 8, the distribution electrode 7 may be constituted by a combination of a linear body and independent individual electrodes.
[0074]
As described above, the distribution electrode 7 may be arranged not only separately but also in a strip shape or a linear shape, or in a planar shape.
[0075]
In addition, when the distribution electrodes 7 are arranged separately, or when strips and lines are continuously arranged, the shapes thereof are arbitrary shapes such as a square, a rectangle, a circle, an ellipse, and a polygon. The pattern for dispersion may be a radial pattern, a circular pattern, a spiral pattern, or any other pattern.
[0076]
【The invention's effect】
As described above, in the semiconductor light emitting device of the present invention, by providing a distribution electrode that forms ohmic contact on a part of the surface of the current diffusion layer, compared with the electrical resistance between the transparent conductive film and the current diffusion layer. The electric resistance between the distribution electrode and the current diffusion layer is significantly reduced, and the drive current supplied from the pedestal electrode is mostly lower in electric resistance. The pedestal electrode → transparent conductive film → distribution electrode → current Flows from the diffusion layer to the light emitting part. Since the current that has entered the current diffusion layer from the distribution electrode is appropriately diffused in the current diffusion layer, the light emission in the light emitting portion is performed around the distribution electrode. For this reason, light emitted from the light emitting portion is less likely to be blocked by the distribution electrode, and most of the light can be extracted upward, and thus the light emission efficiency can be improved.
[0077]
Further, when the current diffusion layer is p-type, the layer thickness is set to 3 μm or more, so that sufficient current diffusion can be caused.
[0078]
When the current spreading layer is p-type, the product of the layer thickness and the carrier concentration is 5 × 1014cm-2As described above, the current diffusion layer can be effectively contributed to the increase in luminance.
[0079]
Further, when the current spreading layer is p-type, the surface carrier concentration is 1 × 1018cm-3As described above, contact resistance with the distribution electrode is reduced, current diffusion is promoted, and high brightness can be achieved.
[0080]
In addition, since the current diffusion layer is made of p-type GaP using Zn or Mg as an impurity, it is transparent to light emission, can sufficiently diffuse the current, and can be easily reduced in resistance and thickness. The current diffusion layer can be easily optimized.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing a schematic configuration of a semiconductor light emitting device of the present invention.
2 is a diagram schematically showing a schematic configuration of a semiconductor light emitting device according to the present invention, and is a diagram showing a cross section taken along line II of FIG.
FIG. 3 is a plan view showing an embodiment of the semiconductor light emitting device of the present invention.
4 is a view showing an embodiment of the semiconductor light emitting device of the present invention, and is a view showing a cross section taken along the line II-II of FIG.
FIG. 5 is a view showing another arrangement example of the distribution electrode according to the present invention.
FIG. 6 is a view showing another arrangement example of the distribution electrode according to the present invention.
FIG. 7 is a view showing another arrangement example of the distribution electrode according to the present invention.
FIG. 8 is a view showing another arrangement example of the distribution electrode according to the present invention.
[Explanation of symbols]
1 Semiconductor substrate
2a Light emitting part
2b Current spreading layer
3 Semiconductor layer
4 Transparent conductive film
5 First electrode
6 Base electrode
7 Distributing electrode
10 Semiconductor light emitting device
20 Semiconductor light emitting device
21 Single crystal substrate
22 Light emitting layer
23 Semiconductor layer
231 Buffer layer
232 reflective layer
233 Lower cladding layer
234 Upper cladding layer
235 Current spreading layer
24 Transparent conductive film
25 n-type ohmic electrode
26 Base electrode
27 Distributing electrode

Claims (9)

裏面に第1の電極が形成された半導体基板と、
前記半導体基板上に形成され、AlInGaPからなる発光部を含むとともに上層に電流拡散層を有する半導体層と、
前記電流拡散層の表面の一部に分配して形成され、その電流拡散層とオーミック接触をなす分配電極と、
前記電流拡散層の表面と前記分配電極とを覆って形成され、その分配電極と導通する透明導電膜と、
前記透明導電膜の表面の一部に形成され、その透明導電膜と導通する台座電極とを有し、
前記半導体基板はn型で、電流拡散層はp型であり、電流拡散層の厚さが3μm以上20μm以下であり、電流拡散層の厚さとキャリア濃度との積(N・d)が、5×10 14 cm -2 以上であり、電流拡散層の表面キャリア濃度が、1×10 18 cm -3 以上であり、電流拡散層は、ZnまたはMgを不純物としたp型のGaP層からなり、分配電極は、台座電極を囲む略四角形あるいは略円形の線状体でその線幅が20μm以下である、
ことを特徴とする半導体発光素子。
A semiconductor substrate having a first electrode formed on the back surface;
A semiconductor layer formed on the semiconductor substrate and including a light emitting portion made of AlInGaP and having a current diffusion layer as an upper layer;
A distribution electrode formed in a part of the surface of the current diffusion layer and in ohmic contact with the current diffusion layer;
A transparent conductive film formed so as to cover the surface of the current spreading layer and the distribution electrode, and conductive with the distribution electrode;
A pedestal electrode formed on a part of the surface of the transparent conductive film and electrically connected to the transparent conductive film;
The semiconductor substrate is n-type, the current diffusion layer is p-type, the thickness of the current diffusion layer is 3 μm or more and 20 μm or less, and the product (N · d) of the thickness of the current diffusion layer and the carrier concentration is 5 × 10 14 cm −2 or more, the surface carrier concentration of the current diffusion layer is 1 × 10 18 cm −3 or more, and the current diffusion layer is composed of a p-type GaP layer containing Zn or Mg as an impurity, The distribution electrode is a substantially quadrangular or substantially circular linear body surrounding the pedestal electrode, and the line width is 20 μm or less.
A semiconductor light emitting element characterized by the above.
前記分配電極は、平面的に見て台座電極と重ならない半導体層表面に形成されている、請求項1に記載の半導体発光素子。  The semiconductor light emitting element according to claim 1, wherein the distribution electrode is formed on a surface of the semiconductor layer that does not overlap with the base electrode when seen in a plan view. 前記分配電極の面積は台座電極の面積より小さい、請求項1または2に記載の半導体発光素子。  The semiconductor light emitting element according to claim 1, wherein an area of the distribution electrode is smaller than an area of the base electrode. 前記分配電極の合計の平面積が、発光有効面積の3%以上で30%以下である、請求項1乃至3の何れか1項に記載の半導体発光素子。  4. The semiconductor light emitting element according to claim 1, wherein a total plane area of the distribution electrodes is 3% or more and 30% or less of a light emission effective area. 5. 前記分配電極が金合金である、請求項1乃至4の何れか1項に記載の半導体発光素子。  The semiconductor light emitting element according to claim 1, wherein the distribution electrode is a gold alloy. 前記透明導電膜が酸化インジウム錫(ITO)である、請求項1乃至5の何れか1項に記載の半導体発光素子。  The semiconductor light-emitting device according to claim 1, wherein the transparent conductive film is indium tin oxide (ITO). 前記台座電極が平面的に見て素子表面の中心に形成されている、請求項1乃至6の何れか1項に記載の半導体発光素子。  The semiconductor light emitting element according to claim 1, wherein the pedestal electrode is formed at a center of the element surface when seen in a plan view. 前記台座電極の表面が金である、請求項1乃至7の何れか1項に記載の半導体発光素子。  The semiconductor light-emitting element according to claim 1, wherein a surface of the base electrode is gold. 前記台座電極が多層膜からなり、透明導電膜と接する層がクロムである、請求項1乃至8の何れか1項に記載の半導体発光素子。  9. The semiconductor light emitting element according to claim 1, wherein the base electrode is formed of a multilayer film, and the layer in contact with the transparent conductive film is chromium.
JP2003032580A 2003-02-10 2003-02-10 Semiconductor light emitting device Expired - Fee Related JP4255710B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003032580A JP4255710B2 (en) 2003-02-10 2003-02-10 Semiconductor light emitting device
TW093102666A TWI231053B (en) 2003-02-10 2004-02-05 Semiconductor light emitting device and the manufacturing method thereof
PCT/JP2004/001338 WO2004070851A1 (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof
US10/544,940 US7528417B2 (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof
CNB2004800062445A CN100527452C (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof
KR1020057014770A KR100644151B1 (en) 2003-02-10 2004-02-09 Light-emitting diode device and production method thereof
DE112004000262T DE112004000262T5 (en) 2003-02-10 2004-02-09 Light-emitting diode and associated manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032580A JP4255710B2 (en) 2003-02-10 2003-02-10 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2004265923A JP2004265923A (en) 2004-09-24
JP4255710B2 true JP4255710B2 (en) 2009-04-15

Family

ID=33112035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032580A Expired - Fee Related JP4255710B2 (en) 2003-02-10 2003-02-10 Semiconductor light emitting device

Country Status (2)

Country Link
JP (1) JP4255710B2 (en)
CN (1) CN100527452C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834373B2 (en) * 2006-12-12 2010-11-16 Hong Kong Applied Science and Technology Research Institute Company Limited Semiconductor device having current spreading layer
JP5095840B2 (en) * 2011-04-26 2012-12-12 株式会社東芝 Semiconductor light emitting device
KR102101356B1 (en) * 2013-06-18 2020-04-17 엘지이노텍 주식회사 Light emitting device, and lighting system
KR102249627B1 (en) * 2014-07-15 2021-05-10 엘지이노텍 주식회사 Light emitting device and lighting system
CN104300058B (en) * 2014-10-14 2018-02-27 扬州乾照光电有限公司 A kind of green-yellow light LED of the wide barrier structure containing doping

Also Published As

Publication number Publication date
CN100527452C (en) 2009-08-12
CN1759490A (en) 2006-04-12
JP2004265923A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
US7291865B2 (en) Light-emitting semiconductor device
US7042089B2 (en) Group III nitride compound semiconductor device
JP5719110B2 (en) Light emitting element
JP4810746B2 (en) Group III nitride compound semiconductor device
US20040012013A1 (en) Structure of p-electrode at the light-emerging side of light-emitting diode
JP5992174B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
KR100703091B1 (en) Nitride semiconductor light emitting device and method for manufacturing the same
US7528417B2 (en) Light-emitting diode device and production method thereof
US10756960B2 (en) Light-emitting device
JP2013026451A (en) Semiconductor light-emitting device
EP1530242B1 (en) Semiconductor light emitting device
TW201828496A (en) Light-Emitting Diode Device
JP3989658B2 (en) Semiconductor light emitting diode
JP4255710B2 (en) Semiconductor light emitting device
JP4409684B2 (en) AlGaInP light emitting diode and manufacturing method thereof
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip
KR100644151B1 (en) Light-emitting diode device and production method thereof
JP2001144330A (en) Semiconductor light-emitting diode
JP6190591B2 (en) Semiconductor light emitting device
JP4439645B2 (en) AlGaInP light emitting diode
JP4031611B2 (en) Light emitting diode, lamp, and manufacturing method thereof
JP4119602B2 (en) Semiconductor light emitting device, electrode for semiconductor light emitting device, method for manufacturing the same, LED lamp using the semiconductor light emitting device, and light source using the LED lamp
JP2004363572A (en) Semiconductor light emitting device and light emitting diode
WO2004070851A1 (en) Light-emitting diode device and production method thereof
JP6198396B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees