JP4031611B2 - Light emitting diode, lamp, and manufacturing method thereof - Google Patents

Light emitting diode, lamp, and manufacturing method thereof Download PDF

Info

Publication number
JP4031611B2
JP4031611B2 JP2000220222A JP2000220222A JP4031611B2 JP 4031611 B2 JP4031611 B2 JP 4031611B2 JP 2000220222 A JP2000220222 A JP 2000220222A JP 2000220222 A JP2000220222 A JP 2000220222A JP 4031611 B2 JP4031611 B2 JP 4031611B2
Authority
JP
Japan
Prior art keywords
light emitting
electrode
emitting diode
light
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000220222A
Other languages
Japanese (ja)
Other versions
JP2002043621A (en
Inventor
良一 竹内
亙 鍋倉
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000220222A priority Critical patent/JP4031611B2/en
Publication of JP2002043621A publication Critical patent/JP2002043621A/en
Application granted granted Critical
Publication of JP4031611B2 publication Critical patent/JP4031611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体層の表面から均一に光を取り出すために電極構造を改良した発光ダイオードおよびその発光ダイオードを用いたランプとその製造方法に係わり、特に大型の発光ダイオードに関する。
【0002】
【従来の技術】
従来の発光ダイオードについて、光を主に取り出す半導体層の表面を正面から見た平面図を図5に示す。従来の発光ダイオードでは、図5に示すように光を主に取り出す表面(発光面)39の中央部に、外部の導線との結線を行い、かつ半導体層とのオーミック接触を形成するための電極38が形成されているのが一般的であった。なお、本明細書で発光面39とは、図5で灰色で示す発光ダイオードの表面とその中央部に形成された電極38の部分とを合わせた領域をいう。
【0003】
しかし、発光面の最大幅が0.7mm以上で、特に発光面の面積が0.25mm2以上である大型の発光ダイオードでは、発光面の面内の電極から離れた位置で、放出される発光の強度が低下する傾向があった。これは大型の発光ダイオードでは、電極が形成された半導体層内で電流が拡散により十分に広がらないため、電極から注入された発光ダイオードの駆動電流が発光面の外周まで均一に行き渡らないことによると考えられる。
このため大型の発光ダイオードでは、発光面内の発光強度の均一性が低下し、さらに発光面の周辺部で発光強度が低下することにより、発光ダイオード全体の輝度も低下するといった問題点があった。
【0004】
上記の問題を解決し、発光面積が大きく発光強度が面内で均一な発光素子を作製するために、従来では発光面の面積が0.1mm2程度の個別に分離された発光ダイオードを複数個並列に並べ、個々の発光ダイオードにそれぞれ配線を施し同時に発光させることにより、発光面積が0.25mm2以上の大型の発光ダイオードに相当する発光素子を作製していた。
【0005】
また、別の方法として図3および図4に示すように、発光ダイオード用エピタキシャルウェーハから発光ダイオードを作製する際に、基板21を所望の大きさにつながった形で切断し、さらに半導体層23についてのみ発光面の面積がそれぞれ0.1mm2程度になるように、半導体層の表面から発光部22を含む範囲に切り込み29を入れて分離し、その分離された発光面ごとに電極28を形成することにより、いわゆる発光ダイオードアレイの形の大型の発光素子を作製していた。ここで、図3は該発光ダイオードアレイの平面図であり、図4は該発光ダイオードアレイの線I−Iに沿った断面図である。図3、図4に示す発光ダイオードアレイは、分離された発光面ごとに設けられた電極28にそれぞれ配線を行い同時に発光させることにより、大型の発光素子として用いることができる。
【0006】
【発明が解決しようとする課題】
従来、大型の発光素子としては、上記のように複数の小型の発光ダイオードの集合体や同一基板上に発光部のみを分離して作製した発光ダイオードアレイが、用いられていた。しかしこれらの大型発光素子の場合、0.1mm2程度の大きさに分離された発光面に個々の電極を形成し、それらの電極にそれぞれ配線をする必要がある。ここで、個々の電極のサイズはワイヤボンドにより配線を行うため少なくとも直径100μm程度が必要であるが、発光面の電極に覆われた部分からは光が取り出せないこと、また配線のための導線が発光面の上を通過するため導線が影となることにより、従来の大型の発光素子は発光強度が面内で不均一になったり輝度が低くなるといった問題点があった。また、個々の電極に対してそれぞれワイヤボンドにより配線を行う必要があるため、組み立てコストが高くなるという問題点もあった。
【0007】
本発明は、上記の問題点に鑑み提案されたもので、大型の発光素子の発光面内の発光強度の均一性を改善し、輝度を向上させ、さらにワイヤボンドによる配線の工数を減らして組み立てコストを小さくすることができる大型の発光ダイオードを提供することを目的とする。そして、その発光ダイオードを用いたランプとその製造方法も提供する。
【0008】
【課題を解決するための手段】
本発明は、
(1)裏面に第1の電極が形成された半導体基板と、前記半導体基板上に形成された、発光部を含む半導体層と、前記半導体層の光を取り出す表面(発光面)の一部に分配して形成され、その半導体層とオーミック接触をなす分配電極と、前記発光面と前記分配電極とを覆って形成され、その分配電極と導通する透明導電膜と、前記透明導電膜の表面の一部に形成され、その透明導電膜と導通する台座電極とを有し、前記発光面の最大幅が0.7mm以上である発光ダイオード。
(2)前記発光面の面積が0.25mm2以上であることを特徴とする(1)に記載の発光ダイオード。
(3)前記分配電極が複数の電極からなり、該分配電極が発光面の面積0.15mm2当たりに少なくとも1個以上存在するように配置されていることを特徴とする(1)または(2)に記載の発光ダイオード。
(4)前記台座電極が、発光面の外周から0.3mm以内の部分に配置されていることを特徴とする(1)乃至(3)に記載の発光ダイオード。
(5)前記透明導電膜の比抵抗が、0.005Ω・cm以下であることを特徴とする(1)乃至(4)に記載の発光ダイオード。
(6)前記透明導電膜が、酸化インジウム錫(ITO)からなることを特徴とする(1)乃至(5)に記載の発光ダイオード。
(7)前記発光部が、AlGaInPからなることを特徴とする(1)乃至(6)に記載の発光ダイオード。
(8)前記発光部が、有機金属化学気相堆積(MOCVD)法により形成されることを特徴とする(1)乃至(7)に記載の発光ダイオード。
である。
【0009】
また本発明は、
(9)前記(1)乃至(8)に記載の発光ダイオードと、該発光ダイオードの第1の電極と導通する第1の導線と、該発光ダイオードの台座電極と導通する第2の導線とを備えたランプ。
(10)前記台座電極と第2の導線との結線がワイヤボンドにより行われ、ワイヤボンドによる配線が1本であることを特徴とする(9)に記載のランプ。
(11)前記台座電極と第2の導線との結線を、ワイヤボンドにより1本の配線で行うことを特徴とする(9)に記載のランプの製造方法。
である。
【0010】
【発明の実施の形態】
本発明者らは先に、電極と半導体層との良好なオーミック接触を実現し、かつ発光ダイオードの駆動電流を発光部の全面に広げて半導体層の発光面から均一に発光を得ることが出来るようにすることを目的に、図10、図11に示す発光ダイオードを開発した。
【0011】
本発明者らが開発した発光ダイオードは、図11に断面図で示すように、裏面に第1の電極5が形成された半導体基板1と、前記半導体基板1上に形成された、発光部2を含む半導体層3と、前記半導体層3の発光面の一部に分配して形成され、その半導体層3とオーミック接触をなす分配電極7と、前記半導体層3の発光面と前記分配電極7とを覆って形成され、その分配電極7と導通する透明導電膜4と、前記透明導電膜4の表面の一部に形成され、その透明導電膜と導通する台座電極6とを有する発光ダイオード10である。
【0012】
また、図11に示す発光ダイオード10の一例を上から見た平面図を図10に示す。図10に示す発光ダイオードは、発光ダイオード10の表面の中心に台座電極6が形成され、その外周部に分配電極7が形成されている。但し、台座電極6と分配電極7および半導体層表面との間には、半導体層3の表面と前記分配電極7とを覆って形成された透明導電膜4が介在している。
【0013】
本発明者らは、上記の発光ダイオードに用いた技術を使うと、前述の問題を解決した大型の発光ダイオードを提供できることを見出し、本発明をなしたものである。
【0014】
以下に本発明の実施の形態を図面に基づいて詳細に説明する。
図1および図2は本発明の発光ダイオードの概略構成を模式的に示す図で、図1はその平面図、図2は図1のI−I線に沿った断面図である。
【0015】
図1および図2に示す本発明の発光ダイオードは、裏面に第1の電極15が形成された半導体基板11と、前記半導体基板11上に形成された、発光部12を含む半導体層13と、前記半導体層13の光を取り出す表面(発光面)の一部に分配して形成され、その半導体層13とオーミック接触をなす分配電極17と、前記発光面と前記分配電極17とを覆って形成され、その分配電極17と導通する透明導電膜14と、前記透明導電膜14の表面の一部に形成され、その透明導電膜14と導通する台座電極16とを有する。さらに本発明の発光ダイオードは、前記発光面の最大幅(図1に示す発光面の場合は、発光面の対角線の長さ)が0.7mm以上である大型の発光ダイオードであることを特徴とする。また本発明は、半導体層13の発光面の面積が0.25mm2以上である場合に、従来の大型発光素子に比較して発光面内の発光強度の均一性を改善し、輝度を向上させる効果が特に顕著になる。
【0016】
上記構成の発光ダイオードは、半導体層の表面の一部にオーミック接触をなす分配電極を設けることで、分配電極と半導体層との間の接合は良好なオーミック接触を保ってその間の電気抵抗は小さくなる。しかし、透明導電膜と半導体層との間の接合では十分なオーミック接触は得られないため、その間の電気抵抗は大きい。すなわち、透明導電膜と半導体層との間の電気抵抗に比べて、透明導電膜と分配電極および分配電極と半導体層との間の電気抵抗が大幅に小さいため、台座電極から供給される発光ダイオードの駆動電流は、その大部分がより電気抵抗の低い、台座電極→透明導電膜→分配電極→半導体層(発光部)の経路を流れる。したがって、発光面上での分配電極の平面的な配置に応じて、台座電極からの駆動電流を発光面の広い範囲に拡げることができる。
すなわち本発明の発光ダイオードでは、発光面の全面に駆動電流を広げるために発光面の外周部にも分配電極を配置するので、外周部の分配電極のまわりの発光部にも駆動電流が流れ、発光面の外周部でも従来の発光ダイオードに比較して均一に発光が起きる。
【0017】
さらに、発光部からの発光は、発光面から透明導電膜を介して上方から取り出される。本発明の発光ダイオードでは分配電極は、図1に示すように半導体層の発光面の台座電極とは重ならない部分に配置するのが好ましく、さらに、台座電極と重なる部分には配置しないようにするのがより好ましい。上記のように分配電極を台座電極とは重ならないように配置すると、台座電極の直下方向での発光は発生せず、発光の大部分は台座電極に遮られることなく、上方から取り出すことができ、発光ダイオードの輝度を大幅に改善することができる。
【0018】
本発明の透明導電膜と分配電極と台座電極からなる電極構造を用いると、駆動電流を半導体層表面の広い範囲に拡げることができるため、発光面の最大幅が0.7mm以上である発光ダイオードにおいて、特に発光面の面積が0.25mm2以上である大型の発光ダイオードの場合に顕著に、従来の大型の発光ダイオードに比較して発光面を均一に発光させることができる。発光面の面積が0.25mm2以上である大型の発光ダイオードとは、図1に示すように半導体層表面が正方形の発光ダイオードの場合、正方形の1辺が0.5mm以上であるものをいうが、その他の発光ダイオードであっても、半導体層の光を取り出す主な表面の面積が0.25mm2以上となるものをいう。
【0019】
本発明の発光ダイオードにおいては、金線などでワイヤボンドにより分配電極に配線する替わりに、透明導電膜により分配電極への電気伝導を確保する。従って分配電極にワイヤボンドによる配線を行う必要がないため、分配電極の面積は、台座電極の面積より小さくすることができる。さらに、配線のための導線が発光面の上を通過することで導線が影となることがない。その結果、従来の大型の発光素子に比べて外部に光を効率よく取り出せるため、輝度をより一層向上させることができ、発光強度の面内の均一性を改善することができる。また、ワイヤボンドによる配線の工程をなくして組み立てコストを小さくすることができる。
【0020】
ここで、本発明の大型の発光ダイオードでは、効率良く電流を半導体層表面の広い範囲に拡げるためには、透明導電膜の比抵抗は0.005Ω・cm以下とするのが好ましい。また透明導電膜は、良好な透光性を備えるものが好ましい。そのため透明導電膜の材料としては酸化インジウム錫(ITO)を用いるのが特に好ましい。また酸化亜鉛を用いることもできる。これらの透明導電膜を用いると、半導体層の表面から取り出された発光は、この透明導電膜を通過する間でもほとんど吸収されることがなく、効率よく透明導電膜から上方へ取り出すことができる。透明導電膜の厚さは、発光部からの発光の波長に応じ光学的に算出される最適膜厚に設定するのが望ましい。
【0021】
また本発明においては、分配電極と半導体層との間をオーミック接触としたことにより、発光ダイオードに駆動電流を流した際の順方向電圧の上昇を抑制することが可能となるので、発光ダイオードの寿命特性が向上する。分配電極と半導体層との接触抵抗は、約50Ω以下とするのが好ましい。分配電極と半導体層との接触抵抗は分配電極の面積によって変化し、分配電極の面積が小さすぎると接触抵抗が増大し順方向電圧(Vf)が大きくなる不都合が生じる。また分配電極の面積が大きすぎると、発光部からの発光が分配電極にさえぎられて外部に取り出せなくなり、輝度が低下する。また半導体層の最も表面側の層を、分配電極とのオーミック接触を形成しやすい半導体からなる層、いわゆるコンタクト層とすると、オーミック接触がより小さくなるため好ましい。
【0022】
分配電極は、台座電極からの駆動電流を発光面の広い範囲に均一に拡げるために、半導体層の表面に均等に配置するのが好ましい。分配電極の形状は図1では円形とし、発光面上に分配電極を複数個設けたが、四角形等の多角形の分配電極を用いても良い。分配電極が独立した複数個の電極からなる場合、発光面の0.2mm2当たりに1個程度分配電極を配置するのでは、発光強度の均一性が不充分であり、少なくとも0.15mm2当たりに1個以上の分配電極が配置されることが、発光面での発光強度の均一性を向上するために望ましい。また、放射状、ドーナッツ状、螺旋状、額縁状、格子状、あるいは枝状の独立していない分配電極を半導体層の表面に均等に配置しても良い。
【0023】
また分配電極の材料には、半導体層の最も表面側の層がp型の場合はAuZn合金やAuBe合金等を、また半導体層の最も表面側の層がn型の場合はAuGeNi合金やAuSi合金等を用いることができる。
【0024】
また台座電極は、発光ダイオードと外部の導線の接続のためにワイヤボンドを行うための電極であり、そのため0.01mm2程度の面積が必要である。この台座電極の材質には、金やアルミニウムなどの金属を用いることができる。本発明の発光ダイオードにおいて、台座電極が発光面の中心にあると、台座電極と外部の導線を結ぶ配線が発光面の上を通り、発光面に対し影となり結果的に発光強度の均一性が低下する可能性がある。そこで台座電極は発光面の周辺部に配置する方が好ましく、発光面の外周から0.3mm以内の部分に配置すると特に配線の影の影響が少なくなり好ましい。
【0025】
従来の発光ダイオードでは、台座電極から直下方向に流れる駆動電流に基づく発光は、台座電極で遮られて外部に取り出すことができなかった。このため、従来は台座電極と発光部との間に絶縁層や極性の異なる半導体層を設ける等で対策を施し、台座電極から直下方向へ駆動電流が流れるのを強制的に防ぐようにしていた。しかし本発明では、駆動電流を分配電極に分配して誘導することができ、したがって、絶縁層や極性の異なる半導体層を設けなくとも、より簡単な構成の下で、台座電極の直下方向に流れる駆動電流を少なくすることができる。
【0026】
【実施例】
(実施例)
本実施例では、本発明に係わる発光ダイオードを作製した例を図1、図2を用いて具体的に説明する。図1および図2は、本実施例で作製した発光ダイオードを示した図で、図1はその平面図、図2は図1のI−I線に沿った断面図である。
【0027】
本実施例で作製した発光ダイオードは、発光部がAlGaInPからなる赤橙色の発光を行う発光ダイオードである。この発光ダイオードでは、亜鉛(Zn)をドープしたp形の(001)面を有するGaAs単結晶からなる半導体基板11上に順次積層された、Znをドープしたp形のGaAsからなる緩衝層131、Znをドープしたp形のAlGaAsからなる光反射層132、Znをドープしたp形の(Al0.7Ga0.30.5In0.5Pからなる下部クラッド層133、アンドープの(Al0.2Ga0.80.5In0.5Pからなる発光層134、および珪素(Si)をドープしたn形の(Al0.7Ga0.30.5In0.5Pからなる上部クラッド層135から、半導体層13が構成されている。また、この発光ダイオードの発光部12は、下部クラッド層133、発光層134、上部クラッド層135から構成されている。
【0028】
本実施例ではまず、トリメチルアルミニウム((CH33Al)、トリメチルガリウム((CH33Ga)およびトリメチルインジウム((CH33In)をIII族構成元素の原料に用いた減圧の有機金属化学気相堆積(MOCVD)法により、上記の半導体層13を構成する各層を半導体基板11上に積層し、エピタキシャルウェーハを形成した。Znのドーピング原料にはジエチル亜鉛((C252Zn)を使用した。Siのドーピング原料にはジシラン(Si26)を使用した。また、V族構成元素の原料としては、ホスフィン(PH3)またはアルシン(AsH3)を用いた。半導体層13を構成する各層のMOCVD法における積層温度は700℃に統一した。
【0029】
緩衝層131のキャリア濃度は約5×1018cm-3、また、層厚は約0.5μmとした。光反射層132はAl混晶比の異なる2種類のAlGaAs薄膜を各10層交互に積層し、キャリア濃度は約3×1018cm-3、層厚は合計で約0.8μmとした。下部クラッド層133のキャリア濃度は約4×1017cm-3、また、層厚は約1μmとした。発光層134の層厚は約0.5μmとし、キャリア濃度は約5×1016cm-3とした。上部クラッド層135のキャリア濃度は約2×1018cm-3とし、また、層厚は約4μmとした。
【0030】
半導体層13の各層をMOCVD法で積層してエピタキシャルウェーハを作製した後、半導体基板11の裏面に第1の電極15として、金・亜鉛(AuZn)合金からなるp形オーミック電極を厚さが1μmとなるように真空蒸着法により形成した。
【0031】
また、半導体層13の発光面に分配電極17を形成するために、先ず膜厚を約50nmとするAu93重量%とGe7重量%の合金からなる金・ゲルマニウム(AuGe)合金膜を、上部クラッド層135の表面の全面に、一般的な真空蒸着法により一旦被着させた。続けて、その金・ゲルマニウム合金膜の表面上に、膜厚を約50nmとする金(Au)膜を被着させた。次に、金・ゲルマニウム合金膜と金膜とからなる2層構造の重層膜が分配電極17の形になるように、一般的なフォトリソグラフィー手段を利用してパターニングを施し、直径を約30μmとする円形の分配電極17を形成した。この金・ゲルマニウム合金膜と金膜とからなる2層構造の分配電極17は、図1に示すように、台座電極16の直下領域を除く半導体層13の発光面上に合計8個、均等に配置した。最も近接した分配電極17の中心間の距離Lは0.25mmとした。次に上記の分配電極17を形成した後、アルゴン(Ar)気流中において420℃で15分間の合金化熱処理を施し、分配電極17と上部クラッド層135とのオーミック接触を形成した。
【0032】
次に、上部クラッド層135の発光面と分配電極17とを覆って、一般のマグネトロンスパッタリング法により、酸化インジウム錫(ITO)からなる透明導電膜14を半導体層13上に被着させた。透明導電膜14の比抵抗は約2×10-4Ω・cmであり、この実施例の発光ダイオードの発光波長の光に対する透過率は94%であった。またこの透明導電膜14の膜厚は約300nmとした。一般的なX線回折分析法により、透明導電膜14を形成するITOは<0001>方向(C軸)に優先的に配向した多結晶膜であることが分かった。
【0033】
次に、透明導電膜14の全面に、一般的なフォトレジスト材料を塗布した後、台座電極16を設けるべき領域を、公知のフォトリソグラフィー技術を利用してパターニングした。その後、パターニングされたレジスト材料を残置させたままで、全面に金(Au)膜を真空蒸着法により被着させた。金(Au)膜の厚さは約1200nmとした。その後、レジスト材料を剥離するに併せて、周知のリフト−オフ手段により、台座電極16の形成予定領域に限定して上記の金膜を残留させた。これにより、透明導電膜14上に直径を約110μmとする円形の金からなる台座電極16を形成した。台座電極16の位置は、図1に示すように発光面上に3×3個配列した分配電極17のうちの隅のひとつを置換した位置とした。この台座電極16は、中心が発光面の外周から0.15mmの位置になるように(すなわち台座電極が発光面の外周から0.3mm以内の部分に入るように)配置されている。
【0034】
上記のようにして第1の電極15および分配電極17、透明導電膜14、台座電極16を形成したエピタキシャルウェーハを、通常のスクライブ法により正方形に裁断して個別に分離し、発光ダイオードとなした。発光ダイオードの発光面の形状は図1に示すように一辺を0.8mmとする正方形であり、この発光ダイオードの発光面の面積は0.64mm2となった。
【0035】
さらに、上記の実施例で作製した発光ダイオードを用いてランプを組み立てた例を、図8および図9を用いて説明する。図8はランプの平面図、図9は図8のランプの断面図である。
【0036】
図8および図9のランプは、次のようにして作製した。まず、作製した発光ダイオード42の半導体基板側を基板45に形成された第1の導線44上に導電性ペースト43を用い接着し、第1の導線44と発光ダイオード42の第1の電極とを導通させた。次に1本の金線46を用いたワイヤボンドにより、発光ダイオード42の台座電極と第2の導線47との間を配線し導通させた。その後、透明なエポキシ樹脂41で全体を封止し、ランプを作製した。
【0037】
上記のようにして作製したランプの第1の導線と第2の導線の間に順方向に駆動電流を通流したところ、発光ダイオード42の発光面から透明導電膜を介して、波長を約620nmとする赤橙色の光が出射された。また、その発光スペクトルの半値幅は分光器により測定した結果約20nmであり、単色性に優れる発光が得られていた。20mAの順方向電流を通流した際の順方向電圧(Vf)は、本発明の発光ダイオードの各分配電極の良好なオーミック特性を反映し、約2.1Vとなった。
【0038】
さらに本実施例の発光ダイオードについて、図1に示す発光面内のX−X線上の発光強度の分布を測定した結果を図7に示した。オーミック性の分配電極17を発光面に均等に配置した効果により、発光面の外周の領域においても均一な発光が認められ、発光面の面積が0.64mm2の発光ダイオードであっても発光面内で均一な発光が得られているのが分る。また、20mAの順方向電流を通流した際の本発明の発光ダイオードの輝度は、102mcdであった。このように本実施例により、発光強度の均一性および輝度に優れた発光ダイオードが得られた。
【0039】
なお、本実施例ではp型の半導体基板を用いて発光ダイオードを作製したが、n型の半導体基板を用いて作製した発光ダイオードでも本発明の効果が得られる。また、本発明の発光ダイオードの発光部の材質にはAlGaInPを用いたが、発光部の材料を変えても本発明の効果が得られる。特にMOCVD法で半導体層が積層されるような半導体層の厚さが薄い発光ダイオード、例えば発光部がAlGaInPあるいはAlGaInN、AlGaAs等からなる発光ダイオードにおいては、本発明の効果が特に大きい。また、本発明の発光ダイオードを用いて作製するランプがいわゆる砲弾型のランプの場合でも、同様の効果が得られる。
【0040】
(比較例1)
本比較例1では、上記の実施例と同じ構造の半導体層を形成したエピタキシャルウェーハを用いて、発光面積が実施例とほぼ同じ大きさの発光ダイオードアレイを作製した。本比較例1で作製した発光ダイオードアレイを図3、4に示す。図3は本比較例1で作製した発光ダイオードアレイの平面図、図4は図3のI−I線に沿った断面図である。図3、4で符号21、22、23、25、231、232、233、234、235で示した部分は、図1、2の符号11、12、13、15、131、132、133、134、135で示した部分と対応する。
【0041】
本比較例1の発光ダイオードアレイでは、半導体層23の上に形成する電極の構造を実施例の発光ダイオードの場合とは異なるものとした。すなわち、本比較例1の発光ダイオードアレイでは、まず上部クラッド層235の表面に、厚さ50nmの金・ゲルマニウム合金を下層とし、厚さ850nmの金を上層とする、直径が約110μmの円形のオーミック性の電極28を形成した。電極28は近接する相互の中心の距離を400μmとし等間隔に半導体層23の発光面上に配置した。なお、半導体基板21側に形成する第1の電極25は実施例と同じものにした。
その後ダイシング法により、近接する電極28の中間に、半導体層23の表面から発光部を含む深さ15μmの範囲に切り込み29を入れて発光面を分離し、さらにエッチングによりダイシングの切り込み29に沿う破砕層を除去した。切り込み29により分離された個々の発光面は、図3に示すように一辺が約400μmの正方形とした。
【0042】
その後、上記のエピタキシャルウェーハを、通常のスクライブ法により裁断して個別の発光ダイオードアレイに分離した。本比較例1の発光ダイオードアレイは、図3に示すように切り込み29により分離された発光面を4個まとめて正方形としたものである。この発光ダイオードアレイでは、4個の発光面は半導体基板21の部分ではつながっていて、一辺の長さは0.8mm、発光面積はおよそ0.64mm2である。
【0043】
その後実施例と同様にして、この発光ダイオードアレイを用いてランプを組み立てた。本比較例1の発光ダイオードアレイは、分離された4個の発光面にそれぞれ電極28がある為、それぞれの電極28に1本ずつ計4本の金線でワイヤボンドにより配線を行い、電極28と第2の導線とを結線した。第1の電極25と第1の導線との接続や透明なエポキシ樹脂での封止等は実施例と同様に行い、本比較例1の発光ダイオードアレイを用いたランプを作製した。
【0044】
このランプの第1の導線と第2の導線との間に順方向に駆動電流を流したところ、20mA通電時の順方向電圧が約2.2Vであり、実施例とほぼ同等であった。また、本比較例1の発光ダイオードアレイの発光面内での発光強度の分布を図3のX−X線上で測定した結果を図7に示す。本比較例1の発光ダイオードアレイでは、実施例の発光ダイオードに比較し発光面の周縁部の発光強度が低下する傾向があり、また発光ダイオードアレイの上部の電極28に配線された金線の影響によって、発光強度の面内分布に不均一を生じていた。また、20mAの順方向電流を通流した際の本比較例1の発光ダイオードアレイの輝度は83mcdであり、実施例と比較し低かった。
【0045】
(比較例2)
本比較例2では、上記の実施例と同じ構造の半導体層を形成したエピタキシャルウェーハを用いて、発光面積が実施例とほぼ同じ大きさで従来の電極構造を有する発光ダイオードを作製した。本比較例2で作製した発光ダイオードを図5、6に示す。図5は本比較例2で作製した発光ダイオードの平面図、図6は図5のI−I線に沿った断面図である。図5、図6で符号31、32、33、35、331、332、333、334、335で示した部分は、図1、2の符号11、12、13、15、131、132、133、134、135で示した部分と対応する。
【0046】
本比較例2では、半導体層33の発光面39に形成する電極の構造を前記の実施例と異なるものとした。すなわち、本比較例2では発光面39の中心に厚さ50nmの金・ゲルマニウム合金を下層とし、厚さ850nmの金を上層とする、直径が約110μmの円形のオーミック性の電極38を1つ形成した。
その他は実施例と同様にしたエピタキシャルウェーハを、通常のスクライブ法により発光面が正方形になるように裁断して個別に分離し、発光ダイオードとなした。この比較例2の発光ダイオードの発光面の一辺の長さは0.8mm、発光面積は0.64mm2とした。
【0047】
この発光ダイオードを用いて、実施例と同様にしてランプを作製した。発光ダイオードの電極38と第2の導線との間は、1本の金線を用いたワイヤボンドにより配線し導通させた。そして、第1の導線と第2の導線との間に順方向の駆動電流を流したところ、20mA通電時の順方向電圧が、2.2Vであった。また、本比較例2の発光ダイオードの発光面内での発光強度の分布を、図5のX−X線上で測定した結果を図7に示す。実施例に比較し、発光強度の面内分布に不均一を生じており、発光面の外周の領域において発光強度が低下している。これは、電極38からの駆動電流の拡散が半導体層33内で不充分で、発光層32へ流れる電流が発光面内で不均一となるためと考えられる。20mAの順方向電流を通流した際の本比較例2の発光ダイオードの輝度は60mcdであり、実施例と比較して低かった。
【0048】
【発明の効果】
以上説明したように、本発明の発光ダイオードでは、半導体層の発光面の一部に分配電極を設けることで、発光部での発光を分配電極の周辺で行わせることができる。そのため、発光面の最大幅が0.7mm以上で、特に発光面の面積が0.25mm2以上である大型の発光ダイオードであっても、駆動電流を分配電極の平面的な配置に応じて発光面の広い範囲に拡げることができ、発光面内で均一な発光が得られる。
【0049】
また、本発明の発光ダイオードにおいては、ワイヤボンドによる電極への配線の替わりに、透明導電膜により分配電極への電気伝導を確保する。従って分配電極にワイヤボンドによる配線を行う必要がないため、分配電極の面積は、台座電極の面積より小さくすることができ、従来の発光ダイオードに比べて、より一層良好な効率で外部に光を取り出すことができる。さらに、配線のための導線が発光面の上を通過して導線が影となることがなく、輝度を高くすることができる。また、発光ダイオードを用いてランプを作製する際に、ワイヤボンドによる配線数を少なくでき、組み立てコストを小さくすることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係わる発光ダイオードの平面図である。
【図2】本発明の実施例に係わる発光ダイオードの図1のI−I線に沿った断面を示す図である。
【図3】比較例1に係わる発光ダイオードアレイの平面図である。
【図4】比較例1に係わる発光ダイオードアレイの図3のI−I線に沿った断面を示す図である。
【図5】比較例2に係わる発光ダイオードの平面図である。
【図6】比較例2に係わる発光ダイオードの図5のI−I線に沿った断面を示す図である。
【図7】実施例、比較例1、比較例2の発光ダイオード(アレイ)の発光面内の発光強度分布を示す図である。
【図8】本発明の実施例に係わる発光ダイオードを用いたランプの平面図である。
【図9】図8に示すランプの断面図である。
【図10】本発明者らが別に開発した発光ダイオードの平面図である。
【図11】本発明者らが別に開発した発光ダイオードの断面図である。
【符号の説明】
1、11、21、31 半導体基板
2、12、22、32 発光部
3、13、23、33 半導体層
4、14 透明導電膜
5、15、25、35 第1の電極
6、16 台座電極
7、17 分配電極
10 発光ダイオード
131、231、331 緩衝層
132、232、332 光反射層
133、233、333 下部クラッド層
134、234、334 発光層
135、235、335 上部クラッド層
28、38 電極
29 切り込み
39 発光面
41 エポキシ樹脂
42 発光ダイオード
43 導電性ペースト
44 第1の導線
45 基板
46 金線
47 第2の導線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting diode having an improved electrode structure for uniformly extracting light from the surface of a semiconductor layer, a lamp using the light emitting diode, and a method for manufacturing the same, and particularly to a large light emitting diode.
[0002]
[Prior art]
FIG. 5 is a plan view of a conventional light-emitting diode as seen from the front surface of a semiconductor layer from which light is mainly extracted. In the conventional light emitting diode, as shown in FIG. 5, an electrode for connecting to an external conductor and forming an ohmic contact with a semiconductor layer at the center of a surface (light emitting surface) 39 from which light is mainly extracted. In general, 38 was formed. In the present specification, the light emitting surface 39 refers to a region where the surface of the light emitting diode shown in gray in FIG. 5 and the portion of the electrode 38 formed at the center thereof are combined.
[0003]
However, the maximum width of the light emitting surface is 0.7 mm or more, especially the area of the light emitting surface is 0.25 mm. 2 In the large light-emitting diode described above, the intensity of emitted light tends to decrease at a position away from the electrode in the plane of the light-emitting surface. This is because, in a large light emitting diode, the current does not spread sufficiently due to diffusion in the semiconductor layer where the electrode is formed, so that the driving current of the light emitting diode injected from the electrode does not spread uniformly to the outer periphery of the light emitting surface. Conceivable.
For this reason, the large light-emitting diode has a problem that the uniformity of the light emission intensity in the light-emitting surface is lowered, and further, the luminance of the light-emitting diode is lowered at the periphery of the light-emitting surface, thereby reducing the brightness of the entire light-emitting diode. .
[0004]
In order to solve the above problems and to produce a light emitting element having a large light emitting area and a uniform light emission intensity in the surface, the area of the light emitting surface is conventionally 0.1 mm. 2 The light emitting area is 0.25 mm by arranging a plurality of individually separated light emitting diodes in parallel, wiring each light emitting diode and emitting light simultaneously. 2 A light emitting element corresponding to the above large light emitting diode was manufactured.
[0005]
As another method, as shown in FIGS. 3 and 4, when a light emitting diode is manufactured from an epitaxial wafer for light emitting diodes, the substrate 21 is cut into a desired size, and the semiconductor layer 23 is further cut. Only the area of the light emitting surface is 0.1mm respectively 2 In order to achieve a large degree, a notch 29 is cut and separated from the surface of the semiconductor layer in a range including the light emitting portion 22, and an electrode 28 is formed for each of the separated light emitting surfaces. The light emitting element was manufactured. Here, FIG. 3 is a plan view of the light-emitting diode array, and FIG. 4 is a cross-sectional view along the line II of the light-emitting diode array. The light-emitting diode arrays shown in FIGS. 3 and 4 can be used as a large light-emitting element by wiring each electrode 28 provided for each separated light-emitting surface to emit light simultaneously.
[0006]
[Problems to be solved by the invention]
Conventionally, as a large-sized light emitting element, an assembly of a plurality of small light emitting diodes or a light emitting diode array produced by separating only a light emitting portion on the same substrate as described above has been used. However, in the case of these large light emitting elements, 0.1 mm 2 It is necessary to form individual electrodes on the light emitting surfaces separated to a certain size and to wire the electrodes. Here, the size of each electrode is required to be at least about 100 μm in diameter because wiring is performed by wire bonding. However, light cannot be extracted from the portion covered with the electrode on the light emitting surface, and a conductor for wiring is not provided. Since the conductive wire is shaded because it passes over the light emitting surface, the conventional large light emitting device has a problem in that the light emission intensity is not uniform in the surface and the luminance is low. Moreover, since it is necessary to wire each electrode by wire bonding, there is a problem that the assembly cost is increased.
[0007]
The present invention has been proposed in view of the above problems, and improves the uniformity of the light emission intensity within the light emitting surface of a large light emitting element, improves the brightness, and further reduces the number of man-hours for wiring by wire bonding. An object of the present invention is to provide a large light emitting diode capable of reducing the cost. And the lamp using the light emitting diode and its manufacturing method are also provided.
[0008]
[Means for Solving the Problems]
The present invention
(1) A semiconductor substrate having a first electrode formed on the back surface, a semiconductor layer including a light emitting portion formed on the semiconductor substrate, and a part of a surface (light emitting surface) for extracting light of the semiconductor layer A distribution electrode formed in a distributed manner and in ohmic contact with the semiconductor layer; a transparent conductive film formed over the light emitting surface and the distribution electrode; and electrically connected to the distribution electrode; and a surface of the transparent conductive film A light emitting diode having a pedestal electrode formed in part and electrically connected to the transparent conductive film, wherein the maximum width of the light emitting surface is 0.7 mm or more.
(2) The area of the light emitting surface is 0.25 mm 2 The light-emitting diode according to (1), which is as described above.
(3) The distribution electrode is composed of a plurality of electrodes, and the distribution electrode has a light emitting surface area of 0.15 mm. 2 The light-emitting diode according to (1) or (2), wherein the light-emitting diode is arranged so that at least one is present per unit.
(4) The light emitting diode according to any one of (1) to (3), wherein the pedestal electrode is disposed in a portion within 0.3 mm from the outer periphery of the light emitting surface.
(5) The light-emitting diode according to any one of (1) to (4), wherein the transparent conductive film has a specific resistance of 0.005 Ω · cm or less.
(6) The light-emitting diode according to any one of (1) to (5), wherein the transparent conductive film is made of indium tin oxide (ITO).
(7) The light emitting diode according to any one of (1) to (6), wherein the light emitting section is made of AlGaInP.
(8) The light emitting diode according to any one of (1) to (7), wherein the light emitting portion is formed by a metal organic chemical vapor deposition (MOCVD) method.
It is.
[0009]
The present invention also provides
(9) The light-emitting diode according to (1) to (8), a first conductive wire that is electrically connected to the first electrode of the light-emitting diode, and a second conductive wire that is electrically connected to the base electrode of the light-emitting diode. Provided lamp.
(10) The lamp according to (9), wherein the connection between the pedestal electrode and the second conductive wire is performed by wire bonding, and the number of wires by wire bonding is one.
(11) The lamp manufacturing method according to (9), wherein the connection between the pedestal electrode and the second conducting wire is performed by one wire by wire bonding.
It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors can achieve good ohmic contact between the electrode and the semiconductor layer first, and can uniformly emit light from the light emitting surface of the semiconductor layer by spreading the driving current of the light emitting diode over the entire surface of the light emitting portion. The light emitting diode shown in FIG. 10 and FIG. 11 was developed for the purpose of doing so.
[0011]
The light-emitting diode developed by the present inventors includes a semiconductor substrate 1 having a first electrode 5 formed on the back surface and a light-emitting portion 2 formed on the semiconductor substrate 1, as shown in a cross-sectional view in FIG. A semiconductor layer 3 including a distribution electrode 7 distributed over a part of the light emitting surface of the semiconductor layer 3 and in ohmic contact with the semiconductor layer 3, and the light emitting surface of the semiconductor layer 3 and the distribution electrode 7 A transparent conductive film 4 that is electrically connected to the distribution electrode 7 and a base electrode 6 that is formed on a part of the surface of the transparent conductive film 4 and is electrically connected to the transparent conductive film. It is.
[0012]
FIG. 10 is a plan view of an example of the light emitting diode 10 shown in FIG. 11 viewed from above. In the light emitting diode shown in FIG. 10, a base electrode 6 is formed at the center of the surface of the light emitting diode 10, and a distribution electrode 7 is formed on the outer periphery thereof. However, the transparent conductive film 4 formed so as to cover the surface of the semiconductor layer 3 and the distribution electrode 7 is interposed between the base electrode 6 and the distribution electrode 7 and the surface of the semiconductor layer.
[0013]
The inventors of the present invention have found that a large light-emitting diode that solves the above-described problems can be provided by using the technique used in the above-described light-emitting diode, and thus the present invention has been made.
[0014]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are diagrams schematically showing a schematic configuration of a light-emitting diode according to the present invention, FIG. 1 is a plan view thereof, and FIG. 2 is a cross-sectional view taken along a line II in FIG.
[0015]
The light emitting diode of the present invention shown in FIGS. 1 and 2 includes a semiconductor substrate 11 having a first electrode 15 formed on the back surface, a semiconductor layer 13 including a light emitting portion 12 formed on the semiconductor substrate 11, The semiconductor layer 13 is formed so as to be distributed on a part of the surface (light emitting surface) from which light is extracted, and is formed to cover the semiconductor layer 13 and ohmic contact with the semiconductor layer 13, and the light emitting surface and the distribution electrode 17. The transparent conductive film 14 is electrically connected to the distribution electrode 17, and the pedestal electrode 16 is formed on a part of the surface of the transparent conductive film 14 and is electrically connected to the transparent conductive film 14. Furthermore, the light emitting diode of the present invention is a large light emitting diode having a maximum width of the light emitting surface (in the case of the light emitting surface shown in FIG. 1, the length of the diagonal line of the light emitting surface) is 0.7 mm or more. To do. In the present invention, the area of the light emitting surface of the semiconductor layer 13 is 0.25 mm. 2 In the case described above, the effect of improving the uniformity of the light emission intensity in the light emitting surface and improving the luminance is particularly remarkable as compared with the conventional large light emitting element.
[0016]
The light-emitting diode having the above configuration is provided with a distribution electrode that makes ohmic contact with a part of the surface of the semiconductor layer, so that the junction between the distribution electrode and the semiconductor layer maintains good ohmic contact and the electrical resistance therebetween is small. Become. However, since sufficient ohmic contact cannot be obtained at the junction between the transparent conductive film and the semiconductor layer, the electrical resistance therebetween is large. That is, since the electrical resistance between the transparent conductive film and the distribution electrode and between the distribution electrode and the semiconductor layer is significantly smaller than the electrical resistance between the transparent conductive film and the semiconductor layer, the light emitting diode supplied from the pedestal electrode Most of the drive current flows through the path of the base electrode → transparent conductive film → distribution electrode → semiconductor layer (light emitting portion), which has a lower electrical resistance. Therefore, the drive current from the pedestal electrode can be spread over a wide range of the light emitting surface in accordance with the planar arrangement of the distribution electrode on the light emitting surface.
That is, in the light emitting diode of the present invention, since the distribution electrode is arranged also on the outer peripheral portion of the light emitting surface in order to spread the driving current over the entire light emitting surface, the driving current flows also in the light emitting portion around the distribution electrode on the outer peripheral portion, Even in the outer peripheral portion of the light emitting surface, light emission occurs uniformly as compared with the conventional light emitting diode.
[0017]
Furthermore, the light emitted from the light emitting part is extracted from above through the transparent conductive film from the light emitting surface. In the light emitting diode of the present invention, the distribution electrode is preferably disposed in a portion that does not overlap the pedestal electrode of the light emitting surface of the semiconductor layer as shown in FIG. 1, and is not disposed in a portion that overlaps the pedestal electrode. Is more preferable. If the distribution electrode is arranged so as not to overlap the pedestal electrode as described above, light emission in the direction directly below the pedestal electrode does not occur, and most of the light emission can be taken out from above without being blocked by the pedestal electrode. The luminance of the light emitting diode can be greatly improved.
[0018]
When the electrode structure comprising the transparent conductive film, the distribution electrode, and the pedestal electrode of the present invention is used, the drive current can be spread over a wide range of the semiconductor layer surface, and thus the light emitting diode having a maximum emission surface width of 0.7 mm or more In particular, the area of the light emitting surface is 0.25 mm 2 In the case of the large light emitting diode as described above, the light emitting surface can emit light uniformly as compared with the conventional large light emitting diode. The area of the light emitting surface is 0.25mm 2 The large light-emitting diode described above is a light-emitting diode whose semiconductor layer surface is square as shown in FIG. 1, which means that one side of the square is 0.5 mm or more. However, the area of the main surface for extracting light from the semiconductor layer is 0.25 mm 2 It means the above.
[0019]
In the light emitting diode of the present invention, instead of wiring to the distribution electrode by wire bonding with a gold wire or the like, electrical conduction to the distribution electrode is ensured by a transparent conductive film. Therefore, since it is not necessary to perform wiring by wire bonding on the distribution electrode, the area of the distribution electrode can be made smaller than the area of the base electrode. Furthermore, the lead wire does not become a shadow when the lead wire for wiring passes over the light emitting surface. As a result, since light can be efficiently extracted to the outside as compared with a conventional large light emitting element, luminance can be further improved, and in-plane uniformity of light emission intensity can be improved. Further, the assembly cost can be reduced by eliminating the wiring process by wire bonding.
[0020]
Here, in the large light emitting diode of the present invention, the specific resistance of the transparent conductive film is preferably 0.005 Ω · cm or less in order to efficiently spread the current over a wide range of the surface of the semiconductor layer. In addition, the transparent conductive film is preferably provided with good translucency. Therefore, it is particularly preferable to use indium tin oxide (ITO) as a material for the transparent conductive film. Zinc oxide can also be used. When these transparent conductive films are used, light emitted from the surface of the semiconductor layer is hardly absorbed even when passing through the transparent conductive film, and can be efficiently extracted upward from the transparent conductive film. The thickness of the transparent conductive film is desirably set to an optimum film thickness that is optically calculated according to the wavelength of light emitted from the light emitting portion.
[0021]
In the present invention, the ohmic contact between the distribution electrode and the semiconductor layer makes it possible to suppress an increase in forward voltage when a drive current is passed through the light emitting diode. Life characteristics are improved. The contact resistance between the distribution electrode and the semiconductor layer is preferably about 50Ω or less. The contact resistance between the distribution electrode and the semiconductor layer varies depending on the area of the distribution electrode. If the area of the distribution electrode is too small, the contact resistance increases and the forward voltage (Vf) increases. On the other hand, if the area of the distribution electrode is too large, the light emitted from the light emitting portion is blocked by the distribution electrode and cannot be taken out to the outside, resulting in a decrease in luminance. In addition, it is preferable that the layer on the most surface side of the semiconductor layer is a layer made of a semiconductor that can easily form an ohmic contact with the distribution electrode, that is, a so-called contact layer, because the ohmic contact becomes smaller.
[0022]
The distribution electrode is preferably arranged uniformly on the surface of the semiconductor layer in order to spread the drive current from the pedestal electrode uniformly over a wide range of the light emitting surface. The shape of the distribution electrode is circular in FIG. 1 and a plurality of distribution electrodes are provided on the light emitting surface. However, a polygonal distribution electrode such as a square may be used. When the distribution electrode consists of a plurality of independent electrodes, 0.2 mm of the light emitting surface 2 If about one distribution electrode is arranged per hit, the uniformity of the light emission intensity is insufficient, at least 0.15 mm 2 It is desirable to arrange one or more distribution electrodes per unit in order to improve the uniformity of the light emission intensity on the light emitting surface. Further, radial, donut-shaped, spiral, frame-shaped, grid-shaped, or branch-shaped independent distribution electrodes may be evenly arranged on the surface of the semiconductor layer.
[0023]
The material of the distribution electrode is AuZn alloy, AuBe alloy or the like when the surface layer of the semiconductor layer is p-type, and AuGeNi alloy or AuSi alloy when the surface layer of the semiconductor layer is n-type. Etc. can be used.
[0024]
The pedestal electrode is an electrode for performing a wire bond for connecting the light emitting diode and an external conductive wire. 2 A certain area is required. A metal such as gold or aluminum can be used as the material of the base electrode. In the light emitting diode of the present invention, when the pedestal electrode is at the center of the light emitting surface, the wiring connecting the pedestal electrode and the external conductor passes over the light emitting surface and becomes a shadow on the light emitting surface, resulting in uniformity of the light emission intensity. May be reduced. Therefore, it is preferable to dispose the pedestal electrode in the periphery of the light emitting surface, and it is particularly preferable to dispose the pedestal electrode in a portion within 0.3 mm from the outer periphery of the light emitting surface because the influence of the shadow of the wiring is reduced.
[0025]
In the conventional light emitting diode, the light emission based on the drive current flowing in the downward direction from the pedestal electrode is blocked by the pedestal electrode and cannot be extracted outside. For this reason, conventionally, measures have been taken such as providing an insulating layer or a semiconductor layer having a different polarity between the pedestal electrode and the light emitting portion, and forcibly preventing the drive current from flowing directly from the pedestal electrode. . However, in the present invention, the drive current can be induced by being distributed to the distribution electrode, and therefore, it flows in the direction directly below the pedestal electrode with a simpler configuration without providing an insulating layer or a semiconductor layer having a different polarity. The drive current can be reduced.
[0026]
【Example】
(Example)
In this embodiment, an example of manufacturing a light emitting diode according to the present invention will be specifically described with reference to FIGS. 1 and 2 are views showing a light-emitting diode manufactured in this example. FIG. 1 is a plan view of the light-emitting diode, and FIG. 2 is a cross-sectional view taken along a line II in FIG.
[0027]
The light-emitting diode manufactured in this example is a light-emitting diode that emits red-orange light whose light-emitting portion is made of AlGaInP. In this light emitting diode, a buffer layer 131 made of Zn-doped p-type GaAs, which is sequentially stacked on a semiconductor substrate 11 made of GaAs single crystal having a p-type (001) surface doped with zinc (Zn), Light reflecting layer 132 made of Zn-doped p-type AlGaAs, Zn-doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 Lower cladding layer 133 made of P, undoped (Al 0.2 Ga 0.8 ) 0.5 In 0.5 Light emitting layer 134 made of P, and n-type (Al) doped with silicon (Si) 0.7 Ga 0.3 ) 0.5 In 0.5 The semiconductor layer 13 is composed of an upper clad layer 135 made of P. The light emitting portion 12 of the light emitting diode includes a lower cladding layer 133, a light emitting layer 134, and an upper cladding layer 135.
[0028]
In this example, first, trimethylaluminum ((CH Three ) Three Al), trimethylgallium ((CH Three ) Three Ga) and trimethylindium ((CH Three ) Three Each layer constituting the semiconductor layer 13 was laminated on the semiconductor substrate 11 by a low pressure metal organic chemical vapor deposition (MOCVD) method using In) as a group III constituent element material to form an epitaxial wafer. Diethyl zinc ((C 2 H Five ) 2 Zn) was used. Disilane (Si 2 H 6 )It was used. In addition, as a raw material for Group V constituent elements, phosphine (PH Three ) Or arsine (AsH) Three ) Was used. The lamination temperature in the MOCVD method of each layer constituting the semiconductor layer 13 was unified at 700 ° C.
[0029]
The carrier concentration of the buffer layer 131 is about 5 × 10. 18 cm -3 The layer thickness was about 0.5 μm. The light reflecting layer 132 is formed by alternately laminating two types of AlGaAs thin films having different Al mixed crystal ratios, each having a carrier concentration of about 3 × 10. 18 cm -3 The total layer thickness was about 0.8 μm. The carrier concentration of the lower cladding layer 133 is about 4 × 10 17 cm -3 The layer thickness was about 1 μm. The thickness of the light emitting layer 134 is about 0.5 μm, and the carrier concentration is about 5 × 10. 16 cm -3 It was. The carrier concentration of the upper cladding layer 135 is about 2 × 10 18 cm -3 The layer thickness was about 4 μm.
[0030]
After each layer of the semiconductor layer 13 is laminated by MOCVD, an epitaxial wafer is manufactured, and a p-type ohmic electrode made of a gold / zinc (AuZn) alloy is formed on the back surface of the semiconductor substrate 11 as a first electrode 15 with a thickness of 1 μm. It formed by the vacuum evaporation method so that it might become.
[0031]
In order to form the distribution electrode 17 on the light emitting surface of the semiconductor layer 13, first, a gold / germanium (AuGe) alloy film made of an alloy of 93 wt% Au and 7 wt% Ge having a thickness of about 50 nm is formed on the upper cladding layer. The entire surface of 135 was once deposited by a general vacuum deposition method. Subsequently, a gold (Au) film having a thickness of about 50 nm was deposited on the surface of the gold / germanium alloy film. Next, patterning is performed using a general photolithography means so that a multilayer film having a two-layer structure composed of a gold / germanium alloy film and a gold film is in the shape of the distribution electrode 17, and the diameter is about 30 μm. A circular distribution electrode 17 was formed. As shown in FIG. 1, the distribution electrode 17 having a two-layer structure composed of the gold / germanium alloy film and the gold film is evenly distributed on the light emitting surface of the semiconductor layer 13 excluding the region directly below the pedestal electrode 16. Arranged. The distance L between the centers of the nearest distribution electrodes 17 was 0.25 mm. Next, after the distribution electrode 17 was formed, an alloying heat treatment was performed at 420 ° C. for 15 minutes in an argon (Ar) gas stream to form ohmic contact between the distribution electrode 17 and the upper cladding layer 135.
[0032]
Next, the transparent conductive film 14 made of indium tin oxide (ITO) was deposited on the semiconductor layer 13 by a general magnetron sputtering method so as to cover the light emitting surface of the upper cladding layer 135 and the distribution electrode 17. The specific resistance of the transparent conductive film 14 is about 2 × 10. -Four It was Ω · cm, and the transmittance of the light emitting diode of this example with respect to light of the emission wavelength was 94%. The film thickness of the transparent conductive film 14 was about 300 nm. According to a general X-ray diffraction analysis method, it was found that the ITO forming the transparent conductive film 14 is a polycrystalline film preferentially oriented in the <0001> direction (C axis).
[0033]
Next, after applying a general photoresist material to the entire surface of the transparent conductive film 14, a region where the pedestal electrode 16 is to be provided was patterned using a known photolithography technique. Thereafter, a gold (Au) film was deposited on the entire surface by vacuum deposition while leaving the patterned resist material remaining. The thickness of the gold (Au) film was about 1200 nm. Thereafter, the resist film was peeled off, and the above gold film was left only in the region where the base electrode 16 was to be formed by a known lift-off means. Thereby, the base electrode 16 made of circular gold having a diameter of about 110 μm was formed on the transparent conductive film 14. The position of the pedestal electrode 16 was a position where one of the corners of the distribution electrodes 17 arranged on the light emitting surface was replaced as shown in FIG. The pedestal electrode 16 is arranged so that the center is located at a position of 0.15 mm from the outer periphery of the light emitting surface (that is, the pedestal electrode is within 0.3 mm from the outer periphery of the light emitting surface).
[0034]
The epitaxial wafer on which the first electrode 15, the distribution electrode 17, the transparent conductive film 14, and the pedestal electrode 16 were formed as described above was cut into squares by a normal scribing method and separated into individual light emitting diodes. . The shape of the light emitting surface of the light emitting diode is a square having a side of 0.8 mm as shown in FIG. 1, and the area of the light emitting surface of this light emitting diode is 0.64 mm. 2 It became.
[0035]
Further, an example in which a lamp is assembled using the light emitting diodes manufactured in the above embodiment will be described with reference to FIGS. 8 is a plan view of the lamp, and FIG. 9 is a sectional view of the lamp of FIG.
[0036]
The lamps of FIGS. 8 and 9 were produced as follows. First, the semiconductor substrate side of the manufactured light emitting diode 42 is bonded onto the first conductive wire 44 formed on the substrate 45 using the conductive paste 43, and the first conductive wire 44 and the first electrode of the light emitting diode 42 are bonded. Conducted. Next, the wire between the base electrode of the light emitting diode 42 and the second conducting wire 47 was made conductive by wire bonding using a single gold wire 46. Thereafter, the whole was sealed with a transparent epoxy resin 41 to produce a lamp.
[0037]
When a drive current was passed in the forward direction between the first conductor and the second conductor of the lamp produced as described above, the wavelength was about 620 nm from the light emitting surface of the light emitting diode 42 via the transparent conductive film. A reddish orange light is emitted. Moreover, the half width of the emission spectrum was about 20 nm as a result of measuring with a spectroscope, and light emission excellent in monochromaticity was obtained. The forward voltage (V) when a forward current of 20 mA is passed. f ) Was about 2.1 V, reflecting the good ohmic characteristics of each distribution electrode of the light emitting diode of the present invention.
[0038]
Further, for the light emitting diode of this example, the result of measuring the distribution of the emission intensity on the XX line in the light emitting surface shown in FIG. 1 is shown in FIG. Due to the effect that the ohmic distribution electrodes 17 are evenly arranged on the light emitting surface, uniform light emission is recognized even in the outer peripheral region of the light emitting surface, and the area of the light emitting surface is 0.64 mm 2 It can be seen that even in the light emitting diode, uniform light emission is obtained within the light emitting surface. The luminance of the light emitting diode of the present invention when a forward current of 20 mA was passed was 102 mcd. Thus, according to this example, a light emitting diode excellent in uniformity of light emission intensity and luminance was obtained.
[0039]
In this embodiment, a light-emitting diode is manufactured using a p-type semiconductor substrate. However, the effect of the present invention can also be obtained by using a light-emitting diode manufactured using an n-type semiconductor substrate. Further, although AlGaInP is used as the material of the light emitting portion of the light emitting diode of the present invention, the effect of the present invention can be obtained even if the material of the light emitting portion is changed. The effect of the present invention is particularly great in a light emitting diode having a thin semiconductor layer in which semiconductor layers are stacked by MOCVD, for example, a light emitting diode having a light emitting portion made of AlGaInP, AlGaInN, AlGaAs or the like. The same effect can be obtained even when the lamp manufactured using the light emitting diode of the present invention is a so-called bullet-type lamp.
[0040]
(Comparative Example 1)
In Comparative Example 1, a light emitting diode array having a light emitting area substantially the same as that of the example was manufactured using an epitaxial wafer on which a semiconductor layer having the same structure as that of the above example was formed. 3 and 4 show the light-emitting diode array manufactured in Comparative Example 1. FIG. FIG. 3 is a plan view of the light-emitting diode array fabricated in Comparative Example 1, and FIG. 4 is a cross-sectional view taken along the line II of FIG. 3 and 4, reference numerals 21, 22, 23, 25, 231, 232, 233, 234, and 235 are the reference numerals 11, 12, 13, 15, 131, 132, 133, 134 in FIGS. , 135, corresponding to the part indicated.
[0041]
In the light emitting diode array of this comparative example 1, the structure of the electrode formed on the semiconductor layer 23 is different from that of the light emitting diode of the example. That is, in the light-emitting diode array of Comparative Example 1, a circular shape having a diameter of about 110 μm is first formed on the surface of the upper cladding layer 235 with a gold / germanium alloy having a thickness of 50 nm as a lower layer and gold having a thickness of 850 nm as an upper layer. An ohmic electrode 28 was formed. The electrodes 28 were arranged on the light emitting surface of the semiconductor layer 23 at equal intervals with the distance between the adjacent centers being 400 μm. The first electrode 25 formed on the semiconductor substrate 21 side was the same as that in the example.
After that, a dicing method is used to separate the light emitting surface by cutting into the range of 15 μm deep including the light emitting portion from the surface of the semiconductor layer 23 in the middle of the adjacent electrode 28, and crushing along the dicing cut 29 by etching. The layer was removed. Each light-emitting surface separated by the cuts 29 was a square having a side of about 400 μm as shown in FIG.
[0042]
Thereafter, the above-described epitaxial wafer was cut by a normal scribe method and separated into individual light-emitting diode arrays. As shown in FIG. 3, the light-emitting diode array of Comparative Example 1 is a square in which four light-emitting surfaces separated by the cuts 29 are collected. In this light emitting diode array, the four light emitting surfaces are connected to each other at the semiconductor substrate 21, the length of one side is 0.8 mm, and the light emitting area is approximately 0.64 mm. 2 It is.
[0043]
Thereafter, in the same manner as in the example, a lamp was assembled using this light emitting diode array. Since the light emitting diode array of Comparative Example 1 has the electrodes 28 on the four separated light emitting surfaces, wiring is performed by wire bonding with a total of four gold wires, one for each electrode 28. And the second conductor were connected. The connection between the first electrode 25 and the first conductive wire, sealing with a transparent epoxy resin, and the like were performed in the same manner as in the example, and a lamp using the light emitting diode array of Comparative Example 1 was produced.
[0044]
When a drive current was passed in the forward direction between the first lead wire and the second lead wire of this lamp, the forward voltage when energized with 20 mA was about 2.2 V, which was almost the same as in the example. Moreover, the result of having measured the distribution of the emitted light intensity in the light emission surface of the light emitting diode array of this comparative example 1 on the XX line of FIG. 3 is shown in FIG. In the light-emitting diode array of Comparative Example 1, the light emission intensity at the peripheral portion of the light-emitting surface tends to be lower than that of the light-emitting diode of the example, and the influence of the gold wire wired on the upper electrode 28 of the light-emitting diode array As a result, the in-plane distribution of the emission intensity was non-uniform. The luminance of the light-emitting diode array of Comparative Example 1 when a forward current of 20 mA was passed was 83 mcd, which was lower than that of the example.
[0045]
(Comparative Example 2)
In this comparative example 2, a light emitting diode having a conventional electrode structure with a light emitting area substantially the same as that of the example was manufactured using an epitaxial wafer on which a semiconductor layer having the same structure as that of the above example was formed. The light-emitting diode produced in this comparative example 2 is shown in FIGS. FIG. 5 is a plan view of the light emitting diode fabricated in the present Comparative Example 2, and FIG. 6 is a cross-sectional view taken along the line II of FIG. 5 and 6, reference numerals 31, 32, 33, 35, 331, 332, 333, 334, and 335 are the reference numerals 11, 12, 13, 15, 131, 132, 133, This corresponds to the portions indicated by 134 and 135.
[0046]
In this comparative example 2, the structure of the electrode formed on the light emitting surface 39 of the semiconductor layer 33 is different from that of the above-described embodiment. That is, in this comparative example 2, one circular ohmic electrode 38 having a diameter of about 110 μm, with a gold / germanium alloy having a thickness of 50 nm as the lower layer and gold having a thickness of 850 nm as the upper layer, is formed at the center of the light emitting surface 39. Formed.
Other than that, an epitaxial wafer similar to that of the example was cut by a normal scribing method so that the light emitting surface became a square, and was individually separated into a light emitting diode. The length of one side of the light emitting surface of the light emitting diode of Comparative Example 2 is 0.8 mm, and the light emitting area is 0.64 mm. 2 It was.
[0047]
Using this light emitting diode, a lamp was produced in the same manner as in the example. Between the electrode 38 of the light emitting diode and the second conducting wire, wiring was performed by wire bonding using a single gold wire, and was conducted. And when the forward drive current was sent between the 1st conducting wire and the 2nd conducting wire, the forward voltage at the time of 20 mA energization was 2.2V. Moreover, the result of having measured the distribution of the emitted light intensity in the light emission surface of the light emitting diode of this comparative example 2 on the XX line of FIG. 5 is shown in FIG. Compared to the example, the in-plane distribution of the emission intensity is non-uniform, and the emission intensity is reduced in the outer peripheral area of the emission surface. This is presumably because the diffusion of the drive current from the electrode 38 is insufficient in the semiconductor layer 33 and the current flowing to the light emitting layer 32 is not uniform in the light emitting surface. The luminance of the light emitting diode of Comparative Example 2 when a forward current of 20 mA was passed was 60 mcd, which was lower than that of the example.
[0048]
【The invention's effect】
As described above, in the light emitting diode of the present invention, by providing the distribution electrode on a part of the light emitting surface of the semiconductor layer, light emission at the light emitting portion can be performed around the distribution electrode. Therefore, the maximum width of the light emitting surface is 0.7 mm or more, and in particular, the area of the light emitting surface is 0.25 mm. 2 Even in the case of the large light emitting diode described above, the drive current can be spread over a wide range of the light emitting surface according to the planar arrangement of the distribution electrodes, and uniform light emission can be obtained within the light emitting surface.
[0049]
Further, in the light emitting diode of the present invention, electric conduction to the distribution electrode is ensured by a transparent conductive film instead of wiring to the electrode by wire bonding. Therefore, since there is no need to wire the distribution electrode by wire bonding, the area of the distribution electrode can be made smaller than the area of the pedestal electrode, and light can be transmitted to the outside with much better efficiency than conventional light emitting diodes. It can be taken out. Furthermore, the conductive wire for wiring does not pass over the light emitting surface and the conductive wire is not shaded, and the luminance can be increased. Further, when a lamp is manufactured using a light emitting diode, the number of wires by wire bonding can be reduced, and the assembly cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view of a light emitting diode according to an embodiment of the present invention.
2 is a cross-sectional view of the light emitting diode according to the embodiment of the present invention, taken along line II in FIG.
3 is a plan view of a light-emitting diode array according to Comparative Example 1. FIG.
4 is a cross-sectional view of the light-emitting diode array according to Comparative Example 1 taken along line II in FIG.
5 is a plan view of a light emitting diode according to Comparative Example 2. FIG.
6 is a view showing a cross section taken along line II of FIG. 5 of a light emitting diode according to Comparative Example 2. FIG.
FIG. 7 is a graph showing the light emission intensity distribution in the light emitting surface of the light emitting diodes (arrays) of Examples, Comparative Examples 1 and 2;
FIG. 8 is a plan view of a lamp using a light emitting diode according to an embodiment of the present invention.
9 is a cross-sectional view of the lamp shown in FIG.
FIG. 10 is a plan view of a light emitting diode separately developed by the present inventors.
FIG. 11 is a cross-sectional view of a light emitting diode separately developed by the present inventors.
[Explanation of symbols]
1, 11, 21, 31 Semiconductor substrate
2, 12, 22, 32 Light emitting part
3, 13, 23, 33 Semiconductor layer
4,14 Transparent conductive film
5, 15, 25, 35 First electrode
6, 16 Base electrode
7, 17 Distribution electrode
10 Light emitting diode
131, 231, 331 Buffer layer
132, 232, 332 Light reflecting layer
133, 233, 333 Lower cladding layer
134, 234, 334 Light emitting layer
135, 235, 335 Upper cladding layer
28, 38 electrodes
29 notches
39 Light emitting surface
41 Epoxy resin
42 Light emitting diode
43 Conductive paste
44 First conductor
45 substrates
46 Gold wire
47 Second conductor

Claims (7)

裏面に第1の電極が形成された半導体基板と、前記半導体基板上に形成された、発光部を含む半導体層と、前記半導体層の光を取り出す表面(発光面)の一部に分配して形成され、その半導体層とオーミック接触をなす分配電極と、前記発光面の全面と前記分配電極とを覆って形成され、その分配電極と導通する透明導電膜と、前記透明導電膜の表面の一部に形成され、その透明導電膜と導通する台座電極とを有し、前記発光面の最大幅が0.7mm以上で、該発光面の面積が0.25mm2以上であり、前記分配電極が複数の電極からなり、該分配電極が発光面の面積0.15mm2当たりに少なくとも1個以上存在するように配置されており、該分配電極と半導体層との接触抵抗が50Ω以下であり、前記台座電極が発光面の外周から0.3mm以内の部分に配置されており、前記透明導電膜の比抵抗が0.005Ω・cm以下であることを特徴とする発光ダイオード。A semiconductor substrate having a first electrode formed on the back surface, a semiconductor layer including a light emitting portion formed on the semiconductor substrate, and a part of a surface (light emitting surface) for extracting light from the semiconductor layer. A distribution electrode formed and in ohmic contact with the semiconductor layer; a transparent conductive film formed to cover the entire surface of the light emitting surface and the distribution electrode; and electrically connected to the distribution electrode; and a surface of the transparent conductive film. A pedestal electrode that is electrically connected to the transparent conductive film, has a maximum width of the light emitting surface of 0.7 mm or more, an area of the light emitting surface of 0.25 mm 2 or more, It is composed of a plurality of electrodes, and is arranged such that at least one distribution electrode exists per 0.15 mm 2 of the light emitting surface, and the contact resistance between the distribution electrode and the semiconductor layer is 50Ω or less, The pedestal electrode is 0. It is disposed in a portion within mm, light emitting diodes specific resistance of the transparent conductive film is equal to or less than 0.005 · cm. 前記透明導電膜が、酸化インジウム錫(ITO)からなることを特徴とする請求項1に記載の発光ダイオード。  The light-emitting diode according to claim 1, wherein the transparent conductive film is made of indium tin oxide (ITO). 前記発光部が、AlGaInPからなることを特徴とする請求項1または2に記載の発光ダイオード。  The light emitting diode according to claim 1, wherein the light emitting portion is made of AlGaInP. 前記発光部が、有機金属化学気相堆積(MOCVD)法により形成されることを特徴とする請求項1乃至3の何れか1項に記載の発光ダイオード。  The light emitting diode according to any one of claims 1 to 3, wherein the light emitting portion is formed by a metal organic chemical vapor deposition (MOCVD) method. 前記請求項1乃至4の何れか1項に記載の発光ダイオードと、該発光ダイオードの第1の電極と導通する第1の導線と、該発光ダイオードの台座電極と導通する第2の導線とを備えたランプ。  The light-emitting diode according to any one of claims 1 to 4, a first conductor conducting to the first electrode of the light-emitting diode, and a second conductor conducting to the base electrode of the light-emitting diode. Provided lamp. 前記台座電極と第2の導線との結線がワイヤボンドにより行われ、ワイヤボンドによる配線が1本であることを特徴とする請求項5に記載のランプ。  6. The lamp according to claim 5, wherein the connection between the pedestal electrode and the second conductive wire is performed by wire bonding, and the number of wires by wire bonding is one. 前記台座電極と第2の導線との結線を、ワイヤボンドにより1本の配線で行うことを特徴とする請求項5に記載のランプの製造方法。  The lamp manufacturing method according to claim 5, wherein the connection between the base electrode and the second conducting wire is performed by one wire by wire bonding.
JP2000220222A 2000-07-21 2000-07-21 Light emitting diode, lamp, and manufacturing method thereof Expired - Fee Related JP4031611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220222A JP4031611B2 (en) 2000-07-21 2000-07-21 Light emitting diode, lamp, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220222A JP4031611B2 (en) 2000-07-21 2000-07-21 Light emitting diode, lamp, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002043621A JP2002043621A (en) 2002-02-08
JP4031611B2 true JP4031611B2 (en) 2008-01-09

Family

ID=18714867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220222A Expired - Fee Related JP4031611B2 (en) 2000-07-21 2000-07-21 Light emitting diode, lamp, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4031611B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620340B2 (en) * 2002-10-23 2011-01-26 信越半導体株式会社 Light emitting device and manufacturing method thereof
US7528417B2 (en) 2003-02-10 2009-05-05 Showa Denko K.K. Light-emitting diode device and production method thereof
JP2004363572A (en) * 2003-05-12 2004-12-24 Showa Denko Kk Semiconductor light emitting device and light emitting diode
JP5029203B2 (en) * 2006-08-11 2012-09-19 三菱化学株式会社 Lighting device

Also Published As

Publication number Publication date
JP2002043621A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
JP5777879B2 (en) Light emitting device, light emitting device unit, and light emitting device package
CN105009311B (en) The light emitting diode of light extraction efficiency with raising
US9318530B2 (en) Wafer level light-emitting diode array and method for manufacturing same
JP5024247B2 (en) Light emitting element
EP3007238B1 (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP5276959B2 (en) LIGHT EMITTING DIODE, ITS MANUFACTURING METHOD, AND LAMP
US9006768B2 (en) Light emitting diode having increased light extraction
CN101295760A (en) Light emitting diode
JPH114020A (en) Semiconductor light-emitting element, manufacture thereof and semiconductor light-emitting device
KR20100036617A (en) Light emitting device and method of fabricating the same
CN102263120A (en) Semiconductor light-emitting element, light-emitting device, luminaire, display unit, traffic signal lamp unit, and traffic information display unit
JP6009041B2 (en) Light emitting device, light emitting device unit, and light emitting device package
JP3916726B2 (en) Compound semiconductor light emitting device
JP5471805B2 (en) Light emitting device and manufacturing method thereof
JP4031611B2 (en) Light emitting diode, lamp, and manufacturing method thereof
US9559270B2 (en) Light-emitting device and method of producing the same
KR101087968B1 (en) Semiconductor light emitting device
TWI575783B (en) Optoelectronic semiconductor chip and method for manufacturing optoelectronic semiconductor chip
JP2004363572A (en) Semiconductor light emitting device and light emitting diode
JP4255710B2 (en) Semiconductor light emitting device
JP3571477B2 (en) Semiconductor light emitting device
KR20120041717A (en) Flip chip light-emitting device and method of manufacturing the same
JP2001144323A (en) AlGaInP LIGHT-EMITTING DIODE AND MANUFACTURING METHOD THEREFOR
KR101087970B1 (en) Semiconductor light emitting device
JP4119602B2 (en) Semiconductor light emitting device, electrode for semiconductor light emitting device, method for manufacturing the same, LED lamp using the semiconductor light emitting device, and light source using the LED lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071019

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees